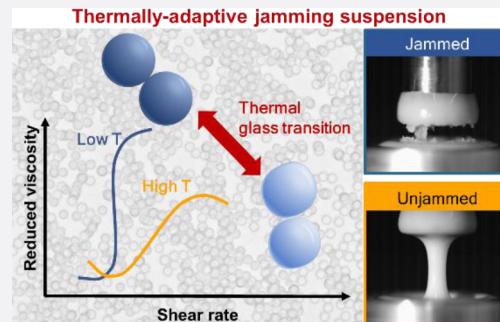


1 Leveraging the Polymer Glass Transition to Access Thermally 2 Switchable Shear Jamming Suspensions

3 Chuqiao Chen, Michael van der Naald, Abhinendra Singh, Neil D. Dolinski, Grayson L. Jackson,
4 Heinrich M. Jaeger, Stuart J. Rowan,* and Juan J. de Pablo*

Cite This: <https://doi.org/10.1021/acscentsci.2c01338>

Read Online

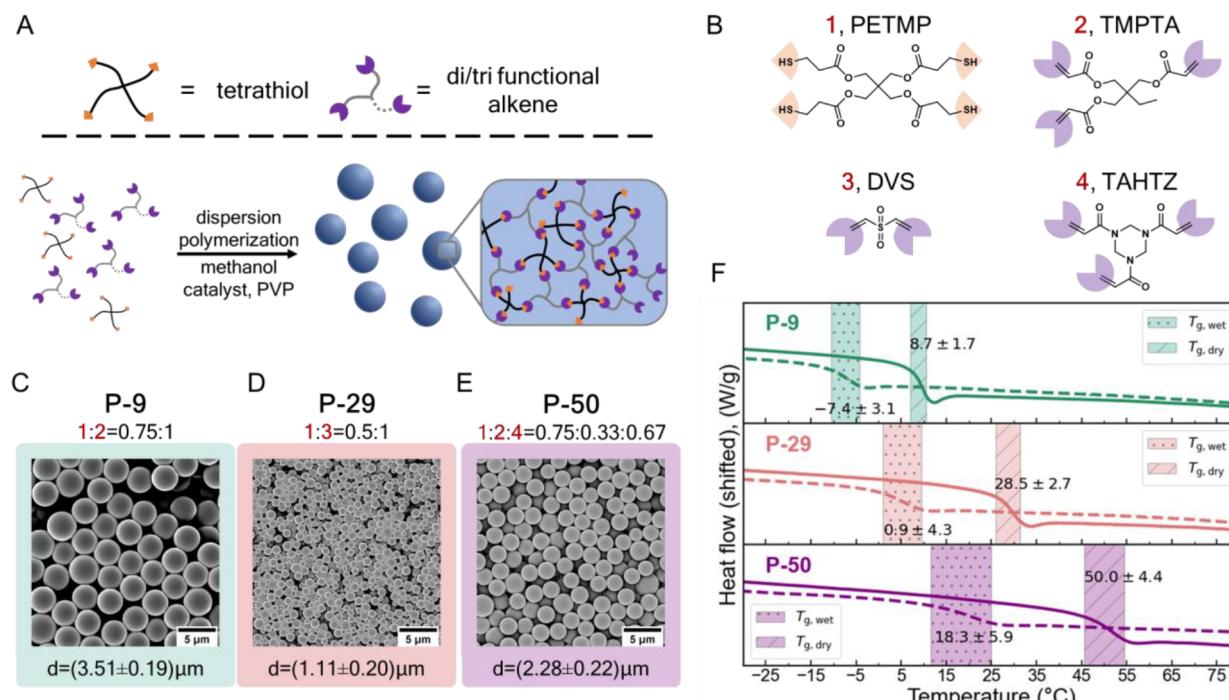

ACCESS |

Metrics & More

Article Recommendations

Supporting Information

5 **ABSTRACT:** Suspensions of polymeric nano- and microparticles are fascinating
6 stress-responsive material systems that, depending on their composition, can
7 display a diverse range of flow properties under shear, such as drastic thinning,
8 thickening, and even jamming (reversible solidification driven by shear).
9 However, investigations to date have almost exclusively focused on non-
10 responsive particles, which do not allow *in situ* tuning of the flow properties.
11 Polymeric materials possess rich phase transitions that can be directly tuned by
12 their chemical structures, which has enabled researchers to engineer versatile
13 adaptive materials that can respond to targeted external stimuli. Reported herein
14 are suspensions of (readily prepared) micrometer-sized polymeric particles with
15 accessible glass transition temperatures (T_g) designed to thermally control their
16 non-Newtonian rheology. The underlying mechanical stiffness and interparticle
17 friction between particles change dramatically near T_g . Capitalizing on these properties, it is shown that, in contrast to conventional
18 systems, a dramatic and nonmonotonic change in shear thickening occurs as the suspensions transition through the particles' T_g .
19 This straightforward strategy enables the *in situ* turning on (or off) of the system's ability to shear jam by varying the temperature
20 relative to T_g and lays the groundwork for other types of stimuli-responsive jamming systems through polymer chemistry.


21 ■ INTRODUCTION

22 The structure–property relationships established for polymers
23 have enabled the design of adaptive materials that can undergo
24 rapid changes upon exposure to an external stimulus such as
25 temperature, pH, or light.^{1–4} Such adaptive material systems
26 have been developed for a wide range of applications spanning
27 both macroscopic and microscopic scales. In particular, micro-
28 and nanoparticles made from responsive polymers have drawn
29 attention from diverse fields,⁴ including drug delivery,⁵ optical
30 systems,⁶ and rheological control.⁷ In these systems, careful
31 selection of polymer chemistries enables the precise control of
32 single-particle properties at the microscopic level. This highly
33 tunable approach makes it possible to regulate the collective
34 behaviors in colloids comprising such particles, such as their
35 macroscopic packing and various transport properties.

36 Dense suspensions consist of large volume fraction (ϕ) of
37 small solid particles dispersed in a carrier fluid. Such materials
38 display rich rheological behaviors and provide intriguing
39 opportunities to design material systems with applications
40 complementary to solid polymeric materials.^{8–13} On account
41 of the prevalence of complex interactions that involve
42 interparticle contact forces in addition to hydrodynamic
43 coupling forces, dense suspensions can display drastic non-
44 Newtonian rheology that in extreme cases resembles a
45 reversible liquid to solid transition.^{11,14–20} As the contact
46 interactions are highly sensitive to the composition and surface

47 structures of the particles, the stress response of the suspension
48 can be tailored by varying the fluid and the particle mechanical
49 properties.^{7,21–26} For example, suspensions consisting of soft
50 particles ($E' = 10^2–10^4$ Pa) can exhibit dramatic shear
51 thinning and provide platforms for designing novel lubri-
52 cants.^{10–13} On the other hand, dense suspensions of rigid
53 particles (typically glassy materials with Young's moduli $E' =$
54 $10^8–10^{11}$ Pa) can exhibit a dramatic increase in viscosity or
55 even solidify under shear (shear jamming), thereby finding
56 applications in impact mitigation.^{8,9,16,18,27–29} While suspen-
57 sions consisting of diverse classes of materials have been
58 investigated to map out the structure–property relationships
59 that connect particle properties to suspension rheology,
60 material systems that allow for *in situ* control of suspension
61 flow behavior have received limited attention.^{7,22,30,31} One
62 prototypical example is provided by microgel suspensions of
63 soft thermoresponsive particles.^{7,23,30} In such systems, the
64 lightly cross-linked polymer network can be driven to deswell
65 through triggering a solubility transition at certain temper-

Received: November 10, 2022

Figure 1. Particle synthesis scheme and characterization by SEM and DSC. (A) Schematic diagram of the thiol-Michael dispersion reaction and the particle network structure. Detailed reactions and purification conditions are in [Materials and Methods](#) in the [Supporting Information](#). (B) Chemical structures of the monomers, namely, pentaerythritol tetrakis(3-mercaptopropionate) (PETMP, 1), trimethylolpropane triacrylate (TMPTA, 2), divinyl sulfone (DVS, 3), and 1,3,5-triacyclohexahydro-1,3,5-triazine (TAHTZ, 4), used to synthesize the different particles. (C–E) Monomer composition and SEM micrographs of P-9, P-29, and P-50 particles, respectively. The mean size and the standard deviation are indicated below each image. (F) DSC measurement results showing the normalized heat flow as a function of T for the dry particles (solid line) and particles suspended in their respective carrier fluid at around 56 wt % (dashed lines). Shaded areas with (–) and (/) indicate the wet and dry T_g respectively. The first number is the half-height midpoint of the glass transition (T_g) range. The second value is the width of the T_g range.

66 atures, leading to a drastic decrease in the volume fraction of
67 the particles and a decrease in the suspension yield stress under
68 shear.²³ While this strategy is effective for tuning shear
69 thinning, systems relying on solubility transitions are limited to
70 a few selected solvents.

71 In contrast to solubility transitions, the polymer glass
72 transition can result in a dramatic change in particle stiffness
73 without the aid of a solvent. As one of the most fundamental
74 properties of polymers, a considerable amount of research has
75 been aimed at characterizing polymeric interfaces around the
76 glass transition temperature (T_g). When a polymeric material is
77 heated through T_g within a span of just a few degrees the
78 molecular mobility increases by over 10 orders of magni-
79 tude,^{32–34} elastic moduli drop by 2–3 orders of magni-
80 tude,^{35–37} and friction exhibits a distinct temperature
81 anomaly.^{38–44} Remarkably, while these changes around T_g
82 potentially have a large influence on the interparticle forces in
83 dense suspensions, their role in controlling, and tailoring, the
84 suspension flow behavior remains largely unexplored due to a
85 lack in experimental study in the vicinity of T_g .

86 This work considers the interplay between polymer glass
87 formation/devitrification and shear-jamming phenomena and
88 how that can be leveraged to arrive at suspensions with
89 adaptable shear-jamming characteristics. More specifically,
90 introduced herein is a generally applicable strategy that relies
91 on the design of suspensions of particles with targeted T_g to
92 access materials with responsive and switchable shear rheology.
93 It is demonstrated that transitioning through T_g has a dramatic
94 and nonmonotonic effect on the shear thickening strength of
95 the suspension. This behavior enables the *in situ* turning on (or

off) of the material's ability to shear jam by varying the
96 temperature relative to T_g and lays the groundwork for
97 switchable jamming systems that leverage a diverse range of
98 polymer chemistry.

RESULTS AND DISCUSSION

99 A vast majority of polymeric particles reported in the dense
100 suspension literature are based on poly(styrene) (PS) or
101 poly(methyl methacrylate) (PMMA), which exhibit a glass
102 transition temperature (T_g) that is well above ambient
103 conditions ($T_g \sim 100$ °C). Such temperatures are rarely
104 accessed in rheological measurements.^{45,46} Furthermore, non-
105 cross-linked PS or PMMA particles can suffer from irreversible
106 plastic deformations and dissolution above T_g ^{47,48} and
107 randomly cross-linked polymers can exhibit broadened T_g 's
108 that can be difficult to characterize.^{49–51} These and other
109 features serve to underscore that studying the effect of T_g in
110 suspensions rheology requires the careful choice of the particles'
111 chemistry.


112 To access a series of cross-linked particles with a range of
113 distinct and accessible T_g 's, polymeric particles were
114 synthesized using thiol-Michael dispersion polymerization^{52–54}
115 of small-molecule monomers (Figure 1A and B). This
116 technique offers several advantages: (1) the product is a
117 polymer network with a high cross-linking density and minimal
118 plastic deformation above T_g , (2) the glass transition
119 temperature range is narrow, (3) the T_g of the polymer can
120 be precisely tuned by varying the monomer structures, and (4)
121 the reaction is facile and relatively insensitive to moisture or
122 air.^{52–54} Three types of particles (referred to as P-X, where X is
123

125 the dry T_g in °C), namely, **P-9**, **P-29**, and **P-50** were
 126 synthesized by thiol-Michael dispersion polymerization at a
 127 stoichiometric thiol/vinyl ratio following general procedures
 128 reported by Bowman and co-workers.^{52,53} In each case, a
 129 tetrathiol, namely, pentaerythritol tetrakis(3-mercaptopropio-
 130 nate) (PETMP, **1**), was mixed with monomer(s) containing
 131 multiple Michael acceptor functionalities, namely, trimethylol-
 132 propane triacrylate (TMPTA, **2**), divinyl sulfone (DVS, **3**), or
 133 1,3,5-triacyloylhexahydro-1,3,5-triazine (TAHTZ, **4**), at an
 134 alkene to thiol ratio of 1:1. By varying the type and ratio of the
 135 different Michael acceptor-containing monomers, it was
 136 possible to tailor the T_g of the particles (Figure 1C–E). The
 137 reaction was monitored by alkene/thiol conversion via FTIR
 138 spectroscopy (see Figure S1–S3). Images from scanning
 139 electron microscopy (SEM) demonstrate that the particles
 140 were uniform in size (Figure 1C–E and Figure S4).

141 To create suspensions, poly(ethylene glycol) of molecular
 142 weight (M_n) 200 g/mol (PEG200) was used as the carrier fluid
 143 for all the particle systems (in the case of the **P-29** particles, 20
 144 vol % dimethyl sulfoxide was added as a cosolvent to assist
 145 with dispersion, see the **Materials and Methods** in the
 146 **Supporting Information** for further details). The T_g 's of both
 147 the dry particles and the suspensions were determined by
 148 differential scanning calorimetry (DSC), as shown in Figure
 149 1F. In all three cases, the T_g of the particles immersed in the
 150 carrier fluid drops by 15–25 °C below that of the dry particles,
 151 suggesting that the carrier fluid acts as a plasticizer that can
 152 accelerate the polymer dynamics in the bulk and on the
 153 surface.²⁶ Nevertheless, the particle dimensions stay roughly
 154 the same in the dry or wet state on account of their high cross-
 155 linking density (see Figure S5).

156 As the thermomechanical properties of these networks
 157 represent a critical aspect of this work, they were evaluated by
 158 preparing monolithic **P-9**, **P-29**, and **P-50** films, which were
 159 characterized by dynamic mechanical analysis (DMA) in both
 160 the dry (see Figures S6 and S7) and carrier-fluid-swollen states
 161 (Figure 2) for a better representation of the suspension
 162 environment. As expected, the polymer networks synthesized
 163 using this chemistry exhibit a relatively narrow glass transition
 164 window, consistent with literature examples.^{52,53} The ratio of
 165 loss to the storage modulus ($\tan \delta$) provides a measure of the
 166 mechanical losses due to dissipation at the molecular scale.^{44,55}
 167 In general, the peak in $\tan \delta$ is seen around T_g because polymer
 168 chains just start to become mobile at that temperature but still
 169 experience high molecular friction, leading to higher
 170 dissipation than in the glassy or rubbery states. The
 171 thermomechanical T_g of the materials, designated by the
 172 peak in the dissipation factor $\tan \delta$, is comparable to that from
 173 the DSC measurements for the dry and immersed film (see
 174 Figures S6 and S7). Importantly, the tensile storage modulus
 175 (E') changes by three orders of magnitude from around 10^9 Pa
 176 in the glassy state to 10^6 Pa in the rubbery state for all three
 177 materials.

178 To examine the effect of temperature (T) on the rheology,
 179 steady-state flow curves for particle suspensions with fixed
 180 particle volume fractions were measured at different temper-
 181 atures as a function of shear stress (τ). The suspension
 182 viscosity η can be normalized by the viscosity $\eta_0(T)$ of the
 183 Newtonian carrier fluid to define a relative viscosity $\eta_r = \eta /$
 184 $\eta_0(T)$ (see Figure S8). Critically, the strength of shear
 185 thickening can be parametrized by the power law exponent β
 186 ($\eta_r \propto \tau^\beta$), which represents the slope of the curve during the
 187 shear thickening regime on a log–log plot, with $\beta = 0$

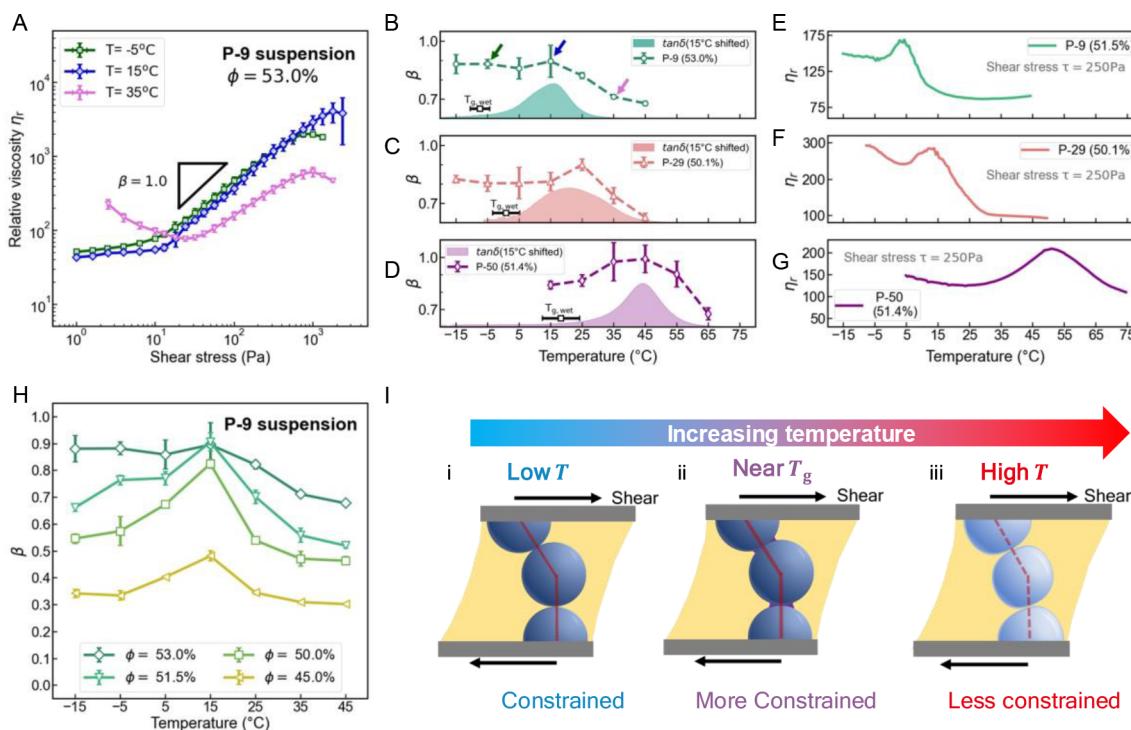


Figure 2. Mechanical stiffness characterization via DMA. The storage modulus (E') and $\tan \delta = E''/E'$ of the carrier-fluid-swollen **P-9**, **P-29**, and **P-50** polymer films were measured in an immersion setup using an oscillation frequency of $f = 1$ Hz. See Figure S6 for plots including the loss modulus (E''). The thermomechanical T_g is indicated by the peak in $\tan \delta$. The values of E' for several other particle materials are indicated for comparison.^{57–60} PMMA = poly(methyl methacrylate) and PS = polystyrene.

corresponding to a Newtonian fluid and $\beta = 1.0$ signaling the occurrence of discontinuous shear thickening (DST), which is a precursor of shear jamming in steady-state rheological measurements.^{8,16,19,56}

In typical suspensions of hard spheres, such as silica particles, the η_r vs τ curves are independent of temperature, and for a given packing fraction β is roughly constant (with an estimated decline of less than 0.03 per 10 °C).^{19,61} In contrast to the behavior of these traditional suspensions, the **P-9** particle suspension shows a strong sensitivity to temperature, as demonstrated in Figure 3A, where η_r for a volume fraction of $\phi = 53\%$ shows a significant change in shear thickening strength as T is varied from -15 to 45 °C. Here, a strong and nearly discontinuous thickening with $\beta \approx 0.9$ was observed below 15 °C. These findings should be contrasted with measurements at higher temperatures, for example 35 and 45 °C, where the suspension shows only mild thickening ($\beta < 0.7$) (Figure 3B and Figure S9). Interestingly, note that the secondary thinning that follows the thickening, as predicted by Jamali and Wagner, was not observed, which could be a consequence of limitations on the shear rates accessible by parallel plate rheometers.^{62,63} The change in β over a temperature range of ~20 °C suggests that control of shear thickening should be possible simply by modulating temperature, thereby providing new avenues for engineering responsive fluids or for facilitating suspension processing, which is typically challenging without the use of additives in the carrier fluid.

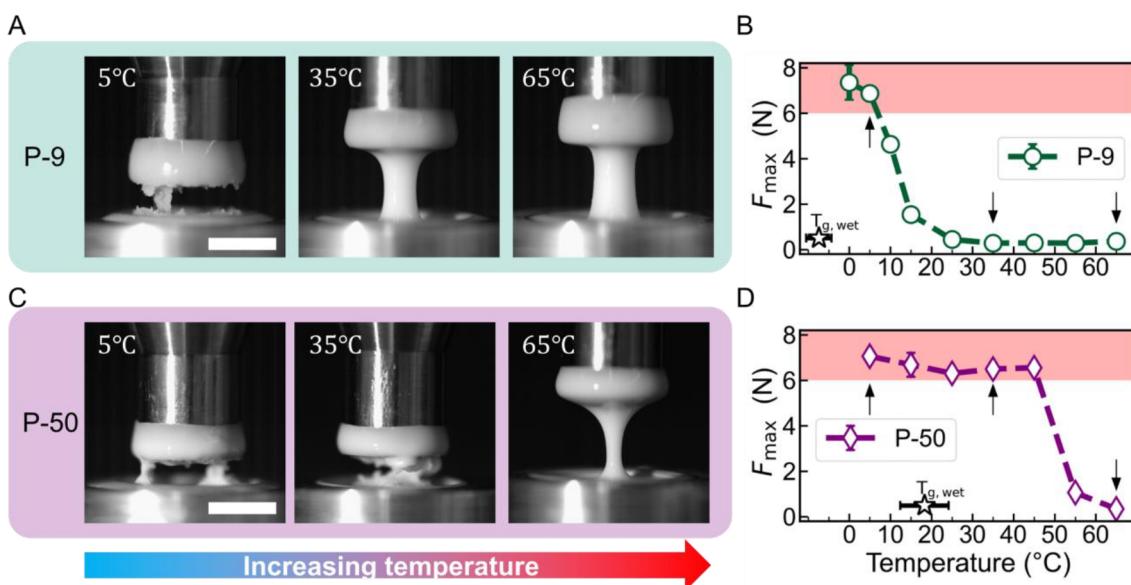

As an alternative to measuring β vs T , a common way to probe molecular dynamics in a polymer and molecular glass transition is to investigate how viscosity varies with temperature for a given stress.³⁷ A temperature ramp experiment under constant shear stress ($\tau = 250$ Pa, heating/cooling rate =

Figure 3. Dependence of the rheological behavior on temperature. (A) Stress-controlled steady-state rheometry data for the P-9 suspension with $\phi = 53.0$ vol % at -5 (green), 15 (blue), and 35 $^{\circ}\text{C}$ (pink), demonstrating that the strength of shear thickening is highly temperature-dependent. The black line has a slope of 1 corresponding to DST where the shear rate is constant. (B–D) β as a function of the 53.0% P-9 suspension, the 50.1% P-29 suspension, and the 51.4% P-50 suspension. Shaded areas indicate the $\tan \delta$ results from Figure 2, here shifted up by 15 $^{\circ}\text{C}$. The unshifted T_g values from the DSC measurement of the suspension are indicated by the black line. Arrows in panel B indicate β for the conditions measured in panel A. (E–G) Reduced viscosity η_r measured as a function of temperature for the 51.5% P-9 suspension, the 50.1% P-29 suspension, and the 51.4% P-50 suspension at a shear stress of 250 Pa. (H) Plots of the shear thickening exponent β ($\eta_r \propto \tau^\beta$) as a function of temperature for all seven packing fractions of P-9 suspensions. Error bars represent the standard deviation from three or more replicate measurements in panels A–D and H. (I) Illustration of the proposed temperature dependency mechanism. (i) Below T_g the particles are glassy and nondeformable. (ii) The particles exhibit maximum constraints near T_g due to greater frictional interactions between the polymer particles. (iii) At temperatures high above T_g surface deformability dominates and the particles are less constrained. The deformations are small, as estimated from contact mechanics calculations (see Figure S11), and they are exaggerated in this illustration for visual clarity. Flow curves and plots of η_r vs the shear rate can be found in Figure S9–S12.

1.5 $^{\circ}\text{C}/\text{min}$) was conducted for P-9, P-29, and P-50 suspensions (Figure 3E–G and Figure S12). In all cases, the particle volume fraction was held at $\phi \sim 50\%$. To normalize the temperature dependency of the carrier fluid viscosity (η_0), $\eta_r = \eta/\eta_0(T)$ is shown in Figure 3E–G. The relative viscosity η_r can be regarded as a measure of the additional resistance due to the presence of the particles. For conventional hard sphere suspensions, the curve is expected to be approximately flat with a slight decreasing trend with temperature.^{19,61} For all systems measured in this study, it was found that the relative viscosity of the suspension clearly shows a local peak near each particle's T_g which further supports that the maximal shear thickening occurs around the glass transition. Interestingly, the observed behavior in viscosity bears similarities to studies of polymer dispersions that undergo microphase separation, such as that in block copolymer solutions⁶⁴ and polymers around their lower critical solubility temperature.⁶⁵ In those studies, a peak in η is observed at a temperature where the conformation of polymer chain is changing. Here, the peak in η_r suggests maximal constraints on the suspension flow. It is worth noting that this peak can be observed in both heating and cooling experiments (Figure S12), implying reversibility in the interactions induced by T_g .

To confirm whether this phenomenon is indeed related to the particles' T_g , further experiments were carried out on suspensions of P-29 and P-50. While the three types of particles have different sizes (ranging from ca. 1 to 3.5 μm), the effect of particle size is well understood and has been shown to mainly affect the onset shear stress of thickening but not the trend in β .^{20,66,67} For these higher T_g suspensions, the nonmonotonic behavior in β is found to be similar for all particle compositions. The peak, however, is shifted to higher temperatures, consistent with the changes in T_g (Figure 3B–D, see Figure S9 for the flow curves). Critically, in all three cases the peak in β can be well aligned with $\tan \delta$ in Figure 2 when the latter is shifted by the same amount $\Delta T = 15$ $^{\circ}\text{C}$, suggesting that the temperature dependence is directly related to the thermal glass transition of the particles (see Figure S9e and f for a comparison between T_g and the β peak). An offset ΔT may arise from two effects: (1) Polymer glass transition is a kinetic event where the dynamics can start to slow down at temperatures as much as 50 $^{\circ}\text{C}$ higher than T_g ³⁵ and the characteristic dissipation length scale has a measurable increase at more than 15 $^{\circ}\text{C}$ higher than T_g .⁴² (2) Polymer interfaces under confinement and, in particular, with different deformation rates can exhibit dynamics different from the bulk.^{34,35} This result motivates further research to quantify how polymer

Figure 4. Tensile testing for shear jamming at varying temperatures. (A and C) Images of the suspensions under extensional deformation taken at $T = 5, 35$, and $65\text{ }^{\circ}\text{C}$ for P-9 and P-50 suspensions ($\phi = 56.0\%$). The pulling rate is 8 mm/s . The scale bar indicates 5 mm . (B and D) The maximum normal force (F_{\max}) as a function of temperature. Shaded areas in red indicate large peak normal forces associated with shear jamming. The arrows indicate temperatures corresponding to the snapshots in panels A and C. The unshifted T_g values from the DSC measurement of the suspension are indicated by the black line. Error bars represent the standard deviation of three replicate measurements. See Figure S15 for representative raw force traces.

268 stress relaxation at the interface can influence the constraints
269 on particle relative motions.⁶⁷ For the three materials
270 considered here, the fact that the maximum observed β
271 strongly tracks with T_g offers a general yet simple approach to
272 controlling the shear thickening characteristics of dense
273 suspensions by simply tuning the T_g of the cross-linked
274 particles.

275 To explore how β vs T varies for different volume fractions
276 (ϕ), detailed studies were carried out using P-9 suspensions at
277 four additional ϕ values that spanned weak to strong shear
278 thickening regimes (see Figure 3H and Figure S10). In all
279 cases, β is a nonmonotonic function of T , with a peak near $15\text{ }^{\circ}\text{C}$,
280 $^{\circ}\text{C}$ for all volume fractions studied (Figure 3H). Above $15\text{ }^{\circ}\text{C}$,
281 β drops significantly as the temperature increases. At $45\text{ }^{\circ}\text{C}$, β
282 is smaller than 0.7 even at the highest ϕ studied, implying that
283 DST has been suppressed. At this temperature, the elastic
284 modulus is around three orders of magnitude smaller than in
285 the glassy state. In this rubbery regime, the deformation caused
286 by typical interparticle stress in shear experiments is estimated
287 to be around 1–3% of the particle radius (see Figure S11 for
288 experimental evidence of deformability and additional
289 calculation details). Although this number appears small in
290 magnitude, it is about $100\times$ larger compared to the
291 deformation in the glassy state and may affect the constraints
292 on particle motions. With this in mind, it is hypothesized that
293 deformability may lead to the observed attenuation in shear
294 thickening at temperatures much above T_g : as the temperature
295 increases, the particle surfaces become more compliant,
296 discouraging the formation of sample-spanning rigid force
297 chains under shear.^{62,68}

298 The observed nonmonotonicity leads us to consider other
299 effects of temperature on the suspension. First, the thermal
300 expansion coefficients (α) of the particle materials were
301 evaluated, since if ϕ increases significantly near T_g then β
302 should also increase.^{19,56} However, it was found that α of the
303 particles is comparable to that of the carrier fluid (see Figure

313). For all suspensions, the calculated drift in ϕ is minimal³⁰⁴ ($\Delta\phi < 0.05\%$ for changing T by $10\text{ }^{\circ}\text{C}$) and therefore unlikely³⁰⁵ to be the main cause of the peak in β (see Figure S14).³⁰⁶

307 Surface friction, which is of vital importance for constraining³⁰⁷
308 particle motion, is also extremely sensitive to temperature in³⁰⁸
309 the vicinity of T_g .^{38–44} Different from hard surfaces, friction³⁰⁹
310 between polymer surfaces originates from dissipative inter-³¹⁰
311 actions of interacting chains.^{39,40,42,44} Around T_g , adhesive³¹¹
312 interactions increase on account of an increase in the true³¹²
313 contact area, which may lead to stronger cohesive “sticky”³¹³
314 forces and enhanced rolling friction.^{7,40,41} On account of the³¹⁴
315 viscoelastic nature of the interface between two particles³¹⁵
316 sheared into contact, the friction coefficient (μ) can either³¹⁶
317 increase monotonically with T at moderate to high surface³¹⁷
318 deformation rates or show a peak if the deformation rate is³¹⁸
319 slow enough to cross over into the time scale of surface³¹⁹
320 relaxation.^{41–44} (see the Supporting Information for an³²⁰
321 estimate of the Deborah number). AFM measurements of³²¹
322 surface adhesion and friction on dry P-9 films were carried out³²²
323 at varying temperatures with a silicon probe. Consistent with³²³
324 the literature, it was observed that the apparent stiffness³²⁴
325 decreases while adhesion and friction coefficients increase³²⁵
326 when heating through T_g (see Figure S15 for the results and³²⁶
327 discussion). Increased adhesive interactions above T_g are³²⁷
328 consistent with the observation that the P-9 suspension shows³²⁸
329 shear thinning at 35 and $45\text{ }^{\circ}\text{C}$ for the low-stress regime³²⁹
(Figure 3A). In relation to shear thickening, simulations and³³⁰
331 experiments have suggested that both higher friction³³¹
332 coefficients μ or the introduction of rolling friction could³³²
333 lead to more pronounced shear thickening and larger β .^{7,69,70}

334 These results suggest that the nonmonotonic trend in the³³⁴
335 strength of shear thickening with temperature (Figure 3B–D³³⁵
336 and H) results either from a nonmonotonic μ or from a³³⁶
337 competition between increasing μ and decreasing mechanical³³⁷
338 stiffness. In both scenarios, shear thickening is most³³⁸
339 pronounced when relative particle movement is most con-³³⁹

340 strained. A proposed temperature dependency mechanism is
341 shown in Figure 3 I.

342 Finally, it is important to recall that suspensions that
343 undergo strong or even discontinuous shear thickening in a
344 steady-state rheological measurement may not exhibit shear
345 jamming.^{16,24} To directly assess if our design strategy based on
346 T_g can be used for switching shear jamming on or off at
347 different temperatures, pull tests^{24,71} were carried out using the
348 P-9 and P-50 suspensions. In these experiments, a cylindrical
349 rod, initially immersed in the suspension, is pulled out
350 vertically at a fixed rate, in our case 8 mm/s. At 5 °C, the P-
351 9 suspension shows a rough cleavage plane, indicating brittle
352 fracture associated with the solid-like behavior of shear-
353 jammed fluids. In contrast, at 35 and 65 °C, the P-9
354 suspension exhibits a neck and pinch-off detachment, which
355 is characteristic of a liquid-like response (Figure 4A). The
356 transition between these two types of behavior is also reflected
357 in the maximum normal force F_{max} during the deformation,
358 which shows a sharp decrease near 10 °C for the P-9 system
359 (Figure 4B, see Figure S16 for the raw force curves). In
360 contrast, the P-50 system shows brittle fracture and large F_{max}
361 all the way up to 45 °C, with a liquid-like response occurring
362 only above 45 °C (Figure 4C and D). This clear dependency
363 on T_g demonstrates how the shear jamming response can be
364 tailored by changing the T_g of the particles.

365 ■ CONCLUSIONS

366 In this study, we have demonstrated that pronounced
367 temperature dependence of the strength of shear thickening
368 in suspensions of polymer microparticles can be achieved by
369 leveraging their glass transition temperature. Most strikingly,
370 the suspensions exhibit a maximal shear thickening near T_g
371 which is attributed to enhanced frictional or adhesive
372 interactions between the polymer particles sheared into
373 contact. At temperatures above T_g , the particle surfaces
374 become more deformable and do not constrain relative particle
375 movement as strongly and shear jamming can be turned off.
376 Changes in the particle mechanical properties directly impact
377 the force chain formation and, macroscopically, the resistance
378 to flow, as measured by the suspension viscosity (Figure 3I).
379

380 In recent years, there has been a growing interest in
381 designing shear thickening fluids (STFs) for targeted material
382 applications.^{31,72,73} Here we provide a different strategy
383 leveraging polymer design based on the bulk mechanical
384 properties of the particle and show how the thermal glass
385 transition in polymers can be used to manipulate STFs. Since
386 T_g affords wide tunability by altering the chemical structure of
387 the polymer, we believe that this work provides a versatile
388 platform for engineering STFs with tailored mechanical
389 performance. Aside from T_g , there are abundant chemistry
390 designs that have been utilized to synthesize stimuli-responsive
391 colloids.^{74–78} However, very few of these have been
392 investigated from a suspension rheology perspective. Future
393 works that join particle synthesis and suspension rheology can
394 lead to the discovery of new material systems, as well as
395 provide valuable insights into how the microscopic single-
396 particle properties can lead up to the changes in macroscopic
397 flow properties.

398 From a theoretical perspective, this work raises many
399 exciting questions that warrant deeper investigation. For
400 example, the contact mechanics at a polymer–polymer
401 interface are fundamentally different from those at conven-
402 tional rigid particle surfaces. It remains to be seen how the

403 interfacial polymer dynamics (i.e., various relaxation times at
404 various length scales) affect the formation and destruction of
405 force chains. Future work that utilizes advanced scattering
406 techniques such as X-ray photon correlation spectroscopy
407 (XPCS) can contribute to a more detailed understanding on
408 the suspension microstructure that bridges single-particle
409 properties with macroscopic rheology and how these micro-
410 structures respond to a change in the particle properties.^{79,80}

411 Conversely, given that DST and SJ are exquisitely sensitive
412 to the strength of particle–particle contact interactions, dense
413 suspension rheology provides a powerful lens with which to
414 observe macroscale consequences that are a direct result of
415 interfacial polymer dynamics at molecular length and time
416 scales.

417 ■ ASSOCIATED CONTENT

418 ■ Supporting Information

419 The Supporting Information is available free of charge at
420 <https://pubs.acs.org/doi/10.1021/acscentsci.2c01338>.

421 Experimental methods and materials, suspension prep-
422 aration, additional rheology data, microscopy images and
423 AFM results (PDF)

424 P-9 suspension pull test (AVI)

425 P-50 suspension pull test (AVI)

426 ■ AUTHOR INFORMATION

450 Corresponding Authors

451 Stuart J. Rowan – Pritzker School of Molecular Engineering,
452 University of Chicago, Chicago, Illinois 60637, USA;
453 Department of Chemistry, The University of Chicago,
454 Chicago, Illinois 60637, USA; Center for Molecular
455 Engineering, Argonne National Laboratory, Lemont, Illinois
456 60439, USA; orcid.org/0000-0001-8176-0594;
457 Email: stuartrowan@uchicago.edu

458 Juan J. de Pablo – Pritzker School of Molecular Engineering,
459 University of Chicago, Chicago, Illinois 60637, USA; Center
460 for Molecular Engineering, Argonne National Laboratory,
461 Lemont, Illinois 60439, USA; orcid.org/0000-0002-3526-516X; Email: depablo@uchicago.edu

462 Authors

463 Chuqiao Chen – Pritzker School of Molecular Engineering,
464 University of Chicago, Chicago, Illinois 60637, USA;
465 orcid.org/0000-0002-4844-5098

466 Michael van der Naald – Department of Physics, The
467 University of Chicago, Chicago, Illinois 60637, USA

468 Abhinendra Singh – Pritzker School of Molecular Engineering,
469 University of Chicago, Chicago, Illinois 60637, USA; James
470 Franck Institute, The University of Chicago, Chicago, Illinois
471 60637, USA; Department of Macromolecular Science and
472 Engineering, Case Western Reserve University, Cleveland,
473 Ohio 44106, USA

474 Neil D. Dolinski – Pritzker School of Molecular Engineering,
475 University of Chicago, Chicago, Illinois 60637, USA;
476 orcid.org/0000-0002-2160-8811

477 Grayson L. Jackson – James Franck Institute, The University
478 of Chicago, Chicago, Illinois 60637, USA; orcid.org/0000-0003-0663-3274

479 Heinrich M. Jaeger – Department of Physics and James
480 Franck Institute, The University of Chicago, Chicago, Illinois
481 60637, USA

482 Complete contact information is available at:

461 <https://pubs.acs.org/10.1021/acscentsci.2c01338>

462 Author Contributions

463 C.C., A.S., and N.D.D. designed the experiments. C.C. and
464 M.v.d.N. collected the data. C.C., A.S., and G.L.J. conceived of
465 and performed the data analysis. H.M.J., S.J.R., and J.J.d.P.
466 supervised the project and provided academic advice. All the
467 authors contributed to the drafting process.

468 Notes

469 The authors declare no competing financial interest.

470 ■ ACKNOWLEDGMENTS

471 This work is funded by MRSEC at University of Chicago
472 (DMR-2011854). C.C. thanks the MRSEC graduate fellowship
473 for funding (DMR-2011854). N.D.D. is funded by the Center
474 for Hierarchical Materials Design (CHiMaD; NIST contract
475 60NANB15D077). C.C. thanks Dr. Phil Griffin, Dr. Jureller,
476 Dr. Tyler Jorgenson, Dr. Heyi Liang, Dr. Philip M. Rauscher,
477 Dr. Carina Martinez, and Prof. Mark Ediger for discussion; the
478 Pritzker School of Molecular Engineering for supporting her
479 studies; and her advisors and colleagues for supporting each
480 other during the COVID-19 pandemic. Part of the
481 experimental work was conducted at the Soft Matter
482 Characterization Facility (SMCF) at the University of Chicago.

483 ■ REFERENCES

- 484 (1) Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the Dynamic
485 Bond to Access Macroscopically Responsive Structurally Dynamic
486 Polymers. *Nat. Mater.* **2011**, *10* (1), 14–27.
- 487 (2) Rowan, S. J.; Weder, C. Combining Chemistry, Materials
488 Science, Inspiration from Nature, and Serendipity to Develop Stimuli-
489 Responsive Polymeric Materials. *Isr. J. Chem.* **2020**, *60* (1–2), 100–
490 107.
- 491 (3) Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober,
492 C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. v.; Urban,
493 M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging
494 Applications of Stimuli-Responsive Polymer Materials. *Nat. Mater.*
495 **2010**, *9* (2), 101–113.
- 496 (4) Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-Responsive
497 Polymers and Their Applications. *Polym. Chem.* **2017**, *8* (1), 127–
498 143.
- 499 (5) Klinger, D.; Landfester, K. Stimuli-Responsive Microgels for the
500 Loading and Release of Functional Compounds: Fundamental
501 Concepts and Applications. *Polymer (Guildf)* **2012**, *53* (23), 5209–
502 5231.
- 503 (6) Takeoka, Y. Stimuli-Responsive Opals: Colloidal Crystals and
504 Colloidal Amorphous Arrays for Use in Functional Structurally
505 Colored Materials. *J. Mater. Chem. C Mater.* **2013**, *1* (38), 6059–
506 6074.
- 507 (7) Hsu, C.-P.; Mandal, J.; Ramakrishna, S. N.; Spencer, N. D.; Isa,
508 L. Exploring the Roles of Roughness, Friction and Adhesion in
509 Discontinuous Shear Thickening by Means of Thermo-Responsive
510 Particles. *Nat. Commun.* **2021**, *12*, 1477.
- 511 (8) Morris, J. F. Shear Thickening of Concentrated Suspensions:
512 Recent Developments and Relation to Other Phenomena. *Annu. Rev.*
513 *Fluid Mech.* **2020**, *52* (1), 121–144.
- 514 (9) Mueller, S.; Llewellyn, E. W.; Mader, H. M. The Rheology of
515 Suspensions of Solid Particles. *Proceedings of the Royal Society A:
516 Mathematical, Physical and Engineering Sciences* **2010**, *466* (2116),
517 1201–1228.
- 518 (10) Omari, A.; Tabary, R.; Rousseau, D.; Calderon, F. L.; Monteil,
519 J.; Chauveteau, G. Soft Water-Soluble Microgel Dispersions: Structure
520 and Rheology. *J. Colloid Interface Sci.* **2006**, *302* (2), 537–546.
- 521 (11) Nikolov, S. v.; Fernandez-Nieves, A.; Alexeev, A. Behavior and
522 Mechanics of Dense Microgel Suspensions. *Proc. Natl. Acad. Sci. U. S.*
523 *A.* **2020**, *117* (44), 27096–27103.
- 524 (12) Mewis, J.; Frith, W. J.; Strivens, T. A.; Russel, W. B. The Rheology of Suspensions Containing Polymerically Stabilized Particles. *AIChE J.* **1989**, *35* (3), 415–422.
- 525 (13) Conley, G. M.; Zhang, C.; Aebischer, P.; Harden, J. L.; Scheffold, F. Relationship between Rheology and Structure of Interpenetrating, Deforming and Compressing Microgels. *Nat. Commun.* **2019**, *10*, 2436.
- 526 (14) Lin, N. Y. C.; Guy, B. M.; Hermes, M.; Ness, C.; Sun, J.; Poon, W. C. K.; Cohen, I. Hydrodynamic and Contact Contributions to Continuous Shear Thickening in Colloidal Suspensions. *Phys. Rev. Lett.* **2015**, *115* (22), 228304.
- 527 (15) Wyart, M.; Cates, M. E. Discontinuous Shear Thickening without Inertia in Dense Non-Brownian Suspensions. *Phys. Rev. Lett.* **2014**, *112* (9), 098302.
- 528 (16) Peters, I. R.; Majumdar, S.; Jaeger, H. M. Direct Observation of Dynamic Shear Jamming in Dense Suspensions. *Nature* **2016**, *532* (7598), 214–217.
- 529 (17) Singh, A.; Pednekar, S.; Chun, J.; Denn, M. M.; Morris, J. F. From Yielding to Shear Jamming in a Cohesive Frictional Suspension. *Phys. Rev. Lett.* **2019**, *122* (9), 098004.
- 530 (18) Mari, R.; Seto, R.; Morris, J. F.; Denn, M. M. Discontinuous Shear Thickening in Brownian Suspensions by Dynamic Simulation. *Proc. Natl. Acad. Sci. U. S. A.* **2015**, *112* (50), 15326–15330.
- 531 (19) Royer, J. R.; Blair, D. L.; Hudson, S. D. Rheological Signature of Frictional Interactions in Shear Thickening Suspensions. *Phys. Rev. Lett.* **2016**, *116* (18), 188301.
- 532 (20) Guy, B. M.; Hermes, M.; Poon, W. C. K. Towards a Unified Description of the Rheology of Hard-Particle Suspensions. *Phys. Rev. Lett.* **2015**, *115* (8), 088304.
- 533 (21) Hsiao, L. C.; Jamali, S.; Glynn, E.; Green, P. F.; Larson, R. G.; Solomon, M. J. Rheological State Diagrams for Rough Colloids in Shear Flow. *Phys. Rev. Lett.* **2017**, *119* (15), 158001.
- 534 (22) Hsu, C. P.; Ramakrishna, S. N.; Zanini, M.; Spencer, N. D.; Isa, L. Roughness-Dependent Tribology Effects on Discontinuous Shear Thickening. *Proc. Natl. Acad. Sci. U. S. A.* **2018**, *115* (20), 5117–5122.
- 535 (23) Zhou, Z.; Hollingsworth, J. v.; Hong, S.; Wei, G.; Shi, Y.; Lu, X.; Cheng, H.; Han, C. C. Effects of Particle Softness on Shear Thickening of Microgel Suspensions. *Soft Matter* **2014**, *10* (33), 6286–6293.
- 536 (24) James, N. M.; Han, E.; de la Cruz, R. A. L.; Jureller, J.; Jaeger, H. M. Interparticle Hydrogen Bonding Can Elicit Shear Jamming in Dense Suspensions. *Nat. Mater.* **2018**, *17* (11), 965–970.
- 537 (25) Adams, S.; Frith, W. J.; Stokes, J. R. Influence of Particle Modulus on the Rheological Properties of Agar Microgel Suspensions. *J. Rheol. (N Y N Y)* **2004**, *48* (6), 1195–1213.
- 538 (26) Nguyen Le, A. V.; Izet, A.; Ovarlez, G.; Colin, A. Solvents Govern Rheology and Jamming of Polymeric Bead Suspensions. *J. Colloid Interface Sci.* **2023**, *629*, 438–450.
- 539 (27) Seto, R.; Mari, R.; Morris, J. F.; Denn, M. M. Discontinuous Shear Thickening of Frictional Hard-Sphere Suspensions. *Phys. Rev. Lett.* **2013**, *111* (21), 218301.
- 540 (28) Lee, Y. S.; Wetzel, E. D.; Wagner, N. J. The Ballistic Impact Characteristics of Kevlar® Woven Fabrics Impregnated with a Colloidal Shear Thickening Fluid. *J. Mater. Sci.* **2003**, *38* (13), 2825–2833.
- 541 (29) Kalman, D. P.; Merrill, R. L.; Wagner, N. J.; Wetzel, E. D. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions. *ACS Appl. Mater. Interfaces* **2009**, *1* (11), 2602–2612.
- 542 (30) Vlassopoulos, D.; Cloitre, M. Tunable Rheology of Dense Soft Deformable Colloids. *Curr. Opin. Colloid Interface Sci.* **2014**, *19* (6), 561–574.
- 543 (31) Lin, N. Y. C.; Ness, C.; Cates, M. E.; Sun, J.; Cohen, I. Tunable Shear Thickening in Suspensions. *Proc. Natl. Acad. Sci. U. S. A.* **2016**, *113* (39), 10774–10778.
- 544 (32) Fakhraai, Z.; Forrest, J. A. Measuring the Surface Dynamics of Glassy Polymers. *Science* (1979) **2008**, *319* (5863), 600–604.

591 (33) Ediger, M. D.; Forrest, J. A. Dynamics near Free Surfaces and 592 the Glass Transition in Thin Polymer Films: A View to the Future. 593 *Macromolecules* **2014**, *47* (2), 471–478.

594 (34) Ediger, M. D.; Angell, C. A.; Nagel, S. R. Supercooled Liquids 595 and Glasses. *J. Phys. Chem.* **1996**, *100* (31), 13200–13212.

596 (35) *Polymer Glasses*, 1st ed.; Roth, C. B., Ed.; CRC Press: Boca 597 Raton, FL, 2016; Chapters 1–4.

598 (36) Rubinstein, M.; Colby, R. H. *Polymer Physics*; Oxford 599 University Press: Oxford, U.K., 2003; Chapters 8 and 9.

600 (37) Osswald, T.; Rudolph, N. *Polymer Rheology: Fundamentals and 601 Applications*; Hanser Publications: Munich, Germany, 2015; Chapter 602 S.

603 (38) Chen, N.; Maeda, N.; Tirrell, M.; Israelachvili, J. Adhesion and 604 Friction of Polymer Surfaces: The Effect of Chain Ends. *Macromolecules* 605 **2005**, *38* (8), 3491–3503.

606 (39) Maeda, N.; Chen, N.; Tirrell, M.; Israelachvili, J. N. Adhesion 607 and Friction Mechanisms of Polymer-on-Polymer Surfaces. *Science* 608 **1979**, *2002*, 297 (5580), 379–382.

609 (40) Chen, Y. L.; Helm, C. A.; Israelachvili, J. N. Molecular 610 Mechanisms Associated with Adhesion and Contact Angle Hysteresis 611 of Monolayer Surfaces. *J. Phys. Chem.* **1991**, *95* (26), 10736–10747.

612 (41) Zeng, H.; Maeda, N.; Chen, N.; Tirrell, M.; Israelachvili, J. 613 Adhesion and Friction of Polystyrene Surfaces around T g. 614 *Macromolecules* **2006**, *39* (6), 2350–2363.

615 (42) Sills, S.; Gray, T.; Overney, R. M. Molecular Dissipation 616 Phenomena of Nanoscopic Friction in the Heterogeneous Relaxation 617 Regime of a Glass Former. *J. Chem. Phys.* **2005**, *123* (13), 134902.

618 (43) Knorr, D. B.; Gray, T. O.; Overney, R. M. Cooperative and 619 Submolecular Dissipation Mechanisms of Sliding Friction in Complex 620 Organic Systems. *J. Chem. Phys.* **2008**, *129* (7), 074504.

621 (44) Bueche, A. M.; Flom, D. G. Surface Friction and Dynamic 622 Mechanical Properties of Polymers. *Wear* **1959**, *2* (3), 168–182.

623 (45) Qin, J.; Zhang, G.; Shi, X. Study of a Shear Thickening Fluid: 624 The Suspensions of Monodisperse Polystyrene Microspheres in 625 Polyethylene Glycol. *J. Dispers. Sci. Technol.* **2017**, *38* (7), 935–942.

626 (46) Warren, J.; Offenberger, S.; Toghiani, H.; Pittman, C. U.; Lacy, 627 T. E.; Kundu, S. Effect of Temperature on the Shear-Thickening 628 Behavior of Fumed Silica Suspensions. *ACS Appl. Mater. Interfaces* 629 **2015**, *7* (33), 18650–18661.

630 (47) Uğur, S.; Pekcan, Ö. The Effect of Annealing Temperature on 631 Latex Film Dissolution. *J. Colloid Interface Sci.* **2004**, *277* (2), 359– 632 365.

633 (48) Goh, M. C.; Juhé, D.; Leung, O. M.; Wang, Y.; Winnik, M. A. 634 Annealing Effects on the Surface Structure of Latex Films Studied by 635 Atomic Force Microscopy. *Langmuir* **1993**, *9* (5), 1319–1322.

636 (49) Shim, S. E.; Yang, S.; Jung, H.; Choe, S. Thermally Robust 637 Highly Crosslinked Poly(Methyl Methacrylate-Co-Divinyl Benzene) 638 Microspheres by Precipitation Polymerization. *Macromol. Res.* **2004**, 639 *12* (2), 233–239.

640 (50) Loshaek, S. Crosslinked Polymers. II. Glass Temperatures of 641 Copolymers of Methyl Methacrylate and Glycol Dimethacrylates. *J.* 642 *Polym. Sci.* **1955**, *15* (80), 391–404.

643 (51) Cha, Y. -J.; Choe, S. Characterization of Crosslinked 644 Polystyrene Beads and Their Composite in SBR Matrix. *J. Appl.* 645 *Polym. Sci.* **1995**, *58* (1), 147–157.

646 (52) Wang, C.; Podgórski, M.; Bowman, C. N. Monodisperse 647 Functional Microspheres from Step-Growth “Click” Polymerizations: 648 Preparation, Functionalization and Implementation. *Mater. Horiz.* 649 **2014**, *1* (5), 535–539.

650 (53) Wang, C.; Zhang, X.; Podgórski, M.; Xi, W.; Shah, P.; 651 Stansbury, J.; Bowman, C. N. Monodispersity/Narrow Polydispersity 652 Cross-Linked Microparticles Prepared by Step-Growth Thiol-Michael 653 Addition Dispersion Polymerizations. *Macromolecules* **2015**, *48* (23), 654 8461–8470.

655 (54) Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; 656 Fenoli, C. R.; Bowman, C. N. The Thiol-Michael Addition Click 657 Reaction: A Powerful and Widely Used Tool in Materials Chemistry. 658 *Chem. Mater.* **2014**, *26*, 724–744.

55 (55) Tian, Y.; Liang, H.; Dobrynin, A. v. Rolling Dynamics of 659 Nanoscale Elastic Shells Driven by Active Particles. *ACS Cent. Sci.* **2018**, *4* (11), 1537–1544.

661 (56) Singh, A.; Mari, R.; Denn, M. M.; Morris, J. F. A Constitutive 662 Model for Simple Shear of Dense Frictional Suspensions. *J. Rheol. (N Y N Y)* **2018**, *62* (2), 457–468.

664 (57) Schroeter, J.; Hobelsberger, M. On the Mechanical Properties 665 of Native Starch Granules. *Starch - Stärke* **1992**, *44* (7), 247–252.

666 (58) Cavaille, J. Y.; Jourdan, C.; Perez, J.; Monnerie, L.; Johari, G. P. 667 Time-Temperature Superposition and Dynamic Mechanical Behavior 668 of Atactic Polystyrene. *J. Polym. Sci. B Polym. Phys.* **1987**, *25* (6), 669 1235–1251.

670 (59) Davis, W. M.; Macosko, C. W. Nonlinear Dynamic Mechanical 671 Moduli for Polycarbonate and PMMA. *J. Rheol. (N Y N Y)* **1978**, *22* 672 (1), 53–71.

673 (60) Carlotti, G.; Doucet, L.; Dupeux, M. Elastic Properties of 674 Silicon Dioxide Films Deposited by Chemical Vapour Deposition 675 from Tetraethylorthosilicate. *Thin Solid Films* **1997**, *296* (1–2), 102– 676 105.

677 (61) Tian, T.; Peng, G.; Li, W.; Ding, J.; Nakano, M. Experimental 678 and Modelling Study of the Effect of Temperature on Shear 679 Thickening Fluids. *Korea Australia Rheology Journal* **2015**, *27* (1), 680 17–24.

681 (62) Jamali, S.; Boromand, A.; Wagner, N.; Maia, J. Microstructure 682 and Rheology of Soft to Rigid Shear-Thickening Colloidal 683 Suspensions. *J. Rheol. (N Y N Y)* **2015**, *59* (6), 1377–1395.

684 (63) Chatté, G.; Comtet, J.; Niguès, A.; Bocquet, L.; Siria, A.; 685 Ducouret, G.; Lequeux, F.; Lenoir, N.; Ovarlez, G.; Colin, A. Shear 686 Thinning in Non-Brownian Suspensions. *Soft Matter* **2018**, *14* (6), 687 879–893.

688 (64) Zahoranová, A.; Mrlik, M.; Tomanová, K.; Kronek, J.; 689 Luxenhofer, R. ABA and BAB Triblock Copolymers Based on 2- 690 Methyl-2-Oxazoline and 2- n -Propyl-2-Oxazoline: Synthesis and 691 Thermoresponsive Behavior in Water. *Macromol. Chem. Phys.* **2017**, *692* *218* (13), 1700031.

693 (65) Tam, K. C.; Wu, X. Y.; Pelton, R. H. Viscometry—a Useful 694 Tool for Studying Conformational Changes of Poly(N-Isopropyl- 695 acrylamide) in Solutions. *Polymer (Guildf)* **1992**, *33* (2), 436–438.

696 (66) Maranzano, B. J.; Wagner, N. J. The Effects of Particle Size on 697 Reversible Shear Thickening of Concentrated Colloidal Dispersions. *J.* 698 *Chem. Phys.* **2001**, *114* (23), 10514.

699 (67) Singh, A.; Jackson, G. L.; van der Naald, M.; de Pablo, J. J.; 700 Jaeger, H. M. Stress-Activated Constraints in Dense Suspension 701 Rheology. *Phys. Rev. Fluids* **2022**, *7* (5), 054302.

702 (68) Rathee, V.; Blair, D. L.; Urbach, J. S. Localized Stress 703 Fluctuations Drive Shear Thickening in Dense Suspensions. *Proc. 704 Natl. Acad. Sci. U. S. A.* **2017**, *114* (33), 8740–8745.

705 (69) Singh, A.; Ness, C.; Seto, R.; de Pablo, J. J.; Jaeger, H. M. Shear 706 Thickening and Jamming of Dense Suspensions: The “Roll” of 707 Friction. *Phys. Rev. Lett.* **2020**, *124* (24), 248005.

708 (70) Pradeep, S.; Nabizadeh, M.; Jacob, A. R.; Jamali, S.; Hsiao, L. 709 C. Jamming Distance Dictates Colloidal Shear Thickening. *Phys. Rev. 710 Lett.* **2021**, *127* (15), 158002.

711 (71) Smith, M. I.; Besseling, R.; Cates, M. E.; Bertola, V. Dilatancy 712 in the Flow and Fracture of Stretched Colloidal Suspensions. *Nat. 713 Commun.* **2010**, *1*, 114.

714 (72) Gürgen, S.; Kuşhan, M. C.; Li, W. Shear Thickening Fluids in 715 Protective Applications: A Review. *Prog. Polym. Sci.* **2017**, *75*, 48–72.

716 (73) Cwalina, C. D.; McCutcheon, C. M.; Dombrowski, R. D.; 717 Wagner, N. J. Engineering Enhanced Cut and Puncture Resistance 718 into the Thermal Micrometeoroid Garment (TMG) Using Shear 719 Thickening Fluid (STF) – Armor Absorber Layers. *Compos. Sci. 720 Technol.* **2016**, *131*, 61–66.

721 (74) Ku, K. H.; Lee, Y. J.; Yi, G. R.; Jang, S. G.; Schmidt, B. V. K. J.; 722 Liao, K.; Klinger, D.; Hawker, C. J.; Kim, B. J. Shape-Tunable 723 Biphasic Janus Particles as PH-Responsive Switchable Surfactants. 724 *Macromolecules* **2017**, *50* (23), 9276–9285.

725 (75) Takeoka, Y. Stimuli-Responsive Opals: Colloidal Crystals and 726 Colloidal Amorphous Arrays for Use in Functional Structurally 727

728 Colored Materials. *J. Mater. Chem. C Mater.* **2013**, *1* (38), 6059–
729 6074.

730 (76) Lee, J.; Ku, K. H.; Kim, M.; Shin, J. M.; Han, J.; Park, C. H.; Yi,
731 G.-R.; Jang, S. G.; Kim, B. J. Stimuli-Responsive, Shape-Transforming
732 Nanostructured Particles. *Adv. Mater.* **2017**, *29* (29), 1700608.

733 (77) Tu, F.; Lee, D. Shape-Changing and Amphiphilicity-Reversing
734 Janus Particles with PH-Responsive Surfactant Properties. *J. Am.*
735 *Chem. Soc.* **2014**, *136* (28), 9999–10006.

736 (78) Grocke, G. L.; Zhang, H.; Kopfinger, S. S.; Patel, S. N.; Rowan,
737 S. J. Synthesis and Characterization of Redox-Responsive Disulfide
738 Cross-Linked Polymer Particles for Energy Storage Applications. *ACS*
739 *Macro Lett.* **2021**, *10* (12), 1637–1642.

740 (79) Leheny, R. L. XPCS: Nanoscale Motion and Rheology. *Curr.*
741 *Opin. Colloid Interface Sci.* **2012**, *17* (1), 3–12.

742 (80) Robert, A.; Wagner, J.; Härtl, W.; Autenrieth, T.; Grübel, G.
743 Dynamics in Dense Suspensions of Charge-Stabilized Colloidal
744 Particles. *Eur. Phys. J. E* **2008**, *25* (1), 77–81.