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Topology Design

and Optimization of Modular Soft
Robots Capable of Homogenous
and Heterogenous
Reconfiguration

The deformability of soft material robots provides them with the ability to transform between
complex shapes and forms. This unique ability facilitates Modular Soft Robots (MSoRos) to
assemble and reconfigure into different configurations, e.g., planar and spherical. These
topologies display widely different locomotion modes that are desirable to navigate different
environments, e.g., crawling or rolling for these cases. This research presents topology
design and optimization methodology of MSoRos capable of both homogeneous and
heterogeneous reconfiguration in spherical and planar configurations. Homogeneous
reconfiguration refers to the scenario when all the modules are identical, while the
heterogeneous contains nonidentical modules. The sequential design approach uses a
polyhedron (Archimedean or Platonic) as the base solid to define module characteristics. As
the design processes involve nonlinear projections, the base polyhedron also dictates the
type of reconfiguration—heterogeneous (Archimedean) or homogeneous (Platonic).
Thereafter, it applies the polyhedron vertex alignment principle to ensure geometric
alignment of the modules during reconfiguration. Planar and spherical distortion metrics
are defined to quantify distortions due to reconfiguration. Subsequently, the optimal
topology is obtained by minimizing a cost function that is a weighted sum of the two distortion
metrics. The result is a set of MSoRos capable of distinct 1D and 2D planar configurations
(both heterogeneous and homogeneous) and multiple 3D spherical configurations of varying
radii (both heterogeneous and homogeneous). The methodology is validated on a MSoRo
system based on the combination of a cuboctahedron (Archimedean solid) and a cube and an

octahedron (Platonic solids). [DOI: 10.1115/1.4062265]

1 Introduction

Roboticists have long looked to nature for inspiration to make
robots that are more versatile, adaptable, and resilient. Many robotic
systems incorporate biological features, simulating swarm behavior
or shape-morphing ability. For example, armadillos and pangolins
perform legged locomotion, but can roll into a ball for self-defense.
This reconfiguration ability inspires modular robots that are capable
of group behavior (e.g., rolling) entirely distinct from any individual
capability (e.g., walking) [1-5]. This increased versatility has
motivated a large field of research, typically constrained to rigid
robots and conventional joints [6—8]. The advent of soft materials in
the field of robotics allows for change in the shape of the robot
modules that has potential to further exploit the dynamics of the
reconfigured system. As an example, the locomotion dynamics of a
planar robot (2D) are different from that of a series of them
connected in a caterpillar-like configuration (1D) or a spherical ball
(3D), Fig. 1. This is due in part to the changing amount of area of
contact with the environment. The research into topology and
morphology design of modular soft robots is very recent, with the
primary focus on the modular nature of the robotic system [9-11].
However, mathematically, soft materials afford topological advan-
tages. One may observe the example of spherical reconfiguration, i.
e., reconfiguration of a set of Modular Soft Robots (MSoRos) into a
sphere configuration, where their default state is the planar
configuration, Fig. 1. The cartography analogy of this process is
that of flattening a sphere onto a planar map [12]. This cannot be
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achieved without distortions, as per Gauss’ Theorema Egregium. It
states that the Gaussian curvature of a surface does not change if one
bends the surface without stretching it; a cylindrical tube can be
unrolled onto a plane as they both have curvature of zero. However, a
sphere of radius R having positive curvature of 1/R? cannot be
flattened onto a plane without distorting distances and/or shapes.
The design of spherical “modules” is the equivalent of spherical
tessellation widely explored in art by Escher [13]. To make this
process possible using materials with approximately zero curvature,
Delp et al. [14] describe a process, inspired by clothing design, of
smoothing an octahedron to form a round sphere. These concepts
can be borrowed and adapted to perform analytical parametric
design optimization of the MSoRo topology. This is contrasted with
the more popular but costly finite element method-based design
optimization of soft robots [15]. Recently, Freeman et al. [16] have

Modular Soft Robots (MSoRos)
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Fig.1 Dimensional change capability of homogeneous MSoRos
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investigated the topology design of homogeneous three, four or five-
limb MSoRos that can reconfigure into a sphere. This design
methodology is based on the five Platonic solids (which have
identical polygonal faces) where the number of faces and edges per
face correspond to the number of required modules for reconfigura-
tion and module limbs, respectively. For example, a robot designed
with the cube as the base Platonic solid results in a four-limb (equal
to the number of square edges) MSoRo where six (the number of
cube faces) modules are required for reconfiguration into a sphere.
The work experimentally validates the ability of an MSoRo to (1)
achieve locomotion using motor-tendon actuators in a single module
and (2) compensate for topological distortion to realize linear (1D),
planar (2D), and spherical (3D) configurations. However, this
reconfiguration is limited to homogeneous (identical-face) modules
and to a spherical reconfiguration of only one set radius.

Contributions: This research builds on our prior work to extend
the topology design and optimization to heterogeneous MSoRos,
e.g., three-limb and four-limb that can reconfigure collectively
into a heterogeneous sphere. Furthermore, they should possess the
capability of homogeneous spherical homogeneous reconfiguration,
e.g., reconfiguration into one sphere of exclusively three-limb
MSoRos and another of exclusively four-limb MSoRos. This is done
by exploring the topology design and optimization of MSoRos using
one of six possible Archimedean solids as the base polyhedron.
Archimedean solids are made up of at least two types of regular
polygonal faces and can therefore be used as a geometrical basis for a
set of heterogeneous MSoRos (i.e., MSoRos with at least two
different module shapes). This allows for a higher number of
modular reconfigurations resulting in increased locomotive versa-
tility and robustness of the set. The summary of the design
methodology is visualized in Fig. 2. The topology is determined by
the selection of one Archimedean solid and two or more Platonic
solids, as well as an odd-function module topology curve (MT-
curve); the use of an odd function for the MT curve drawn tangent to
a polyhedral edge ensures isohedral spherical tiling. Each
Archimedean solid presents a unique multimodule assembly,
enabling MSoRo systems of varying spherical radii and number of
modules. This methodology is divided into the forward design (to
construct the planar module topologies by modeling and sub-
sequently projecting spherical configuration(s)) and the inverse
design (to model the additional spherical configuration(s) from the
planar configurations). The forward design is adapted from our
previous work [16] and extended to generalize to heterogeneous
MSoRos. The final spherical topology is then obtained via an inverse
azimuthal equidistant projection onto the tangent plane of the new
sphere.

SPHERICAL TOPOLOGY

As the robot is expected to deform to achieve change in curvature
between spherical and planar configurations, planar and spherical
distortion metrics are defined to quantify reconfiguration difficulty.
These distortions metrics model the gaps and overlapping area
between adjacent modules in heterogeneous and homogeneous
configurations normalized to the areas of the modules. The weighted
cost function incorporating both distortion metrics is then
minimized to find the optimal topologies. As the design processes
is nonlinear, the selection of a Platonic solid as the starting
polyhedron (i.e., the decision to use a Platonic solid for
homogeneous forward design as opposed to an Archimedean solid
for heterogeneous forward design) is significant and motivated by
the results shown in the paper. The optimal MT curves are found for
an MSoRo system based on the hexahedron (cube) and octahedron
as the Platonic solids and the cuboctahedron as the Archimedean
solid. The results are validated in both MATLAB simulations and
experiments (silicone casting of the modules). To find the best
possible set of heterogeneous reconfigurable MSoRos, a set with
homogeneous forward design based on Platonic solids and inverse
design based on an Archimedean solid is compared to a set with
heterogeneous forward design based on an Archimedean solid and
inverse design based on Platonic solids.

The paper is structured as follows: Sec. 2 describes the forward
topology design. Section 3 outlines the inverse topology design. The
technique for optimizing the amplitude of the module topology
curve is presented in Sec. 4. Section 5 presents the results of the
optimization and defines the ideal MT-curve amplitude derived
from the cost function. This also includes figures of the simulated
distortions and experimental distortions. Finally, Sec. 6 is a
discussion of the results and potential future work.

2  Forward Module Topology Design

The overall module topology design methodology is a sequential
process that involves (1) selection of the base polyhedra (one
Archimedean solid and two or more Platonic solids), (2) selection of
the module-topology curve (MT-curve) drawn on the topology
plane, (3) generation of the spherical module topology through
inverse orthographic projection of the MT-curve onto the circum-
scribing sphere, (4) construction of the planar module topology
using azimuthal equidistant projection of the spherical topology
onto the tangent plane, and (5) the generation of an additional
spherical module topology via inverse azimuthal equidistant
projection and polyhedral vertex alignment. Steps 1-4 in this
process collectively comprise the forward design, Fig. 2, while step
5 refers to the inverse design (explored in Sec. 3). Forward design is

SPHERICAL TOPOLOGY
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Fig. 2 The flow of the design methodology consists of a sequence of transformations. The
design space in the plane Ppundergoes an inverse orthographic projection go to transform into
the spherical surface topology space Sp for a Platonic solid (homogeneous). An azimuthal
equidistant projection g, transforms this into the planar topology space P which defines the
MSoRo module shape. Finally, an inverse azimuthal equidistant projection g; ! this space into
the spherical surface topology space S, for an Archimedean solid (heterogeneous).
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Fig. 3 Six selected Archimedean solids with their corresponding spherical tesselations. The solids are (a) cuboctahedron, (b)
small rhombicuboctahedron, (c) icosadodecahedron, (d) snub cube, (e¢) small rhombicosadodecahedron, and (f) snub

dodecahedron.

octahedron

cuboctahedron

Fig.4 A cube and an octahedron can be reconfigured to form a
cuboctahedron. The spheres in this figure are scaled to show the
differences in radii of the circumscribing spheres.

the process of designing the spherical (S) topology of a module for a
given MT-curve (design space Pp) and using it to generate the
module’s planar topology (P). Conversely, inverse design is the
process of obtaining the spherical configuration (S) from the planar
configuration (P), Fig. 2.

For both these processes, the base polyhedra determine the
projection details. The forward design can either model homoge-
neous (based on Platonic solids) or heterogeneous reconfiguration
(based on an Archimedean solid). Figure 2 presents homogeneous
forward design; the flowchart for heterogeneous forward design
would be identifical, except for the swapping of the positions of the
Platonic (Sp) and Archimedean (S,4) solids. While both methodology
flows result in multiple planar modules capable of both heteroge-
neous and homogeneous planar and spherical reconfiguration, the
resulting configurations are different due to the nonlinearity of the
design process. The presented framework is generic in which both
homogeneous and heterogeneous forward design are defined,
analyzed, and later compared (Sec. 5). Homogeneous forward
design essentially consists of multiple applications of the Platonic
solid-based methodology explored in [16]. Here, we present the
generalization of this method for both homogeneous and heteroge-
neous forward design.

2.1 Selection of Base Polyhedra. While there exist thirteen
Archimedean solids, only six exclusively contain faces that are
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present in Platonic solids. Therefore, this methodology is limited to
these six Archimedean solids presented in Fig. 3.

For this discussion, we consider the example of a set of
heterogeneous MSoRos based on a cuboctahedron, which has
fourteen faces: six squares and eight triangles. We then define the
corresponding Platonic solids to be a cube and an octahedron, Fig. 4.
Consequently, this MSoRo design will result in fourteen modules:
eight three-limb modules based on the triangular faces and six four-
limb modules based on the square faces. Individually, the six four-
limb MSoRos and eight three-limb MSoRos can reconfigure into
two different spheres. The resulting MSoRo system will therefore be
capable of both heterogeneous and homogeneous planar and
spherical configurations. Moreover, the two radii, {R],R}}, of the
homogeneous spherical configurations (cube, octahedron-based)
will differ from the radius of the heterogeneous spherical
reconfiguration (cuboctahedron-based), R.

While the cuboctahedron is chosen as an example in this paper to
elucidate the principles, any of the six Archimedean solids presented
here may be chosen. The characteristics of the MSoRo system are
then determined by the characteristics of the selected Archimedean
solid, shown in Table 2 and its corresponding Platonic solids, shown
in Table 1. For both homogeneous and heterogeneous spherical
configurations, the number of faces F of the base polyhedron is equal
to the number of modules comprising the sphere and the circum-
radius R is equal to the radius of the sphere. The number of edges per
module p is proportional to the number of limbs on each module and
is determined by the number of zero-crossings of the MT-curve.
However, in this work we limit the MT-curve to have only three
zero-crossings for simplicity. Therefore, the number of edges per
module p is equal to the number of limbs on each module. The
selection of the Archimedean solid automatically determines the
Platonic solids, as the number of edges per face must correspond.
Finally, Archimedean solids with more than one unique edge type
are expected to present more difficult reconfiguration.

2.2 Module Topology Curve. The module topology curve
(MT-curve) f(x) determines the module shape. This curve is a
function of a polyhedral edge of length @ and must be an odd function
coinciding with the edge vertices at the ends

F0) =f(=x). s f(g) =f(f§) —0 W

There are infinite choices that satisfy these constraints. However, for
this discussion we consider the family of sinusoidal functions, i.e.

f)=A g sin (%x) )

foragiven MT-curve amplitude A € [—1, 1]. This family of curves is
chosen because it is smooth, mathematically simple, and contains

JUNE 2023, Vol. 18 / 061007-3



Table 1

Characteristics for Platonic solids. Fis the number of faces, Eis the number of edges pis the number of edges per face, gis the

number of faces that meet at a vertex, R/ais the ratio of the circumradius Rto the edge length a, ¢, is the face-center-edge angle, fis the

face center to vertex angle.

Solid F E p q R/a b0 B
_ 1
Tetrahedron 4 6 3 3 ﬁ cos—! -1 cos™' =
4 3 3
2
m 1
Cube 6 12 4 3 V3 1 cos ™' —
2 3
Octahedron 8 12 3 4 V2 4 <1> 6
5 cos 3 cos — 17
2
Dodecahedron 12 30 5 3 15+3 /5
7\/—4 V3 cos™! Tf cos™! 5+2V5
15
2
Icosahedron 20 30 3 5 10+ 2v5 cost [~ 5) o 60v/2
4 — NS5/ 30 +6v/5

Table 2 Characteristics for Archimedean solids made up of exclusively faces that also occur in Platonic solids. Fis the number of
faces, Eis the number of edges p is the number of edges per face, g is the number of faces that meet at a vertex, R/ais the ratio of the
circumradius R to the edge length a, i is the number of unique edges types

Solid F E p q Ro/a i

Cuboctahedron {8,6} 14 {3.4} 4 1 1

Small rhombicuboctahedron {8, 18} 48 {3,4} 4 /5 +2v2 2
2

Icosidodecahedron {20, 12} 60 {3,5} 4 14++5 1
2

Snub cube (32,6} 60 (3.4} 5 13437 2

Small rhombicosidodecahedron {20, 30, 12} 120 {3,45} 4 11+4v5 2
2

Snub dodecahedron {80, 12} 150 {3.5} 5 2.1558 2

one maxima and one minima on along its domain x € [—a/2,a/2].
Thus, each module will have the same number of legs as the number
of edges of the base polyhedron face p. This curve lies on the
topology curve plane, Fig. 5.

2.3 Geometry of Projection Planes. Forward design consists
of a series of projections that are made with respect to two projection
planes: the topology curve plane and the tangent plane, as shown on
a cuboctahedron in Fig. 5. The topology curve plane lies coincident
to the polyhedral edge and tangent to the vector joining the solid’s
center and the polyhedral edge midpoint. The tangent plane lies
tangent to the solid’s circumscribing sphere and parallel to a polyhedral
face. These two planes are related by a constant angle ¢, determined by
the base solid (e.g., octahedron, cube, or octahedron); this constant
angle is subsequently incorporated into the projections. This angle ¢ is
equal to the face-center-edge angle of the solid, the central angle whose
sides intersect the center of a polyhedral face and its adjacent edge
midpoint. Note that Archimedean solids will have multiple face-center-
edge angles as each solid will have a unique angle ¢, for every unique
face. Another significant angle is the face-center-vertex angle f3, the
central angle whose sides intersect the center of a polyhedral face and
its adjacent vertex. The great-circle distance of f§ equals the preserved
azimuthal distance in the second projection in the forward design. The
angles ¢, and f are used ensure proper tessellation of the spherical
topology in the forward design and vertex alignment in the inverse
design, respectively.

061007-4 / Vol. 18, JUNE 2023

Platonic solids have perfect symmetry in their faces, edges, and
vertices and therefore have common radii and angles at every edge.
The angles ¢, and [ for Platonic solids are listed in Table 1.
Archimedean solids, however, posses only vertex symmetry. Thus,
each unique Archimedean face with p edges has unique angles ¢, ,
and f3,. These can be found via trigonometric equations in terms of
the circumradius R, the edge length ¢, and the apothem e, for a given
p-gon face:

R? — (a/2)’ — &
(]50’/, =cos | o ——© s
R —(a/2)’

y Rz—(a/z)z—e;>
p = cos (R

Apothem lengths for face shapes that occur in Platonic solids are
listed in Table 3.

3

2.4 Forward Spherical Topology. The forward spherical
topology is obtained through an inverse orthographic projection of
the MT-curve f(x) drawn on the fopology curve plane onto the
circumscribing sphere of radius R. The latitude and longitude of the
projection (¢, A) originating from (¢, o) are generically defined as

Transactions of the ASME



tangent plane

4

solid

geometric

Fig.5 Cross sectional view of a cuboctahedron containing the origin O, the edge midpoint A,
thevertex C, and the face centers Band D. The face-center-edge angles ¢, and ¢, are ~ BOAand
2 DOA, respectively. The face-center-vertex angles f; and g, are ~BOC and ~DOC,
respectively. The face apothems e; and e, are defined as AB and AD, respectively. The edge

length ais 2AC and the circum radius Ris OC.

Table 3 Relative apothem lengths for regular
polygon faces that occur in Platonic solids

Number of edges per face (p)  Relative apothem length <
a

3 V3
6

4 1
2

5 25+ 105
10

f(x)sin(e) COS(¢0))

sin™! (cos(c) sin(¢g) + P

) ( xsin(c) )
pcos(c) cos(¢y) — f(x) sin(c) sin(¢py)
= go(x.f(x), $o. 20)

Ao + tan™

“

where p = /3% + f2(x) and ¢ = sin" ' (£). The projection origin is
then defined as the midpoint of a given p-gon edge as (¢ ,,0). The

(@)

(b)

—a

—a/2

& 'T—y\,‘,\/ia/z

resulting projection can then be successively rotated (p — 1) times
about (0, 0) by 2{)—“ to achieve a spherical module. For ahomogeneous
forward design, this process will be repeated for each Platonic solid
and will result in homogeneous spherical tilings of two different
spheres. For a heterogeneous forward design, this process will be
repeated for each unique Archimedean face p-gon and will result in
heterogeneous tiling of a single sphere. Figure 6 shows the spherical
tiling of a cuboctahedron achieved via heterogeneous forward design.
While this example shows a tiling where both modules are based on
the same MT-curve to achieve perfect spherical tiling, note that
both heterogeneous and homogeneous design can use two different
MT-curves for the different modules of respective amplitudes A,
and A,.

2.5 Planar Topology. The spherical tiles are then projected via
azimuthal equidistant projection onto the tangent plane. Generi-
cally, the resulting planar coordinates (x,, y,) for the projection with
origin (¢, /1) are given as

M

v [ cos(¢,) sin(As — 41) :|
cos(¢y) sin(e;) — sin(¢; ) cos(¢y) cos(As — /1)

= gl(x,f(x), bo» 205 P15 A1)
®)]

0 a2 o Y2

X

z

Fig.6 The cuboctahedron spherical module topologies achieved via heterogeneous forward design with edge length aand MT
curve ampltidue A = 0.7. The spherical topology consists of the (a) three-limb module and (b) four-limb module, which can be
combined into (c) a CAD rendering of spherical tiling modules for adjacent faces of the cuboctahedron.
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Fig.7 The cuboctahedron planar module topologies achieved via heterogeneous forward design, shown with (a) the three-limb
module, (b) the four-limb module, and (c) a CAD rendering of the planar topologies tangent to the circumscribing sphere for a

cuboctahedron

¢

where k' = g is the scale factor and cos(c) = sin(¢,)
sin(¢) + cos(d)ﬁ cos(¢) cos(4 — 41). Because the projection cen-
ter is defined as the center of the p-gon face, ¢, = 1; = 0. Figure 7
displays the planar topology for cuboctahedron-based modules via
heterogeneous forward design.

3 Inverse Design for Spherical Reconfiguration

The inverse design process creates new spherical topology based
on the planar topology of the forward design. In the case of
heterogeneous forward design (based on an Archimedean solid)
the inverse design nets multiple unique homogeneous spherical
topologies. Inverse design of modules with homogeneous
forward design (based on Platonic solids) will result in a single
heterogeneous spherical topology. The inverse consists of the
projection (Sec. 3.1) with respect to a polyhedron vertex alignment
(Sec. 3.2) scaling factor to ensure proper construction. In this
section, any variable denoted a sprime (') refers to the inverse
topology.

3.1 Inverse Spherical Topology. The inverse spherical topol-
ogy is obtained through an inverse azimuthal equidistant projection
[12] of the planar topology to a sphere of radius kR’ determined by
the solid type, edge length, and scaling factor . The scaling factor is
defined in Sec. 3.2. The new longitude and latitude coordinates for
projection origin (¢, A;) are

a
@ SPHERICAL TOPOLOGY

(b)

sin”! (cos(c)sin(%) + Yp STC)CO51P0) sin(c)cos(qﬁé)))

- ”
va X, sin(c) >

-1
o + tan <p COS(C)COS(%) —Yp sin(c)sin(%)

6)

where p = \/x2 42, ¢ = &, ¢ = o, for a p-gon module face,

and 49 = 0 (for projection origin centered at the polyhedral edge
midpoint).

3.2 Polyhedron Vertex Alignment. The distortion due to the
azimuthal equidistant projection results in a spherical configuration
that does not align with the polyhedral vertices. The radius for
reconfiguration therefore needs to be scaled to ensure polyhedral
vertex alignment. The scale invariant design of the modules allows
for a constant ratio between the edge lengths (a’,a) of the base
Platonic solid and Archimedean solid, respectively, for the spherical
reconfiguration regardless of the input parameters (a, A). The
azimuthal equidistant projection preserves distance radially from
the center of projection. Thus, the center-vertex distance of the
planar topology equals the center-vertex spherical distance of the
forward design, as shown in Fig. 8. However, a scaling factor x is
required to adjust the inverse design radius R’ to ensure that this
distance aligns with the spherical center-vertex distance of the
inverse design. Vertex alignment between solids occurs when

c
© SPHERICAL TOPOLOGY

TANGENT PLANE

(ARCHIMEDEAN)

(PLATONIC)

Cc

T

Fig. 8 For heterogeneous forward design, the distance BC is equal to (a) the spherical distance Rf on the
Archimedean spherical tessellation, (b) the center-vertex distance on the planar projection of the tessellation,
and (c) the spherical distance xR’ in the Platonic spherical tessellation
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—b/zh C2

Fig.9 The planardistortion for the example heterogeneous three-limb module and four-limb module is related
to (a) the area (shaded) of a module limb bounded by the planar topology curve and the limb sector line, and (b)
the intermodular area (shaded) between adjacent modules offset by

G-

where « is a nondimensional scaling factor.

4 Module Topology Optimization

Module topology optimization for planar and spherical reconfi-
guration is obtained by minimizing the cost function that is a
weighted sum of the planar and spherical reconfiguration distortion
metrics. These metrics areas are a function of the amplitude of the
module topology curve A. The generic module topology set
optimization problem can be written as

(AT,A;, AZ) = argminJ (A, Ay, ...A,) st A,we|[0,1]

N, N,
1N 1M
where J(Aj,Az,...A,) =w— § ‘°‘p+(l —w) ng

Ny N =1

(®)

where ¢, and ¢, are the distortion metrics for planar and spherical
reconfiguration, respectively, and w is a constant scalar weight.
Additionally, n is the number of distinct p-gon face/modules shapes,

n\. . . . .
N, = ( ) ) is the number of planar distortion metrics, and N, is the

number of spherical distortion metrics where Ny =n+1 for
heterogeneous forward design and Ny = 1 for homogeneous forward
design. These values assume that a given p-gon shape is only used
for a single corresponding homogeneous reconfiguration profile.

4.1 Planar Distortion Metric. The planar distortion metric &,
for modules in planar configuration is calculated as

by = G/;)(Pl +p2) ©)

1+ P
where G, is the intermodular area (i.e., cavity and/or overlap)
between modules, P; is the total area of module j for j = {1,2}, and
pj is the number of edges for the p-gon of module j. For
homogeneous configurations p; =p, and P;=P,. Distortion
metrics are calculated for both homogeneous configurations (e.g.,
two four-limb modules) and heterogeneous configurations (e.g., a
four-limb module and a three-limb module). These areas are
displayed in Fig. 9. The area of a single limb is the area between the
planar topology curve y, achieved via forward design and the limb
sector line, defined as [cotZ|. The total module area P is then
calculated as the area of a single limb times the number of limbs on
the module:

Journal of Computational and Nonlinear Dynamics

(10)

b/2 -
P = pJ yp — |cot (7> Xp |dx,
—b/2 p
b b

where (—5,3) are the projected vertices of the base solid. The
intermodular area between one planar module (1, y1,,) and another
(X2, ygg) is defined with respect to a variable center-to-center offset
tel-3.¢4.

c c

Co C2
G, = mtin (J yip(xip)dxi, — J y’2p(x’2p)dx’2p> (€8))
1

where

/ .
X Iy cos(m) —sin(n) | | xy
NN Iy
| Lol Lsinm st | [
For homogeneous configurations, (xi,,y1p) = (X2,y2,) but
(X1, ¥1p) # (X2p,y2p) for heterogeneous configurations.

4.2 Spherical Distortion Metric. The spherical distortion
metric & relates to the proportion of the spherical surface that needs
to deform to create a full sphere with a radius of R. It is defined for
modules in a given spherical configuration as

Gy
= B
BT5g

13)

where E is the total number of edges for a given circumscribed
polyhedron, Gy is the spherical surface intermodular area, and S =
47R? is the total surface area for a spherical configuration of radius
R. The spherical intermodular area G is the surface area between
two edges of modules in docking position, shown in Fig. 10. Docking
position indicates that the endpoints of all spherical module edges
are aligned with the vertices of the base solid for that configuration.
This space is represented by the three-dimensional Euclidean curve
T;, given as

cos(¢)cos(/)
cos(¢)sin(/)
sin(¢)

Ti(p, ) =R (14)

and 7', a 180deg rotation about the midradius (i.e., the line
connecting the sphere’s center and the polyhedral edge midpoint). If
the polyhedral edge midpoint occurs at (0, 0), the midradius aligns
with the x-axis and the rotation matrix Q is given as
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(b)

Fig. 10 (a) The spherical intermodular area G; is the shaded surface area between adjacent
modules. (b) ltis calculated by integrating the small arcs (shaded) along the spherical edge ¥ of

the base solid.

10 0
0=10 -1 O (15)
0o 0 -1

The rotated curve T'; = QT; represents an adjacent module edge in
docking position. The spherical intermodular area can be thought of
as a sum of spherical arcs along the projection of the inverse solid
edge to the reconfiguration space. The spherical edge for a
polyhedron of edge length @ has an angular sweep yy which can be
calculated as

R —(a/2)’
W =2cos™! ( (16)
R
The spherical intermodular area can then be calculated as
3 T, T
G, = ” dpdi = sz cos™! ( S 2>dxp a7
s -4 R

Note that for a homogeneous sphere T; = T, and for a heterogeneous
sphere T # T>.
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5 Results

The design methodology was used to generate two sets of
hetereogeneous MSoRos in simulation (MATLAB) and model their
capability for spherical reconfiguration in both homogeneous (cube
and octahedron) and heterogeneous (cuboctahedron) configura-
tions. Using the methods outlined in Sec. 4, reconfiguration
distortion metrics for spherical and planar configurations were
calculated for modules with MT-curve amplitudes A;, A, € [0, 1].
Areas were calculated using numerical integration with spline
interpolation and all optimization was performed using MATLAB’s
fmincon. The resulting cost function J was simulated for varying
amplitude values with constant weight factor w=0.5 (equal
weighting) for both homogeneous (cube and octahedron bases)
and heterogeneous (cuboctahedron bases) forward design. The
results (Fig. 11) suggest that the heterogeneous forward design
results in lower average overall distortion. Figure 12 plots the
individual components of this cost function and highlights the
difference between homogeneous and heterogeneous forward
design: homogeneous forward design assumes zero distortion in
the homogeneous spherical configuration (spherical octahedron and
spherical cube) while heterogeneous forward design assumes zero
distortion in the heterogeneous spherical configuration (spherical
cuboctahedron). Because planar distortions increase radially from
the center of the module, modules that constitute a larger surface
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o
)
@

A
o
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Fig. 11 The weighted sum (w=0.5) of distortion metrics for a cube, octahedron, cuboctahedron heterogeneous-
homogeneous module set with (a) homogeneous forward design, (b) heterogeneous forward design
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Individual distortion metrics for cuboctahedron-based modules versus the MT-curve amplitudes. The cost

function is composed of a weighted sum of all planar and spherical distortions that occur due to predicted overlaps/
cavities between all three combinations of two modules. On the top row, the planar distortion metrics for modules
achieved via (a) homogeneous and (b) heterogeneous forward design are plotted. The bottom row plots the spherical
distortion metrics for (¢) homogeneous and (d) heterogeneous forward design.
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Fig. 13 Optimal MT-curve amplitudes for modules designed via (a) homogeneous forward design and (b) heterogeneous

forward design

area proportion of the sphere will generally result in larger planar
distortions. This is reflected in the fact that the homogeneous
forward modules have larger planar distortions than the heteroge-
neous forward modules as the former are based on spheres composed
of a smaller number of modules that take up a larger percentage of
surface area on the sphere. The difference is pronounced enough to
result in lower overall distortion for the heterogeneous first modules
when using equal weighting in the cost function.

Simulations were then run with different weighting values w. The
optimal MT-curve amplitudes A; for varying weights are shown in
Fig. 13. The data suggest that weighting factor does not have a
significant effect on optimal design; the optimal curve amplitudes
are nearly constant aside from an initial divergence of the
homogeneous forward amplitudes when w < 0.2 and a sharp drop

Journal of Computational and Nonlinear Dynamics

in heterogeneous forward amplitudes when w exceeds 0.75 (i.e.,
when planar distortion metrics are treated as more than three times as
important as spherical distortion metrics). Furthermore, distortion is
minimized when the MT-curve amplitudes of the two modules are
approximately equal (A; ~ A) Finally, the results indicate that the
heterogeneous forward design generates a lower optimal amplitude
and lower distortion metrics, with MT-curve amplitude of A* ~ 0.2.
The expected overlap/cavities for adjacent planar and spherical
topologies of the optimal three-limb and four-limb MSoRos are
visualized in Fig. 14. Interestingly, the heterogeneous forward
design leads to cavities in the spherical configurations as opposed to
the overlap in the spherical configurations observed in the
homogeneous forward design scenario. This distinction may
influence the forward design choice.

JUNE 2023, Vol. 18 / 061007-9



061007-10 / Vol. 18, JUNE 2023

(@) (b) (©)

a/2 a/2} a/2
8 0 5 0 & 0
= > =
—a/2 —a/2] ~ay2
—a/2 0 a/2 —&/2 0 11/2 —a/2 0 a/2
Zp Zp Tp

Fig.14 Optimal cuboctahedron MSoRo topologies achieved via heterogeneous forward design showing the calculated
cavities/overlap of the spherical (top) and planar (bottom) modules. The intermodular distortions are shown for
(a) heterogeneous pairing, (b) homogeneous three-limb pairing, and (¢) homogeneous four-limb pairing.
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Fig. 15 Experimentally fabricated optimal MSoRo topologies for the three-limb and four-limb MSoRo designed via
heterogeneous forward design. These modules have ability perform heterogeneous and homogeneous reconfiguration,
showing 1D planar line configurations for (a) the eight octahedron modules and (b) the six cube modules, (¢) the 2D planar
net configuration for the fourteen cuboctahedron modules, and the 3D spherical configurations for (d) the homogeneous
octahedron modules (left), the cube (right), and (e) the fourteen heterogeneous cuboctahedron modules.
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InFig. 15, the simulation results were validated experimentally by
casting thin modules with silicone rubber (Smooth-On Dragon Skin
10) and arranging them in different configurations. It is important to
note that the purpose of this fabrication is simply to investigate the
surface topology of soft modules and visualize the resulting
distortions; therefore, robot morphology, actuation, and docking
are not considered here and are instead the subject of future work. As
expected, the largest distortions gaps/overlaps occur in the
homogeneous spheres (Fig. 15(d)).The experimental modules also
experience larger spherical gaps due to the thickness of the modules
causing “bowing”. This can be addressed by optimizing the
morphology to encourage spherical curling. Note that the homoge-
neous spheres in this image are only attached at the vertices (unlike
the heterogeneous cuboctahedron module). Therefore, it is expected
that a properly designed docking mechanism combined with robot
actuation would be able to address this.

6 Conclusion

The research presents a methodology for optimal topology design
of versatile MSoRos that can reconfigure between both heteroge-
neous and homogeneous configurations. As an example, the
fourteen MSoRos (six four-limb, eight three-limb) are designed
using an Archimedean solid (cuboctahedron) as the base poly-
hedron. They are capable of spherical heterogeneous reconfigura-
tion amongst themselves (all fourteen modules), and also
individually, i.e., six homogeneous four-limb modules or eight
three-limb. The generic design process involves choice of the base
solid(s) and the module topology curve (MT-curve) that is
strategically drawn on the module topology plane. The topology
of the robot module in the spherical configuration is obtained
through orthographic projection onto a sphere. This topology is
subsequently projected onto the tangent plane through an azimuthal
equidistant projection. The polyhedron-dependent geometric quan-
tities required for these projections are presented. The optimal
topology is then obtained by ensuring alignment of the polyhedron
vertices and minimizing the spherical and planar distortions. Such
distortion metrics are quantified as the normalized intermodular
areas in the spherical and planar configurations. Simulations are
performed comparing scenarios where the forward design is based
on a set of Platonic solids (homogeneous) or an Archimedean solid
(heterogeneous). The results indicate that heterogeneous forward
design results in lower overall distortion. However, for both the
cases, the optimal amplitudes for the MT-curves are around 0.2.
Heterogeneous forward design was favored in this paper due to the
smaller planar distortions and ability to minimize distortion in the
heterogeneous spherical configuration. Optimal modules from
heterogeneous forward design were then fabricated with silicone
rubber to validate the simulation results.

As this paper focuses on the surface topology, actuation, robot
morphology, and docking are not considered. Therefore, the level to
which actual modules can compensate for distortion cannot be
conclusively stated. Future work includes the exploration of the cost
function (e.g., incorporating locomotion difficulty) and MT-curves
outside of the simple sine curve family presented here. Furthermore,
docking remains an open problem to be explored.

Nomenclature

a = edge length

A = amplitude

e = apothem length for a face
E = number of edges on a solid
/= module topology curve

Journal of Computational and Nonlinear Dynamics

F = number of faces on a solid
= forward design spherical topology

1 = planar topology
7! = inverse design spherical topology
= area of planar error
= surface area of spherical error
cost function
number of edges per face
area of planar modules
number of faces per vertex
rotation matrix
circum radius
surface area of a sphere
parameterized spherical topology
weight of spherical error in the cost function
domain of module topology curve
X, = x-values of planar topology
Yp = y-values of planar topology

J = vertex angular offset

Kk = scale factor for side length

= longitude

&, = planar distortion metric

& = spherical distortion metric

¢ = latitude

o = edge angular offset

Y = angular sweep of a spherical polyhedron edge
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