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ABSTRACT

Ischemia-reperfusion injury (IRI), which describes the cell damage and death that occurs after
blood and oxygen are restored to ischemic or hypoxic tissue, is a significant factor within the
mortality rates of heart disease and stroke patients. At the cellular level, the return of oxygen
triggers an increase in reactive oxygen species (ROS) and mitochondrial calcium (,,Ca*") overload,
which both contribute to cell death. Despite the widespread occurrence of IRI in different
pathological conditions, there are currently no clinically approved therapeutic agents for its
management. In this Perspective, we will briefly discuss the current therapeutic options for IRI
and then describe in great detail the potential role and arising applications of metal-containing
coordination and organometallic complexes for treating this condition. This Perspective
categorizes these metal compounds based on their mechanisms of action, which include their use
as delivery agents for gasotransmitters, inhibitors of ,Ca?' uptake, and catalysts for the
decomposition of ROS. Lastly, the challenges and opportunities for inorganic chemistry

approaches to manage IRI are discussed.



1. Introduction

Researchers have leveraged the unique features of metal ions to develop metal-based small
molecules for various applications within biology, marking an important research area within
bioinorganic chemistry. In particular, the use of metal complexes with either therapeutic or
diagnostic properties has led to the field of metals in medicine. Perhaps the most influential metal-
based drug is the simple Werner coordination complex cis-[Pt(NH3)>Clz] known as cisplatin. This
compound is a highly effective anticancer drug that is used clinically for several different cancer

types, including ovarian and testicular.!

The success of cisplatin subsequently led to the
investigation and worldwide clinical approval of two other platinum-based drugs oxaliplatin? and
carboplatin.> Mechanistically, these platinum-based drugs induce their anticancer properties
through the formation of covalent DNA adducts, which inhibit transcription in cancer cells.* The
success of these compounds has motivated significant efforts to develop new metal complexes as
cytotoxic anticancer drugs with an emphasis on tuning their abilities to bind to DNA.>7 In fact,
one could argue that the field of metals in medicine is dominated by such cytotoxic metal
complexes with secondary aspects of research within the development of diagnostic agents like
gadolinium-based magnetic resonance imaging (MRI) contrast agents.® An alternative role for
metal complexes, however, is one that provides protective effects to cells, an approach that can
lead to therapeutic agents for conditions like stroke and heart disease. The use of metal complexes
as cytoprotective agents has only been scarcely explored with most efforts directed toward the
development of superoxide dismutase (SOD) mimics for removing deleterious reactive oxygen
species (ROS).”'? In this Perspective, we discuss the pathophysiological condition known as

ischemia-reperfusion injury (IRI) for which metal complexes can play an important therapeutic

role.



IRI describes the irreparable cell death and tissue damage that is caused by the rapid
reoxygenation and restoration of blood flow to hypoxic and ischemic organs (Figure 1). This
process occurs after the medical intervention of stroke and heart failure, as well as in transplanted
organs.'® Although restoration of oxygen and blood is essential for immediate treatment, it also
triggers the damaging effects of IRI that can negatively affect the success rates of these procedures
and long-term patient survival. Thus far, there are no clinically approved drugs for the prevention
or minimization of IRI. Consequently, IRI has been referred to as a “neglected therapeutic
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target,” " a concerning designation given its implication in heart failure and stroke, two of the

leading causes of death in the United States.'

To develop therapeutic agents for this condition, an understanding of the cellular pathways
that trigger its pathology are needed (Figure 1). When cells are deprived of oxygen, they switch
their metabolic pathways from O;-dependent oxidative phosphorylation in the mitochondria to
anaerobic glycolysis in the cytosol.!* This change has two key implications on the intracellular
environment. First, the mitochondrial membrane potential (MMP) is depolarized due to the lack
of the transmembrane H' gradient that would normally be generated by oxidative phosphorylation.
Second, the production of lactic acid by anaerobic glycolysis leads to an excess of H' ions in the
cytosol, which are swapped for Ca®" ions via the sequential operation of the Na*/H" and Na*/Ca?*
exchanger proteins.'® When reperfusion occurs, blood flow is restored, and oxygen is returned to
cells. With oxygen levels suddenly elevated, the formation of ROS occurs, and the cell switches
back to oxidative phosphorylation as its primary metabolic pathway, reestablishing the MMP.!”
Consequently, the return of the MMP provides a strong driving force for the cytosolic Ca** ions to

enter the mitochondria via a transporter known as the mitochondrial calcium uniporter (MCU),



triggering the phenomenon of mitochondrial Ca** (,,Ca*") overload and subsequent opening of the

mitochondrial permeability transition pore (mPTP) that leads to cell death.'®
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Figure 1. The intracellular biochemical events that contribute to IRI.

These cellular events that precede and trigger IRI provide opportunities and therapeutic
targets to address this condition. The most commonly investigated drug candidate for IRI is the
organic natural product cyclosporin A, which inhibits the opening of the mPTP." Despite
preclinical success with this compound, it has not advanced to clinical approval, due to its variable
efficacies in trials®® as well as side effects like neurotoxicity and chronic neprotoxicity.?! Thus,
alternative drugs are needed, ideally ones that target different parts of the IRI pathway. In this
Perspective, we will examine recent efforts to use the novel properties of metal-containing small
molecules to develop therapeutic agents for IRI. To date, three main approaches have been
investigated to leverage the unique properties of metal complexes. First, researchers have used

coordination and organometallic complexes to deliver the gasotransmitters carbon monoxide



(CO), nitric oxide (NO), and hydrogen sulfide (H2S), which are known to elicit cytoprotective
effects at low concentrations. Second, metal complexes have been used as inhibitors of the MCU
to prevent ,Ca*" overload. Finally, the ability of metal complexes to cycle through different
oxidation states has made them effective antioxidants that can catalytically decompose the harmful
ROS produced during IRI. Each of these three strategies is discussed within this Perspective,

highlighting the important role that the field of metals in medicine plays in the management of IRI.

2. Gasotransmitter Delivery

The three toxic gases CO, H2S, and NO have been recognized to be endogenously produced
gasotransmitters that play an important role in regulating a variety of biological processes and give
rise to anti-inflammatory, anti-apoptotic, and antioxidant effects.?? The appropriate application of
these gasotransmitters can also protect against IR1.?* In this section, an overview of the efficacy
of these gasotransmitters as cytoprotective agents against IRI is given, followed by a highlight on
specific recent examples of how metal complexes have been leveraged for their delivery to manage

this pathological condition.

2.1. Carbon Monoxide (CO)

CO is well known for its toxicity. Concentrations above 10,000 ppm are lethal due to the
ability of this gas to bind tightly to hemes, a property that stops mitochondrial respiration via
inhibition of cytochrome c¢ oxidase.>* At lower concentrations, however, CO is produced
endogenously and plays a vital role in cellular function and regulation.?>® The primary origin of
endogenous CO is from the enzyme heme oxygenase-1 (HO-1), which is responsible for the
catabolism of heme and is activated by a number of different cellular processes. The CO that is

produced by HO-1-mediated heme decomposition provides a regulatory feedback loop in response



to different biological stimuli.?”*® The physiological importance of CO was demonstrated in HO-
1-deficient mice, where the addition of this gasotransmitter exogenously was able to overcome the

pathological effects associated with this defect.?*-°
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Figure 2. Mechanism of protection of CO against IRI. DAMPs (damage-associated molecular
patterns) are molecules released in damaged or dying cells. Upon their release, these molecules
trigger endosomal and lysosomal fusion and activate toll-like receptors (MHC2-TLR), which
trigger a damaging inflammatory response. CO prevents lysosomal and endosomal fusion and can
therefore attenuate this inflammatory response. In addition, CO decreases ATP production in the
mitochondria, lowering the presence of ROS and slowing apoptosis. Reproduced with permission
from ref. 28. Copyright 2022 Elsevier Inc.

With the importance of endogenously produced CO recognized, researchers have also

studied the biological and medicinal effects of exogenously administered CO. At low



concentrations, this gasotransmitter has demonstrated therapeutic effects for a variety of
pathophysiological conditions, such as cardiovascular disease, sepsis, and cancer, as well as
beneficial properties for organ transplantation.>' 3 Notably, extensive in vitro and in vivo studies
have shown that CO can protect against IRI.>**? These protective effects include the mitigation of
apoptosis by decreasing the production of ATP and consequent lowering of mitochondrial ROS
generation, the suppression of dendritic cell maturation, and the inhibition of toll-like receptor
(TLR) activation by preventing endosomal and lysosomal fusion (Figure 2).2® However,
challenges associated with the direct administration of gaseous CO at therapeutically beneficial
levels indicate that alternative approaches are needed for its controlled delivery to hypoxic or
ischemic tissue. As a means of accomplishing this goal, the development of CO-releasing
molecules (CORMs), which comprise both organic and metal-containing complexes that act as
prodrugs for this gasotransmitter, is an active field of biomedical research.* Because CO is a
highly effective ligand for metal ions,** a property that is reflected by the long history of metal-
carbonyl compounds dating back to the late 19" century,* coordination and organometallic
complexes comprise a promising platform for the delivery of small, therapeutically relevant

concentrations of this gasostransmitter for IRI.
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Chart 1. Structures of CORM-2 (1) and CORM-3 (2) that have shown protective effects against
IR1.*47 These compounds release CO via ligand substitution displacement with solvent molecules.

Among the wide variety of metal-carbonyl complexes that have been investigated as

CORMs,*® CORM-2* (1, Chart 1) and CORM-3*7 (2, Chart 1) are arguably the most thoroughly



studied with respect to their activities for the management of IRI. Compound 1, a dinuclear,
chlorido-bridged ruthenium (Ru) compound, showed a protective effect in several models of IRI
by releasing CO into the extracellular milieu.*3> Despite the promising therapeutic effects of this
complex, its low aqueous solubility and fast CO-release limited its use in further studies. A more
soluble CORM, 2, is also able to reduce the effects of IRI.*"32¢-6! The primary limitation of 2 for
this application, however, arises from its challenging synthesis and solvent-dependent speciation.5?
Furthermore, recent studies suggest that some of the biological effects of this compound arise from
the Ru byproducts rather than CO.*® Based on these limitations, researchers have sought to
develop CORMs with different transition metals?’*” and metal-free CORMs.%%% The use of

alternative metal CORMs, as specifically applied for IRI, is described below.

2.1.1. Manganese CORMs

Manganese (Mn) complexes with CO-releasing properties have been thoroughly
investigated for biological applications over the past decade.”’” For many of these complexes,
however, poor water solubility and fast CO release have limited their biomedical applications. The
Mn(I) tetracarbonyl complex, CORM-401 (3, Chart 2), contains a bidentate dithiocarbamate
ligand with a terminal carboxylic acid group that enhances water solubility while releasing three
equivalents of CO.” This compound exhibits protective effects against IRI both in vitro within
H9c2 cardiomyocytes’! and ex vivo within pig kidneys.”? In these studies, treatment of the cells or
tissue with 3 prior to subjection to IRI led to improvement in cell viability and tissue integrity.
Within the pig kidney model, these protective effects were accompanied by a significant increase

in blood CO levels, suggesting that this gasotransmitter is the active protecting agent.
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Chart 2. Structure of the Mn-based CORM-401 (3) that shows protective effects against IR1.”
This compound releases CO by ligand substitution with water molecules in solution.

2.1.2. Rhenium CORMs

Although rhenium (Re) carbonyl complexes have been thoroughly investigated for their
photochemical and catalytic properties, recent studies have revealed their potential for biomedical

75778 with several

applications.”®’* In particular, this class of compounds has found use as CORMs,
of them being specifically investigated as therapeutic agents for IRI. The Re(Il) carbonyl
complexes of the general formula cis-[Re(CO)2Br2L2]" (Chart 3) are promising examples of Re-
based CORMs for IRL.”” The CO-release kinetics of these complexes under physiological
conditions are comparable to those of the well-studied CORM-3 (2). For these complexes, L. was
altered to be different monodentate nitrogen-donor ligands to assess structure-activity
relationships. Based on CO-release profiles, cis-[Re(CO).Brs]*" (4, Chart 3) and cis,trans-
[Re(CO)2Br2(Im)2] (5, Chart 3), where Im = imidazole, were identified to be the most promising
complexes from this class. Accordingly, when neonatal rat ventricular cardiomyocytes in the
presence or absence of these compounds were exposed to a short period of hypoxia followed by a
brief reoxygenation period to model IRI, only 4 and 5 were able to increase cell survival relative
to the untreated control. Importantly, cellular uptake studies revealed that these two compounds
were not taken up by cells, suggesting that the delivery of extracellular CO is sufficient to elicit

their cytoprotective effects. Based on these studies, it is clear that these Re(Il) dicarbonyl

complexes represent an important class of therapeutic agents for IRI.
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Chart 3. Structures of Re(Il) CORMSs that shows protective effects against IRL.7’ The
mechanism of CO-release of these complexes is still currently unknown, but is postulated to be
through ligand substitution in physiological environments.

Building upon the success of cis-[Re(CO).Brs]*", researchers sought to improve its
biological properties by conjugating it to cyanocobalamin (vitamin Bi2) and an N-nitrosoamine-
functionalized version of vitamin B, adding to the growing number of multimetallic Re carbonyl
complexes that have been investigated for biological applications.®®#! In comparison to 4, which
lacks the cyanocobalamin vector, compound 6 (Chart 4) exhibited improved stability in aqueous
solution and demonstrated a more substantial cytoprotective effect within neonatal rat
cardiomyocytes in a model of IRL.3? To further increase the functionality of this compound class,

N-nitrosamines were appended to the vitamin B2 carriers to afford compounds 7-9 (Chart 4).
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Chart 4. Heteronuclear Co and Re complexes designed to simultaneously release CO and NO
to reduce cell death in models of IR1.3>** The Re(II) component releases CO in a similar manner
as compounds 4 and 5, whereas NO arises from the macrocyclic N-nitrosamines that can undergo
protolytic denitrosation in water.

The presence of both the N-nitrosamine and Re carbonyl enables these complexes to be
used for the release of both NO and CO, providing a dual-action basis for their therapeutic

activities against IRL*¥ To assess the therapeutic efficacy of these compounds, 3T3 mouse
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fibroblast cells were incubated in the presence and absence of each complex and then exposed to
a short period of hypoxia followed by a brief reoxygenation period. Cells that were treated with
7-9 demonstrated a 50% reduction in cell death compared to untreated cells. Despite these
promising results, the cytoprotective effects of 7-9 were not greater than those of 4, the N-
nitrosamine functionalized vitamin B, alone, or 6, which contains vitamin B2 but lacks the N-
nitrosamine (Figure 3). Although these results indicate that the dual NO and CO delivery strategy
did not lead to significant enhancement of activity, it did highlight the value of vitamin B1> as a

conjugate that can improve biological compatibility of CORMs.
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Figure 3. Protective effect of compounds 6—9 in an in vitro model of IRI. Blue traces represent
cells treated with 30 uM of each compound, whereas orange traces represent untreated cells. In
this figure, compound 6 is B12-ReCORM-2, compound 7 is 1b, compound 8 is 2b, and compound
9 is 3b. The designations for la, 2a, and 3a are the vitamin B> conjugates without the appended
cis-[Re(CO)Brs]*". Reproduced with permission from ref. 83. Copyright 2016 Royal Society of
Chemistry.
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2.2. Hydrogen Sulfide (H2S)

Most commonly known as a toxic gas with a rotten egg smell, H>S has recently emerged
as the third gasotransmitter, joining NO and CO in this important biological regulatory role.®* Over
the past two decades, endogenous HoS and related polysulfides (H2S,), produced via different
enzymatic processes, have been implicated in a wide variety of biological processes,*¢ including

89.90 cell death pathways,”!

cancer progression,®’ cellular metabolism,*® neurological regulation,
and the regulation of cardiovascular function.”” Three H»S-generating enzymes, cystathionine-f3-
synthase (CBS), cystathionine-y-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST),
are the primary producers of endogenous H>S and play a vital role in the aforementioned

processes.” This importance has generated interest in the exploration of exogenous H2S as a

therapeutic agent for pathological conditions such as stroke and IRI.”* ¢

K7 Channel Preservation Mitigating
Activity of MMP Apoptosis
Cytoprotection
Against IRI

Figure 4. Mechanisms of HoS cytoprotection during events of IRI. Adapted with permission
from ref. 97. Copyright 2010 Elsevier, Inc.
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With respect to the role of HoS in myocardial IRI, the endogenous production of H»S is
vital to heart health.”® Consequently, the infarct size of isolated rat hearts is larger when
endogenous HoS production is inhibited, and the introduction of exogenous H>S reverses this
effect.”” In addition, the overexpression of CSE in isolated rat hearts reduces the effects of IRI,
demonstrating that both endogenous and exogenous H2S can protect tissues from IRIL.!% H,S has
additionally shown an attenuation of injury in ischemic stroke, demonstrating its efficacy in

neurological systems.!01-106

The cytoprotective properties of H>S in IRI are mediated by several targets (Figure 4).”
The most well-documented mechanism is based on its activity on mitochondrial Katp channels.
This activation stimulates K" uptake in the mitochondria, which attenuates the MMP after
reperfusion and diminishes the driving force for cytotoxic »Ca** overload.!”” Furthermore, H>S
inhibits cytochrome c oxidase,!®® which slows the production of ROS as reperfusion occurs and
mitochondrial oxidative phosphorylation is restored.!” A third cytoprotective mechanism of H>S
arises from its ability activate several important enzymes, like phosphatidylinositol-3-kinase (PI-

3-kinase), which are involved in upregulated cell survival pathways and apoptosis prevention.!'°

Despite these beneficial effects, its toxicity at high concentrations and challenges
associated with administering it as a gas have sparked significant research efforts to develop small
molecules that can deliver H2S to biological systems at suitable concentrations for therapeutic
use.” The design and implementation of stimuli-activated H>S donors has been particularly
fruitful, yielding compounds that are triggered by external light,!!'"!°, ROS,!?*!?! biological
thiols,'?*" 124 enzymatic activity,'>>!?6 and pH.!?” Notably, in contrast to CORMSs, which are mostly
coordination and organometallic complexes, H>S donors are predominately organic compounds.

The redox activity and acidity of H»S leads to challenges in affording metal-based donors of this
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gas that have only recently been addressed. Recent examples of metal-based H>S donors and their

applications in IRI are described below.

2.2.1. Light-Activated H>S Delivery

The organic compound morpholin-4-ium 4-methoxyphenyl-
(morpholino)phosphinodithioate (GYY4137, Chart 5) is a well-studied H2S donor'?®!'?° that
releases this gasotransmitter via hydrolysis over a timescale of several hours,'* enabling its use
for the treatment of IRL'! The hydrolysis of and H»S release from this compound occurs
instantaneously upon dissolution in water, limiting the conditions in which it can be applied
therapeutically. In an effort to control this H>S-release process, it was coordinated to a photoactive
Ru** polypyridyl complex (10, Chart 5).!*> When bound to the Ru** center, the hydrolysis of
GYY4137 is suppressed. Upon irradiation of 10 with red (631 nm) light, this H>S-donating ligand
dissociates from the Ru®" coordination sphere, allowing it to undergo hydrolysis and release H2S
in solution. In an in vitro model of IRI, H9¢c2 rat cardiomyoblast cells that were treated with 10
and irradiated with 631 nm light had substantially higher viability compared to untreated cells and
treated cells not exposed to light (Figure 5), indicating that this light-activation process operates
in the cellular milieu as well. This complex, a red light-activated H>S donor, highlights the value

of using metal complexes to leverage their photochemistry for this application.
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Chart 5. Structures of the H>S donor GYY4137 of the and the red light-activated Ru** H,S
donor (10). GYY4137 releases HoS via hydrolysis of the P-S bonds. Compound 10 undergoes a
photosubstitution reaction to release GYY4137, which subsequently hydrolysis to produce
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Figure 5. Protective effect of compound 10 ([Ru]) and GYY4137 in cells subjected to an in
vitro model of IRI. Reproduced with permission from ref. 132. Copyright 2018 American

Chemical Society.
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2.2.2. Reduction-Activated H>S Delivery

The hypoxic nature of ischemic cells and tissues gives rise to a reducing environment that
could potentially be leveraged for the activation of anti-IRI agents. In this context, the redox
activity of metal complexes can be used to design compounds that are reduced under these
conditions. This concept was investigated recently for the selective delivery of H»S from a Ru
coordination compound. Upon chemical reduction of the dinuclear persulfide-bridged (1-S2*") Ru
compound'®® (11, Chart 6), the S-S bond is cleaved, leading to the release of H,S as a
byproduct.** Importantly, it was demonstrated that this process occurs in the presence of
biologically relevant reducing agents in aqueous solution, suggesting that this compound could be
used for the therapeutic delivery of this gasotransmitter. To test this hypothesis, H9c2 rat
cardiomyoblast cells were treated with 11 and then subjected to lethal hypoxia-reoxygenation.
Under these conditions, the viability of the cells increased in the presence of higher concentrations
of the complex. Thus, the initial hypoxic conditions found during IRI may be sufficient to activate

this and related metal complexes by chemical reduction.
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Chart 6. Structure of a redox-activated persulfide-bridged Ru complex (11).!** Upon chemical

reduction, the S—S bond is cleaved, leading to a terminal Ru—SH complex that releases H>S upon
protonation in water.
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2.3. Nitric Oxide (NO)

The biochemistry of NO has been studied extensively.!* In particular, its protective effects
against IRI have been widely reported, with both the endogenously produced!**'** and
exogenously delivered!**!44-146 NO giving rising to these therapeutic properties. Although high
concentrations of NO are cytotoxic, small doses have anti-inflammatory, antioxidant, and anti-
apoptotic effects.'*” The primary mechanism of protection of NO involves the inhibition of tumor
necrosis factor o (TNF-a), which is responsible for the activation of transcription factor NF-«xB.
This transcription factor triggers various events that lead to downstream apoptotic and
inflammatory events. By suppressing TNF, these pathways are prevented, decreasing the
damaging effects of IRI. In addition, NO acts as a radical scavenger and binds to cytochrome ¢
oxidase, giving rise to its antioxidant properties. Finally, NO binds to and activates soluble
guanylate cyclase (s-GC) in cells. This enzyme produces cyclic guanosine monophosphate (c-
GMP), a messenger molecule that mitigates apoptosis through the modulation of caspase
production (Figure 6).'*® In order to use NO as a therapeutic agent, it needs to be delivered in
small, regulated quantities. To address this challenge, researchers have developed nitric oxide-
releasing molecules (NORMs), which are capable of slow and sustained release of NO. Given the
long-standing history and well known photochemistry of metal nitrosyl complexes,'*!*° this

compound class forms a promising basis for photoactivated NORMs for biological use.!?!:1>2
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Figure 6. Mechanisms of protection against IRI by exogenous NO. NO lowers the production
of free radicals by binding to cytochrome ¢ oxidase. It also inhibits TNF-o,, which deactivates NF-
kB, shutting down several mitogen-activated protein kinases such as p38, extracellular signal-
regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These kinases are linked to
intensifying inflammation and apoptosis through the release of caspases and the tumor protein p53.
Finally, NO activates s-GC, leading to an enhanced production of c-GMP. Reproduced with
permission from ref. 148. Copyright 2009 Taylor & Francis Group.

The longest used therapeutic NORM is arguably sodium nitroprusside, Nay[Fe(CN)s(NO)]
(12, Chart 7). This iron (Fe) compound has been extensively applied in different models of IRI,
demonstrating good efficacy in minimizing the damaging effects of this condition.!>*!>7 The
release of NO from this complex is triggered by chemical reduction by biological reducing agents
like cysteine and glutathione.!*® Compound 12 has been used in human patients for this condition
as well.!>® Cancer patients with chest pains associated with myocardial ischemia and were treated
with a cotton pad soaked in 1.5 M 12 on the abdomen. Elevated levels of NO were detected in

plasma taken from patients, and patients exposed to 12 showed a significantly lower death rate

19



caused by acute myocardial infarction. These results suggest that NO can help reduce damage

associated with IRI and that metal-based compounds are suitable delivery agents for this gas.

Despite the frequent use of the Fe-based 12, researchers have more extensively studied Ru-
based NORMs to leverage the greater inertness of this 4d transition metal. Although a large number
of these Ru NORMs have been studied, in general, they have not yet been extensively applied to
address IRL.!® A notable example of one such NORM used for this purpose is the Ru nitrosyl
complex cis-[Ru(bpy)2(SO3)(NO)]" (13, Chart 7).'®! The protective effects of this compound
against an in vivo model of cerebral IRI were investigated in rats. Cessation of arterial blood flow
to the brain via occlusion of the carotid artery for 30 min, followed by a 60 min reperfusion period,
led to the formation of significant infarct regions within the brain. In rats pretreated with this
complex via intraperitoneal (i.p.) injection, however, the size of the infarct regions of 2,3,4-
triphenyltetrazolium chloride (TTC)-stained coronal brain sections were significantly smaller,
demonstrating the therapeutic viability of this compound (Figure 7). Furthermore, elevated levels
of nitrite, an in vivo metabolite of NO, and decreased NF-«xB expression in the hippocampus were

detected in the treated rats, implicating NO to be the mediator of the observed biological effects.

12 13

Chart 7. Structures of sodium nitroprusside (12) and cis-[Ru(bpy)2(SO3)(NO)]" (13), an NO-
releasing molecule with demonstrated neuroprotective effect against IRI1.!S! These compounds
release NO upon reaction with biological thiols.
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Figure 7. (A) TTC-stained coronal brain sections treated with either saline solution (SS) or
compound 13 (Rut-bpy). Sections A1 (SS-treated) and A2 (13-treated) did not undergo IRI, while
sections A3 (SS-treated) and A4 (13-treated) were exposed to an IRI model. (B) The calculated
damaged area (DA) to total area (TA) ratio of each TTC-stained brain section. Reproduced with
permission from ref. 161. Copyright 2011 Springer Science Business Media, LLC.

3. Preventing Mitochondrial Calcium Overload

As mentioned in the Introduction, »Ca?" overload is one of the key intracellular processes
that causes the harmful effects of IRI. Thus, inhibition of ,Ca®" uptake to prevent ,Ca>" overload
has been proposed and investigated as a therapeutic strategy to prevent IRI. These efforts have
focused on targeting the MCU, a transmembrane protein complex that mediates Ca?* uptake into

the mitochondria.!®?"1% The tetrameric MCU complex'®"-17°

comprises the MCU subunit and the
regulatory EMRE,!”! MICU1,'7? and MICU2!'”® subunits. The EF-hand domains of the MICU1
and MICU2 subunits can recognize and respond to high cytosolic Ca** concentrations, dissociating
from the pore-forming MCU subunit to allow for ,Ca®" uptake.'”>"'7® The MICU regulatory

proteins interact with a highly conserved solvent-exposed DXXE motif at the pore of the MCU

subunit (Figure 8).!°7!% This motif interacts directly with and mediates the uptake of Ca>"
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ions.!7”!7® Although a number of organic compounds that possess MCU-inhibitory activities have
recently been identified,!” % the earliest and most commonly used MCU inhibitors are metal
coordination complexes. These complexes, as well as new discoveries in this area, are discussed

below.
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Figure 8. Topology of the MCU. Shown are the relevant regulatory proteins EMRE, MCURI,
MICU1, and MICU2 and the orientation of the transmembrane domains (TM1 and TM2) of the
MCU within the inner mitochondrial membrane (IMM). The insets depict (left) the N-terminal
domain of the MCU (MCU-NTD) and (right) the location of the DXXE motif in the MCU pore.
Adapted with permission from ref. 185. Copyright 2019 American Chemical Society.

3.1. Multinuclear Ruthenium Complexes

The oxo-bridged trinuclear Ru complex ruthenium red!3®!87 (14, Chart 8) was one of the

first compounds discovered to inhibit ,Ca®*" uptake.!®® Although it was originally used as a

189

cytological stain, °” its MCU-inhibitory activity led to its widespread implementation in different
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188,190-192 and it was demonstrated to attenuate the downstream effects of IRI in

biological studies,
an ex vivo model.!”® The use of 14 for these applications, however, has been limited by its poor
purity, which has led to batch to batch variations in activity depending on the supplier.!**!°® An
important observation from these studies was that the ,Ca?" uptake-inhibitory properties of 14
actually decreased as the purity of the compound increased, implying that another species was
primarily responsible for this property.'®” Accordingly, the dinuclear oxo-bridged complex, Ru360
(15, Chart 8), was identified as an impurity within 14 that possesses potent nM ,,Ca?" uptake
inhibitory properties.!”®2% Since this discovery, 15 has become the most frequently used MCU
inhibitor, employed primarily as a tool to study »Ca** dynamics and regulation. Although its

therapeutic potential for the prevention of IRI was demonstrated,?’!->%

its more widespread
applicability is limited by its poor cell permeability and stability.?® The axial formate ligands of
15 undergo a rapid aquation reaction in buffered solutions, affording the diaqua-capped analogue
Ru360’ (16, Chart 8), which can be synthesized independently.?** The rapid aquation of 15 implies
that 16 is the active inhibitor.

H3N NH; H3N NH3 H3N NH3 6+

HaN— Ru—O RU—O— Ru—NH3

S
HoN NHzHsN NHs HsN - NH;

14
H3N NH3H3N NH3 3+ H3N NH3H3N NH3 5+
}—o Ru—O Ru—0—< H,0— Ru—O Ru\—OHz
HsN NH3 HgN NH3 HsN NHzHsN NHs
15 16

Chart 8. Structures of previously reported multinuclear oxo-bridged Ru MCU
inhibitors, 186-189.198-200,204
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Given the high potency of 15, analogues of this compound with improved stability and cell
permeability were sought. The use of a bridging nitrido, rather than oxo, ligand afforded the
compounds Ru265 (17, Chart 9)'% and Ru265’ (18, Chart 9).2% These analogues retained the nM
potency for MCU inhibition observed for 15. Unlike 15, these compounds were also able to inhibit
the MCU in intact, non-permeabilized cells. A series of studies were carried out to study the origin
of the enhanced cell permeability of 17 compared to 15. These results suggest that this property is
a consequence of the greater redox stability of 17. Compound 15 is reduced by common biological
reductants like glutathione, affording products with no MCU-inhibitory properties.?’> By contrast,
17 remains intact in the presence of reducing agents. Thus, the current working model is that
extracellular reduction and decomposition of 15 forms species that are not cell permeable nor
active MCU inhibitors. Importantly, like 15, 17 interacts with the DXXE motif of the MCU, as
evidenced by site-directed mutagenesis studies'®*!”® and molecular docking,?% indicating that both

compounds have the same molecular target and mechanism of action.

HsN NH3zH3N NH; 7 3+ HsN ,NH3H3N 'NH3 5+
Cl—Ru==N==Ru—CI H,0—Ru==N===Ru—OH,
z 3 Sl WY
HsN NHzHsN NH;g HsN NHzHsN NH;
17 18
[ [\
HaN NH, H,N NH, 7 3+ cL o cCL g /
) ) ) ) N
CI—BuzN:FSU—C| Cl_Bl{TN:BU\_O
H,N NH, HoN  NH, =N N= <:_N)_\N_:>
(] (I N\ 7N\ 72\ 7\~

-
©
N
o

Chart 9. Structures of the dinuclear nitrido-bridged Ru MCU inhibitors. 8205207
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Given the better cell permeability and enhanced stability of 17, it was demonstrated to be
an effective protective agent in in vitro hypoxia-reoxygenation assays within both rat ventricular
myocytes'®®> and primary cortical neurons.’®® In addition to preserving cell viability, 17 also
showed no negative effects on the mitochondrial integrity.!®> Furthermore, 17 was effective in
vivo, substantially reducing the brain infract size within mice that had been subjected to a model
of ischemic stroke (Figure 9).2° In addition to 17, the ethylenediamine (en) (19, Chart 9) and
2,2'-bipyridine (bpy) (20, Chart 9) analogues of these compounds were investigated. The en
analogue 19 was a substantially less effective MCU inhibitor than 17 with poorer cell
permeability,'®> and 20 with bpy ligands was completely inactive with respect to MCU
inhibition.?%” These results indicate that the equatorial ammine ligands are important for the MCU-

inhibitory properties of this compound class.
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Figure 9. In vivo effects within mice treated with Ru265. (17) (a,b) Durations of seizures
detected over 90 min after i.p. injection of Ru265 at varying concentration. (c) Representative
TTC-stained brain sections after subjection to 24 h of hypoxic injury. (d, €) Neuroscores and infarct
volumes in mice injected with saline or 3 mg kg ! 17 after 24 h of IR1. Reproduced with permission
from ref. 208. Copyright 2020 Sage Publications.

3.2. Dinuclear Osmium Complexes

Building upon the success of 17 as an MCU inhibitor, an analogue containing osmium
(Os), instead of Ru, was investigated. The Os analogue, named Os245 (21, Chart 10), was also

able to inhibit the MCU in intact cells and was stable towards biological reductants.?”” This
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compound protected primary cortical neurons exposed to oxygen-glucose deprivation, an in vitro
model for IRI, without causing any negative effects on mitochondrial function. A significant
difference between 17 and 21 arises within their axial ligand aquation kinetics. For 17, the chlorido
ligands are displaced by water under physiologically relevant conditions with a half-life of only
2.3 min, whereas the half-life for this process for 21 is 700.1 min. Accordingly, the diaqua
analogue of 21, Os245' (22, Chart 10), exhibits different MCU-inhibitory activity than its parent
compound. Compound 22 is equipotent as 17 and 18, and 100-fold more potent than 21. These
results suggest that the axial chlorido ligands, which remain bound to the Os centers on 21 for a
substantial length of time, act to diminish the MCU-inhibitory activity of this compound class.?*
Molecular docking simulations support the higher potency of the diaqua compounds, as these
coordinated water ligands are engaged in hydrogen-bonding interactions with acidic residues
within the MCU pore entry.?®2% Both of these nitrido-bridged Ru and Os dinuclear complexes
are among the most potent MCU inhibitors reported to date, and their redox stability and cell
permeability make them excellent therapeutic candidates for the prevention of IRI. Further
functionalization of the axial sites of this compound class has also shown promise for the

210-212

improvement of their delivery with added chemical functionalities, suggesting that axial

ligand modification is a viable pathway for identifying new lead compounds.

H3N ,NH3H3N NH3 3+ H3’\1 NH3H3N NH3 5+
Cl— Os==N==0s—Cl H0— 05 ==N==0s—OH,
S 3 5§ 5 3 3\
HsN NH3H3N NH; HsN NHzH3N NH;
21 22

Chart 10. Structures of the dinuclear nitrido-bridged Os MCU inhibitors.?*
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The major limitation of this compound class is their relatively low in vivo therapeutic
window, which when exceeded causes seizures in mice (Figure 9). The i.p. injection of 17 in adult
male mice caused seizures at doses of 10 mg kg ™! or higher 45 min after treatment.?%® For 21, the
onset of seizures was observed at similar doses, but was delayed by nearly 30 min.?” These side
effects present challenges in the use of these compounds as therapeutic agents for IRI.
Optimization of these compounds to increase their therapeutic windows is an important objective

in using MCU inhibition as an approach for treating IRI.

4. ROS Scavengers

Ischemic cells and tissue are ill-equipped to handle the surge of oxygen that returns upon
reperfusion. Consequently, ROS, which include hydrogen peroxide (H202), hydroxyl radical
(HO®), and superoxide (O2*"), are produced by the reduction of dioxygen as undesired side
products of the mitochondrial respiratory chain,?!* and contribute to the cell damage and death that
is characteristic of IRL.2'* Although it has recently been recognized that low levels of ROS play
key roles in cellular regulatory and signaling processes, high concentrations of these species
damage critical biomolecules and lead to cell death.?!> As such, cells have evolved sophisticated
enzymes, like catalases and SODs, that can decompose these ROS to prevent cellular
damage.?!®?!7 Inspired by nature, researchers have developed small molecules with similar
catalytic properties and applied them as therapeutic agents to decompose ROS and protect against

IRI.Zl 8,219

SODs catalyze the dismutation of O,*" into H>O> and 0,,%****! whereas catalase facilitates
the decomposition of H>O; into O> and H>O (Figure 10).2*> Mammals express three types of SOD:

manganese SOD (MnSOD), found primarily in the mitochondria, copper/zinc SOD (CuZnSOD),
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the major SOD in cells found within the nucleus and cytosol, and extracellular SOD (ECSOD),
which has similar dinuclear Cu/Zn active sites as CuZnSOD.??>*** Catalases in mammals are
classified into three groups: monofunctional heme-containing catalases, heme-containing catalase
peroxidases, and Mn-containing catalases.’”> The therapeutic potential of systems that can
catalytically decompose ROS is evident in various studies that explored the effects of different
expression profiles of SOD and catalase within animals. For example, overexpression of MnSOD
within the hearts of transgenic mice rendered them substantially less susceptible to the damaging
effects of myocardial IRI.>*® With respect to catalase, its deficiency has been linked to a wide
variety of diseases and disorders, including neurological disorders, cancer, and certain metabolic
disorders.???> Accordingly, the overexpression of catalase confers protective effects against IRI in
vivo.??” These studies suggest that the use of small-molecule SOD and catalase mimics may be a

therapeutically viable strategy for the management of IRI.

Figure 10. Mechanism of ROS dismutation by the enzymes SOD and catalase (CAT).
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To design suitable small-molecule analogues, consideration of the metal-containing active
sites of these enzymes is needed. With respect to SOD mimics, most efforts have focused on
modeling MnSOD rather than CuZnSOD, due to the fact that the former provides simpler
mononuclear active site. The active site of human MnSOD (Figure 11a) comprises a Mn center
in a trigonal bipyramidal geometry coordinated by three histidine and one aspartate residues, as
well as a labile water molecule.??®??° Human catalases are tetrameric proteins (Figure 11b) with
a heme-Fe active site. Unsurprisingly, the Fe center attains a five-coordinate, square pyramidal
geometry, supported by the porphyrin donor atoms and an axial labile site occupied by water in
the resting state.”?® As described below, small-molecule mimics of these enzymes have adopted

similar primary coordination sphere features of their active sites.

ASP159

-

HIS16 q‘.
GLN143} L,
—
B

Figure 11. A. Active site of human MnSOD (PDB INOJ, ref. 227). Adapted with permission
from ref. 22°. Copyright 2010 Elsevier Inc. B. Active site of human catalase (PDB 1DGF, ref. 229).
Adapted with permission from ref. 230. Copyright 2000 Elsevier Inc.

4.1. Mn(III) Porphyrins

A very common class of small-molecule SOD mimics are Mn(III) porphyrin complexes.

The Mn(III) porphyrin, AEOL 10150 (23, Chart 11), was investigated in various clinical trials for
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its application as a catalytic antioxidant, displaying both SOD and catalase activities.??!2%

Compound 23 was protective in an in vitro model of neuronal oxygen-glucose deprivation and was
also able to decrease the brain infarct size in mice subjected to an ischemic stroke model.?*® Other
Mn(III) porphyrins (24-25, Chart 11) were found to attenuate the infarct size of ischemic brain
tissue of rats.>’’ These protective effects correlated with decreased ROS levels in the brain,
indicating that their catalase and SOD activities are responsible for ameliorating the effects of IRI.
Notably, the administration of these complexes both before and after the reperfusion gave rise to

protective effects, suggesting that depletion of ROS can be therapeutic even after the IRI event.

25 26

Chart 11. Structures of SOD/catalase mimics that showed attenuation of neuronal IRI.23¢23°
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Modifying the substituents of the porphyrin provides a versatile means of altering and
improving the catalytic activities and therapeutic potentials of their Mn(III) complexes. Adding V-
hexylpyridinium substituents onto the porphyrin (26, Chart 11) led to the discovery of a MnSOD
mimic that has a rate of O>*" dismutation on the same scale as native SOD enzymes.?*’ This
dramatic increase in rate compared to compounds 24 and 25 suggested that this complex afforded
significant promise for IRI. Researchers thus investigated the ability of this complex to attenuate
the effects of IRI ex vivo with primary renal tissue®*® and in vivo, examining the effects of IRI on
the spinal cord, with adult female rats.?*’ In the ex vivo model, a dose of 50 pg kg™' of 26 for 30
min followed by a 40 min ischemic period and an 18 h reperfusion period showed minimal
protection in renal tissue, but treatment with 26 for 24 h showed significant reduction in tissue
damage (Figure 12).°® Longer pretreatment periods of 26 afforded a greater attenuation of
damage in the in vivo spinal cord model, indicating that the presence of this compound during the
IRI event was vital. The measurement of ROS within the relevant tissues of the treated animals
revealed them to be lower than those within untreated animals, supporting that the therapeutic

activity of 25 is mediated by its antioxidant properties.

32



Sham I/R I/R + MnP I/R + MnP
(30 min)

PAS

Nitrotyrosine

Figure 12. Renal tissue that has been stained with periodic acid-Schiff (PAS) and an anti-
nitrotyrosine antibody after IRI (I/R) with and without pretreatment of 26 (MnP). Sham = No IRL
PAS staining demonstrates the presence of polysaccharides in tissue and was used to examine
histopathological changes. The anti-nitrotyrosine antibody staining detects nitrotyrosine, a
metabolite of tyrosine that arises from oxidative nitration (dark staining surrounding damaged
white space within tissue). In both cases, the even distribution of the PAS stain is characteristic of
undamaged tissue, whereas white regions indicate significant morphological damage.
Furthermore, the lower intensity of the nitrotyrosine staining within the treated mice indicate less
oxidative nitration occurred. Reproduced with permission from ref. 238. Copyright 2007 Elsevier
Inc.

4.2. Salen and Macrocyclic Complexes

The well-known tetradentate Schiff base salen ligands afford metal complexes with SOD
and catalase activities.>*"**> Two such Mn(III) salen complexes, EUK-8 (27, Chart 12) and EUK-
134 (28, Chart 12), possess exceptional SOD and catalase activities>*>?* that have been leveraged
for a variety of biological applications.?**2” Notably, these compounds have been applied for the
management of IRI in various models and conditions.?**2%* Compound 27 was found to preserve
normal cardiac and mitochondrial function in rats subjected to IRI.>** Compound 28 was able to
decrease the size of the brain infarct size in rats subjected to an ischemic stroke more effectively
than compound 27, indicating that the methoxy groups improved the therapeutic potential,

presumably due to the higher catalase activity of 28 compared to 27.2%
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27 28

Chart 12. Structures of EUK-8 (27) and EUK-134 (28), salen Mn(Ill) complexes that can
attenuate the effects of TRI.24%*30

A series of pentaazamacrocyclic complexes of Mn(1I) are also effective SOD mimics.?>*5
Most notably, the compound M40403 (29, Chart 13)?°%27 has progressed to clinical trials for the
treatment of various pathological conditions related to elevated levels of ROS.?** 6! This complex
has specifically demonstrated protective effects against models of IRI. Treatment of rats exposed
to ischemia and sequential reperfusion periods with compound 29 led to smaller myocardial infarct
sizes at concentrations of 1 mg kg ! or higher.?* In addition, the compound SC-52608 (30, Chart
13)%% has shown a significant protective effect against IRI in both isolated rabbit hearts*** and an
in vivo model of myocardial IRI within dogs.?®> In both models, the myocardial infarct sizes were

significantly smaller within those treated with 30 compared to the control.
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Chart 13. Structures of M40403 (29) and SC-52608 (30), macrocyclic Mn(Il) mimics of
SOD/catalase that protect against IR1.2°6-237-263
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A general limitation of many SOD mimics arises from their production of H>O». If their
catalase activity is not sufficiently fast to further decompose H>O», this ROS can undergo redox
chemistry with intracellular Fe, which catalyzes the Fenton reaction and produces highly toxic
HO* 26627 Ayoiding the production of HO® can be achieved by a more rapid succession of catalase
activity, a feature that is lacking in the some of the prior Mn complexes discussed, limiting their
therapeutic potentials.?%® A recent study described a trinuclear Mn(I1I) salen complex, supported
by a cryptand-like ligand (31, Chart 14).2% This complex showed catalase activity and was able
to decrease H20: levels in vitro without producing HO®. Based on these promising results, this
complex was evaluated in an in vivo ischemic stroke model. In rats treated with 31 via
intracerebroventricular injection, the size of the brain infarct, as measured by postmortem TTC
staining and in vivo '*F-fludeoxygluclose ([\*F]JFDG) positron emission tomography (PET), was
significantly smaller than that in the untreated rats (Figure 13). Additionally, the large magnetic
moment of the trinuclear compound 31 enabled its use as a MRI contrast agent. Compound 31
could be directly detected via MRI and was shown to be present throughout the brain with this
imaging technique. The dual antioxidant and imaging properties of 31 could render it valuable as

a theranostic agents and further highlights the value of Mn complexes as MRI contrast agents.>’%27!
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Chart 14. Structure of a salen-based, tri-Mn metallocryptand (31) with protective effects against
ischemic stroke.?®
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Figure 13. a) Schematic of the operation and procedure of ischemic stroke and
intracerebroventricular injection (2 mM). b) Biodistribution of compound 31 (shown as 1 in the
figure) by MRI after surgery. ¢) PET images of rat brain following tail vein injection of ['*F]FDG
after treatment with 31. d) Coronal brain sections of rats stained with TTC in the absence of IRI,
with IRI, no treatment (DMSO), and treatment of compound 31 (1) and a mononuclear Mn-salen
(1c). e) Calculated brain infarct volumes under conditions described in (d). Reproduced with
permission from ref. 269. Copyright 2020 American Chemical Society.
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5. Conclusions

In this Perspective, we examined the potential of metal coordination complexes as
therapeutic agents for IRI. Given the current lack of clinically approved preventative measures for
this condition, bioinorganic chemists can play an important role in this area by targeting the well-
defined therapeutic strategies discussed in this manuscript. An important commonality between
these three therapeutic approaches is that metal coordination complexes have unique properties
that make them amenable for these applications. The release of CO, H»S, and NO from metal
coordination complexes is a well validated strategy to deliver these compounds in biological
settings because of the strong ligating properties of these gasotransmitters. Furthermore, stopping
»Ca®" overload, another therapeutic approach for the prevention of IRI, is accomplished by
blocking the MCU. In this context, the best inhibitors for the MCU are multi-metallic Ru and Os
complexes, and these have been demonstrated to successfully prevent cell death caused by IRIL
Various MCU inhibitors have been developed,?’* but not very many of these have been tested in
models of IRI. Examining these complexes and others not yet reported can continue to expand this
area. Finally, ROS scavengers have shown significant promise as therapeutic agents against IRI.
In this case, metal complexes are uniquely suited for this application based on their ability to

reversibly cycle through different oxidation states to catalytically decompose ROS.

The complexes all described within this Perspective exhibit protective effects against
different models of IRI. The majority of these drug candidates have only yet been tested in vitro,
with several key examples of compounds that have been evaluated in vivo and even in humans.
Obviously, complexes in these latter categories have substantially more promise for further clinical

advancement. Compound 12 has been used clinically for the management of blood pressure?’>-276
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and has recently been explored clinically for the treatment of IRL'® This study, although
promising towards the treatment of IRI, did not show a consistent outcome in patients, indicating
that further clinical studies need to be performed. The Mn SOD mimics 23%*'"23% and 29%°% 26! have
been investigated in clinical trials for a wide range of conditions, but have not yet been tested
clinically for IRI. The strategy of MCU inhibition is the only approach presented in this manuscript
that has not yet been applied in humans. The lack of work in this area may arise as a consequence
of the fact that the MCU was only conclusively identified in 2011,'%>!%% and as such it represents
a relatively new drug target. In addition, as noted in Section 3, a major hurdle for the metal-based
MCU inhibitors that must be overcome before human trials can be considered arises from their
dose-limiting seizure-inducing activities within mouse models. Because ongoing studies suggest

277 efforts are required to improve their selectivity

that this property arises from off-target effects,
for the MCU in order to minimize their abilities to induce seizures. Therefore, like any drug
candidate, improving the therapeutic window is an important objective for their advancement to
clinical trials. In any case, this Perspective has shown that the groundwork for preventative

strategies against IRI has been laid, and metal complexes have an important role in the

management of this condition moving forward.
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SYNOPSIS

Metal coordination complexes can be leveraged as therapeutic tools against ischemia-reperfusion
injury through the mechanism of three unique strategies: gasotransmitter delivery, mitochondrial

calcium overload prevention, and the scavenging of reactive oxygen species.
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