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A B S T R A C T   

As the market penetration of electric vehicles (EVs) increases, the surge of charging demand could potentially 
overload the power grid and disrupt infrastructure planning. Hence, an efficient deployment strategy of electrical 
vehicle supply equipment (EVSE) is much needed. This study attempts to address the EVSE problem from a 
microscopic perspective by formulating the problem in two steps: public charging demand simulation and 
charging station location optimization. Specifically, we apply agent-based modeling approach to produce high- 
resolution daily driving profiles within an urban-scale context using MATSim. Subsequently, we perform EV 
assignment based on socioeconomic attributes to determine EV adopters. Energy consumption model and public 
charging rule are specified for generating synthetic public charging demand and such demand is validated 
against real-world public charging records to guarantee the robustness of simulation results. In the second step, 
we apply a location approach – capacitated maximal coverage location problem (CMCLP) model – to reallocate 
existing charging stations with the objective of maximizing the coverage of total charging demands generated 
from the previous step under the budget and load capacity constraints. The entire framework is capable of 
modeling the spatiotemporal distribution of public charging demand in a bottom-up fashion, and provide 
practical support for future public EVSE installation.   

1. Introduction 

The electric vehicle (EV) market has been progressively growing in 
the past decade with promising sales records in many countries (Paoli & 
Gül, 2022). In the United States, for example, the sales of EVs and plug- 
in hybrid electric vehicles (PHEVs) nearly doubled from 308,000 in 
2020 to 608,000 in 2021 (US Department of Energy, 2022). In China, EV 
sales grew by 85% from 2018 to 2019, significantly above the industry 
average (McKinsey, 2019). Such significant rise in EV adoption rate is 
attributable to policy incentives, technological advancement, promotion 
of carbon neutral and net-zero emissions economy, etc. (Debnath, 
Bardhan, Reiner, & Miller, 2021; Kumar, Chakraborty, & Mandal, 2021; 
Liu, Sun, Zheng, & Huang, 2021). The ever-increasing EV adoption is 
beneficial to reducing greenhouse gas (GHG) emissions, supporting the 
sustainable transport system, and decreasing the reliance on fossil fuels 

(Borén et al., 2017). As the booming of EVs creates positive impacts in 
multiple areas, it brings challenges to the entire society as well. 

Among those challenges, the surge of EV charging demand in 
response to the fast EV adoption could potentially overload the power 
grid and affect infrastructure planning (Deb, Kalita, & Mahanta, 2018; 
Deb, Tammi, Kalita, & Mahanta, 2018; Wu, Ravey, Chrenko, & Miraoui, 
2019). EV charging can be divided into home charging and public 
charging depending on charging locations. In the United States, home 
charging is still the dominant charging mode, accounting for approxi
mately 80% of all charging events (Smart & Schey, 2012). However, 
public charging plays an indispensable role under several circumstances. 
First, drivers who often perform long-distance trips would heavily rely 
on public charging due to the limited mileage range of EVs. Second, 
home charging requires the charging facilities to be installed at home 
garage. Yet many existing EV drivers or potential EV buyers may live in 
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housing units that have no access to a garage or carport. For instance, 
Ou, Lin, He, and Przesmitzki (2018) estimated that the home parking 
availability in Shanghai, China was merely 5.3% in 2005. Therefore, 
augmenting the network coverage of public charging infrastructures can 
effectively eliminate the resistance to EV purchase. Last but not least, the 
concept of taxi electrification has been widely expanded in recent years 
as electric taxi pilots have already been launched in several cities such as 
New York City, U.S., and Shenzhen, China (Yang, Dong, & Hu, 2018). 
Considering the much longer daily mileage of taxis, public charging 
infrastructures appear to be crucial to support such service. 

A natural question to address, based on these aforementioned chal
lenges then, is how to optimally place public charging stations to in
crease demand coverage and sufficiently exploit utilization of the public 
electric vehicle supply equipment (EVSE). In general, EVSE location 
problem are often attempted in two steps: public charging demand 
estimation and public charging station location optimization. Through 
this workflow, the first step - how to accurately estimate public charging 
demand - is more challenging because the public charging decision is 
dictated by a myriad of complex factors, including drivers' charging 
preference, charging facility accessibility, and EV's remaining state of 
charge (SoC) (Zhang, Luo, Qiu, & Fu, 2022). Previous studies on public 
charging demand estimation can be classified into macro- and micro- 
level approaches. For the macro-level studies, urban informatics and 
travel mobility information are often utilized to quantify public charging 
demand in different regions and to extract potential spatial correlation 
(Dong, Ma, Wei, & Haycox, 2019; Hu, Dong, Lin, & Yang, 2018; Kontou, 
Liu, Xie, Wu, & Lin, 2019; Tu et al., 2016; Vazifeh, Zhang, Santi, & Ratti, 
2019; Yi, Liu, Wei, Chen, & Dai, 2021). In contrast, micro-level ap
proaches mimic EV drivers' daily travel behavior and public charging 
requests using simulation software in a bottom-up fashion (Adenaw & 
Lienkamp, 2021; He, Yin, & Zhou, 2015; Lopez, Allana, & Biona, 2021; 
Marmaras, Xydas, & Cipcigan, 2017; Novosel et al., 2015; Wang & 
Infield, 2018; Xi, Sioshansi, & Marano, 2013). Compared with 
macro-level approaches, micro-level methods are capable of producing 
high-resolution results, such as hourly-level charging distribution, for 
detailed behavioral analysis. Simulation tools can also model different 
charging scenarios (e.g. a mix of standard and fast charging events), in 
an attempt to manage the charging load. Moreover, simulation-based 
approaches can adopt future changes (e.g. the increase in EV adop
tion) when assessing the charging demand. For these reasons, 
micro-level approaches are more suitable to use if high-resolution con
straints need be considered for optimizing charging infrastructures. 

The majority of existing microscopic methods for public charging 
demand estimation follow a similar modeling framework, which can be 
roughly divided into three steps. The first step is to create synthetic 
drivers and assign them with daily driving profiles to simulate the traffic 
for the entire study area. This step can be achieved by either populating 
seed samples from household travel records or generating stochastic 
activities using Markov chain (Wang, Huang, & Infield, 2014; Xi et al., 
2013). The subsequent step is to assign EV drivers that match the current 
EV adoption rate and its spatial distribution. The final step is to specify 
EVs' energy consumption model and the public charging decision rule to 
produce synthetic public charging demands. Although previous studies 
in general follow such modeling steps, there are a lot of oversimplified 
assumptions and/or limitations that prevent the model from reproduc
ing accurate spatiotemporal public charging demand portfolios, espe
cially for large-scale (e.g. urban-scale) simulations. Small road networks 
or simplified network topologies are commonly used for exploring 
public charging demand considering computational expensiveness (He 
et al., 2015; Marmaras et al., 2017; Wang & Infield, 2018). However, 
conclusions from those studies might not be applicable to city-scale 
analyses, since real traffic patterns vary significantly across geograph
ical areas and interact in a much complex manner. Besides, over
simplification of EV assignment and public charging decision rules can 
lead to biased estimation of the total energy demand. Several studies 
assumed a uniform distribution with fixed EV penetration rate to create 

synthetic EV drivers (Khan, Mehmood, Haider, Rafique, & Kim, 2018; 
Wang & Infield, 2018). Yet the decision of EV adoption is driven by 
miscellaneous factors, including EV model (e.g. mileage range), socio- 
demographic characteristics (e.g. income, age), and context variables 
(e.g. accessibility to charging equipment and fuel price) (Javid & Nejat, 
2017). Therefore, assumption of random distributions could overlook 
heterogeneities across neighborhoods and individuals. Apart from EV 
assignment, simplifying daily activities by confining to only work-based 
and/or home-based activities in simulation is another limitation (Lopez 
et al., 2021; Novosel et al., 2015). Places associated with non-work- 
based activities such as shopping malls, restaurants, entertainment lo
cations, and airports also demonstrate potential public charging needs 
(Nansai, Tohno, Kono, Kasahara, & Moriguchi, 2001). More impor
tantly, most previous studies were not validated against real-world 
public charging records, leading to over/under-estimation of the 
actual public charging demand and inaccurate spatiotemporal charging 
distribution evaluation. The major hurdle in obtaining public charging 
data is commercial and/or governmental confidentialities (Wang & Ke, 
2018). Without the support of real-world public charging records, the 
subsequent charging station optimization process would render less 
meaningful. 

This study aims to optimize the layout of public charging stations at 
the city-scale by addressing the following two overarching research 
questions: how to link potential EV users' daily activity patterns with 
their charging behavior and further estimate the spatial distribution of 
public charging demand? and Once an estimated charging demand 
distribution is accomplished, how to optimize the layout of public 
charging stations such that the overall public charging demand is 
maximized? Specifically, Salt Lake City (SLC) metropolitan area is 
selected as a pilot. Utah is the fourth fastest growing state in the U.S., 
and the population is forecasted to double over the next 20 years. The 
SLC metropolitan area is home to >80% of the state's population, and 
surprisingly experiences some of the worst air quality in the nation. As 
such, there is growing political consensus to address air quality, and 
PEVs offer a viable solution. The state has aggressive plan in terms of 
charging station deployment over the next several years and under
standing how drivers' daily activities interact with public charging de
mand at city-scale is paramount to the EV charging station deployment. 
The modeling framework and findings therefore could provide valuable 
guidance to regions or areas with similar interests in accelerating EV 
adoption. 

As for the modeling process, we first create the synthetic public 
charging demand within an urban-scale context in a bottom-up fashion 
via agent-based modeling. Specifically, Multi-agent Transport Simula
tion (MATSim), an open-source framework for implementing large-scale 
agent-based transport simulation, is adopted to model the daily activ
ities of all drivers. We then distribute the EV drivers based on socio
economic attributes, and further specify the public charging decision 
rule for generating synthetic public charging demand post-simulation. In 
the second step, an optimization framework - capacitated maximal 
coverage location problem (CMCLP) - is formulated based on the 
generated public charging demands from the previous step. The CMCLP 
model reallocates existing public charging stations in the study area by 
maximizing the coverage of total charging demand under the investment 
cost and load capacity constraints. Note that within the entire frame
work, synthetic public charging demand is validated against real-world 
charging records, and optimized charging station deployment is assessed 
by a plug-in from MATSim that supports the public charging behavior 
analysis. In sum, the main contributions of this paper are threefold:  

• A city-scale agent-based simulation is developed to produce daily 
travel profiles using time-inhomogeneous Markov chain, and loca
tion mapping technique using publicly available data. EV assignment 
and public charging decision modeling are subsequently specified in 
post-simulation analyses using socioeconomic and demographic in
formation to produce high-resolution public charging demand; 
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• The spatiotemporal distribution of synthetic charging demand is 
validated against real-world public charging records, which are ob
tained using a dynamic crawling pipeline. The result indicates a 
consistent charging pattern between synthetic charging demand and 
actual energy consumption for most areas; and  

• The CMCLP model is applied to optimize the deployment of public 
charging stations taking into consideration both standard and fast 
charging demands. The capacity constraint is formulated at different 
hours-of-the-day to ensure charging demands are satisfied even 
during peak hours. The results can provide practical guidance for 
future public EVSE installation. 

The remainder of this paper is organized as follows. Next section will 
comprehensively discuss literature related to simulation-based public 
charging demand analyses, agent-based modeling, and charging station 
locations optimization problems. Following that, data sources are 
described in detail. Methodology section presents the micro-level 
modeling framework for public charging demand generation and 
mathematical formulation of CMCLP model. The Results and Analysis 
section presents the simulation results, charging demand analyses, and 
optimization outcomes. Conclusions are outlined at the end. 

2. Literature review 

2.1. Simulation-based public charging demand modeling 

Microscopic simulation-based approaches model the public charging 
demand generation in a bottom-up fashion. One of their major advan
tages is the ability to reproduce complex traffic situations within large- 
scale networks and enable operational outputs at the link or intersection 
level while accounting for the impacts of localized activities. Besides, 
microscopic modeling produces detailed trip trajectory at the individual 
level, which can be used for high-resolution analysis. Moreover, the 
animation and graphic user interface allow researchers to vividly 
interpret the impact of drivers' daily activities on public charging 
behavior. 

In general, simulation-based approaches for generating public 
charging demand follow three steps: simulating the daily traffic for the 
entire study area, assigning EVs among drivers, and specifying energy 
consumption model and public charging decision rules. The first step 
can be achieved using simulation software, while the remaining steps 
can be performed as post-simulation analysis. To model daily traffic, all 
drivers' household distribution and their daily driving profiles are 
required. This process can be further separated into population synthesis 
and stochastic daily activity generation. Population synthesis refers to 
the use of sample population data to generate a set of households and 
persons representing the entire population in the modeling region (Paul, 
Doyle, Stabler, Freedman, & Bettinardi, 2018). Besides, marginal dis
tributions of socioeconomic and demographic characteristics are fed 
into population synthesizer together with the sample data to create 
heterogeneous households and individuals. As for stochastic daily ac
tivity generation, a common approach is to apply Markov Chain Monte 
Carlo (MCMC) simulation. For example, Wang et al. (2014) applied a 
time-inhomogeneous Markov chain to simulate driving patterns based 
on the UK 2000 Time Use Survey data, a real-world high-resolution 
dataset that records activities for households' individuals on a 10-min 
basis. Four states including “driving”, “parking at home”, “parking at 
workplace”, and “parking at other places” are defined in the Markov 
chain for the privately owned EVs to estimate the impact of workplace 
charging during weekday on power grid. Once the synthetic population 
and their daily activity trips are generated, simulation software can be 
used to model the traffic of study area with road network information. 
Following that, a post-simulation analysis can be conducted to assign EV 
users and distribute public charging demands according to a specified 
charging decision. A simple strategy for EV assignment is to distribute 
EV drivers using uniform distribution with a fixed EV penetration rate 

ranging from 1% to 100% (Khan et al., 2018; Wang & Infield, 2018; Xi 
et al., 2013). However, EV adoption is influenced by a myriad of factors, 
including demographic, contextual, and other types of attributes. The 
assumption of uniform distribution would ignore the socioeconomic and 
demographic distinctions across geographical areas, leading to biased 
EV adoption spread and incorrect charging demand distribution. To 
estimate EV adoption probability, Javid and Nejat (2017) developed a 
logistic regression model that considers socioeconomic factors and 
context variables, such as age, income, and fuel price. After EV assign
ment, energy consumption model and public charging decision behav
iors should be established to determine when and where public charging 
events occur. The public charging decision rule is relatively difficult to 
model since drivers' charging preference, charging accessibility, and 
remaining SoC are challenging to be captured precisely (Herberz, Hah
nel, & Brosch, 2022). In previous studies, the attributing factors for 
modeling public charging include SoC, activity duration, and walking 
distance to the charging facilities. Researchers generally set a threshold 
value for each factor according to published reports to trigger public 
charging events with different logics (Hu et al., 2018; Wang et al., 2014; 
Zou, Wei, Sun, Hu, & Shiao, 2016). 

After performing the aforementioned three steps (daily traffic 
simulation, EV assignment, and energy consumption and charging de
cision), the generated synthetic public charging demands can be repre
sented using points. Each demand point is associated with a charging 
start time, duration, charging type, and location information. This in
formation will be further utilized in the optimization framework for 
optimizing the public charging station locations. 

2.2. Agent-based modeling 

Note that there are multiple ways for conducting daily traffic simu
lation based on the synthetic population and their daily activity trips. 
Among them, agent-based model (ABM) is one of the widely used ap
proaches. ABM contains a collection of agents or units, and agents can be 
assigned with different daily activities. The agents will operate accord
ing to plans and interact mutually to produce a complex scenario, such 
as road traffic (Macal & North, 2009). ABM provides a natural 
description of a system that is highly flexible. It enables the creation of 
complex simulation environments by inserting heterogeneous units with 
a variety of attributes, such as age, vocation, and income level. Popular 
agent-based modeling tools for traffic analysis include Transportation 
Analysis Simulation System (TRANSIMS) (Smith, Beckman, & Baggerly, 
1995), Simulation of Urban Mobility (SUMO) (Krajzewicz, Erdmann, 
Behrisch, & Bieker, 2012), and MATSim (Axhausen, Horni, & Nagel, 
2016). 

MATSim is an open-source framework for implementing large-scale 
agent-based transport simulations. It is arguably the one with the least 
focus on traffic flow realism but with the highest computing speed and 
the best behavior model on trip planning. In a nutshell, a synthetic 
driver (i.e. agent) will perform trip activities within a day, and tries its 
best to optimize its daily schedule by adjusting possible activities based 
on a co-evolutionary principle iteratively. Because MATSim is written in 
Java, it supports a variety of plug-in packages for public charging 
behavior analyses (e.g. BEAM and DVRP) (Maciejewski & Nagal, 2007; 
Sheppard, Waraich, Campbell, Pozdnukov, & Gopal, 2017). MATSim 
requires population distribution, daily activities, road network, and fa
cility locations as inputs. Novosel et al. (2015) applied MATSim to 
model the hourly distribution of energy consumption of EVs on an urban 
scale in the cities of Croatia to test their charging impacts on the entire 
energy system. This study assumed that activities only occur between 
home and work, and the spatial distribution of home and work locations 
are estimated based on the socio-demographic data. Adenaw and Lien
kamp (2021) applied MATSim to analyze the charging station utilization 
and user behavior by inserting EVs and charging stations in the simu
lation environment. The numeric results are tested and verified using a 
case study in the city of Munich, reflecting realistic spatiotemporal 
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charging patterns. Furthermore, they encapsulated their work to an 
open-source framework – UrbanEv-Contrib – based on MATSim, which 
can serve as a sandbox validating optimized charging infrastructure 
designs in a dynamic simulation environment. 

2.3. Public charging station locations optimization 

Public charging infrastructure deployment problem can be solved 
using location approaches, which contain two components: demand 
representation and location model. Charging demand can be repre
sented as points, polygons, or flows depending on the specific contexts, 
and the location model is an optimization framework designed to select 
the best locations with the goal of maximum utility coverage, minimum 
cost, or other objectives (Dong et al., 2019; Huang, Kanaroglou, & 
Zhang, 2016). Demand is considered being covered if it is within a 
certain travel distance to a charging station. Standard location models 
include the flow capture location model (FCLM) (Hodgson, 1990), 
maximal coverage location problem (MCLP) (Church & ReVelle, 1974), 
and p-Center (Hakimi, 1964). 

Among them, the MCLP model is computationally efficient and 
suitable for problems with demand representation as points or polygons. 
The MCLP seeks to maximize the target (i.e. charging demand) covered 
within a desired service distance by locating a fixed number of facilities 
(i.e. public charging stations). It has been widely adopted for solving the 
EVSE location problem. Dong et al. (2019) optimized the placement of 
charge point infrastructure by formulating a MCLP model with the 
objective of maximizing total demand coverage under the investment 
budget constraint. One potential flaw of the MCLP model is that the 
energy capacity for charging ports is not considered. Failing to set ca
pacity limits can lead to an overestimation of service level. To fix this 
problem, the CMCLP model is developed to refine constraints. Yi, Liu, 
and Wei (2022) utilized the CMCLP model to optimize the layout of 
public charging stations on a city scale. Accumulated daily capacity for 
each charging port and total investment budgets are set as constraints. 
With finer granularity, hourly charging capacity can be modeled to 
satisfy the charging demand during peak hours (Tu et al., 2016). The 
aforementioned MCLP/CMCLP-based charging station optimization 
models (Asamer, Reinthaler, Ruthmair, Straub, & Puchinger, 2016; 
Dong et al., 2019; Tu et al., 2016; Yi et al., 2022) attempted the problem 
from a macro-level, where the entire study area are discretized into grids 
or polygons, and charging stations are sited onto those cells instead of 
pinpointed the exact geographical locations. Such discretization will 
induce low-resolution optimization results because the size of cells can 
be as large as 1 km by 1 km (Yi et al., 2022). Failing to pinpoint the exact 
location of charging facilities might provide less practical or useful 

guidance for detailed infrastructure planning. The ABM can effectively 
address this problem as it is capable of producing vehicle trajectory 
records and high-resolution charging requests. 

Our study employs CMCLP to maximally capture the public charging 
demands in the study area under the investment budget and different 
hours-of-day capacity constraints. Moreover, fast charging demand is 
incorporated on top of standard charging demand in the optimization 
framework to present a more realistic charging infrastructure design. 

3. Data 

A realistic urban-scale simulation requires high-quality inputs. The 
modeling framework presented in Fig. 1 consists of a series of building 
blocks. In each building block, methodology (will be explained in the 
next section) and required data resources are highlighted. First, popu
lation and socioeconomic attributes are used for synthetic population 
generation, and ATUS data is utilized to create time-inhomogeneous 
Markov chain. Following that, POI and historical OD data are used for 
location mapping. To execute agent-based simulation via MATSim, road 
network information is fetched from Open Street Map (OSM). EV 
assignment and public charging behavior modeling are subsequently 
performed. Finally, real-world public charging observations is used to 
validate simulation results, while an optimization model is further 
implemented based on the simulation results to reallocate the charging 
stations with maximum coverage of public charging demands. The 
detailed description for each dataset is explained in the following 
subsections. 

3.1. American time use survey (ATUS) 

High quality data is essential to guarantee accurate stochastic 
behavior modeling for agent-based simulation. Time use survey data has 
been widely used to model stochastic behaviors of people due to the high 
resolution of activity information. Hence, we employed ATUS dataset to 
create synthetic agents. ATUS dataset is collected annually by U.S. Bu
reau of Labor Statistics, which provides nationally representative esti
mates of how, where, and with whom people spend their time. Each 
respondent interviewed by ATUS is documented with demographic in
formation, household status, and daily activity records. To reflect how 
people spend their time, respondents are asked to collect a detailed 
account of their activities regarding the type, duration, and location of 
activities, starting at 4:00 AM the previous day and ending at 4:00 AM 
on the interview day. We use ATUS data spanning from 2013 to 2017 
with approximately 55,000 respondents during weekdays to construct 
the Markov chain for stochastic daily activities generation. 

Fig. 1. Model development framework.  
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3.2. OSM road network information 

We extract road network using OSMnx, a python package allowing to 
download, visualize, and analyze geospatial data from OSM as the 
required input for MATSim (Boeing, 2017). The representation of a road 
network in OSM is essentially a directed graph, where edges represent 
roads and nodes represent conjunction points or dead end of roads. Each 
road contains the topological information such as coordinates of start 
and end point, the line string geometry, and length. Moreover, each road 
is assigned with traffic attributes such as road class, number of lanes, and 
maximum speed, which are required attributes for MATSim. There are 
94,742 roads and 37,766 conjunction points (or dead ends) in total 
within study area. Roads attributes with missing values are replaced by 
mean values of all roads within the same road class. 

3.3. Sociodemographic information 

Synthetic population generation requires two inputs – sample seed 
and attributes' marginal distributions –to create entire population in the 
study region. Population sample from Public Use Microdata Sample 
(PUMS) - a set of records from individual people or household units with 
disclosure protection enabled (United States Census Bureau, 2019) – is 
used as sample seed. There are 4924 households and 13,768 persons in 
the seed population. Each sample household contains attributes 
including household size, household income, vehicle ownership, and 
location information. Apart from sample seed, marginal distributions of 
the aforementioned attributes are required. This study applies TAZ-level 
socio-demographical information with fine granularity to create realistic 
simulation scenario. Household distribution, vehicle ownership and 
average household income in each TAZ are retrieved from Wasatch 
Front Regional Council (WFRC) to build the marginal distributions of 
sample's attributes at TAZ level (Wasatch Front Regional Council, 2021). 
Besides, historical OD distribution data among TAZs is fetched for 
location mapping purpose. 

3.4. Point of interest (POI) data 

POI data can effectively reflect urban context and infer people's trip 
purposes. To extract POIs in our study area, we use Google Place API 
(Google Place API, 2021). After eliminating unrelated type of POIs (e.g. 
hotel), there are 59,112 POIs classified in nine categories. The detailed 
information of classified POI data is shown in Table 1. The POI infor
mation is retrieved for the location mapping purpose. Each category of 
POIs is associated with a specific daily activity as observed in the Ac
tivity column. 

3.5. Real-world public charging data 

The real-world charging data is crawled from ChargePoint, an online 
application that assists EV users to navigate and review nearby charging 
sites (Charge Point, 2021). ChargePoint operates the largest online 
network of independently owned EV charging stations, operating in 
fourteen countries worldwide. The data crawling period spanned from 

Nov 5th, 2020 to Dec 12th, 2020, and the construction steps for dynamic 
crawling pipeline can be found in (Yi et al., 2022). To sum, there are 109 
public charging stations with 516 Level 2 charging ports recorded by 
ChargePoint that broadcast real-time utilization information (i.e. num
ber of in-use ports at current time point) in the study area. The energy 
consumption at a certain period for a charging station is calculated as 
the total number of in-use ports multiplied by the corresponding power 
of the ports and crawling interval (set as 10 min). The accumulative 
energy consumption (kWh) during each interval is then summed up 
across the entire crawling period as the total charging energy con
sumption. Spatial distribution for 109 charging stations is displayed in 
Fig. 2, with the height quantifying the cumulative energy consumption 
within the data collection period. 

4. Modeling framework 

To simulate EV mobility and associated energy consumption in a 
high spatiotemporal resolution, the modeling framework in Fig. 1 is 
divided into four major components: populations and trips generation; 
travel activity simulation; public charging modeling; and charging sta
tion location optimization. We begin by creating synthetic population 
using sociodemographic information at the traffic analysis zone (TAZ) 
level. In the meantime, a time-inhomogeneous Markov chain is trained 
using ATUS data to produce stochastic daily activities. Following that, a 
location mapping technique is proposed to project those daily activities 
onto specific geographical locations based on historical travel patterns, 
POI, and population information. These aforementioned inputs are then 
fed into MATSim, together with road network, to return the optimal 
travel plans for all drivers. Upon MATSim simulation result, we apply EV 
adoption probability model and EV energy consumption model to 
determine EV distribution and potential public charging demands. This 
is validated against real-world public charging observations. An opti
mization model is then employed to maximize the coverage of public 
charging demand under various constraints. 

4.1. Synthetic population generation 

Synthetic population generation is the very first step of activity- 
based modeling. The generated synthetic population should be able to 
represent person- and/or household-level attributes of the actual pop
ulation in the modeling region. PopulationSim (Paul et al., 2018), an 
open-source population synthesizer, is employed for the purpose of this 
study. Typically, PopulationSim requires three datasets as the inputs: 
household and person samples with related sociodemographic attri
butes, and the marginal distributions of controlled variables (e.g., 
household size and household income). Then PopulationSim utilizes the 
samples and marginal distributions to generate tables of person and 
households representing the entire population of the modeling region. 
The population synthesis in PopulationSim involves two steps: fitting 
and generation. During the fitting step, entropy maximization is applied 
to preserve the distribution of initial weights while matching the mar
ginal controls. Once the weights have been assigned for seed sample, the 
generation step expands the sample using Monte Carlo sampling and 
optimization-based algorithm. Table 2 gives an example of input data 
for PopluationSim, comprising the population sample (household and 
person), and marginal distributions of household size (HHSize), house
hold income (HHInc), and household vehicle ownership (HHVeh) in 
TAZs. Note that the population sample data in PUMS is aggregated by 
public use microdata areas (PUMAs) - the special nonoverlapping areas 
that partition each state into contiguous geographic units containing no 
fewer than 100,000 people each, to protect privacy. 

PopulationSim allows reallocation of population from a larger 
geographic unit into a smaller one, such as from PUMAs to TAZs. The 
final outputs from PopulationSim contain synthetic populations and 
households with corresponding attributes at located TAZs in the study 
region. 

Table 1 
Description of POI data.  

POI ID Category Label Examples Count Activity 

1 Business office, personal business 23,472 Work 
2 Health hospital, health, doctor 8982 Others 
3 Finance agency, finance building 6691 Work 
4 Retail supermarket, grocery store 10,066 Shop 
5 Restaurant restaurant, food delivery 2181 Dine in 
6 Education school, university 1290 Others 
7 NGO church, government building 1591 Work 
8 Entertainments park, salon, bar, zoo 2422 Others 
9 Service post office, gas station, laundry 2427 Others  
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4.2. Time-inhomogeneous Markov chain 

Vehicle movement is a series of state transitions throughout a day. 
Markov chain is a stochastic model describing a sequence of possible 
events. Time-inhomogeneous Markov chain refers to chains with 
different transition probability matrices at each time step. In this study, 
ATUS data is utilized to construct the sequence of transition matrices for 
time-inhomogeneous Markov chain. We set time resolution as 10 min (i. 
e., 144 time steps for an entire day) when use a discrete Markov chain to 
describe people's daily activities. Such resolution is preferred for 
detailed analysis of vehicle activities, and trips of short distances (Wang 
et al., 2014). Specifically, drivers' daily activities are classified into 6 
categories: “drive,” “stay home,” “work,” “shop,” “dine in,” and 
“others.” The indexed activities and state transition relationship are 
described in Fig. 3(a). Fig. 3(b) describes the transition probability at a 
specific time t. For example, if t = 48, then p02

48 denotes the probability 
from “drive” to “work” at 8:00 AM. Note that the transition between any 
two different states must be accomplished via “driving” activity, which 
means that the transition probability between two nondriving states, 
such as p21

t , is always zero. This assumption is made because we are only 
interested in the activities that are connected by driving to explore EVs' 
potential charging opportunities at different locations. 

To demonstrate the functionality of this Markov chain, each re
spondent's daily activity trajectory is first mapped to the state code in 
Fig. 3(a), and then subsequently transformed to a list representation 
with the length of 144, where each number in the list denotes an activity 
code (10-min resolution) at a specific time step. The transition proba
bility pij

t in stochastic matrix at time step t is calculated as the number of 
respondents switching from activity i to j at time step t + 1 divided by 
the total number of respondents. Once 143 stochastic matrices (a daily 
activity list contains 144 time steps) are obtained, we can use them to 
create a list of synthetic daily activities given the initial states as inputs. 
The initial state (i.e. activity at 12:00 am) for each person is determined 
by randomly sampling from a predefined probability density function at 
t = 1. 

4.3. Location mapping 

Stochastic activities generated by Markov chain do not have 
geographical location information. Yet agent-based models such as 
MATSim requires detailed trip information. Therefore, we developed a 
location mapping strategy to project abstract activities to specific trips 
with geo-location labels using historical trip distribution and POI data. 
The proposed location mapping strategy is detailed as follows: 

Fig. 2. The spatial distribution of current public charging stations in Salt Lake City metropolitan area.  
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• Search candidate TAZs: We search TAZs that a driver could reach 
within a time threshold. Specifically, for any daily activities, we set 
the lower bound and upper bound of arrival time. If the driver arrives 
at the centroid of a TAZ within the time-boundary, this TAZ falls into 
the candidate set. We empirically set 0.8tdrive and 1.2tdrive as the 
lower bound and upper bound, respectively, where tdrive is the 
driving time generated by Markov chain, which is formally defined 
as the number of continuous driving states multiplied by the time 
resolution of the Markov chain;  

• Determine the exact destination TAZ: Once candidate TAZs are 
identified, we utilize historical OD distribution probability from the 
start TAZ to all candidate TAZs to determine which TAZ the trip 
arrives at. To achieve this, OD data for a typical workday is divided 

into four subsets time periods (i.e. 12:00 am – 6:00 am, 6:00 am – 
12:00 pm, 12:00 pm – 6:00 pm, and 6:00 pm – 12:00 am). Trip counts 
from the source TAZ to candidate TAZs are fetched from one of the 
subsets depending on the activity start time. The probability that a 
trip arrives at any candidate TAZ is proportional to trip count from 
source TAZ to that TAZ divided by trip counts to all candidate TAZs. 
The OD data is split by time periods because many activities possess 
strong temporal patterns, such as work-based trips;  

• Pinpoint trip destination: After the destination TAZ is determined, 
we randomly assign one POI with corresponding trip purpose as the 
activity destination in the determined TAZ. For instance, if the ac
tivity purpose is “dine-in”, we choose one POI with the label 
“restaurant”. The mapping between activity purpose and POI label 
can be found in Section 4.4 POI data. 

Since each daily activity could contain multiple intermediate stops, 
the location mapping process is iterated starting from home until the last 
activity is completed. Note that if location mapping fails to capture any 
intermediary stops for some reason (e.g. long driving duration), this 
activity would be discarded from the system. 

4.4. EV assignment and energy consumption model 

MATSim is used to simulate all vehicles' daily trips within a study 
region. As post-simulation analysis, we perform EV assignment and set 
up public charging rules to determine public charging demand distri
bution. For EV assignment, we apply the EV adoption probability model 
developed by Javid and Nejat (2017). Javid and Nejat (2017) developed 
a logit model using the California Statewide Travel Survey data and 
validated it against another dataset in Delaware, Texas. The result 
showed robust transferability in terms of the Area Under the Curve 
(AUC) - a classic metric for classification models. We therefore directly 
adopt the model here to assign EV drivers in the study region. The 
mathematical formulation is presented as follows: 

p(x) =
1

1 + e−(
∑

αi*xi+β)
(1)  

where x represents an individual that could potentially become an EV 
driver in a household, xi denotes internal or external factor that in
fluences the purchase decision of individual x, and αi is the corre
sponding coefficient. p(x) is the estimated EV adoption probability for 
individual x. Eq. (1) is a logit model considering socioeconomic and 
demographic features. Table 3 lists the values of the variables and cor
responding coefficients used. Individuals' attributes, including age, in
come, vehicle ownership, and household size, are used to calculate the 

Table 2 
Sample input data for PopulationSim.  

(a) Population sample at PUMA level 

Household id PUMA id HHSize HHInc HHVeh 

1 35,001 2 50,000 2   

Person id Household id PUMA id Age Gender 

1–1 1 35,001 51 male 
1–2 1 35,001 46 female   

(b) Marginal distributions of controlled variables in TAZs 

TAZ id 695 712 

PUMA id 35,001 35,001 
Categories of HHSize 
HHSize = 1 174 97 
HHSize = 2 109 137 
HHSize = 3 75 221 
HHSize = 4 34 220 
HHSize = 5 105 22 
HHSize = 6 86 125 
HHSize ≥ 7 75 219 
Categories of HHInc 
HHInc ≤ 21,297 41 161 
21,297 < HHInc ≤ 42,593 56 55 
42,593 < HHInc ≤ 85,185 19 47 
HHInc > 85,185 10 46 
Categories of HHVeh 
HHVeh = 0 19 12 
HHVeh = 1 115 110 
HHVeh = 2 161 329 
HHVeh ≥ 3 97 224  

Fig. 3. The Time-inhomogeneous Markov chain at time t.  
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EV adoption probabilities. Variables with minor variations across re
gions or those that are difficult to obtain, such as gas price and education 
level, are set as constants for simplicity. Note that constant values 
(excluding xgas_price and xelec_price) and coefficients are referenced from 
(Javid & Nejat, 2017). 

Public charging is a stochastic process. The majority of charging 
mechanisms are based on the state of charge (SoC) or equivalent range 
anxiety (Hu et al., 2018; Wang et al., 2014). In this study, two types of 
charging are considered - standard charging (Level 2) and fast charging 
(Level 3). SoC is updated for each trip once the driver arrives at the next 
destination. Charging behavior is determined by the current SoC and 
dwell time. A flowchart with explicit charging rules is presented in 
Fig. 4. 

The proposed charging rules consider three charging behaviors: no 
charging, standard charging, and fast charging. According to Zou et al. 
(2016), over 75% EV drivers will not charge their vehicles unless SoC 
drops below 50%. For this reason, we assume EV drivers would consider 
public charging only when SoC is below 50%. When SoC drops below 
50%, EV driver may conduct Level 2 charging. However, driver may 
refuse to charge if the dwell time D is too short. Hence, 30 min of 
minimal charging time is used to determine Level 2 charging preference 
(Yi & Bauer, 2016). However, if SoC drops below 15%, EV driver will opt 
for fast charging regardless of the dwell time. 

Besides charging rules, initial SoC should be determined as well. In 
fact, not all EV drivers have access to home charging equipment, and 
overnight charging might not be necessarily performed. The assumption 

of fully charged batteries before drivers depart home is not practical. 
Instead, the initial SoCs is generated from a normal distribution (Zheng, 
Wang, Men, Zhu, & Zhu, 2013). It is worthy to mention that the afore
mentioned charging rules only produce charging requests (or demands). 
It does not imply that charging is fulfilled at that moment, since public 
charging stations may or may not exist nearby for each charging request. 
The actual charging fulfillment will be discussed in optimization 
analyses. 

4.5. CMCLP optimization model 

We consider both standard charging and fast charging. Table 4 and 
Table 5 give the description of input parameters and decision variables 
for CMCLP model, separately. The objective of CMCLP is to maximize 
the coverage of public charging demands under a variety of constraints, 
including charging capacity, access distance, and investment budget. 
For charging capacity, it is applied by different hours-of-the-day to 
consider surging demands during peak hours. In order to formulate the 
hours-of-the-day constraints for charging stations, charging demands (i. 
e., charging request) are discretized. For instance, if a public charging 
event is performed between 8:00 AM and 10:45 AM, it will be first 
rounded to a 3-h request (from 8:00 AM – 11:00 AM), and discretized by 
hour – 8:00 AM-9:00 AM, 9:00 AM-10:00 AM, and 10:00 AM-11:00 AM. 
The charging demands is determined by the proposed charging rules in 
Fig. 4, while the energy consumption of each hourly demand (i.e., dit

L2 

and dit
L3) can be calculated based on the power of chargers and dwell 

time at the destination. As for accessibility, this study assumes that new 
public charging stations can only be installed at public parking lots due 

Table 3 
Variables and coefficients in EV adoption probability model.  

Variable Coefficient Explanation Constant 

xage 0.04 Driver's age NA 
xcar_share 0.911 Weather the vehicle is shared with other 

drivers 
0.01 

xtrip_dur 0.001 Average daily trip duration (miles) 52.4 
xincome_level 0.461 Categorized variable indicating the level of 

income with 1 denoting the lowest and 5 
denoting the highest income 

NA 

xhousehold −0.071 Categorized variable indicating the size of 
household 

NA 

xeducation 0.274 Categorized variable indicating the 
education level 

4.76 

xstation_num 0.811 Charging station per capita 0.5 
xgas_price 2.8 The gas price (dollar/gal) 3.6 
xelec_price 0.077 The electricity price per (cent/kWh) 14.6 
xveh_num −0.055 The number of vehicles owned by the driver NA 
β −19.629 Constant term NA  

Fig. 4. Rules for EV charging.  

Table 4 
Description of input parameters.  

Input parameters Descriptions 

i the index of EVs that have daily charging requests 
I the set of EVs that have daily charging requests 
j the index of public parking lot location 
J the set of public parking lots 
t the index of the hour of the day 
T the set of hours of the day 
dit

L2 the hourly L2 charging demand (kWh) of vehicle i at hour t 
dit

L3 the hourly L3 charging demand (kWh) of vehicle i at hour t 
P the total investment budget for public charging stations 
Pmax the maximum number of ports for each charging station 
CS the cost for installing a single charging station 
CL2 the equipment cost for one standard charging port 
CL3 the equipment cost for one fast charging port  
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to space and facility requirements, and a catchment area with a radius r 
is created for each public parking lot to quantify the accessibility of 
drivers to the parking lot. If the driver's current location falls within the 
catchment area, then the driver's current charging request is considered 
to have the potential to be fulfilled by that parking lot (where a charging 
station can be sited). The last constraint is the investment budget. It is 
calculated as the sum of assets values of existing charging stations, since 
we aim to optimally reallocate existing charging stations. The mathe
matical formulation of CMCLP is defined as follows: 

Objective function: 

Maximize
∑

i∈I

∑

t∈T
dL2

it

∑

j∈Ji

zL2
itj +

∑

i∈I

∑

t∈T
dL3

it

∑

j∈Ji

zL3
itj (2) 

Subject to: 

yL2
j + yL3

j ≤ Pmaxxj, ∀j ∈ J (3)  

∑

j∈J

(
CSxj + CL2yL2

j + CL3yL3
j

)
≤ P (4)  

∑

(i,t)∈Ωj

zL2
itj ≤ yL2

j , ∀j ∈ J, ∀t ∈ T (5)  

∑

(i,t)∈Ωj

zL3
itj ≤ yL3

j , ∀j ∈ J, ∀t ∈ T (6)  

xj = {0, 1}, ∀k ∈ K (7)  

yL2
j ∈ ℕ, ∀j ∈ J  

yL3
j ∈ ℕ, ∀j ∈ J  

zL2
itj = {0, 1}, ∀i ∈ I, ∀t ∈ T, ∀j ∈ J  

zL3
itj = {0, 1}, ∀j ∈ I, ∀t ∈ T, ∀j ∈ J 

The objective function (2) maximizes the total service of hourly Level 
2 and Level 3 charging demands. Constraints (3) guarantee that the total 
number of standard and fast charging ports should be no more than Pmax 
if charging station is sited at public parking lot j. Constraint (4) imposes 
the total budget limit for installing public charging stations and ports. 
Constraints (5) and (6) set the hourly capacity for L2 and L3 chargers, 
separately. For each charging station xj, the number of standard/fast 
hourly demands it covers at each particular hour t should be less than the 
total number of standard/fast charging ports (yj

L2/yj
L3). Constraints (7) 

impose integer or binary integer restrictions on decision variables. 

5. Result and analysis 

5.1. Case study 

The Salt Lake City (SLC) metropolitan area is used as a case study to 

demonstrate the framework implementation. SLC metropolitan region 
covers approximately 940 km2 and includes 407,442 households with 
about 826,000 vehicles. The entire study area consists of 1090 TAZs. A 
report from American Driving Survey (Triplett, Santos, Rosenbloom, & 
Tefft, 2016) indicates that 78% of drivers perform at least one driving 
trip in a day on average. Therefore, it is assumed that 644,300 vehicles 
will be on the road for simulation. In MATSim, a day trip is defined as a 
round trip starting from home and returning home before midnight. 
Besides, a day trip can include several intermediate stops (e.g., work
places, restaurants, etc.) After data processing, 17.4% of trips after 
location mapping are considered invalid and therefore discarded. The 
final inputs to MATSim thus contain 532,460 trips. MATSim takes these 
planned trips as inputs, and optimizes driving events iteratively based 
on co-evolutionary principle. In this study, MATSim is executed with 
100 iterations. When the iteration time reaches 55, the computation is 
nearly converged. For post-MATSim analysis, road traffic is assumed to 
consist of light-duty vehicles and EVs. EV adopters are determined by 
Eq. (1). The required socioeconomic variables in Eq. (1) for each syn
thetic driver is known, thus its probability in adopting EV can be 
calculated. The EV adoption probabilities across TAZs (Fig. 5) range 
from 0.6% to 21% with mean value of 4.3%. Correspondingly, among 
the 532,460 drivers, 22,737 drivers are assigned with EVs. EV charging 
profile is implemented using the rule specified in Section 3.4. EV 
Assignment and Energy Consumption Model. The initial SoC is empirically 
determined by a normal distribution with μ = 0.85 and σ = 0.3, 
considering that home charging accounts for over 80% of all charging 
events (Smart & Schey, 2012). As for other EV parameters, EVs' battery 
capacity can be varied widely from 17.6 to 100 kWh depending on the 
manufacturers and car models. For simplicity, the battery capacity is 
consistently assumed as 62 kWh (Nissan Leaf S Plus). A fixed energy 
consumption rate is assumed as 0.3 kWh/mile (Plugin America, 2016). 

5.2. Stochastic daily activities from Markov chain 

Stochastic activities for both light-duty vehicles and EVs are gener
ated from time-inhomogeneous Markov chain, trained using ATUS data. 
Note that the ATUS data is extracted only for weekdays, since weekends 
have significantly different activity patterns. The distribution of the 
proposed six activity states at each time step of a day is displayed in 

Table 5 
Description of decision variables.  

Decision 
variables 

Descriptions 

yj
L2 the number of L2 chargers installed at public parking lot j 

yj
L3 the number of L3 chargers installed at public parking lot j 

zitj
L2 

{
1 , if dL2

it can be satisfied by the charging station at j and hour t
0 , otherwise 

zitj
L3 

{
1 , if dL3

it can be satisfied by the charging station at j and hour t
0 , otherwise 

xj 
{ 1 , if parking lot j is used for installing public charging station

0 , otherwise 
Ωj the set of (i, t) that can be served by the public parking lot j  

Fig. 5. The EV adoption probability distribution in SLC metropolitan area. The 
map is projected and displayed in UTM Zone 12 N, with the coordinates' units 
in meters. 
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Fig. 6. Moreover, activity distribution from ATUS is included for 
comparison. 

In Fig. 6, it is found that daily activity distribution from synthetic 
drivers generated by the Markov chain follows a similar pattern as the 
real-world distribution. During the daytime, majority of drivers park 
their vehicles at workplaces. Apart from work, many drivers also 
conduct other activities, such as shopping, dining, or entertaining during 
the daytime. Several existing studies limit activities for EV users with 
only staying home, driving, and working states. As seen from Fig. 6, such 
oversimplification can induce biased results by overlooking the impact 
from nonwork-related activities to public charging. It is also observed 
that two peaks of traffic flow occur around 8:00 AM and 6:00 PM, 
respectively. Overall, the simulated daily activities distribution con
forms to the reality. 

In the next step, daily activities from synthetic drivers are fed into 
MATSim to perform agent-based simulation onto the road network. 
MATSim is used to model activities in a single day for agents (i.e., 
drivers) based on the co-evolutionary principle. During iterations, a 
certain portion of drivers' plans, such as route and departure time, will 
be modified to search for optimal choices until the entire system reaches 
equilibrium state. The optimized events for those agents from MATSim 
can be used as important basis for post-analyses, such as public charging 
behavior modeling. We first explore the spatial distribution of activities 
from the MATSim output. Specifically, trip destination count is aggre
gated by TAZ and compared with real-world historical trip observations 
as shown in Fig. 7. 

Note that the stochastic daily activity generated by the Markov chain 
does not contain any geolocation information. Location mapping tech
nique is performed to remedy this. The location mapping process fully 

utilizes POI, road network, and OD information to match the trips within 
the study region. All trip destinations, including intermediary stops, are 
aggregated by TAZ in Fig. 7(a). It is found that the distribution of syn
thetic trips appears to be quite similar to the actual trip distribution. 
Most daily activities are concentrated in northern part of the study re
gion. The downtown area represents dense trip destinations as well, yet 
the color in those TAZs is relatively light. This is due to the smaller area 
size of the TAZs within downtown. Note that the total number of actual 
trip destinations is 2,681,140, while the number of synthetic trip des
tinations is 2,093,401. Such discrepancy is likely attributable to the 
filtered 17.4% trips in MATSim. 

The temporal and spatial analyses sufficiently demonstrate that the 
simulated daily activities are similar to real-world situations. In the next 
step, analyses related to public charging behaviors are performed to 
validate against real-world public charging observations. 

5.3. Real-world public charging validation 

MATSim outputs the optimized driving behaviors on a daily basis. 
Based on the MATSim outputs, EV assignment and charging demand 
generation are performed as postsimulation offline analysis. The 
assigned 22,737 EV drivers generated 1586 charging requests during a 
day, with 1366 events belonging to standard charging requests. In order 
to compare the estimated public charging demand with real-world ob
servations, the energy data crawled from ChargePoint is averaged by 
day. Fig. 8 presents the spatial distribution of estimated public charging 
demand and actual energy consumption, where the green dots represent 
public charging stations, and a larger radius indicates higher energy 
consumption in reality. The background layer shows aggregated 

Fig. 6. A weekday's activity distribution from (a) real-world data; (b) time-inhomogeneous Markov chain.  
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Fig. 7. The spatial distribution of trip destination: (a) trip destination from simulation and (b) trip destination from real-world data on a typical weekday. The map is 
projected and displayed in UTM Zone 12 N, with the coordinates' units in meters. 

Fig. 8. Spatial distribution of real-world public charging energy consumption (green circle) and estimated charging demand density by TAZ (background layer). The 
map is projected and displayed in UTM Zone 12 N, with the coordinates' units in meters. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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estimated charging demand by TAZ with the color representing charging 
demand density, defined as the summed daily energy request divided by 
the area of TAZ (kWh/m2). In general, it is observed that public charging 
stations in TAZs with higher estimated charging demand density tend to 
have higher energy consumption. For instance, SLC downtown (high
lighted by blue square) demonstrates both higher public charging de
mand density and energy consumption. That is likely because TAZs in 
the downtown area have dense trip destinations and are sited with a 
large amount of POIs related to working, entertaining, and other pur
poses. Note that the charging stations around the airport (highlighted by 

red polygon) indicate high usage frequency, while charging demand 
density is relatively low. This is due to the large area size for that TAZ. 
On the contrary, TAZs in South Salt Lake County have relatively lower 
charging demand density due to fewer trip destinations as shown in 
Fig. 7. We also notice that several TAZs with high estimated public 
charging demand density are not currently allocated with public 
charging stations. The proposed charging station location optimization 
can effectively address this issue. Apart from spatial distribution, tem
poral trends for public charging station utilization are worthy of 
exploration. To this end, we select three TAZs with different levels of 

Fig. 9. Real public charging energy consumption versus simulated public charging demand in representative TAZs.  
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energy demand, and compare the estimated daily charging demand at 
different times-of-the-day with real-world charging station utilization 
records. The results are presented in Fig. 9. 

Fig. 9 compares estimated energy demand and actual energy con
sumption at the TAZ level in areas that have varying land-use patterns. 
TAZ 969 is a small block located in SLC downtown. The public charging 
peaks at around 9:00 AM, and the demand gradually decreases after
wards. Such charging pattern is generally found in regions with lots of 
office buildings. Fig. 9(b) shows the charging pattern of TAZ 1075, an 
area in the vicinity of downtown (highlighted by black in Fig. 8). 
Although office buildings are not densely located in this TAZ, the Uni
versity of Utah and University hospital are located in within, serving as 
major traffic generator. However, the charging pattern is different from 
that in the downtown area, where two peaks (one around 8:00 AM and 
one around 3:00 PM for public charging) are found. This can be 
explained by the fact that some EV drivers did not come to the location 
for work. Instead, drivers could be students or patients conducting 
different activities other than work. Lastly, TAZ 742 (highlighted by red 
in Fig. 8) includes the SLC international airport. Due to the uniqueness of 
airport, trip density and public charging demand are significantly higher 
than other TAZs as indicated in Fig. 9(c). Another distinction for this 
TAZ is that many EVs are left charging overnight at the airport. How
ever, when estimating the charging demand in our framework, we only 
consider the potential charging opportunities that are linked between 
two activities via driving during the day (e.g., home, work, shopping, 
etc.) Yet overnight charging is neither modeled nor within the scope of 
our study. Overall, the daily charging pattern matches the actual energy 
consumption for those selected TAZs without large deviation during the 
daytime. 

While the majority of TAZs show consistent pattern between the 
estimated charging demand and actual energy consumption, there are 
several locations with high estimated charging demand density yet have 
not been assigned any charging station, and locations with charging 
stations that are significantly underutilized. Another potential problem 
is that with the increase in EV adoption, public charging demand would 
increase significantly, which poses challenges to existing charging sta
tions especially during peak hours in popular regions. For this reason, 
charging stations should be optimally reallocated such that they can be 
effectively utilized while avoiding extremely long queues during peak 
hours in the future. In the following section, we focus on optimizing 
charging stations considering demand increases in the future. 

5.4. Public charging station optimization result 

The CMCLP model aims to maximize the coverage of the public 
charging demand considering charging capacity, access distance, and 
investment cost. As for the access distance, EV drivers may opt for 
alternative solutions such as home charging if walking distance is 
beyond 0.91 km according to (Seneviratne, 1985). For this reason, 
radius r for the catchment area for each public parking lot is set as 1000 
m. Meanwhile, the investment budget is calculated using the current 109 
charging stations with 516 Level 2 ports. In general, the cost of installing 
a charging station is approximately $5500 including labor cost and 
materials, and the average prices for L2 port and L3 port are around 
$2500 and $5500, separately (Borlaug, Salisbury, Gerdes, & Muratori, 
2020). The total budget is therefore approximated at $1.89 million 
($5500*109 + $2500*516). For parameters related to charging stations, 
Level 2 chargers are uniformly assumed as J1772 plugs with power of 
7.2 kW, and Level 3 chargers are uniformly assumed as CHAdeMO plugs 
with power of 50 kW. The maximum number of ports Pmax is set as 8 for 
simplicity. 

In this study, we optimize charging station locations considering 
charging demand increase in the future. The main purpose of consid
ering demand increase is to handle exponential EV adoption increase. 
Besides, providing insightful guidance for new charging station 
deployment in the future is of practical use to local agencies to assist 

with infrastructure planning and decision making. A report from 
Bloomberg projects that the national EV adoption would reach 12% in 
2030 and >50% in 2050 (Ghamami, Zockaie, Wang, & Miller, 2019). 
Given such projection, scaling factor 3.5 is used to augment EV pene
tration from 4.3% to 15% as charging demand increases. Subsequently, 
we estimated such public charging demand according to the designed 
energy consumption model and charging rules. Upon scaling, 80,182 
EVs with 5820 daily public charging events are identified in SLC 
metropolitan area. 5061 are slow charging events and 759 are fast 
charging events. Here, the CMLCP is solved using a commercial opti
mization solver Gurobi. Optimized layout is displayed in Fig. 10. 

The orange triangles in Fig. 10(a) and (b) denote estimated public 
charging demand. The black dots in Fig. 10(b) represent available public 
parking lots that can be used to build charging stations. The magenta 
circles in Fig. 10(a) and green circles in Fig. 10(b) are current and 
optimized charging stations respectively with a radius representing the 
number of chargers. After optimization, the original 109 charging sta
tions (516 Level 2 ports) are transformed to 64 charging stations with 
313 Level 2 ports and 136 Level 3 ports reallocated throughout the re
gion. Although fast charging demands only account for 13% of total 
demands, 30% chargers are Level 3 after optimization. Level 3 charging 
can provide full miles of range within an hour, which satisfy public 
charging need in a shorter time when drivers conduct short-duration 
activities other than work. It is observed that public charging stations 
are densely congregated in SLC downtown area both before and after 
optimization due to the large amount of public charging demand. 
Overall, public charging stations are mostly reallocated in the northern 
part of SLC metropolitan area after optimization, most likely due to the 
concentration of outdoor activities. Besides, southern area has fewer 
public parking lots that allow for new charging stations siting. One issue 
with the optimization is that several spots with significant charging 
demands are not assigned with charging stations, such as the airport. 
That is due to the unavailability of public parking lots. However, com
mercial buildings can possibly be used to build charging stations to 
replace public parking lots for future deployment. 

The CMCLP solution presents an optimized reallocated charging 
station layout. Yet, in practice, future EVSE deployment should be 
considered upon existing charging stations. As such, we evaluate the 
overall utilization between existing charging stations and optimized 
stations. Specifically, we split existing charging stations into two groups 
- charging stations that are overlapped with optimized charging stations 
(group 1) and charging stations that are not overlapped with optimized 
charging stations (group 2). For optimized results, we also split them 
into two groups – charging stations that are overlapped with existing 
charging stations (group 3) and charging stations that should be newly 
installed (group 4). For groups 1 and 3, overlapping is defined as the 
distance between two stations being <1 km. To observe the utilization 
efficiency for each group of charging stations, we assign each charging 
request to the nearest station within the walk distance (1 km) and 
aggregate the number of charging requests by maximum, mean, and 
minimum. The charging requests assignment are performed for existing 
layout and optimized layout, separately. Table 6 shows the basic 
charging station information and the utilization status for each group. 

In Table 6, it is observed that the optimized layout has a higher 
coverage rate than existing charging stations. Specifically, group 2 
presents extremely low coverage with 15.5 times per day on average. 
Existing charging stations in group 2 are mostly distributed in remote 
areas or in the vicinity of dense clusters. One practical guidance for 
future EVSE installation is to keep maintaining those overlapped 
charging stations (group 1) and moderately adjust the number and type 
of charging ports. For those underutilized charging stations (group 2), 
we should reallocate them to new areas to fulfill higher (or new) 
charging demands. 

In order to validate that the optimized public charging stations 
layout could provide more effective charging utilization, UrbanEV- 
Contrib is applied to simulate public charging behavior in MATSim. 
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UrbanEV-Contrib is an open-source framework capable of performing 
high-resolution analysis of urban electric mobility based on MATSim – 
serve as a MATSim plug-in module (Adenaw & Lienkamp, 2021). By 
inputting charging configurations and rules, UrbanEV-Contrib returns 
charging states and events in time series, which serves as a sandbox 
validating charging infrastructure design on the city-scale. To compare 
charging effectiveness, MATSim is reperformed with scaled EV drivers 
and corresponding public charging requests. Existing charging stations 
and optimized charging stations are inserted into the simulation envi
ronment separately to satisfy those charging requests using UrbanEV- 
Contrib plug-in. The remaining SoCs is one important metric to reflect 
the effectiveness of public charging station deployment, since a high 
level of SoC values after completing a series of daily activities denotes 
that charging station locations can be easily accessed by EV drivers 
while they conduct other activities. For this reason, remaining SoCs are 
examined upon completion of people's daily activities under two 

different scenarios in Fig. 11. 
The first column in Fig. 11 denotes drivers who consumed all EV 

energy after completing a series of daily activities. While it is not real
istic to exhaust SoC entirely, it is an important metric to evaluate how 
many drivers failed to access public charging stations during their daily 
activities. Overall, the number of drivers with 0 SoCs by the end of the 
day decreased by 20% as a result of charging station optimization. When 
SoC is too low, drivers may have range anxiety. The optimized layout 
effectively decreased the number of drivers with low SoC values to 
ensure higher accessibility and reduce range anxiety. It is also noted that 
the number of drivers with high SoC values increased to some extent. 
Higher values of SoC at the end of the day indicate that optimized 
charging stations make longer trips feasible for more EV drivers. In the 
next step, we explore the temporal profile of charging station occu
pancy. The number of chargers in use at different hours-of-the-day are 
plotted in Fig. 12. 

Fig. 12 shows a temporal shift of charger occupancy peak in the 
optimized scenario. One possible explanation is that charging stations 
are easier to be accessed after optimization. It is observed that the 
number of charging ports that are occupied during the day (8:00 AM to 
3:00 PM) becomes less upon optimization. This is due to the fact of more 
Level 3 charging stations, enabling drivers to charge with a shorter time. 
With current layout of charging stations, the average charging time is 
2.8 h, while the charging time is reduced to 2.5 h on average after 
optimization. Moreover, the optimized layout allows EV drivers to ac
cess charging stations with shorter walking distances. The average 
walking distance is reduced from 310 m to 270 m, providing drivers with 
more convenience. 

Fig. 10. Public charging demand distribution and (a) existing layout of public charging stations; (b) optimized layout of public charging stations. The map is 
projected and displayed in UTM Zone 12 N, with the coordinates' units in meters. 

Table 6 
Utilization comparison between existing stations and optimized stations.   

Existing layout Optimized layout 

Group 1 Group 2 Group 3 Group 4 

Station count 30 79 30 34 
Port count 112 404 213 236 
Slow charging port 112 404 151 162 
Fast charging port NA NA 62 74 
Min. requests covered 21 0 23 20 
Avg. requests covered 45.0 15.5 46.8 40.7 
Max. requests covered 110 59 120 72  
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6. Conclusion 

This paper presents an urban-scale public charging station location 
optimization framework through microscopic modeling. The modeling 
process follows the classical two-step approach (i.e. public charging 

demand simulation and charging station location optimization). One 
major highlight is that the presented methodology addressed the over
simplification and limitations constrained in previous literature by uti
lizing high-fidelity city-scale road network, incorporating drivers' non- 
work-based activities, and applying real-world EV distribution to 

Fig. 11. SoC distribution after daily stochastic activities.  

Fig. 12. The time profile of charger occupancy.  
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develop a charging demand estimation model. Also, most existing 
studies failed to validate their proposed models due to the difficulty of 
retrieving real-world charging event records. As such, another novelty of 
this paper is the availability of real-work public charging events, which 
proved the validity of our modeling results. On top of the reliable 
simulation, we performed the CMCLP model to reallocate existing 
charging stations with the objective of maximizing the coverage of 
charging demand. The optimization model incorporates practical con
straints such as walking accessibility and different charging modes. The 
optimized deployment scheme could provide meaningful guidance for 
Salt Lake City metropolitan areas and many alike. 

We implement our methodological pipeline onto Salt Lake City 
metropolitan area to showcase the effectiveness. A series of validations 
are conducted to justify the robustness of simulation results. Specif
ically, the temporal and spatial distributions of drivers' daily activities 
are validated against ATUS data and historical OD data, respectively. 
Numerical results show that the time-inhomogeneous Markov chain 
with the proposed location mapping technique can be effectively used 
for trip generation, which is highly generalizable and replicable to other 
regions. Moreover, real-world public charging records are used to vali
date the spatiotemporal distribution of the synthetic public charging 
demands. It is found that the majority of TAZs demonstrate consistent 
pattern between the estimated charging demand and actual energy 
consumption. Once the fidelity of simulation results is guaranteed, we 
apply CMCLP optimization model with 15% EV penetration rate to ac
count for the potential charging demand increase in the future. We 
further incorporate the plug-in UrbanEV-Contrib to perform agent-based 
simulation under the public charging context. It is found that the opti
mized layout can improve overall charging performance by decreasing 
the number of drivers with 0 SoCs by the end of the day over 20% and 
reducing the average charging time from 2.8 h to 2.5 h. The simulation 
experimental results offer meaningful political implications for 
governmental agencies. First, the existing coverage of fast charging 
stations in SLC metropolitan area is highly insufficient. Although the 
financial constraint is a major concern for building Level 3 chargers, 
agencies should still incentivize the fast-charging station deployment, 
since it is a critical step moving toward accelerated EV adoption and 
reaching net-zero emission goal by 2050. Second, low utility efficiency is 
identified at a lot of existing charging stations with extremely large 
number of ports and/or clustered densely in close vicinity. Instead, a 
decentralized design can effectively augment EV drivers' accessibility to 
the nearest charging stations. Lastly, some atypical activities could also 
impact public charging demand. Places such as airport and stadium are 
examples of locations where large charging demand could exist due to 
atypical activities. 

This study is confined to investigating intracity travels (i.e. trips 
within the city) and intercity travels (i.e. trips that traverse multiple 
cities) are not within the scope. For those distant trips, EV drivers are 
more subject to range anxiety. Deploying fast chargers by identifying 
critical links or connection points for long-distance travels is worthy of 
exploration for future study. 
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