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Abstract—In the study of powertrain controls op-
timization for autonomous vehicles, the vehicle’s ex-
ternal dynamics and powertrain dynamics are often
treated separately, where one of the unique features
is usually neglected. This uniqueness, which is re-
ferred to as flexible power demand, states that the
powertrain control does not need to exactly meet
the power requested by the vehicle motion controller
at every moment. In this study, a method based on
the Approximate Dynamic Programming (ADP) is
explored to design the powertrain controller, where
the flexibility in power demand is incorporated in the
ADP framework. At last, a case study is shown to
examine the efficacy of the explored method.
Index Terms—Autonomous vehicles; Hybrid elec-

tric vehicles; Energy Management; Approximate Dy-
namic Programming.

I. Introduction
Passenger vehicles consume almost 65 percent of U.S

transportation fuels [1]. The need for lower fuel consump-
tion has been giving momentum to automotive technolo-
gies, particularly in the area of powertrain hybridization
and autonomy. While there are important benefits from
each of the two technologies individually, combining these
two trends together also has significant potential of fur-
ther improving the vehicle fuel economy.

An autonomous HEV has two levels of control. The
upper-level controller plans the external dynamics of
the vehicle. The lower-level controller decides how to
supply the requested driving power efficiently from the
power sources. Recently, some researchers have applied
the emerging idea of flexible torque request [2]. In this
approach, the lower-level controller does not need to
exactly meet the power required by the upper level at
every moment. Instead, it may have some deviations.
The methodology they have used in [2] is based on Pon-
tryagin’s minimum principle (PMP). PMP solutions are
dependent on the initial condition. Thus, each time the
initial condition changes, a new optimization is required.

In this paper, a customized ADP method is explored
for the first time to tackle the powertrain optimization
problem with flexible power demand. ADP provides solu-
tions independent of the initial condition of the system.
However, due to the non-quadratic nature of the cost
function and the non-affine structure of the powertrain
dynamics, the use of conventional standard ADP meth-

Fig. 1: Free Body Diagram of the Vehicle.

ods can be challenging. Therefore, a customization to the
ADP method is proposed to enable its application to non-
quadratic cost functions with non-affine dynamics and
nonlinear constraints on control inputs.
The remainder of this paper is organized as follows.

The HEV modeling is discussed in Section II. Section
III presents the power management with flexible power
demand. ADP framework is introduced in Section IV,
followed by a numerical example in Section V. At last,
concluding remarks are given in Section VI.

II. HEV Dynamics
A. Upper-Level Dynamics
Fig. 1 shows the free body diagram of a vehicle in a

straight path in an inertial frame. Let x be the longi-
tudinal position of the center of mass of the vehicle C.
Also, let v be the longitudinal velocity of the vehicle. The
external kinematics and dynamics of the vehicle can be
written as below:

ẋ(t) = v(t), x(0) = x0 (1)

v̇(t) = 1
m

[
1
r
Td(t)− fdrag − fR

]
, v(0) = v0

fdrag = 1
2ρCdragAfv(t)2, fR = µRmg (2)

where m, r, Td, Af , fdrag, fR, and µR are the vehicle’s
mass, wheel’s radius, driveline torque, effective frontal
area, air drag force, rolling resistance force and rolling
resistance coefficient, respectively. Besides, ρ and Cdrag
denote the air density and the coefficient of drag,
respectively.

B. Lower-Level Dynamics
1) Powertrain Dynamics: The hybrid powertrain con-

sidered in this study is shown in (Fig. 2). Neglecting the



Fig. 2: Power-split Powertrain Schematic.

inertia of the moving parts in the powertrain, the power
balance at the inverter reveals battery power Pbatt(t) as:

Pbatt(t) = µkm
m Tm(t)ωm(t) + µkg

g Tg(t)ωg(t) (3)

where torque and angular velocity of the motor and
the generator are depicted by Tm, ωm, Tg, and ωg,
respectively. The efficiency coefficients of the generator
and the motor are shown by µg and µm when they are
functioning as generators, respectively. Also, km and kg
are equal to 1 if their corresponding electrical machines
operate to generate electricity and equal to -1 otherwise.

2) Battery Dynamics: An equivalent circuit model
given in [3] is used to model the dynamics of the battery:

˙SoC(t) = −
Vbatt −

√
V 2
batt − 4RbattPbatt(t)

2RbattQbatt
,

SoC(0) = SoC0

(4)

where SoC is the state of the charge of the battery. Also,
Vbatt, Rbatt, and Qbatt denote the battery’s open-circuit
voltage, internal resistance, and capacitance, respectively.
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Fig. 3: Engine Map [3].

3) Fuel Consumption Dynamics: The fuel consump-
tion dynamics are generally governed by a function Γ
whose inputs are engine’s angular velocity, ωe, and en-
gine’s torque, Te, and quantifies the fuel consumption
rate as depicted by Eq. (5).

ṁfuel = Γ(ωe, Te) (5)

Fig. 4: Energy Management Hierarchy with Flexible Torque
Demand.

An engine map generated from the experimental data is
usually used to capture this mapping, as shown in Fig. 3.
Since we have two degrees of freedom in the powertrain,
it is a valid assumption [3], [4] that for any engine power
Pe(t) , Te(t)ωe(t), the solution pair (Te(t), ωe(t)) will be
such that the engine power lies on its most efficient point
on the engine map for which Te,opt is mathematically
approximated by the equation below (solid black line):

Te,opt = (60 ∗ atan(ωe70 ))− 0.00018 ∗ ωe2 + 0.14 ∗ ωe (6)

4) Flexible Power Demand Dynamics: Deviation in
the supplied power by the powertrain (Fig. 4) will result
in deviation in the expected acceleration obtained in
the upper-level controller, and thus a deviation in the
velocity and displacement expected by the upper-level
controller. To make sure the vehicle reaches its destina-
tion, the velocity and the position deviations are only
allowed during the intermediate time instants. In other
words, it means that the longitudinal displacement and
velocity plus driveline torque demand might be different
from their value expected by the upper-level controller
at any intermediate instant, but the deviation in the
longitudinal displacement and velocity must vanish as
time reaches the time horizon.
Let T̃d, x̃, and ṽ denote the flexible driveline torque,

longitudinal displacement, and velocity, respectively.
Rewriting the external dynamics of the vehicle consid-
ering the flexibilities yields:

˙̃x(t) = ṽ(t), x̃(0) = x(0) = x0 (7)

˙̃v(t) = 1
m

[
1
r
T̃d(t)− fdrag − fR

]
, ṽ(0) = v(0) = v0

fdrag = 1
2ρCdragAf ṽ(t)2. (8)

Note that x̃(0) = x(0) and ṽ(0) = v(0) come from the fact
that at the beginning of the driving cycle, the lower-level
controller starts with the same longitudinal displacement
and velocity resulted from the upper level.



Let define ∆x , x̃−x, ∆v , ṽ−v, and ∆Td , T̃d−Td.
Therefore, considering (1), (2), (7), (8), one can find:

∆ẋ(t) = ∆v(t), ∆x(0) = 0 (9)

∆v̇(t) = 1
m

[−1
2ρCdragAf∆v(t)(2v(t)

+ ∆v(t)) + 1
r

∆Td(t)], ∆v(0) = 0.
(10)

III. Problem Formulation
To keep track of the SoC of the battery and the devi-

ations in the longitudinal displacement and the velocity,
the following state vector is defined:

X(t) , [∆x(t),∆v(t), SoC(t)]T . (11)

The input vector is also defined as:

U(t) , [ωe(t), Te(t),∆Td(t)]T . (12)

Using (6), the input vector can be reduced to:

U(t) = [ωe(t),∆Td(t)]T . (13)

Considering Eqs. (3), (4), (9), and (10), the system
dynamics can be summarized to:

Ẋ(t) = F(X(t),U(t)), X(0) = X0 (14)

where F is defined as below:

F ,

 ∆v(t)
1
m

[
− 1

2ρCdragAf∆v(t)(2v(t) + ∆v(t)) + 1
r∆Td(t)

]
−Vbatt−

√
V 2

batt
−4RbattPbatt(t)

2RbattQbatt


(15)

In order to solve the optimization problem, we first
need to define a cost function. Next, we try to find the
series of inputs that make it minimum. The cost function
Jc in its most general form can be defined as below:

Jc(X(0),U(0)) =
∫ tf

0
λ(X(t),U(t)) dt+ ψ(X(tf ))

(16)

where tf is the final time, and λ(X(t),U(t)) is the
cost of intermediate states and inputs. Note that X(tf )
represents the final state vector and ψ : R3 → R+ is
called the penalizing function which is a design parameter
chosen as a nonnegative function. This function is used
to ensure the system will reach the desired terminal
point Xdes(tf ) by penalizing the state vectors far from
Xdes(tf ).

In this study, to minimize the fuel consumption during
the drive cycle, the intermediate cost is set to be:

λ(X(t),U(t)) = ṁfuel(t). (17)

Denoting the discretization sample time by δt and dis-
crete time index by k, one can discretize Eq. (14) by using
the Euler method:

X(k + 1) = X(k)+δtF(X(k),U(k)), k = 0, 1, 2, ..., N−1
(18)

Similarly, Eq. (16) can be discretized as:

J(X(0),U(0)) =
N−1∑
k=0

δt (λ(X(k),U(k))) + ψ(X(N))

=
N−1∑
k=0

δt (ṁfuel(k)) + ψ(X(N))

(19)
where N , tf

δt .
Based on the definition of the cost function in Eq. (19),

the cost-to-go Vk(X(k)) is defined as the cost from the
state X(k) at time index k to the end of the time horizon
and is equal to:

Vk(X(k)) =
N−1∑
τ=k

δt (ṁfuel(τ)) + ψ(X(N))

=δt (ṁfuel(k)) +
N−1∑
τ=k+1

δt (ṁfuel(τ))

=δt (ṁfuel(k)) + Vk+1(X(k + 1)),
k = 0, 1, 2, ..., N − 1.

(20)

This equation simply states that the cost of going from
X(k) at time index k to X(N) is equal to the cost of
going from X(k) to some X(k+ 1) plus the cost of going
from X(k + 1) to X(N). Also, note that:

VN (X(N)) = ψ(X(N)). (21)

Let optimal cost-to-go V ∗k (X(k)) be the minimum
cost of going from X(k) to X(N). Based on Bellman’s
principle of optimality [5], one can define V ∗k (X(k)) in a
recursive manner:

V ∗k (X(k)) = min
U(k)∈U(k)

(
δt (ṁfuel(k)) + V ∗k+1(X(k + 1))

)
subject to


X(k) ∈ X(k)

Pbatt(k) 6 V 2
batt

4Rbatt
for k 6= N

(22)
V ∗N (X(N)) = ψ(X(N)) (23)

The constraints mentioned in Eq. (22) are to make sure
that the states and the inputs of the system remain in
the feasible region. For example, in the application of the
HEVs, the SoC cannot be less than zero or more than 1
or ωe cannot be less than zero or more than its maximum
(around 450 (rad/s)). In addition, the last constraint in
Eq. (22) is introduced to make sure the SoC remains a
real number.
Let (Xmin(k), Xmax(k)), and (Umin(k), Umax(k))

denote the minimum and the maximum limits for X(k)
and U(k), respectively. Then, one can define the time-
variant state grid X(k) and input grid U(k) as below:

X(k) = {X(k) | Xmin(k) 6 X(k) 6 Xmax(k)} (24)
U(k) = {U(k) | Umin(k) 6 U(k) 6 Umax(k)} (25)



Besides, the control input by which V ∗k (X(k)) is attained
is called the optimal control input, U∗(X(k)).

IV. Solving Flexible Power Demand
Optimization Using a Customized ADP

A. Optimal Control Formulation
Consider a general optimal control problem for a dis-

crete dynamical system with p equality constraints and
q inequality constraints:

minimize
U(0),U(1),...,U(N−1)

N−1∑
k=0

δt (λ(X(k),U(k))) + ψ(X(N))

subject to X(k + 1) = X(k) + δtF(X(k),U(k))
fi(X(k),U(k)) = 0 i = 1, ..., p
gj(X(k),U(k)) 6 0 j = 1, ..., q
X(k) ∈ X(k),
U(k) ∈ U(k).

(26)
DP is an optimization method that provides globally
optimal solutions to this optimization problem by break-
ing it into N subproblems [6]. DP solves the problem
backward from the last step toward the first step. At each
step, the state grid and input grid are discretized. Then
for each point in the state grid, the optimal decision is
found by solving the optimization problem below:

minimize
U(k)

δt (λ(X(k),U(k))) + V ∗k+1(X(k + 1))

subject to X(k + 1) = X(k) + δtF(X(k),U(k))
fi(X(k),U(k)) = 0 i = 1, ..., p
gj(X(k),U(k)) 6 0 j = 1, ..., q
X(k) ∈ X(k),
U(k) ∈ U(k).

Note that V ∗k+1(X(k + 1)) is already known for all the
states at time index k+ 1. Thus, at each step, for all the
points in the state grid, the optimal input U∗(X(k)) and
the corresponding optimal cost-to-go V ∗k (X(k)) need to
be cached in tables. Storing U∗(X(k)) and V ∗k (X(k)) for
every point in the state grid and for each step requires
a vast amount of memory, which is one of the significant
drawbacks of DP.

However, in the problem of minimizing fuel consump-
tion, first, the system in Eq. (18) is highly non-affine
with a non-quadratic cost function. Secondly, the inputs
need to be constrained to meet the physical limitations in
the engine operation, and comfortableness of the drive.
Therefore, the conventional ADP methods [7], [8] in
which the system is considered to be input-affine with
quadratic cost function and unconstrained inputs will not
work here.

In this study, a customized ADP algorithm is explored
for the first time, which solves the abovementioned issues.
First of all, this ADP algorithm can be applied to both
control-affine and non-affine systems. Secondly, it can

Fig. 5: Structure of the Deep Neural Network.

take care of the non-quadratic nonlinear cost function
of the states and the inputs. In this algorithm, the
approximated optimal cost-to-go at each step is found
using deep neural networks (DNNs):

V̄ ∗(X(k)) = φk(X(k)). (27)

The input in this DNN is the current state X(k) and the
output is the approximated optimal cost-to-go V̄ ∗(X(k)).
The structure of the DNN (φk(.)) is shown in Fig. 5. The
size of hidden layers in this study by extensive research
is found to be [15, 10, 5].

B. The training procedure
Similar to DP, ADP proceeds backward in time. To

start the training procedure at k = N , one can define:

V̄ ∗(X(N)) = ψ(X(N) (28)

and train the network accordingly. This algorithm first
learns the approximated optimal cost-to-go at the final
step using Eq. (23). Then, it iterates backward in time,
and at each step k and for every point X(k) inside X(k),
it applies the set of the discretized constrained inputs
U(k) ∈ U(k). Then, it finds the minimum approximated
cost-to-go V̄ ∗(X(k)) corresponding to X(k), and feed the
pair (X(k), V̄ ∗(X(k))) to the DNN to train the controller
(Eq. (29)). Therefore, rather than learning the optimal
control input directly using the methods in [7], [8] which
necessitates the issues mentioned, in this approach, the
approximated optimal cost-to-go is learned for the points
in X(k). Then, the optimal control input is selected by
comparing the approximated cost-to-go for all possible
paths from the point X(k) using the constrained dis-
cretized inputs in U(k), and choosing the path with the
minimum approximated cost-to-go.

V̄ ∗(X(k)) = φk(X(k))

=


ψ(X(N), for k = N

min
U(k)∈U(k)

(
δt (ṁfuel(k)) + φk+1(X(k + 1))

)
,

for k 6= N.
(29)



The cost function used in Eq. (29) for the intermediate
steps can be any non-quadratic or quadratic function
with respect to the states and inputs. The training
algorithm is detailed in Algorithm 1. Once the learning
procedure is done, it can be used in the forward simula-
tion to find the sub-optimal control input sequence given
the initial condition X(0). The implementation algorithm
is explained in Algorithm 2.

Algorithm 1: Training Neural Network
1 Select a small positive number α, and a big

enough integer IterMax;
2 for k = N : -1 : 0 do
3 Choose h different random training samples

Xl(k) in X(k) where l ∈ {1, 2, ..., h};
4 For each training sample Xl(k) find V̄ ∗k (Xl(k))

using Eq. (29) ;
5 Initialize φ0

k(.) with random parameters;
6 for i = 1 : IterMax do
7 Update the neural network φik(.) and find

the parameters to approximate V̄ ∗k (Xl(k))
using backpropagation on the entire
training samples;

8 if ‖φik(.)− φi−1
k (.)‖ ≤ α then

9 Break;
end

end
10 φk(.) ← φik(.);

end

Algorithm 2: Implementation
1 for k = 0 : N − 1 do
2 U∗(X(k)) =

argmin
U(k)∈U(k)

(
δt(ṁfuel(k)) + φk+1(X(k + 1))

)
;

3 X(k + 1) = X(k) + δtF(X(k),U(k))
end

V. Simulation Results

In this section, the proposed controller is investigated
over a real data set [9]. This data set has captured the
external kinematics of the vehicles including their veloc-
ity, acceleration, and the headway with respect to the
leading and rear vehicle. The data has been collected for
a 150 meter-long section of a highway (I-35 Corridor) in
the city of Austin, USA. To investigate the efficacy of the
controller, a random vehicle is considered. Fig. 6 shows
the velocity profile of the target vehicle. Specifications of
the environment and the vehicle are presented in Table
I.

Parameter Value Parameter Value Parameter Value

m 1350 kg r 0.28 m µR 0.007

ρ 1.225
kgs/m3

Cd 0.3 Af 2.2 m2

µg 0.9 µm 0.9 Vbatt 202 V

Qbatt 23400
A.s

Rbatt 0.45 Ω ∆xmin -3.5 m

∆xmax 3.5 m ∆vmin -2.5
m/s

∆vmax 2.5 m/s

∆Td,min -150
N.m

∆Td,max 150
N.m

tf 26.56 s

δt 0.08 s α 0.05 IterMax 15

TABLE I: Environment Specifications & Vehicle System Pa-
rameters
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Fig. 6: Target Vehicle Velocity Profile.

The corresponding constraint Eqs. (30) to (32) are
imposed on ∆x, ∆v, and ∆Td to satisfy the passengers’
safety and comfortableness of the drive. The maximum
range of the flexibility in x & v can be limited by the
relative distances & velocities with the front and rear
vehicles at each step. Also, the measure of the flexibility
for Td can be constrained by the maximum torque of the
engine and the motor at the current speed. For simplicity,
the limitations of the flexibilities remain constant [4].

∆xmin 6 ∆x(t) 6 ∆xmax (30)
∆vmin 6 ∆v(t) 6 ∆vmax (31)

∆Td,min 6 ∆Td(t) 6 ∆Td,max (32)

The control performance of the system using the pro-
posed control method for X(0) = [0(m), 0(m/s), 60%]T
is shown in Figs. (7) - (10). For comparison, the perfor-
mance of the system under the baseline approach is also
presented in Figs. (8) - (10). In the baseline optimization,
the flexibility in the power demand is not allowed, and the
controller is responsible for supplying the exact amount
of power requested by the upper-level dynamics. Thus,
in the baseline optimization, the state space reduces to
[SoC] and the input space is [ωe]. An additional 27%
fuel economy improvement was achieved by the ADP
algorithm as compared with the value achieved by the
baseline strategy. The summary of the results is shown
in Table II.
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Fig. 7: Position & Velocity Deviation History of the Vehicle.
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Fig. 9: Engine Power History of the Vehicle.

0 5 10 15 20 25

Time(s)

0

5

10

15

20

F
u

e
l 
C

o
n

s
u

m
p

ti
o

n
 (

g
ra

m
)

Flexible Power Demand

Baseline

Fig. 10: Fuel Consumption History of the Vehicle.

Method Terminal
∆x (m)

Terminal
∆v

(m/s)

Terminal
SoC (%)

Fuel (g)

ADP -0.20 -0.14 59.45 9.49

Baseline − − 60.17 13.00

TABLE II: Summary of Results for the Drive Cycle
VI. Conclusion

Conventionally, in the study of hybrid electric vehi-
cles, vehicle coordination optimization and powertrain
energy management are studied separately. This paper
explores a method to optimize these two levels jointly
through a unique feature in the autonomous Hybrid
Electric Vehicles (HEVs). This feature, which is referred
to as flexible power demand, expresses that the power
required by the external dynamics need not be met by
the powertrain in an autonomous HEV at each step. This

method of powertrain energy management can result in
fuel economy improvement. Then, the optimization prob-
lem is formulated under the framework of a customized
approximate dynamic programming method. Finally, to
examine the efficacy of the proposed method, a case study
from the Austin Data set is studied, which shows a 27%
improvement in fuel consumption compared to the fixed
power demand optimization method.
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