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As the market penetration of electric vehicles (EVs) increases, the surge of charging demand could potentially
overload the power grid and disrupt infrastructure planning. Hence, an efficient deployment strategy of electrical
vehicle supply equipment (EVSE) is much needed. This study attempts to address the EVSE problem from a
microscopic perspective by formulating the problem in two steps: public charging demand simulation and
charging station location optimization. Specifically, we apply agent-based modeling approach to produce high-
resolution daily driving profiles within an urban-scale context using MATSim. Subsequently, we perform EV
assignment based on socioeconomic attributes to determine EV adopters. Energy consumption model and public
charging rule are specified for generating synthetic public charging demand and such demand is validated
against real-world public charging records to guarantee the robustness of simulation results. In the second step,
we apply a location approach — capacitated maximal coverage location problem (CMCLP) model - to reallocate
existing charging stations with the objective of maximizing the coverage of total charging demands generated
from the previous step under the budget and load capacity constraints. The entire framework is capable of
modeling the spatiotemporal distribution of public charging demand in a bottom-up fashion, and provide
practical support for future public EVSE installation.

1. Introduction (Borén et al., 2017). As the booming of EVs creates positive impacts in

multiple areas, it brings challenges to the entire society as well.

The electric vehicle (EV) market has been progressively growing in
the past decade with promising sales records in many countries (Paoli &
Giil, 2022). In the United States, for example, the sales of EVs and plug-
in hybrid electric vehicles (PHEVs) nearly doubled from 308,000 in
2020 to 608,000 in 2021 (US Department of Energy, 2022). In China, EV
sales grew by 85% from 2018 to 2019, significantly above the industry
average (McKinsey, 2019). Such significant rise in EV adoption rate is
attributable to policy incentives, technological advancement, promotion
of carbon neutral and net-zero emissions economy, etc. (Debnath,
Bardhan, Reiner, & Miller, 2021; Kumar, Chakraborty, & Mandal, 2021;
Liu, Sun, Zheng, & Huang, 2021). The ever-increasing EV adoption is
beneficial to reducing greenhouse gas (GHG) emissions, supporting the
sustainable transport system, and decreasing the reliance on fossil fuels
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Among those challenges, the surge of EV charging demand in
response to the fast EV adoption could potentially overload the power
grid and affect infrastructure planning (Deb, Kalita, & Mahanta, 2018;
Deb, Tammi, Kalita, & Mahanta, 2018; Wu, Ravey, Chrenko, & Miraoui,
2019). EV charging can be divided into home charging and public
charging depending on charging locations. In the United States, home
charging is still the dominant charging mode, accounting for approxi-
mately 80% of all charging events (Smart & Schey, 2012). However,
public charging plays an indispensable role under several circumstances.
First, drivers who often perform long-distance trips would heavily rely
on public charging due to the limited mileage range of EVs. Second,
home charging requires the charging facilities to be installed at home
garage. Yet many existing EV drivers or potential EV buyers may live in

E-mail addresses: zhiyan.yi@utah.edu (Z. Yi), bingkun.chen@monash.edu (B. Chen), cathy.liu@utah.edu (X.C. Liu), ran.wei@ucr.edu (R. Wei), jianli.chen@utah.

edu (J. Chen), zhuo.chenl@monash.edu (Z. Chen).

https://doi.org/10.1016/j.compenvurbsys.2023.101949

Received 4 July 2022; Received in revised form 7 February 2023; Accepted 8 February 2023

Available online 15 February 2023
0198-9715/© 2023 Elsevier Ltd. All rights reserved.


mailto:zhiyan.yi@utah.edu
mailto:bingkun.chen@monash.edu
mailto:cathy.liu@utah.edu
mailto:ran.wei@ucr.edu
mailto:jianli.chen@utah.edu
mailto:jianli.chen@utah.edu
mailto:zhuo.chen1@monash.edu
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2023.101949
https://doi.org/10.1016/j.compenvurbsys.2023.101949
https://doi.org/10.1016/j.compenvurbsys.2023.101949
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2023.101949&domain=pdf

Z. Yietal

housing units that have no access to a garage or carport. For instance,
Ou, Lin, He, and Przesmitzki (2018) estimated that the home parking
availability in Shanghai, China was merely 5.3% in 2005. Therefore,
augmenting the network coverage of public charging infrastructures can
effectively eliminate the resistance to EV purchase. Last but not least, the
concept of taxi electrification has been widely expanded in recent years
as electric taxi pilots have already been launched in several cities such as
New York City, U.S., and Shenzhen, China (Yang, Dong, & Hu, 2018).
Considering the much longer daily mileage of taxis, public charging
infrastructures appear to be crucial to support such service.

A natural question to address, based on these aforementioned chal-
lenges then, is how to optimally place public charging stations to in-
crease demand coverage and sufficiently exploit utilization of the public
electric vehicle supply equipment (EVSE). In general, EVSE location
problem are often attempted in two steps: public charging demand
estimation and public charging station location optimization. Through
this workflow, the first step - how to accurately estimate public charging
demand - is more challenging because the public charging decision is
dictated by a myriad of complex factors, including drivers' charging
preference, charging facility accessibility, and EV's remaining state of
charge (SoC) (Zhang, Luo, Qiu, & Fu, 2022). Previous studies on public
charging demand estimation can be classified into macro- and micro-
level approaches. For the macro-level studies, urban informatics and
travel mobility information are often utilized to quantify public charging
demand in different regions and to extract potential spatial correlation
(Dong, Ma, Wei, & Haycox, 2019; Hu, Dong, Lin, & Yang, 2018; Kontou,
Liu, Xie, Wu, & Lin, 2019; Tu et al., 2016; Vazifeh, Zhang, Santi, & Ratti,
2019; Vi, Liu, Wei, Chen, & Dai, 2021). In contrast, micro-level ap-
proaches mimic EV drivers' daily travel behavior and public charging
requests using simulation software in a bottom-up fashion (Adenaw &
Lienkamp, 2021; He, Yin, & Zhou, 2015; Lopez, Allana, & Biona, 2021;
Marmaras, Xydas, & Cipcigan, 2017; Novosel et al., 2015; Wang &
Infield, 2018; Xi, Sioshansi, & Marano, 2013). Compared with
macro-level approaches, micro-level methods are capable of producing
high-resolution results, such as hourly-level charging distribution, for
detailed behavioral analysis. Simulation tools can also model different
charging scenarios (e.g. a mix of standard and fast charging events), in
an attempt to manage the charging load. Moreover, simulation-based
approaches can adopt future changes (e.g. the increase in EV adop-
tion) when assessing the charging demand. For these reasons,
micro-level approaches are more suitable to use if high-resolution con-
straints need be considered for optimizing charging infrastructures.

The majority of existing microscopic methods for public charging
demand estimation follow a similar modeling framework, which can be
roughly divided into three steps. The first step is to create synthetic
drivers and assign them with daily driving profiles to simulate the traffic
for the entire study area. This step can be achieved by either populating
seed samples from household travel records or generating stochastic
activities using Markov chain (Wang, Huang, & Infield, 2014; Xi et al.,
2013). The subsequent step is to assign EV drivers that match the current
EV adoption rate and its spatial distribution. The final step is to specify
EVs' energy consumption model and the public charging decision rule to
produce synthetic public charging demands. Although previous studies
in general follow such modeling steps, there are a lot of oversimplified
assumptions and/or limitations that prevent the model from reproduc-
ing accurate spatiotemporal public charging demand portfolios, espe-
cially for large-scale (e.g. urban-scale) simulations. Small road networks
or simplified network topologies are commonly used for exploring
public charging demand considering computational expensiveness (He
et al., 2015; Marmaras et al., 2017; Wang & Infield, 2018). However,
conclusions from those studies might not be applicable to city-scale
analyses, since real traffic patterns vary significantly across geograph-
ical areas and interact in a much complex manner. Besides, over-
simplification of EV assignment and public charging decision rules can
lead to biased estimation of the total energy demand. Several studies
assumed a uniform distribution with fixed EV penetration rate to create
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synthetic EV drivers (Khan, Mehmood, Haider, Rafique, & Kim, 2018;
Wang & Infield, 2018). Yet the decision of EV adoption is driven by
miscellaneous factors, including EV model (e.g. mileage range), socio-
demographic characteristics (e.g. income, age), and context variables
(e.g. accessibility to charging equipment and fuel price) (Javid & Nejat,
2017). Therefore, assumption of random distributions could overlook
heterogeneities across neighborhoods and individuals. Apart from EV
assignment, simplifying daily activities by confining to only work-based
and/or home-based activities in simulation is another limitation (Lopez
et al., 2021; Novosel et al., 2015). Places associated with non-work-
based activities such as shopping malls, restaurants, entertainment lo-
cations, and airports also demonstrate potential public charging needs
(Nansai, Tohno, Kono, Kasahara, & Moriguchi, 2001). More impor-
tantly, most previous studies were not validated against real-world
public charging records, leading to over/under-estimation of the
actual public charging demand and inaccurate spatiotemporal charging
distribution evaluation. The major hurdle in obtaining public charging
data is commercial and/or governmental confidentialities (Wang & Ke,
2018). Without the support of real-world public charging records, the
subsequent charging station optimization process would render less
meaningful.

This study aims to optimize the layout of public charging stations at
the city-scale by addressing the following two overarching research
questions: how to link potential EV users' daily activity patterns with
their charging behavior and further estimate the spatial distribution of
public charging demand? and Once an estimated charging demand
distribution is accomplished, how to optimize the layout of public
charging stations such that the overall public charging demand is
maximized? Specifically, Salt Lake City (SLC) metropolitan area is
selected as a pilot. Utah is the fourth fastest growing state in the U.S.,
and the population is forecasted to double over the next 20 years. The
SLC metropolitan area is home to >80% of the state's population, and
surprisingly experiences some of the worst air quality in the nation. As
such, there is growing political consensus to address air quality, and
PEVs offer a viable solution. The state has aggressive plan in terms of
charging station deployment over the next several years and under-
standing how drivers' daily activities interact with public charging de-
mand at city-scale is paramount to the EV charging station deployment.
The modeling framework and findings therefore could provide valuable
guidance to regions or areas with similar interests in accelerating EV
adoption.

As for the modeling process, we first create the synthetic public
charging demand within an urban-scale context in a bottom-up fashion
via agent-based modeling. Specifically, Multi-agent Transport Simula-
tion (MATSim), an open-source framework for implementing large-scale
agent-based transport simulation, is adopted to model the daily activ-
ities of all drivers. We then distribute the EV drivers based on socio-
economic attributes, and further specify the public charging decision
rule for generating synthetic public charging demand post-simulation. In
the second step, an optimization framework - capacitated maximal
coverage location problem (CMCLP) - is formulated based on the
generated public charging demands from the previous step. The CMCLP
model reallocates existing public charging stations in the study area by
maximizing the coverage of total charging demand under the investment
cost and load capacity constraints. Note that within the entire frame-
work, synthetic public charging demand is validated against real-world
charging records, and optimized charging station deployment is assessed
by a plug-in from MATSim that supports the public charging behavior
analysis. In sum, the main contributions of this paper are threefold:

e A city-scale agent-based simulation is developed to produce daily
travel profiles using time-inhomogeneous Markov chain, and loca-
tion mapping technique using publicly available data. EV assignment
and public charging decision modeling are subsequently specified in
post-simulation analyses using socioeconomic and demographic in-
formation to produce high-resolution public charging demand;
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e The spatiotemporal distribution of synthetic charging demand is
validated against real-world public charging records, which are ob-
tained using a dynamic crawling pipeline. The result indicates a
consistent charging pattern between synthetic charging demand and
actual energy consumption for most areas; and

The CMCLP model is applied to optimize the deployment of public
charging stations taking into consideration both standard and fast
charging demands. The capacity constraint is formulated at different
hours-of-the-day to ensure charging demands are satisfied even
during peak hours. The results can provide practical guidance for
future public EVSE installation.

The remainder of this paper is organized as follows. Next section will
comprehensively discuss literature related to simulation-based public
charging demand analyses, agent-based modeling, and charging station
locations optimization problems. Following that, data sources are
described in detail. Methodology section presents the micro-level
modeling framework for public charging demand generation and
mathematical formulation of CMCLP model. The Results and Analysis
section presents the simulation results, charging demand analyses, and
optimization outcomes. Conclusions are outlined at the end.

2. Literature review
2.1. Simulation-based public charging demand modeling

Microscopic simulation-based approaches model the public charging
demand generation in a bottom-up fashion. One of their major advan-
tages is the ability to reproduce complex traffic situations within large-
scale networks and enable operational outputs at the link or intersection
level while accounting for the impacts of localized activities. Besides,
microscopic modeling produces detailed trip trajectory at the individual
level, which can be used for high-resolution analysis. Moreover, the
animation and graphic user interface allow researchers to vividly
interpret the impact of drivers' daily activities on public charging
behavior.

In general, simulation-based approaches for generating public
charging demand follow three steps: simulating the daily traffic for the
entire study area, assigning EVs among drivers, and specifying energy
consumption model and public charging decision rules. The first step
can be achieved using simulation software, while the remaining steps
can be performed as post-simulation analysis. To model daily traffic, all
drivers' household distribution and their daily driving profiles are
required. This process can be further separated into population synthesis
and stochastic daily activity generation. Population synthesis refers to
the use of sample population data to generate a set of households and
persons representing the entire population in the modeling region (Paul,
Doyle, Stabler, Freedman, & Bettinardi, 2018). Besides, marginal dis-
tributions of socioeconomic and demographic characteristics are fed
into population synthesizer together with the sample data to create
heterogeneous households and individuals. As for stochastic daily ac-
tivity generation, a common approach is to apply Markov Chain Monte
Carlo (MCMC) simulation. For example, Wang et al. (2014) applied a
time-inhomogeneous Markov chain to simulate driving patterns based
on the UK 2000 Time Use Survey data, a real-world high-resolution
dataset that records activities for households' individuals on a 10-min
basis. Four states including “driving”, “parking at home”, “parking at
workplace”, and “parking at other places” are defined in the Markov
chain for the privately owned EVs to estimate the impact of workplace
charging during weekday on power grid. Once the synthetic population
and their daily activity trips are generated, simulation software can be
used to model the traffic of study area with road network information.
Following that, a post-simulation analysis can be conducted to assign EV
users and distribute public charging demands according to a specified
charging decision. A simple strategy for EV assignment is to distribute
EV drivers using uniform distribution with a fixed EV penetration rate
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ranging from 1% to 100% (Khan et al., 2018; Wang & Infield, 2018; Xi
et al., 2013). However, EV adoption is influenced by a myriad of factors,
including demographic, contextual, and other types of attributes. The
assumption of uniform distribution would ignore the socioeconomic and
demographic distinctions across geographical areas, leading to biased
EV adoption spread and incorrect charging demand distribution. To
estimate EV adoption probability, Javid and Nejat (2017) developed a
logistic regression model that considers socioeconomic factors and
context variables, such as age, income, and fuel price. After EV assign-
ment, energy consumption model and public charging decision behav-
iors should be established to determine when and where public charging
events occur. The public charging decision rule is relatively difficult to
model since drivers' charging preference, charging accessibility, and
remaining SoC are challenging to be captured precisely (Herberz, Hah-
nel, & Brosch, 2022). In previous studies, the attributing factors for
modeling public charging include SoC, activity duration, and walking
distance to the charging facilities. Researchers generally set a threshold
value for each factor according to published reports to trigger public
charging events with different logics (Hu et al., 2018; Wang et al., 2014;
Zou, Wei, Sun, Hu, & Shiao, 2016).

After performing the aforementioned three steps (daily traffic
simulation, EV assignment, and energy consumption and charging de-
cision), the generated synthetic public charging demands can be repre-
sented using points. Each demand point is associated with a charging
start time, duration, charging type, and location information. This in-
formation will be further utilized in the optimization framework for
optimizing the public charging station locations.

2.2. Agent-based modeling

Note that there are multiple ways for conducting daily traffic simu-
lation based on the synthetic population and their daily activity trips.
Among them, agent-based model (ABM) is one of the widely used ap-
proaches. ABM contains a collection of agents or units, and agents can be
assigned with different daily activities. The agents will operate accord-
ing to plans and interact mutually to produce a complex scenario, such
as road traffic (Macal & North, 2009). ABM provides a natural
description of a system that is highly flexible. It enables the creation of
complex simulation environments by inserting heterogeneous units with
a variety of attributes, such as age, vocation, and income level. Popular
agent-based modeling tools for traffic analysis include Transportation
Analysis Simulation System (TRANSIMS) (Smith, Beckman, & Baggerly,
1995), Simulation of Urban Mobility (SUMO) (Krajzewicz, Erdmann,
Behrisch, & Bieker, 2012), and MATSim (Axhausen, Horni, & Nagel,
2016).

MATSim is an open-source framework for implementing large-scale
agent-based transport simulations. It is arguably the one with the least
focus on traffic flow realism but with the highest computing speed and
the best behavior model on trip planning. In a nutshell, a synthetic
driver (i.e. agent) will perform trip activities within a day, and tries its
best to optimize its daily schedule by adjusting possible activities based
on a co-evolutionary principle iteratively. Because MATSim is written in
Java, it supports a variety of plug-in packages for public charging
behavior analyses (e.g. BEAM and DVRP) (Maciejewski & Nagal, 2007;
Sheppard, Waraich, Campbell, Pozdnukov, & Gopal, 2017). MATSim
requires population distribution, daily activities, road network, and fa-
cility locations as inputs. Novosel et al. (2015) applied MATSim to
model the hourly distribution of energy consumption of EVs on an urban
scale in the cities of Croatia to test their charging impacts on the entire
energy system. This study assumed that activities only occur between
home and work, and the spatial distribution of home and work locations
are estimated based on the socio-demographic data. Adenaw and Lien-
kamp (2021) applied MATSim to analyze the charging station utilization
and user behavior by inserting EVs and charging stations in the simu-
lation environment. The numeric results are tested and verified using a
case study in the city of Munich, reflecting realistic spatiotemporal
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charging patterns. Furthermore, they encapsulated their work to an
open-source framework — UrbanEv-Contrib — based on MATSim, which
can serve as a sandbox validating optimized charging infrastructure
designs in a dynamic simulation environment.

2.3. Public charging station locations optimization

Public charging infrastructure deployment problem can be solved
using location approaches, which contain two components: demand
representation and location model. Charging demand can be repre-
sented as points, polygons, or flows depending on the specific contexts,
and the location model is an optimization framework designed to select
the best locations with the goal of maximum utility coverage, minimum
cost, or other objectives (Dong et al., 2019; Huang, Kanaroglou, &
Zhang, 2016). Demand is considered being covered if it is within a
certain travel distance to a charging station. Standard location models
include the flow capture location model (FCLM) (Hodgson, 1990),
maximal coverage location problem (MCLP) (Church & ReVelle, 1974),
and p-Center (Hakimi, 1964).

Among them, the MCLP model is computationally efficient and
suitable for problems with demand representation as points or polygons.
The MCLP seeks to maximize the target (i.e. charging demand) covered
within a desired service distance by locating a fixed number of facilities
(i.e. public charging stations). It has been widely adopted for solving the
EVSE location problem. Dong et al. (2019) optimized the placement of
charge point infrastructure by formulating a MCLP model with the
objective of maximizing total demand coverage under the investment
budget constraint. One potential flaw of the MCLP model is that the
energy capacity for charging ports is not considered. Failing to set ca-
pacity limits can lead to an overestimation of service level. To fix this
problem, the CMCLP model is developed to refine constraints. Yi, Liu,
and Wei (2022) utilized the CMCLP model to optimize the layout of
public charging stations on a city scale. Accumulated daily capacity for
each charging port and total investment budgets are set as constraints.
With finer granularity, hourly charging capacity can be modeled to
satisfy the charging demand during peak hours (Tu et al., 2016). The
aforementioned MCLP/CMCLP-based charging station optimization
models (Asamer, Reinthaler, Ruthmair, Straub, & Puchinger, 2016;
Dong et al., 2019; Tu et al., 2016; Yi et al., 2022) attempted the problem
from a macro-level, where the entire study area are discretized into grids
or polygons, and charging stations are sited onto those cells instead of
pinpointed the exact geographical locations. Such discretization will
induce low-resolution optimization results because the size of cells can
be aslarge as 1 km by 1 km (Vi et al., 2022). Failing to pinpoint the exact
location of charging facilities might provide less practical or useful
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guidance for detailed infrastructure planning. The ABM can effectively
address this problem as it is capable of producing vehicle trajectory
records and high-resolution charging requests.

Our study employs CMCLP to maximally capture the public charging
demands in the study area under the investment budget and different
hours-of-day capacity constraints. Moreover, fast charging demand is
incorporated on top of standard charging demand in the optimization
framework to present a more realistic charging infrastructure design.

3. Data

A realistic urban-scale simulation requires high-quality inputs. The
modeling framework presented in Fig. 1 consists of a series of building
blocks. In each building block, methodology (will be explained in the
next section) and required data resources are highlighted. First, popu-
lation and socioeconomic attributes are used for synthetic population
generation, and ATUS data is utilized to create time-inhomogeneous
Markov chain. Following that, POI and historical OD data are used for
location mapping. To execute agent-based simulation via MATSim, road
network information is fetched from Open Street Map (OSM). EV
assignment and public charging behavior modeling are subsequently
performed. Finally, real-world public charging observations is used to
validate simulation results, while an optimization model is further
implemented based on the simulation results to reallocate the charging
stations with maximum coverage of public charging demands. The
detailed description for each dataset is explained in the following
subsections.

3.1. American time use survey (ATUS)

High quality data is essential to guarantee accurate stochastic
behavior modeling for agent-based simulation. Time use survey data has
been widely used to model stochastic behaviors of people due to the high
resolution of activity information. Hence, we employed ATUS dataset to
create synthetic agents. ATUS dataset is collected annually by U.S. Bu-
reau of Labor Statistics, which provides nationally representative esti-
mates of how, where, and with whom people spend their time. Each
respondent interviewed by ATUS is documented with demographic in-
formation, household status, and daily activity records. To reflect how
people spend their time, respondents are asked to collect a detailed
account of their activities regarding the type, duration, and location of
activities, starting at 4:00 AM the previous day and ending at 4:00 AM
on the interview day. We use ATUS data spanning from 2013 to 2017
with approximately 55,000 respondents during weekdays to construct
the Markov chain for stochastic daily activities generation.

/

populations and trips generation

Synthetic
population
generation

(PUMS, WFRC)

Location
mapping
(POI, OD Data)

Markov Chain

simulation
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travel activity % /
simulation
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public charging
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Fig. 1. Model development framework.
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3.2. OSM road network information

We extract road network using OSMnzx, a python package allowing to
download, visualize, and analyze geospatial data from OSM as the
required input for MATSim (Boeing, 2017). The representation of a road
network in OSM is essentially a directed graph, where edges represent
roads and nodes represent conjunction points or dead end of roads. Each
road contains the topological information such as coordinates of start
and end point, the line string geometry, and length. Moreover, each road
is assigned with traffic attributes such as road class, number of lanes, and
maximum speed, which are required attributes for MATSim. There are
94,742 roads and 37,766 conjunction points (or dead ends) in total
within study area. Roads attributes with missing values are replaced by
mean values of all roads within the same road class.

3.3. Sociodemographic information

Synthetic population generation requires two inputs — sample seed
and attributes' marginal distributions —to create entire population in the
study region. Population sample from Public Use Microdata Sample
(PUMS) - a set of records from individual people or household units with
disclosure protection enabled (United States Census Bureau, 2019) — is
used as sample seed. There are 4924 households and 13,768 persons in
the seed population. Each sample household contains attributes
including household size, household income, vehicle ownership, and
location information. Apart from sample seed, marginal distributions of
the aforementioned attributes are required. This study applies TAZ-level
socio-demographical information with fine granularity to create realistic
simulation scenario. Household distribution, vehicle ownership and
average household income in each TAZ are retrieved from Wasatch
Front Regional Council (WFRC) to build the marginal distributions of
sample's attributes at TAZ level (Wasatch Front Regional Council, 2021).
Besides, historical OD distribution data among TAZs is fetched for
location mapping purpose.

3.4. Point of interest (POI) data

POI data can effectively reflect urban context and infer people's trip
purposes. To extract POIs in our study area, we use Google Place API
(Google Place API, 2021). After eliminating unrelated type of POIs (e.g.
hotel), there are 59,112 POIs classified in nine categories. The detailed
information of classified POI data is shown in Table 1. The POI infor-
mation is retrieved for the location mapping purpose. Each category of
POIs is associated with a specific daily activity as observed in the Ac-
tivity column.

3.5. Real-world public charging data

The real-world charging data is crawled from ChargePoint, an online
application that assists EV users to navigate and review nearby charging
sites (Charge Point, 2021). ChargePoint operates the largest online
network of independently owned EV charging stations, operating in
fourteen countries worldwide. The data crawling period spanned from

Table 1

Description of POI data.
POIID  Category Label Examples Count Activity
1 Business office, personal business 23,472 Work
2 Health hospital, health, doctor 8982 Others
3 Finance agency, finance building 6691 Work
4 Retail supermarket, grocery store 10,066 Shop
5 Restaurant restaurant, food delivery 2181 Dine in
6 Education school, university 1290 Others
7 NGO church, government building 1591 Work
8 Entertainments  park, salon, bar, zoo 2422 Others
9 Service post office, gas station, laundry =~ 2427 Others
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Nov 5th, 2020 to Dec 12th, 2020, and the construction steps for dynamic
crawling pipeline can be found in (Yi et al., 2022). To sum, there are 109
public charging stations with 516 Level 2 charging ports recorded by
ChargePoint that broadcast real-time utilization information (i.e. num-
ber of in-use ports at current time point) in the study area. The energy
consumption at a certain period for a charging station is calculated as
the total number of in-use ports multiplied by the corresponding power
of the ports and crawling interval (set as 10 min). The accumulative
energy consumption (kWh) during each interval is then summed up
across the entire crawling period as the total charging energy con-
sumption. Spatial distribution for 109 charging stations is displayed in
Fig. 2, with the height quantifying the cumulative energy consumption
within the data collection period.

4. Modeling framework

To simulate EV mobility and associated energy consumption in a
high spatiotemporal resolution, the modeling framework in Fig. 1 is
divided into four major components: populations and trips generation;
travel activity simulation; public charging modeling; and charging sta-
tion location optimization. We begin by creating synthetic population
using sociodemographic information at the traffic analysis zone (TAZ)
level. In the meantime, a time-inhomogeneous Markov chain is trained
using ATUS data to produce stochastic daily activities. Following that, a
location mapping technique is proposed to project those daily activities
onto specific geographical locations based on historical travel patterns,
POI, and population information. These aforementioned inputs are then
fed into MATSim, together with road network, to return the optimal
travel plans for all drivers. Upon MATSim simulation result, we apply EV
adoption probability model and EV energy consumption model to
determine EV distribution and potential public charging demands. This
is validated against real-world public charging observations. An opti-
mization model is then employed to maximize the coverage of public
charging demand under various constraints.

4.1. Synthetic population generation

Synthetic population generation is the very first step of activity-
based modeling. The generated synthetic population should be able to
represent person- and/or household-level attributes of the actual pop-
ulation in the modeling region. PopulationSim (Paul et al., 2018), an
open-source population synthesizer, is employed for the purpose of this
study. Typically, PopulationSim requires three datasets as the inputs:
household and person samples with related sociodemographic attri-
butes, and the marginal distributions of controlled variables (e.g.,
household size and household income). Then PopulationSim utilizes the
samples and marginal distributions to generate tables of person and
households representing the entire population of the modeling region.
The population synthesis in PopulationSim involves two steps: fitting
and generation. During the fitting step, entropy maximization is applied
to preserve the distribution of initial weights while matching the mar-
ginal controls. Once the weights have been assigned for seed sample, the
generation step expands the sample using Monte Carlo sampling and
optimization-based algorithm. Table 2 gives an example of input data
for PopluationSim, comprising the population sample (household and
person), and marginal distributions of household size (HHSize), house-
hold income (HHInc), and household vehicle ownership (HHVeh) in
TAZs. Note that the population sample data in PUMS is aggregated by
public use microdata areas (PUMAS) - the special nonoverlapping areas
that partition each state into contiguous geographic units containing no
fewer than 100,000 people each, to protect privacy.

PopulationSim allows reallocation of population from a larger
geographic unit into a smaller one, such as from PUMAs to TAZs. The
final outputs from PopulationSim contain synthetic populations and
households with corresponding attributes at located TAZs in the study
region.
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Fig. 2. The spatial distribution of current public charging stations in Salt Lake City metropolitan area.

4.2. Time-inhomogeneous Markov chain

Vehicle movement is a series of state transitions throughout a day.
Markov chain is a stochastic model describing a sequence of possible
events. Time-inhomogeneous Markov chain refers to chains with
different transition probability matrices at each time step. In this study,
ATUS data is utilized to construct the sequence of transition matrices for
time-inhomogeneous Markov chain. We set time resolution as 10 min (i.
e., 144 time steps for an entire day) when use a discrete Markov chain to
describe people's daily activities. Such resolution is preferred for
detailed analysis of vehicle activities, and trips of short distances (Wang
et al., 2014). Specifically, drivers' daily activities are classified into 6
categories: “drive,” “stay home,” “work,” “shop,” “dine in,” and
“others.” The indexed activities and state transition relationship are
described in Fig. 3(a). Fig. 3(b) describes the transition probability at a
specific time t. For example, if t = 48, then p{§ denotes the probability
from “drive” to “work” at 8:00 AM. Note that the transition between any
two different states must be accomplished via “driving” activity, which
means that the transition probability between two nondriving states,
such as p1, is always zero. This assumption is made because we are only
interested in the activities that are connected by driving to explore EVs'
potential charging opportunities at different locations.

To demonstrate the functionality of this Markov chain, each re-
spondent's daily activity trajectory is first mapped to the state code in
Fig. 3(a), and then subsequently transformed to a list representation
with the length of 144, where each number in the list denotes an activity
code (10-min resolution) at a specific time step. The transition proba-
bility pjin stochastic matrix at time step t is calculated as the number of
respondents switching from activity i to j at time step t + 1 divided by
the total number of respondents. Once 143 stochastic matrices (a daily
activity list contains 144 time steps) are obtained, we can use them to
create a list of synthetic daily activities given the initial states as inputs.
The initial state (i.e. activity at 12:00 am) for each person is determined
by randomly sampling from a predefined probability density function at
t=1.

4.3. Location mapping

Stochastic activities generated by Markov chain do not have
geographical location information. Yet agent-based models such as
MATSim requires detailed trip information. Therefore, we developed a
location mapping strategy to project abstract activities to specific trips
with geo-location labels using historical trip distribution and POI data.
The proposed location mapping strategy is detailed as follows:
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Table 2
Sample input data for PopulationSim.

(a) Population sample at PUMA level

Household id PUMA id HHSize HHInc HHVeh
1 35,001 2 50,000 2
Person id Household id PUMA id Age Gender
1-1 1 35,001 51 male
1-2 1 35,001 46 female

(b) Marginal distributions of controlled variables in TAZs

TAZ id 695 712
PUMA id 35,001 35,001
Categories of HHSize

HHSize = 1 174 97
HHSize = 2 109 137
HHSize = 3 75 221
HHSize = 4 34 220
HHSize = 5 105 22
HHSize = 6 86 125
HHSize > 7 75 219
Categories of HHInc

HHInc < 21,297 41 161
21,297 < HHInc < 42,593 56 55
42,593 < HHInc < 85,185 19 47
HHInc > 85,185 10 46
Categories of HHVeh

HHVeh = 0 19 12
HHVeh = 1 115 110
HHVeh = 2 161 329
HHVeh > 3 97 224

e Search candidate TAZs: We search TAZs that a driver could reach
within a time threshold. Specifically, for any daily activities, we set
the lower bound and upper bound of arrival time. If the driver arrives
at the centroid of a TAZ within the time-boundary, this TAZ falls into
the candidate set. We empirically set 0.8tgrive and 1.2tgrjve as the
lower bound and upper bound, respectively, where tgive is the
driving time generated by Markov chain, which is formally defined
as the number of continuous driving states multiplied by the time
resolution of the Markov chain;

Determine the exact destination TAZ: Once candidate TAZs are
identified, we utilize historical OD distribution probability from the
start TAZ to all candidate TAZs to determine which TAZ the trip
arrives at. To achieve this, OD data for a typical workday is divided

(1)Stay

home

-

(2)Work N (0)Drive (3)Shop

5)
Others

(a) Markov chain diagram of state transition
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into four subsets time periods (i.e. 12:00 am — 6:00 am, 6:00 am —
12:00 pm, 12:00 pm - 6:00 pm, and 6:00 pm — 12:00 am). Trip counts
from the source TAZ to candidate TAZs are fetched from one of the
subsets depending on the activity start time. The probability that a
trip arrives at any candidate TAZ is proportional to trip count from
source TAZ to that TAZ divided by trip counts to all candidate TAZs.
The OD data is split by time periods because many activities possess
strong temporal patterns, such as work-based trips;

Pinpoint trip destination: After the destination TAZ is determined,
we randomly assign one POI with corresponding trip purpose as the
activity destination in the determined TAZ. For instance, if the ac-
tivity purpose is “dine-in”, we choose one POI with the label
“restaurant”. The mapping between activity purpose and POI label
can be found in Section 4.4 POI data.

Since each daily activity could contain multiple intermediate stops,
the location mapping process is iterated starting from home until the last
activity is completed. Note that if location mapping fails to capture any
intermediary stops for some reason (e.g. long driving duration), this
activity would be discarded from the system.

4.4. EV assignment and energy consumption model

MATSim is used to simulate all vehicles' daily trips within a study
region. As post-simulation analysis, we perform EV assignment and set
up public charging rules to determine public charging demand distri-
bution. For EV assignment, we apply the EV adoption probability model
developed by Javid and Nejat (2017). Javid and Nejat (2017) developed
a logit model using the California Statewide Travel Survey data and
validated it against another dataset in Delaware, Texas. The result
showed robust transferability in terms of the Area Under the Curve
(AUCQ) - a classic metric for classification models. We therefore directly
adopt the model here to assign EV drivers in the study region. The
mathematical formulation is presented as follows:

1

P e

@

where x represents an individual that could potentially become an EV
driver in a household, x; denotes internal or external factor that in-
fluences the purchase decision of individual x, and «; is the corre-
sponding coefficient. p(x) is the estimated EV adoption probability for
individual x. Eq. (1) is a logit model considering socioeconomic and
demographic features. Table 3 lists the values of the variables and cor-
responding coefficients used. Individuals' attributes, including age, in-
come, vehicle ownership, and household size, are used to calculate the

Pio P& P Pl Pia Pis
Py PL P Pz P P
P, Ph Pp Pi3 P, P
Pi, Ph P Pz Py P
Py Py Ph P PL P

t t t t t t
PSO P51 P52 P53 P54 PSS

(b) Transition matrix at time ¢

Fig. 3. The Time-inhomogeneous Markov chain at time t.
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Table 3
Variables and coefficients in EV adoption probability model.
Variable Coefficient ~ Explanation Constant
Xage 0.04 Driver's age NA
Xear share 0.911 Weather the vehicle is shared with other 0.01
drivers
Xirip_dur 0.001 Average daily trip duration (miles) 52.4

Categorized variable indicating the level of =~ NA
income with 1 denoting the lowest and 5
denoting the highest income

Xincome tevel ~ 0.461

Xhousehold —0.071 Categorized variable indicating the size of NA
household

Xeducation 0.274 Categorized variable indicating the 4.76
education level

Xstation_num 0.811 Charging station per capita 0.5

Xgas price 2.8 The gas price (dollar/gal) 3.6

Xelec_price 0.077 The electricity price per (cent/kWh) 14.6

Xyeh num —0.055 The number of vehicles owned by the driver =~ NA

B —19.629 Constant term NA

EV adoption probabilities. Variables with minor variations across re-
gions or those that are difficult to obtain, such as gas price and education
level, are set as constants for simplicity. Note that constant values
(excluding Xgqs price and Xegec price) and coefficients are referenced from
(Javid & Nejat, 2017).

Public charging is a stochastic process. The majority of charging
mechanisms are based on the state of charge (SoC) or equivalent range
anxiety (Hu et al., 2018; Wang et al., 2014). In this study, two types of
charging are considered - standard charging (Level 2) and fast charging
(Level 3). SoC is updated for each trip once the driver arrives at the next
destination. Charging behavior is determined by the current SoC and
dwell time. A flowchart with explicit charging rules is presented in
Fig. 4.

The proposed charging rules consider three charging behaviors: no
charging, standard charging, and fast charging. According to Zou et al.
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of fully charged batteries before drivers depart home is not practical.
Instead, the initial SoCs is generated from a normal distribution (Zheng,
Wang, Men, Zhu, & Zhu, 2013). It is worthy to mention that the afore-
mentioned charging rules only produce charging requests (or demands).
It does not imply that charging is fulfilled at that moment, since public
charging stations may or may not exist nearby for each charging request.
The actual charging fulfillment will be discussed in optimization
analyses.

4.5. CMCLP optimization model

We consider both standard charging and fast charging. Table 4 and
Table 5 give the description of input parameters and decision variables
for CMCLP model, separately. The objective of CMCLP is to maximize
the coverage of public charging demands under a variety of constraints,
including charging capacity, access distance, and investment budget.
For charging capacity, it is applied by different hours-of-the-day to
consider surging demands during peak hours. In order to formulate the
hours-of-the-day constraints for charging stations, charging demands (i.
e., charging request) are discretized. For instance, if a public charging
event is performed between 8:00 AM and 10:45 AM, it will be first
rounded to a 3-h request (from 8:00 AM - 11:00 AM), and discretized by
hour - 8:00 AM-9:00 AM, 9:00 AM-10:00 AM, and 10:00 AM-11:00 AM.
The charging demands is determined by the proposed charging rules in
Fig. 4, while the energy consumption of each hourly demand (i.e., d?
and d4%) can be calculated based on the power of chargers and dwell
time at the destination. As for accessibility, this study assumes that new
public charging stations can only be installed at public parking lots due

Table 4
Description of input parameters.

Input parameters Descriptions

(2016), over 75% EV drivers will not charge their vehicles unless SoC i the index of EVs that have daily charging requests
drops below 50%. For this reason, we assume EV drivers would consider I tge _Se(ti"f E}/s t};‘;t havi_daﬂly C?argiflg requests
public charging only when SoC is below 50%. When SoC drops below ]J thz :t Z’; gugll;c :arfi;é?gt:t ocation
50%, EV driver may conduct Level 2 charging. However, driver may ¢ the index of the hour of the day
refuse to charge if the dwell time D is too short. Hence, 30 min of T the set of hours of the day
minimal charging time is used to determine Level 2 charging preference dier the hourly L2 charging demand (kWh) of vehicle i at hour ¢
(Yi & Bauer, 2016). However, if SoC drops below 15%, EV driver will opt i the hourl.y L3 charging demand (kwp) of Veblde rat hour ¢
P the total investment budget for public charging stations
for fast charging regardless of the dwell time. Prax the maximum number of ports for each charging station
Besides charging rules, initial SoC should be determined as well. In cs the cost for installing a single charging station

fact, not all EV drivers have access to home charging equipment, and ¢ the equipment cost for one standard charging port
overnight charging might not be necessarily performed. The assumption c the equipment cost for one fast charging port

'S

EV at home
\

|

( Update SoC at next 1
destination J

Perform fast Yes
charging

No charging

SoC<=50%
D>=30mins

Perform slow
charging

Fig. 4. Rules for EV charging.
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Table 5
Description of decision variables.
Decision Descriptions
variables
ijz the number of L2 chargers installed at public parking lot j
ijs the number of L3 chargers installed at public parking lot j
Zf-gz 1 ,if d? can be satisfied by the charging station at j and hour ¢
0 ,otherwise
23 1 ,if d5® can be satisfied by the charging station at j and hour ¢
0 ,otherwise
X 1 ,if parking lotj is used for installing public charging station
i
0 ,otherwise
Q; the set of (i, t) that can be served by the public parking lot j

to space and facility requirements, and a catchment area with a radius r
is created for each public parking lot to quantify the accessibility of
drivers to the parking lot. If the driver's current location falls within the
catchment area, then the driver's current charging request is considered
to have the potential to be fulfilled by that parking lot (where a charging
station can be sited). The last constraint is the investment budget. It is
calculated as the sum of assets values of existing charging stations, since
we aim to optimally reallocate existing charging stations. The mathe-
matical formulation of CMCLP is defined as follows:
Objective function:

Masimize S5 Y+ S S S @
J,

iel teT JjeJi iel teT Jjedi
Subject to:

Y2y < P Vi €J @)
Z(Cij+CL2}7jl_12+CL3yf3> <p )
jel

Y i<y viesvier (5)
(i,1)€Q;

Zzﬁfgyf,\fjeJ,VzeT 6)
(e )

5 ={0,1},Vke K @

yeNYje
yenNyjel

2 =1{0,1},Yic LVt T,¥jcJ

itj
4 ={0,1},VjelL,vieTNjelJ

The objective function (2) maximizes the total service of hourly Level
2 and Level 3 charging demands. Constraints (3) guarantee that the total
number of standard and fast charging ports should be no more than P,
if charging station is sited at public parking lot j. Constraint (4) imposes
the total budget limit for installing public charging stations and ports.
Constraints (5) and (6) set the hourly capacity for L2 and L3 chargers,
separately. For each charging station xj, the number of standard/fast
hourly demands it covers at each particular hour t should be less than the
total number of standard/fast charging ports (yJLZ/ijS). Constraints (7)
impose integer or binary integer restrictions on decision variables.

5. Result and analysis
5.1. Case study

The Salt Lake City (SLC) metropolitan area is used as a case study to
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demonstrate the framework implementation. SLC metropolitan region
covers approximately 940 km? and includes 407,442 households with
about 826,000 vehicles. The entire study area consists of 1090 TAZs. A
report from American Driving Survey (Triplett, Santos, Rosenbloom, &
Tefft, 2016) indicates that 78% of drivers perform at least one driving
trip in a day on average. Therefore, it is assumed that 644,300 vehicles
will be on the road for simulation. In MATSim, a day trip is defined as a
round trip starting from home and returning home before midnight.
Besides, a day trip can include several intermediate stops (e.g., work-
places, restaurants, etc.) After data processing, 17.4% of trips after
location mapping are considered invalid and therefore discarded. The
final inputs to MATSim thus contain 532,460 trips. MATSim takes these
planned trips as inputs, and optimizes driving events iteratively based
on co-evolutionary principle. In this study, MATSim is executed with
100 iterations. When the iteration time reaches 55, the computation is
nearly converged. For post-MATSim analysis, road traffic is assumed to
consist of light-duty vehicles and EVs. EV adopters are determined by
Eq. (1). The required socioeconomic variables in Eq. (1) for each syn-
thetic driver is known, thus its probability in adopting EV can be
calculated. The EV adoption probabilities across TAZs (Fig. 5) range
from 0.6% to 21% with mean value of 4.3%. Correspondingly, among
the 532,460 drivers, 22,737 drivers are assigned with EVs. EV charging
profile is implemented using the rule specified in Section 3.4. EV
Assignment and Energy Consumption Model. The initial SoC is empirically
determined by a normal distribution with y = 0.85 and ¢ = 0.3,
considering that home charging accounts for over 80% of all charging
events (Smart & Schey, 2012). As for other EV parameters, EVs' battery
capacity can be varied widely from 17.6 to 100 kWh depending on the
manufacturers and car models. For simplicity, the battery capacity is
consistently assumed as 62 kWh (Nissan Leaf S Plus). A fixed energy
consumption rate is assumed as 0.3 kWh/mile (Plugin America, 2016).

5.2. Stochastic daily activities from Markov chain

Stochastic activities for both light-duty vehicles and EVs are gener-
ated from time-inhomogeneous Markov chain, trained using ATUS data.
Note that the ATUS data is extracted only for weekdays, since weekends
have significantly different activity patterns. The distribution of the
proposed six activity states at each time step of a day is displayed in
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Fig. 5. The EV adoption probability distribution in SLC metropolitan area. The
map is projected and displayed in UTM Zone 12 N, with the coordinates' units
in meters.
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Fig. 6. Moreover, activity distribution from ATUS is included for
comparison.

In Fig. 6, it is found that daily activity distribution from synthetic
drivers generated by the Markov chain follows a similar pattern as the
real-world distribution. During the daytime, majority of drivers park
their vehicles at workplaces. Apart from work, many drivers also
conduct other activities, such as shopping, dining, or entertaining during
the daytime. Several existing studies limit activities for EV users with
only staying home, driving, and working states. As seen from Fig. 6, such
oversimplification can induce biased results by overlooking the impact
from nonwork-related activities to public charging. It is also observed
that two peaks of traffic flow occur around 8:00 AM and 6:00 PM,
respectively. Overall, the simulated daily activities distribution con-
forms to the reality.

In the next step, daily activities from synthetic drivers are fed into
MATSim to perform agent-based simulation onto the road network.
MATSim is used to model activities in a single day for agents (i.e.,
drivers) based on the co-evolutionary principle. During iterations, a
certain portion of drivers' plans, such as route and departure time, will
be modified to search for optimal choices until the entire system reaches
equilibrium state. The optimized events for those agents from MATSim
can be used as important basis for post-analyses, such as public charging
behavior modeling. We first explore the spatial distribution of activities
from the MATSim output. Specifically, trip destination count is aggre-
gated by TAZ and compared with real-world historical trip observations
as shown in Fig. 7.

Note that the stochastic daily activity generated by the Markov chain
does not contain any geolocation information. Location mapping tech-
nique is performed to remedy this. The location mapping process fully
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utilizes POI, road network, and OD information to match the trips within
the study region. All trip destinations, including intermediary stops, are
aggregated by TAZ in Fig. 7(a). It is found that the distribution of syn-
thetic trips appears to be quite similar to the actual trip distribution.
Most daily activities are concentrated in northern part of the study re-
gion. The downtown area represents dense trip destinations as well, yet
the color in those TAZs is relatively light. This is due to the smaller area
size of the TAZs within downtown. Note that the total number of actual
trip destinations is 2,681,140, while the number of synthetic trip des-
tinations is 2,093,401. Such discrepancy is likely attributable to the
filtered 17.4% trips in MATSim.

The temporal and spatial analyses sufficiently demonstrate that the
simulated daily activities are similar to real-world situations. In the next
step, analyses related to public charging behaviors are performed to
validate against real-world public charging observations.

5.3. Real-world public charging validation

MATSim outputs the optimized driving behaviors on a daily basis.
Based on the MATSim outputs, EV assignment and charging demand
generation are performed as postsimulation offline analysis. The
assigned 22,737 EV drivers generated 1586 charging requests during a
day, with 1366 events belonging to standard charging requests. In order
to compare the estimated public charging demand with real-world ob-
servations, the energy data crawled from ChargePoint is averaged by
day. Fig. 8 presents the spatial distribution of estimated public charging
demand and actual energy consumption, where the green dots represent
public charging stations, and a larger radius indicates higher energy
consumption in reality. The background layer shows aggregated

00 PM 4:00 PM 8:00 PM  12:00 AM

Time of the day

Fig. 6. A weekday's activity distribution from (a) real-world data; (b) time-inhomogeneous Markov chain.

10



Z. Yietal

4520000 4
H A 20000
4515000 - ‘ ‘
é 17500
4510000 -
15000
4505000 1
12500
4500000 -
10000
4495000 4
L 7500
4490000 - [
L 5000
485 1
4485000 ‘ ! -
4480000 - |
Q9 25 5 Kilameters.

405000 410000 415000 420000 425000 430000 435000

(@

Fig. 7. The spatial distribution of trip destination: (a) trip destination from simulation and (b) trip destination from real-world data on a typical weekday. The map is

projected and displayed in UTM Zone 12 N, with the coordinates' units in meters.

Computers, Environment and Urban Systems 101 (2023) 101949

A

0 25  SKilometers

405000 410000 415000 420000 425000 430000 435000

(b)

N
4520000 - /A 0.0012
| .
. @)
4510000 1b 0.0010 g
o qaln =
- b ;
i -
- i £ O —
(=] o é"
W
® @ :
J 3 S
=]
4500000 - ! 0.0008 ©
| o E
i z
O o »
ol e 5
& &
4490000 - i 0-0008
o @
o i o
o
@o
i ' - 0.0004
4480000
D 25 5 Kilometers

405000 410000 415000 420000 425000 430000 435000

Fig. 8. Spatial distribution of real-world public charging energy consumption (green circle) and estimated charging demand density by TAZ (background layer). The
map is projected and displayed in UTM Zone 12 N, with the coordinates' units in meters. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

11

35000

30000

25000

20000

- 15000

- 10000

- 5000

Trip destination count ina TAZ



Z. Yietal

estimated charging demand by TAZ with the color representing charging
demand density, defined as the summed daily energy request divided by
the area of TAZ (kWh/m?). In general, it is observed that public charging
stations in TAZs with higher estimated charging demand density tend to
have higher energy consumption. For instance, SLC downtown (high-
lighted by blue square) demonstrates both higher public charging de-
mand density and energy consumption. That is likely because TAZs in
the downtown area have dense trip destinations and are sited with a
large amount of POIs related to working, entertaining, and other pur-
poses. Note that the charging stations around the airport (highlighted by
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red polygon) indicate high usage frequency, while charging demand
density is relatively low. This is due to the large area size for that TAZ.
On the contrary, TAZs in South Salt Lake County have relatively lower
charging demand density due to fewer trip destinations as shown in
Fig. 7. We also notice that several TAZs with high estimated public
charging demand density are not currently allocated with public
charging stations. The proposed charging station location optimization
can effectively address this issue. Apart from spatial distribution, tem-
poral trends for public charging station utilization are worthy of
exploration. To this end, we select three TAZs with different levels of
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Fig. 9. Real public charging energy consumption versus simulated public charging demand in representative TAZs.
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energy demand, and compare the estimated daily charging demand at
different times-of-the-day with real-world charging station utilization
records. The results are presented in Fig. 9.

Fig. 9 compares estimated energy demand and actual energy con-
sumption at the TAZ level in areas that have varying land-use patterns.
TAZ 969 is a small block located in SLC downtown. The public charging
peaks at around 9:00 AM, and the demand gradually decreases after-
wards. Such charging pattern is generally found in regions with lots of
office buildings. Fig. 9(b) shows the charging pattern of TAZ 1075, an
area in the vicinity of downtown (highlighted by black in Fig. 8).
Although office buildings are not densely located in this TAZ, the Uni-
versity of Utah and University hospital are located in within, serving as
major traffic generator. However, the charging pattern is different from
that in the downtown area, where two peaks (one around 8:00 AM and
one around 3:00 PM for public charging) are found. This can be
explained by the fact that some EV drivers did not come to the location
for work. Instead, drivers could be students or patients conducting
different activities other than work. Lastly, TAZ 742 (highlighted by red
in Fig. 8) includes the SLC international airport. Due to the uniqueness of
airport, trip density and public charging demand are significantly higher
than other TAZs as indicated in Fig. 9(c). Another distinction for this
TAZ is that many EVs are left charging overnight at the airport. How-
ever, when estimating the charging demand in our framework, we only
consider the potential charging opportunities that are linked between
two activities via driving during the day (e.g., home, work, shopping,
etc.) Yet overnight charging is neither modeled nor within the scope of
our study. Overall, the daily charging pattern matches the actual energy
consumption for those selected TAZs without large deviation during the
daytime.

While the majority of TAZs show consistent pattern between the
estimated charging demand and actual energy consumption, there are
several locations with high estimated charging demand density yet have
not been assigned any charging station, and locations with charging
stations that are significantly underutilized. Another potential problem
is that with the increase in EV adoption, public charging demand would
increase significantly, which poses challenges to existing charging sta-
tions especially during peak hours in popular regions. For this reason,
charging stations should be optimally reallocated such that they can be
effectively utilized while avoiding extremely long queues during peak
hours in the future. In the following section, we focus on optimizing
charging stations considering demand increases in the future.

5.4. Public charging station optimization result

The CMCLP model aims to maximize the coverage of the public
charging demand considering charging capacity, access distance, and
investment cost. As for the access distance, EV drivers may opt for
alternative solutions such as home charging if walking distance is
beyond 0.91 km according to (Seneviratne, 1985). For this reason,
radius r for the catchment area for each public parking lot is set as 1000
m. Meanwhile, the investment budget is calculated using the current 109
charging stations with 516 Level 2 ports. In general, the cost of installing
a charging station is approximately $5500 including labor cost and
materials, and the average prices for L2 port and L3 port are around
$2500 and $5500, separately (Borlaug, Salisbury, Gerdes, & Muratori,
2020). The total budget is therefore approximated at $1.89 million
($5500%109 + $2500*516). For parameters related to charging stations,
Level 2 chargers are uniformly assumed as J1772 plugs with power of
7.2 kW, and Level 3 chargers are uniformly assumed as CHAdeMO plugs
with power of 50 kW. The maximum number of ports Py, is set as 8 for
simplicity.

In this study, we optimize charging station locations considering
charging demand increase in the future. The main purpose of consid-
ering demand increase is to handle exponential EV adoption increase.
Besides, providing insightful guidance for new charging station
deployment in the future is of practical use to local agencies to assist
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with infrastructure planning and decision making. A report from
Bloomberg projects that the national EV adoption would reach 12% in
2030 and >50% in 2050 (Ghamami, Zockaie, Wang, & Miller, 2019).
Given such projection, scaling factor 3.5 is used to augment EV pene-
tration from 4.3% to 15% as charging demand increases. Subsequently,
we estimated such public charging demand according to the designed
energy consumption model and charging rules. Upon scaling, 80,182
EVs with 5820 daily public charging events are identified in SLC
metropolitan area. 5061 are slow charging events and 759 are fast
charging events. Here, the CMLCP is solved using a commercial opti-
mization solver Gurobi. Optimized layout is displayed in Fig. 10.

The orange triangles in Fig. 10(a) and (b) denote estimated public
charging demand. The black dots in Fig. 10(b) represent available public
parking lots that can be used to build charging stations. The magenta
circles in Fig. 10(a) and green circles in Fig. 10(b) are current and
optimized charging stations respectively with a radius representing the
number of chargers. After optimization, the original 109 charging sta-
tions (516 Level 2 ports) are transformed to 64 charging stations with
313 Level 2 ports and 136 Level 3 ports reallocated throughout the re-
gion. Although fast charging demands only account for 13% of total
demands, 30% chargers are Level 3 after optimization. Level 3 charging
can provide full miles of range within an hour, which satisfy public
charging need in a shorter time when drivers conduct short-duration
activities other than work. It is observed that public charging stations
are densely congregated in SLC downtown area both before and after
optimization due to the large amount of public charging demand.
Overall, public charging stations are mostly reallocated in the northern
part of SLC metropolitan area after optimization, most likely due to the
concentration of outdoor activities. Besides, southern area has fewer
public parking lots that allow for new charging stations siting. One issue
with the optimization is that several spots with significant charging
demands are not assigned with charging stations, such as the airport.
That is due to the unavailability of public parking lots. However, com-
mercial buildings can possibly be used to build charging stations to
replace public parking lots for future deployment.

The CMCLP solution presents an optimized reallocated charging
station layout. Yet, in practice, future EVSE deployment should be
considered upon existing charging stations. As such, we evaluate the
overall utilization between existing charging stations and optimized
stations. Specifically, we split existing charging stations into two groups
- charging stations that are overlapped with optimized charging stations
(group 1) and charging stations that are not overlapped with optimized
charging stations (group 2). For optimized results, we also split them
into two groups - charging stations that are overlapped with existing
charging stations (group 3) and charging stations that should be newly
installed (group 4). For groups 1 and 3, overlapping is defined as the
distance between two stations being <1 km. To observe the utilization
efficiency for each group of charging stations, we assign each charging
request to the nearest station within the walk distance (1 km) and
aggregate the number of charging requests by maximum, mean, and
minimum. The charging requests assignment are performed for existing
layout and optimized layout, separately. Table 6 shows the basic
charging station information and the utilization status for each group.

In Table 6, it is observed that the optimized layout has a higher
coverage rate than existing charging stations. Specifically, group 2
presents extremely low coverage with 15.5 times per day on average.
Existing charging stations in group 2 are mostly distributed in remote
areas or in the vicinity of dense clusters. One practical guidance for
future EVSE installation is to keep maintaining those overlapped
charging stations (group 1) and moderately adjust the number and type
of charging ports. For those underutilized charging stations (group 2),
we should reallocate them to new areas to fulfill higher (or new)
charging demands.

In order to validate that the optimized public charging stations
layout could provide more effective charging utilization, UrbanEV-
Contrib is applied to simulate public charging behavior in MATSim.
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Fig. 10. Public charging demand distribution and (a) existing layout of public charging stations; (b) optimized layout of public charging stations. The map is
projected and displayed in UTM Zone 12 N, with the coordinates' units in meters.

Table 6
Utilization comparison between existing stations and optimized stations.

Existing layout Optimized layout

Group 1 Group 2 Group 3 Group 4

Station count 30 79 30 34

Port count 112 404 213 236
Slow charging port 112 404 151 162
Fast charging port NA NA 62 74

Min. requests covered 21 0 23 20

Avg. requests covered 45.0 15.5 46.8 40.7
Max. requests covered 110 59 120 72

UrbanEV-Contrib is an open-source framework capable of performing
high-resolution analysis of urban electric mobility based on MATSim —
serve as a MATSim plug-in module (Adenaw & Lienkamp, 2021). By
inputting charging configurations and rules, UrbanEV-Contrib returns
charging states and events in time series, which serves as a sandbox
validating charging infrastructure design on the city-scale. To compare
charging effectiveness, MATSim is reperformed with scaled EV drivers
and corresponding public charging requests. Existing charging stations
and optimized charging stations are inserted into the simulation envi-
ronment separately to satisfy those charging requests using UrbanEV-
Contrib plug-in. The remaining SoCs is one important metric to reflect
the effectiveness of public charging station deployment, since a high
level of SoC values after completing a series of daily activities denotes
that charging station locations can be easily accessed by EV drivers
while they conduct other activities. For this reason, remaining SoCs are
examined upon completion of people's daily activities under two
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different scenarios in Fig. 11.

The first column in Fig. 11 denotes drivers who consumed all EV
energy after completing a series of daily activities. While it is not real-
istic to exhaust SoC entirely, it is an important metric to evaluate how
many drivers failed to access public charging stations during their daily
activities. Overall, the number of drivers with 0 SoCs by the end of the
day decreased by 20% as a result of charging station optimization. When
SoC is too low, drivers may have range anxiety. The optimized layout
effectively decreased the number of drivers with low SoC values to
ensure higher accessibility and reduce range anxiety. It is also noted that
the number of drivers with high SoC values increased to some extent.
Higher values of SoC at the end of the day indicate that optimized
charging stations make longer trips feasible for more EV drivers. In the
next step, we explore the temporal profile of charging station occu-
pancy. The number of chargers in use at different hours-of-the-day are
plotted in Fig. 12.

Fig. 12 shows a temporal shift of charger occupancy peak in the
optimized scenario. One possible explanation is that charging stations
are easier to be accessed after optimization. It is observed that the
number of charging ports that are occupied during the day (8:00 AM to
3:00 PM) becomes less upon optimization. This is due to the fact of more
Level 3 charging stations, enabling drivers to charge with a shorter time.
With current layout of charging stations, the average charging time is
2.8 h, while the charging time is reduced to 2.5 h on average after
optimization. Moreover, the optimized layout allows EV drivers to ac-
cess charging stations with shorter walking distances. The average
walking distance is reduced from 310 m to 270 m, providing drivers with
more convenience.
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Fig. 12. The time profile of charger occupancy.

6. Conclusion demand simulation and charging station location optimization). One
major highlight is that the presented methodology addressed the over-

This paper presents an urban-scale public charging station location simplification and limitations constrained in previous literature by uti-
optimization framework through microscopic modeling. The modeling lizing high-fidelity city-scale road network, incorporating drivers' non-
process follows the classical two-step approach (i.e. public charging work-based activities, and applying real-world EV distribution to
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develop a charging demand estimation model. Also, most existing
studies failed to validate their proposed models due to the difficulty of
retrieving real-world charging event records. As such, another novelty of
this paper is the availability of real-work public charging events, which
proved the validity of our modeling results. On top of the reliable
simulation, we performed the CMCLP model to reallocate existing
charging stations with the objective of maximizing the coverage of
charging demand. The optimization model incorporates practical con-
straints such as walking accessibility and different charging modes. The
optimized deployment scheme could provide meaningful guidance for
Salt Lake City metropolitan areas and many alike.

We implement our methodological pipeline onto Salt Lake City
metropolitan area to showcase the effectiveness. A series of validations
are conducted to justify the robustness of simulation results. Specif-
ically, the temporal and spatial distributions of drivers' daily activities
are validated against ATUS data and historical OD data, respectively.
Numerical results show that the time-inhomogeneous Markov chain
with the proposed location mapping technique can be effectively used
for trip generation, which is highly generalizable and replicable to other
regions. Moreover, real-world public charging records are used to vali-
date the spatiotemporal distribution of the synthetic public charging
demands. It is found that the majority of TAZs demonstrate consistent
pattern between the estimated charging demand and actual energy
consumption. Once the fidelity of simulation results is guaranteed, we
apply CMCLP optimization model with 15% EV penetration rate to ac-
count for the potential charging demand increase in the future. We
further incorporate the plug-in UrbanEV-Contrib to perform agent-based
simulation under the public charging context. It is found that the opti-
mized layout can improve overall charging performance by decreasing
the number of drivers with 0 SoCs by the end of the day over 20% and
reducing the average charging time from 2.8 h to 2.5 h. The simulation
experimental results offer meaningful political implications for
governmental agencies. First, the existing coverage of fast charging
stations in SLC metropolitan area is highly insufficient. Although the
financial constraint is a major concern for building Level 3 chargers,
agencies should still incentivize the fast-charging station deployment,
since it is a critical step moving toward accelerated EV adoption and
reaching net-zero emission goal by 2050. Second, low utility efficiency is
identified at a lot of existing charging stations with extremely large
number of ports and/or clustered densely in close vicinity. Instead, a
decentralized design can effectively augment EV drivers' accessibility to
the nearest charging stations. Lastly, some atypical activities could also
impact public charging demand. Places such as airport and stadium are
examples of locations where large charging demand could exist due to
atypical activities.

This study is confined to investigating intracity travels (i.e. trips
within the city) and intercity travels (i.e. trips that traverse multiple
cities) are not within the scope. For those distant trips, EV drivers are
more subject to range anxiety. Deploying fast chargers by identifying
critical links or connection points for long-distance travels is worthy of
exploration for future study.
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