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Abstract—There is growing interest in emotion recognition due to its potential in many applications. However, a pervasive challenge is
the presence of data variability caused by factors such as differences across corpora, speaker’s gender, and the “domain” of expression
(e.g., whether the expression is spoken or sung). Prior work has addressed this challenge by combining data across corpora and/or
genders, or by explicitly controlling for these factors. In this work, we investigate the influence of corpus, domain, and gender on the
cross-corpus generalizability of emotion recognition systems. We use a multi-task learning approach, where we define the tasks
according to these factors. We find that incorporating variability caused by corpus, domain, and gender through multi-task learning
outperforms approaches that treat the tasks as either identical or independent. Domain is a larger differentiating factor than gender for
multi-domain data. When considering only the speech domain, gender and corpus are similarly influential. Defining tasks by gender is
more beneficial than by either corpus or corpus and gender for valence, while the opposite holds for activation. On average, cross-
corpus performance increases with the number of training corpora. The results demonstrate that effective cross-corpus modeling
requires that we understand how emotion expression patterns change as a function of non-emotional factors.

Index Terms—Emotion recognition, cross-corpus, multi-task learning

1 INTRODUCTION

MOTION plays an important role in our perception,

attention, memory and decision-making processes [1].
Emotion is not only crucial in human-to-human communi-
cation, but also vital in human-computer interaction [2]. For
example, Reeves and Nass found that people tend to treat
computers as if they are intelligent and emotion-aware [3].
This demonstrates a growing need for agents imbued with
proper affective behavior and affective understanding in
areas such as interactive robots, story telling agents, compu-
tational medical assistants and computer games [4], [5]. One
challenge that arises in these real use cases is the presence
of variations in emotion expression that occur naturally in
the wild, caused by factors including speaker characteris-
tics, languages, lexical content, noise level and recording
conditions. Researchers have approximated this challenge
by performing cross-corpus analyses [6], [7], [8], [9], [10]
and have demonstrated the efficacy of using multiple train-
ing corpora for enhancing cross-corpora robustness [6], [8].
However, it is not yet known how to best take advantage of
the variability introduced by these training corpora.

e B.Zhang and E. Mower Provost are with the University of Michigan, Ann
Arbor, MI 48109. E-mail: {didizbq, emilykmp)@umich.edu.

o G. Essl is with the University of Wisconsin-Milwaukee, Milwaukee, WI
53211. E-mail: essl@uwm.edu.

Manuscript received 18 Apr. 2016; revised 16 Oct. 2016; accepted 20 Feb.
2017. Date of publication 19 Mar. 2017 date of current version 7 Mar. 2019.
Recommended for acceptance by J. Epps.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TAFFC.2017.2684799

There are additional sources of variation that emotion
recognition systems need to handle, such as “domain” (e.g.,
whether the expression is spoken or sung) and gender.
Emotion recognition from song and speech are often consid-
ered separately. However, our previous work found that
one can achieve higher accuracy when training classifiers
that allow for information sharing between domains [11].
On the other hand, while most works in emotion recogni-
tion use gender-independent systems [12], [13], [14], previ-
ous studies have shown that gender-dependent models
outperform those that are gender-independent [15], [16],
[17]. This suggests that there exist similarities in emotion
expression across domains [11] and genders [12], [13], [14],
and that the performance of systems increases when con-
trolling for the pervasive differences across the two factors
[11], [15], [16], [17].

Most of the previous work in audio emotion recognition
addresses the variations caused by corpus, domain and gen-
der differences in two ways: (a) increasing the variations in
the training data, such as merging multiple corpora during
training [6], [8]; (b) controlling for particular sources of vari-
ation in the training data, such as training gender-depen-
dent models [17] or training multiple corpus-specific
classifiers and performing late fusion [8]. While multi-task
learning has been demonstrated to be useful in affect recog-
nition from visual input [18], [19], [20], its effectiveness on
audio emotion recognition is under-explored. In this work,
we investigate the influence of corpus, domain, and gender
on emotion recognition by combining (a) and (b) using
multi-task learning. We hypothesize that we will obtain a
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Fig. 1. System diagram for the proposed classification framework, including the: (a) training phase and (b) testing phase. In the simple model, only
one classifier is built using all the training data and only one label is generated. In all other models, either T classifiers are trained (ST) or one classi-
fier with T classification tasks is trained (MTL, GMTL and MTL-KDG). T labels are output for each test case and are fused to determine the final label.
ST: separate-task model, MTL: multi-task learning model, GMTL: group multi-task learning model, MTL-KDG: multi-task learning with knowledge-

driven grouping.

more accurate emotion recognition system, compared to
(a) and (b), by seeking common ground across different fac-
tors, while preserving the differences in the learned emotion
patterns associated with a specific corpus, domain, gender,
or their combination. In this paper, multi-task learning
refers to jointly training multiple tasks, which contain non-
overlapping sets of instances that share a same set of labels.

We explore five models to test our hypothesis: (1) a sim-
ple model, where we train a single classifier using all the
data; (2) a separate-task (ST) model, where we train task-
specific classifiers individually; (3) a multi-task learning
(MTL) model, where all the tasks are considered related; (4)
a group multi-task learning model (GMTL), where only the
intra-group relatedness is assumed and the task grouping
is learned with task-specific weights; (5) a multi-task learn-
ing with knowledge-driven grouping (MTL-KDG) model,
where the group is pre-defined based on knowledge instead
of learned as in (4). The first two models are our baselines
because they have been shown to be useful for cross-corpus
emotion recognition that considers corpora as tasks [6], [8].
This paper extends our previous work that investigated the
impact of domain and gender on cross-corpus emotion rec-
ognition, using the simple, ST, MTL and GMTL models
[21]. In this paper, different experimental settings, addi-
tional models and experiments are used. Fig. 1 illustrates
the training and testing phase of the proposed methods.

We present two sets of experiments: Experiment 1 investi-
gates the influence of domain and gender using two cross-
domain emotion datasets and Experiment 2 explores the
influence of corpus and gender using four speech emotion
datasets. We do not conduct an experiment with all three fac-
tors because the data are insufficient for decoupling domain
and corpus in experiments using cross-corpus evaluation. In
our experiments, the training data are separated into subsets
according to corpus, gender, or domain, where each subset is
treated as a task. We perform weighted majority voting to
fuse the test labels output by the tasks, where the votes are
weighted by a measure of confidence, as in [21].

We find that variations in corpus, domain, and gender all
influence emotion recognition. In general, models using
multi-task learning methods outperform models that treat
the tasks as identical or independent. Data-driven grouping
is better than or comparable to knowledge-driven grouping.
Domain is a larger differentiating factor than gender when

multiple domains are involved, while gender is as impor-
tant as corpus for single domain data (i.e., speech). Defining
tasks by gender is more beneficial than by corpus or both
corpus and gender for valence, while the opposite holds for
activation. On average, the system performance increases
with the number of training corpora. The novelty of this
paper includes: (1) an analysis of the benefits of multi-task
learning in cross-corpus emotion recognition, with tasks
defined by corpus, domain and/or gender; (2) an explora-
tion of effective ways to define tasks for valence and activa-
tion; (3) an examination of the influence of sparsity on
different feature spaces; (4) a comparison of knowledge-
driven and data-driven task grouping.

2 RELATED WORKS

2.1 Cross-Corpus Emotion Recognition

Applications of emotion recognition face many challenges,
including differences in the acoustic properties of speech
due to variations across individuals and recording condi-
tions, among others [6]. Growing attention has been paid to
cross-corpus generalizability in speech emotion recognition.

Shami et al. [22] evaluated the generalizability of a seg-
ment-based speech emotion recognition method across two
corpora, using three settings: within-corpus, cross-corpus,
and integrated-corpus (i.e., merging corpora for training
and testing). They found that cross-corpus performed the
worst, but integrated-corpus was more accurate than
within-corpus. Lefter et al. [7] found that cross-corpus per-
formance was higher than within-corpus performance
when the intra-corpus training set was very limited, and
integrating multiple corpora during training was beneficial.
These findings suggest that there are differences between
corpora, but that common ground also exists.

Schuller et al. [6] assessed the cross-corpus performance
of emotion classification using four normalization methods
(i.e., speaker-level, corpus-level, speaker-and-corpus-level,
and no normalization) and found that speaker-level normal-
ization performed the best. They also found that cross-
corpus performance could be improved by selecting data-
sets that have large distances between class centers, or
selecting instances that are close to class centers [9]. Lefter
et al. [23] found that in cross-corpus evaluation, corpus-
level normalization was better than normalizing based on
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the neutral instances of each corpus and that upsampling
the sparse class had a positive effect. Vlasenko et al. [24]
proposed a phoneme-based emotion classification system
and achieved the state-of-the-art cross-corpus performance
on two German emotion datasets.

Some works have focused on cross-corpus adaptation.
Shah et al. [25] proposed two cross-corpus adaptation meth-
ods: (1) removing training instances that are classified incor-
rectly according to the development set in the test corpus;
(2) penalizing the distance between the weights learned on
the training corpus and on the development set in the test
corpus. They found that both methods increased cross-cor-
pus performance. Abdelwahab and Busso [26] investigated
two variants of Support Vector Machines (SVM) for domain
adaptation: adaptive SVM and online SVM. They found
that for both methods, a significant performance gain could
be achieved using only a small portion of the data from the
target corpus for adaptation. Similar findings were made in
[27] using a domain adaptation method based on the idea of
sharing priors between related classes of the source and the
target corpora. Song et al. proposed transfer learning var-
iants of two feature learning algorithms: Maximum Mean
Discrepancy Embedding [10], and Non-negative Matrix Fac-
torization [28]. They demonstrated the effectiveness of their
proposed methods for cross-corpus evaluation on three
speech emotion datasets.

Previous works have also investigated methods of
enhancing the cross-corpus performance of speech emotion
recognition using multiple training corpora. Schuller et al.
[8] proposed two methods: (1) merging multiple corpora for
training; (2) training one classifier on each of the available
training corpora, and fusing the results using majority vote.
They showed that both methods improved cross-corpus gen-
eralizability, although the preferred method varied across
test corpora. In the contrast, Lefter et al. [23] found that for
the recognition of negative interaction, training on two
merged datasets produced a slightly lower performance
than the best performance of training on each dataset sepa-
rately. Zhang et al. [29] found that adding unlabeled data to
merged multi-corpus training data increased the perfor-
mance of cross-corpus emotion recognition. However, the
increase was only approximately 50 percent of the increase
brought by adding labeled data.

2.2 Variations in Domain

Although speech and music emotion recognition have tradi-
tionally been investigated separately [4], [30], [31], [32],
research has demonstrated that there are similarities
between music and speech emotion perception and expres-
sion. Juslin and Laukka [33] conducted a meta-analysis and
found that there are similar patterns in some acoustic fea-
tures of music and speech emotion expressions. For exam-
ple, tempo and voice intensity often decrease in sadness
and tenderness. Ilie and Thompson [34], [35] found that
altering certain acoustic features in music and speech led to
similar emotion perception. For example, fast tempo was
associated with greater energy in both music and speech.
Scherer et al. [36] found a high degree of similarity in the
patterns of sung and spoken expressions of emotion.
Livingstone et al. [37] found that emotion was expressed
similarly in many acoustic cues across the two domains, but

that there were also differences in acoustic signals such as
vocal loudness, spectral properties and vocal quality [37].

More recently, there has been work recognizing emotion
across domains. Coutinho et al. [38] predicted the emotion of
music and speech across domains by transferring the feature
space. Their results suggested that models trained on one
domain could be adapted to the other domain, with a
decrease in performance. Our previous work [39] predicted
the emotion perception associated with sung and spoken
emotion using within- and cross-domain settings. We found
that activation was perceived more similarly across domains,
compared to valence, and that visual features could better
predict emotion perception across domains compared to
acoustic features. We explored methods of recognizing emo-
tion from speech and song using a shared model [11]. We
showed that multi-task learning, with song and speech as
the two tasks, brought benefits to emotion classification for
both domains. This suggested that emotion recognition from
speech and song can be considered together.

2.3 Variations in Gender
Most research in audio emotion recognition has focused on
gender-independent models [12], [13], [14]. However,
researchers have analyzed gender variations in emotion rec-
ognition. Brendel et al. [40] measured similarity between
emotional corpora or sub-corpora of different genders using
four similarity measures: recognition rate, correlation,
groups of features and feature-ranks. They found that the
data were less similar across genders than across corpora
when using recognition rate and correlation as measures,
yet the opposite held when the latter two measures were
used. This suggested that the differences between genders
could be as large as the differences between corpora.
Alghowinem et al. [41] found that the best features for
detecting depression from speech were different for females
and males. For example, log energy and shimmer were the
most important for females, while loudness was the best
feature for males. Vlasenko et al. [42] applied context
dependent vowel-level analysis based on gender-dependent
features to emotion classification. They showed that the sys-
tem could detect high-arousal emotions accurately.
Ververidis and Kotropoulos [15] selected relevant fea-
tures for each gender separately and trained gender-depen-
dent classifiers. Their results showed that the classification
accuracy of gender-dependent classifiers was higher than
that of a gender-independent classifier. Vogt and André
[17] combined gender detection and gender-dependent
emotion recognition into a two-stage system. They found
that their system increased the emotion recognition rate by
2-4 percent, compared to gender-independent emotion rec-
ognition system. Similar observations were made in [43].

2.4 Multi-Task Learning in Affective Computing

Researchers have investigated the effectiveness of multi-task
learning for facial and body gestural emotion recognition.
Romera-Paredes et al. [18] predicted pain level from facial
expression and muscle activity from body gestures by apply-
ing multi-task learning in a transfer learning setting (MTL-
TL), with subjects as tasks to account for idiosyncrasy. They
showed that the proposed model outperformed models
without MTL-TL. Another paper [44] proposed a multilinear
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TABLE 1
Dataset Details of UMSSED and RAVDESS
Dataset Language Lexical Type Performer-level Utterance-level
Content #All #F #M #All #A #H #N #S #F #M #So #5Sp
UMSSED English fixed acted 3 1 2 168 42 42 42 42 56 112 84 84
RAVDESS  English fixed acted 23 11 12 1,288 368 368 184 368 616 672 644 644

F: Female; M: Male; A: Angry; H: Happy; N: Neutral; S: Sad; So: Song; Sp: Speech

multi-task learning method, and showed its effectiveness on
synthetic and real data, including recognizing the intensity
of facial action units (AUs) associated with pain, with sub-
jects and AUs as tasks in a tensor structure. With the same
task definition, Almaev et al. [19] proposed a MTL-TL frame-
work, and showed that it performed well even only with lim-
ited labeled data for the target tasks. Shields et al. [20] added
multi-task component to the Conditional Restricted Boltz-
mann Machines (CRBM). They showed that jointly recogniz-
ing action, affect, and gender using their proposed model
improved the performance of each task, compared to tradi-
tional CRBM and other baseline methods.

Related work has indicated that there exist both differen-
ces and similarities across corpora, domains, and genders for
emotion recognition. In addition, multi-task learning meth-
ods have been demonstrated effective in visual affective com-
puting. However, most works in audio emotion recognition
either concentrated on increasing data variability (e.g., merg-
ing of multiple corpora as the training set), or focused on con-
trolling for variability (e.g., separate classifiers for each
available training corpus, gender-dependent classifiers). The
design of classification approaches that leverage common
ground across different corpora, domains, and genders while
preserving the inherent differences is still under-explored.

3 DATASETS

The number of publicly available emotion datasets has con-
tinued to grow along with the popularity of the field. Early
datasets in emotion recognition, such as the Berlin Emo-
tional Speech-Database (EmoDB) [45] and the Danish Emo-
tional Speech Corpus [46], were recorded in laboratory
environments with fixed lexical content and acted emotions
[6]. The field has recognized the importance of modeling
natural behaviors and have introduced new datasets that
capture natural displays of affect, including human-robot
interaction (e.g., FAU Aibo [47]), or recordings taken from
public media (e.g, VAM [48]). Researchers have also
focused on emotion induction as a technique to elicit emo-
tional behaviors (e.g., SEMAINE [49], [50]). Recent acted
datasets have included altered elicitation protocols to
increase naturalness, for example, using improvisation (e.g.,
IEMOCAP [51]), increasing the diversity of speakers’ cul-
tural backgrounds (e.g., eNTERFACE [52]), or including
additional domains (e.g., RAVDESS [53]).

We select six datasets covering different types of emotion
(acted and spontaneous), languages (English and German)
and domains (speech and song) to investigate the cross-
corpus generalizability of our proposed methods. We con-
duct two sets of experiments concentrating on the variations
caused by: (1) domain and gender, and (2) training corpus
and gender. In (1), we use the University of Michigan
Song and Speech Dataset (UMSSED) [39] and the Ryerson

Audio-Visual Database of Emotional Speech and Song (RAV-
DESS) [53], as they are the only available emotion corpora
that contain both speech and song. These experiments use
categorical emotion labels. In (2), we use EmoDB and the
eNTERFACE dataset to represent acted emotion in German
and English, respectively, and the Vera am Mittag German
Audio-Visual Emotional Speech Database (VAM) and the
AVEC (2011) corpus [54], [55] to represent spontaneous emo-
tion, again in German and English, respectively. These
experiments use binary labels of valence (negative versus
positive) and activation (calm versus excited). The meta
information about the datasets can be found in Tables 1 and 3.

UMSSED contains audio-visual recordings of song and
speech with fixed sentences, produced by three performers.
During recording, each sentence was embedded into four
passages that were intended to evoke anger, happiness,
neutrality, and sadness. For the song recordings, each sen-
tence is accompanied by a unique melody that is the same
across the four emotional variations. The final dataset con-
tains 168 utterances. We use the emotion target provided to
the actors to match the labels available in RAVDESS. See
[39] for additional details.

RAVDESS contains emotional audio-visual recordings of
song and speech with fixed lexical content, collected from
24 performers. The six emotions for song are neutrality,
calmness, happiness, sadness, anger, and fear. There are
two additional emotions, disgust and surprise, for speech.
The data were collected at two emotional intensities (except
for the class of neutrality). Three melodies were composed
for positive, neutral, and negative emotions for the singing
performances. We only use utterances with anger, happi-
ness, neutrality, and sadness to match UMSSED. We drop
one performer with missing data. This results in 1,288 utter-
ances. We use the target emotion labels because the percep-
tion evaluations had not been fully released at the time of
this experiment. More details can be found in [37], [53], [56].

EmoDB consists of audio recordings of 10 German speak-
ers reading lexically neutral sentences in seven emotions:
anger, boredom, disgust, fear, joy, sadness and neutrality.

TABLE 2
Mapping from Categorical Emotions to
Binary Valence and Activation

Emotion Appearance Valence Activation
Anger EmoDB, eNTERFACE - +
Happiness EmoDB, eNTERFACE + +
Neutrality EmoDB + -
Sadness EmoDB, eNTERFACE - -
Fear EmoDB, eNTERFACE — +
Disgust EmoDB, eNTERFACE - —
Surprise eNTERFACE + +
Boredom EmoDB - -
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TABLE 3
Dataset Details of EmoDB, eNTERFACE, VAM and AVEC

Dataset Language Lexical Type Speaker-level Utterance-level

Content #All #F #M #All #V(H+) #V(-) #AGH) #A(-) #F #M
EmoDB German fixed acted 10 5 5 493 142 351 246 247 286 207
eNTERFACE English fixed acted 43 9 34 1,287 427 860 857 430 270 1,017
VAM German natural ~ spontaneous 47 36 11 947 72 875 445 502 751 196
AVEC English natural spontaneous 16 10 6 2,368 1,534 834 1,280 1,088 1,620 748

F: Female; M: Male; V: Valence; A: Activation

The utterances were labeled using the target emotion. Utter-
ances with a recognition rate higher than 80 percent and nat-
uralness higher than 60 percent during human evaluation
were kept. This results in 493 utterances. We map the seven
categorical emotions to binary valence and activation labels
(see Table 2), following [6], [8], in order to match the labels in
VAM and AVEC. More details can be found in [45].

The eNTERFACE dataset consists of speech with fixed lex-
ical content in six emotions: angry, happy, fearful, sad, dis-
gust, and surprise. The emotions of speakers were elicited
by short stories during the recording. The released dataset
contains audio-visual recordings of 44 speakers from
14 different nations that were assessed as emotionally
unambiguous by two experts. In this paper, we drop the
data of speaker number 6 because the recordings are not
segmented. This results in 1,287 utterances from 43 speak-
ers. Again, the categorical emotions are mapped to binary
valence and activation (Table 2). See [52] for more details.

VAM consists of spontaneous emotional speech from a
German TV talk-show. We use the VAM-Audio portion of
the corpus, which contains audio recordings from 47 speak-
ers that were evaluated as “very good” or “good” by human
evaluators in terms of the usability for emotion analysis. The
recordings were provided as utterances, which are mostly
complete sentences, but also include some exclamations,
affect bursts, and incomplete sentences, because of the spon-
taneous nature of the data. This results in 947 utterances. The
utterances were continuously labeled by human evaluators
(17 for speaker 1-19, 6 for speaker 20-47) on valence, activa-
tion and dominance (weak versus strong). In this paper, we
use only the valence and activation evaluations. We take the
sign of the mean valence and mean activation of each utter-
ance as the binary labels, following the process in [8]. See
[48] for more details about the VAM corpus.

AVEC (2011) was created from the Solid-SAL partition of
SEMAINE [49], [50]. It contains interactions between users
and four emotionally stereotyped characters played by
human operators. In this paper, we use the training and
development set of AVEC. This results in 63 sessions, where
each session is the interaction between a user and a charac-
ter. Each interaction was fully transcribed, and was anno-
tated by at least two raters along the dimensions of valence,
activation, expectation (expecting versus being taken
unaware) and power (weak versus strong). Binary word-
level labels are provided for each dimension. In this work,
we use the valence and activation dimensions. We segment
the recordings data into turns and generate the turn-level
emotion labels from the word-level labels using majority
vote. Additional information about the AVEC and SEM-
AINE datasets can be found in [49], [50], [54], [55].

4 CLASSIFICATION MODELS

We present five classification models: the simple model,
separate task (ST) model, multi-task learning (MTL) model
[57], [58], group multi-task learning (GMTL) model [59],
and multi-task learning with knowledge-driven grouping
(MTL-KDG) model [57], [58]. We define a task as emotion
recognition using data from a specific factor (e.g., a corpus),
or a specific combination of two factors (e.g., a corpus-
gender pair). The five classification models correspond to
five different assumptions about the tasks. The simple
model assumes that the tasks are identical, and merges data
from all the tasks for training. The ST model sees the tasks
as independent, and trains a separate classifier for each
task. The simple and ST models are similar to the “pooling”
and “voting” strategies in [8], respectively, if we consider
each corpus as a task. Therefore, we use simple and ST as
baselines in our experiments. The MTL model assumes that
the tasks are related and share a common sparse feature
representation. The GMTL model assumes that the tasks
can be clustered into groups, and only intra-group informa-
tion sharing is allowed. Finally, the MTL-KDG model
assumes that information is shared within a group, but it
predefines groups based on knowledge such as domain,
gender, or corpus, instead of learning the groups from data.

We use linear Support Vector Machine (SVM) in the simple
and ST models, as in previous cross-corpus emotion recogni-
tion works [6], [8], [9]. We adopt two types of regularization:
Ly-regularization ([6], [8], [9]), and L,-regularization, which
assumes sparsity of the features. The MTL model and each
group of tasks in the MTL-KDG model use the multi-task fea-
ture learning algorithm [57], [58]. The GMTL model uses the
group multi-task learning algorithm [59]. These two algo-
rithms are used in our prior work [21]. Details on the two
algorithms are provided in the following sections.

4.1 Multi-Task Feature Learning

The multi-task feature learning algorithm [57], [58] learns a
common feature representation across tasks using the
Ly ;-norm regularization, which enforces sparsity of the fea-
tures across tasks. There are two settings of this algorithm:
(a) feature learning (FL) and (b) feature selection (FS). The
major difference between them is that in (a), the Ly ;-norm
regularization is imposed on a transformed feature space,
while in (b) the regularization is imposed directly on the
original feature space.

The objective function of setting (a) is given by Eq. (1). It
is assumed that the weight matrix, W, whose column vec-
tors are the weights w; of individual tasks, can be rewritten
into W = UA, where UTU =T (identity matrix) and A is the
weight matrix for a transformed feature space.
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Eq. (1) contains two terms: the loss term (first) and the
regularization term (second). The loss term is the summa-
tion of the loss, L(.), across T tasks. Here, m, is the number
of training instances in task ¢, y; € {—1,1} is the label of the
sth instance in task ¢, a; is tth column of A, xy is the ith train-
ing instance of task ¢, and < > stands for inner product.
The regularization term is the product of the regularization
parameter y and the squared L -norm of A. Ly;-norm is
defined as the L;-norm of the vector produced by taking the
Lo-norm of each row of A.

Setting (b) is a special case of (a). In (a), U and A are
learned together from the data, while in (b), we force U = I.
In this way, the “feature learning” in (a) reduces to the spe-
cial case of “feature selection” in (b) [57], [58].

The problem given by Eq. (1) is non-convex. However,
[57], [58] proved that it has an equivalent convex form that
can be solved by iteratively minimizing over W (Eq. (2))
and a d x d matrix D, where d is the dimensionality of the
input features. Specifically, we first initialize D to 7, and
then iteratively perform two steps:

Fix D, solve the task-specific optimization by Eq. (3).
Fix W, update D using Eq. (4) for setting (a) or Eq. (5)
for setting (b). The € in Eq. (4) is a perturbation
parameter used to ensure the convergence of the
problem. The w! in Eq. (5) denotes the ith row of V.
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Eq. (3) holds for any convex loss function. In this paper,
we choose the hinge loss (Eq. (6)) to match the linear SVM
used in the simple model and ST model, as in our prior
work [21]. Note that Eq. (3) with hinge loss is equivalent to
linear SVM with a variable transformation trick.

Ly, (W, xui)) = max(0, 1 — y1; (Wi, Xsi)).- (6)
4.2 Group Multi-Task Learning

Group multi-task learning [59] assumes that the tasks
belong to several groups that can be learned together with
task-specific weights. Only the tasks that are grouped
together share information. This method was built directly
on the multi-task feature learning algorithm above. In [58],
it was proved that the optimization problem given by
Eq. (1) is equivalent to Eq. (7), where ||W||t, = trace(WWT)

T my

manZL Ytis Wt7xtl>) + VHW”t'r ™

=1 i=1
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Analogous to Eq. (7), the objective function of group
multi-task learning becomes Eq. (8) given the group
assignments. Here, G is the number of groups. @, is a
diagonal matrix with diagonal entries being the binary
group assignment values for group g, and > @, = I. The
optimal G is not known a priori and is treated as a hyper-
parameter. When G =T, group multi-task learning is
equivalent to solving each task individually, and when
G =1, it is the same as the multi-task feature learning.

myg

mmZZL Yri, (Wi, X)) + J/Z HWQaHn ®

We = =

Eq. (8) is a mixed integer programming problem. It can
be solved by iteratively performing two steps:

e Fix Q, solve group-specific optimization given by Eq. (9).
W, = WQg, and g is the tth diagonal entry of Q,,.
e Fix W and solve for Q). See details in [59].

my
min Ly, (We, X)) + ¥I[Wyl5- ©)

Wy tiqg=1 i=1

The second step is non-convex, and the solution could
become stuck in a local optimum. We address this problem
by training multiple times and fusing the labels.

All other models, except for the simple model, learn a
different weight vector for each task. Therefore, there could
be T predicted labels for a given test instance. Although it is
common in the multi-task learning literature to assume
knowledge about the tasks of the test data [57], [58], [59], we
do not make this assumption. This is because: (1) it requires
additional information about the test data, which may not
be available in real applications; (2) the test data may not
strictly belong to any of the tasks (e.g., test data is from an
unseen corpus when using each training corpus as a task).
In this paper, we generate the final output label by weighted
majority vote, where each task gives a vote to the label it
outputs, weighted by the distance to the decision hyper-
plane. This method was demonstrated to outperform other
output selection or fusion methods in [21].

5 EXPERIMENTAL DESIGN

We designed two sets of experiments, both of which use
cross-corpus evaluation. Experiment 1 investigates the
influence of domain and gender on emotion recognition
using multi-domain data. Experiment 2 investigates the
influence of corpus and gender on emotion recognition
using speech data. We hypothesize that we can achieve bet-
ter performance by splitting data into tasks, and controlling
for the degree of information sharing between the tasks
using multi-task learning. We solve the linear SVMs using
Liblinear [60]. We use a fixed number of iterations as the
stop criteria for multi-task learning, as in [61], [62]. For
multi-task feature learning, we fix the number of iterations
to 20, according to [58]. For group multi-task learning, we
fix the outer-iteration to five as in the example code from
the author of [59], and the group-specific inner-iteration to
20. The detailed experimental settings are described below.

5.1 Experiment 1: Domain and Gender

We analyze the influence of domain and gender in experi-
ment 1 using four categorical emotion labels: angry, happy,
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neutral, and sad. We use RAVDESS for training and
UMSSED for testing, because UMSSED has very limited
number of instances and may not be sufficient for training.

We conduct three sub-experiments to understand the
impact of domain (1d), of gender (1g), and of the combina-
tion of domain and gender (1dg). Experiment 1d treats
expressions from speech and song as two tasks. We train
classifiers using the simple, ST and MTL models, which posit
three different relationships between the emotion expression
across domains: identical (simple), different (ST), or related
(MTL). Similarly, experiment 1g analyzes the impact of gen-
der, using female and male as tasks. Experiment 1dg focuses
on the joint influence of domain and gender. The four tasks
in experiment 1dg correspond to the four domain-gender
pairs. In addition to simple, ST and MTL, we train classifiers
with the GMTL and MTL-KDG models. Both models assume
that closely related tasks can be grouped together and can
share information. The difference is that the grouping in
GMTL is data-driven, while the grouping in MTL-KDG is
knowledge driven. In the MTL-KDG model, we group the
tasks by domain (denoted as MTL-GD) and gender (denoted
as MTL-GG), respectively. Experiment 1dg is similar to our
previous work [21], but has additional classification models
and different parameter tuning process. Note that the simple
model is the same across sub-experiments.

We solve the multi-class classification problem as the
combination of binary classifications using the one-against-
one strategy. For each pair of emotions, a binary label is pre-
dicted following the process in Fig. 1b. The final multi-class
label is generated from the six binary predictions of pair-
wise emotions using majority vote. We select the class with
the smallest index in the occurrence of ties.

We extract the 65 frame-level low-level descriptors
(LLDs) in the ComParE feature set [63] (see Table A.1 in the
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TAFFC.2017.2684799), using openSMILE [64]. We
remove unvoiced portions (where FO = 0) of the data, and
calculate nine statistics over the LLDs and ALLDs, including
mean, standard deviation, max, min, range, interquartile
range, mean absolute deviation, skewness and kurtosis.
This results in 1,170 utterance-level acoustic features. We
apply speaker-dependent z-normalization to the features,
because of its effectiveness in cross-corpus experiments [6].

We tune the hyper-parameters by maximizing the leave-
one-speaker-out (LOSO) cross-validation accuracy of the
training set, in the ranges below:

e Regularization parameter y (in simple, ST, MTL,
GMTL and MTL-KDG): {10~*,1073,...,10%}. Note
that y is equivalent to the cost parameter C for the
error term in linear SVM (simple and ST), where
C=1/(2xy).

e Permutation parameter ¢ (in FL setting of MTL,
GMTL and MTL-KDG): {10-%,1077,...,10%}.

e Number of Groups G (in GMTL): {1,2,...,T}.

5.2 Experiment 2: Corpus and Gender

In experiment 2, we analyze the influence of corpus and gen-
der on the binary (positive versus negative) classification of
valence and activation, using four speech emotion datasets.

We conduct three sets of sub-experiments, focusing on
the impact of corpus (2¢), of gender (2g) and of the combina-
tion of corpus and gender (2cg). In experiments 2¢c and 2g,
we train the simple, ST, and MTL models using corpora and
genders as tasks, respectively. Experiment 2cg investigates
the joint impact of corpus and gender, with each corpus-
gender pair as a task. In 2cg, we also train GMTL and MTL-
KDG in addition to simple, ST and MTL. We group the tasks
by corpus and gender for MTL-KDG, denoted as MTL-GC
and MTL-GG below. In each sub-experiment, we use one,
two or three corpora for training, and test on each of the
remaining corpora separately. Note that the simple model is
the same across all sub-experiments when the same training
corpora are used. When there is only one training corpus,
all models in 2c are identical to the simple model and exper-
iment 2cg is not performed.

In each sub-experiment, we compare the performance of
different models to test the underlying assumptions. We
compare the performance of ST and MTL across the sub-
experiments, to investigate the three ways of defining the
tasks (corpus, gender, or corpus-gender pair). In addition,
we compare the performance on the same test corpus when
using different numbers of corpora for training to investi-
gate the impact of adding additional training corpus.

As we have more data in experiment 2, we use a larger
feature set. We extract the “emo_large” feature set from
openSMILE, as in [8]. It consists of 6,669 features, generated
from 57 acoustic LLDs (listed in Table A.2 in the Appendix,
available online) by calculating 39 statistics over the LLDs,
ALLDs, and AALLDs. We apply speaker-dependent z-nor-
malization to the utterance-level features.

We use the same parameter ranges discussed in experi-
ment 1. We use 5-fold cross-validation, where the folds are
divided at speaker-level for each task to avoid overfitting to
known speakers. In the cross-validation process, we use
average UAR of the tasks as the performance measure if the
model contains more than one task, because the data are not
evenly distributed across the tasks.

6 RESULTS

6.1 Experiment 1: Domain and Gender
Table 4 shows the results in experiment 1, including
unweighted average recall (UAR) of the cross-corpus four-

class emotion classification, and the LOSO within-corpus
UAR.

6.1.1 Comparing Different Versions of the Models

There are two versions of each model: the L;-regularization
(L) and Lo-regularization (L) of the simple and ST models,
and the feature selection (FS) and feature learning (FL) set-
tings of the MTL, GMTL and MTL-KDG models. The UAR of
the two versions are shown in the first and second rows of
Table 4, respectively. For the simple and ST models, L;
assumes sparsity on the feature space, while L, does not. For
the MTL, GMTL and MTL-KDG models, FS assumes feature
sparsity on the original space, while FL assumes that there is
a transformed feature space where the features are sparse.
We compare L; versus L, and FS versus FL to investigate
whether a sparse representation on the original feature space
that generalize well can be found in multi-domain data.
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TABLE 4
Experiment 1. UAR of the Four-Class Clasification Task (%)

Cross-corpus

Version Simol Task: Domain Task: Gender Task: Domain-gender Pair Within-corpus
WP TsT MTL ST MTL ST MTL  GMTL  MTL-GD  MTL-GG

L,/FS 45.8 58.9 52.4 50.0 51.8 57.1 57.1 60.1 56.6 54.8 48.8

L,/FL 41.1 53.0 51.2 46.4 47.6 54.8 53.0 524 53.0 542 54.8

The chance performance is 25%. The overall best result is underlined. The best result within each sub-experiment is bolded. L,: L,-regularization; Ly: Ly-regular-

ization; FS: feature selection setting; FL: feature learning setting.

We find that in the cross-corpus results of experiment 1,
L consistently outperforms L, and FS consistently outper-
forms FL. These results support the assumption of feature
sparsity on the original feature space. The higher perfor-
mance of L; and FS may stem from the within-corpus nature
of the tasks. The training tasks share the same performers (in
exp. 1d), lexical content, and recording conditions. In addi-
tion, both datasets contain acted emotion in the same lan-
guage. This may increase the transferability of the sparse
feature representation learned from one corpus to the other.
The rest of the analyses on experiment 1 (Section 6.1) use L;
(simple and ST) and FS (MTL, GMTL and MTL-KDG).

6.1.2 The Influence of Model and Task Definition

When domain is used as the task (experiment 1d), ST
achieves the highest UAR. When gender is used (experi-
ment 1g), MTL achieves the highest UAR. This may indicate
that emotion is expressed more similarly across genders
than across domains. In other words, domain is a stronger
differentiating factor than gender. This is supported by
experiment 1dg, which shows that grouping the tasks by
domain outperforms grouping the tasks by gender.

The best performance is achieved in experiment 1dg with
GMTL. This suggests that it is beneficial to consider varia-
tions in both domain and gender. GMTL outperforms both
ST and MTL, indicating that the tasks separated by domain
and gender are partially related, and the close relationship
between the tasks only happens within group. Interestingly,
the data-driven grouping (GMTL) has higher UAR than the
knowledge-driven grouping (MTL-GD, MTL-GG). This
may suggest that closeness between the tasks does not
exactly correspond to the obvious grouping factors. Another
possible explanation is that GMTL has access to all training
instances, while in MTL-KDG, each classifier only has
access to the instances within a group (i.e., a single domain
for MTL-GD, or a single gender for MTL-GG).

6.1.3 Cross-Corpus versus Within-Corpus

The best cross-corpus UAR, 60.1 percent, is higher than the
best within-corpus UAR of UMSSED, which is 54.8 per-
cent. This performance difference is not significant when
tested using paired t-test on the per-performer UAR. This
may be due to the small number of performers in UMSSED
(three performers). However, using GMTL-FS with
domain-gender pairs as tasks improves the UAR of two
out of three performers by more than 8 percent. This indi-
cates that the proposed cross-corpus approach can outper-
form, or achieve comparable results to, models trained

using the within-corpus setting with limited data, despite
the corpus variations in performer, lexical and melodic
content, recording conditions and noise level.

6.2 Experiments 2: Corpus and Gender

In experiment 2, we analyze the binary classification results
of valence and activation on four speech emotion datasets.
We compare the performance between: (1) different assump-
tions on feature sparsity, (2) different training-testing combi-
nations, (3) different models while controlling for task
definition (e.g., corpus as the task), (4) different task defini-
tions while controlling for model, (5) different number of
training corpora while controlling for model and task defini-
tion, and (6) cross-corpus and within-corpus.

We use a repeated measure model (denoted as RM) with
mixed factors for the comparisons. We treat the test corpus
(e.g., EmoDB) as the between-subject factor because there
are multiple experiments run on each test corpus. Thus, the
overall set of results has underlying dependencies. The
within-subject factors (denoted as WSF) include: version
(e.g., Li-regularization), model (e.g., ST), task definition
(e.g., gender), and number of training corpora.

After fitting the results into an RM, we perform the
repeated-measure ANOVA (denoted as RANOVA) for each
dimension (i.e., valence and activation). If the WSF is signifi-
cant, we perform the Tukey’s honest significant difference
test (denoted as Tukey test), which is a pairwise comparison
between different values of the WSF using the model statis-
tics of RANOVA.

6.2.1 Comparing Different Versions of the Models

We first investigate if a sparse representation on the original
feature space can be found across corpora and genders for
speech emotion data. We compare the UARs as a function
of regularization (L, versus L) for the single-task methods
(simple and ST), and feature handling (FS versus FL) for the
multi-task methods (MTL, GMTL and MTL-KDG).

We use two RMs to compare: (1) L; versus L, using all the
experimental results of simple and ST, and (2) FS versus FL
using all the experimental results of MTL, GMTL and MTL-
KDG. We use the version of the model as the WSF. For L;
versus Ly, the influence of regularization is significant for
valence (RANOVA, F(1, 84) = 4.3, p = 0.042), but not for acti-
vation. The Tukey test (Fig. 2) shows that L, is significantly
better than L for valence (p = 0.042). For FS versus FL, the
influence of feature handling is significant for both valence
(F(1,104) = 19.2, p = 2.8e-05) and activation (F(1, 104) = 12.8,
p = 5.3e-04). FL significantly outperforms FS for valence
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Fig. 2. Experiment 2. The left bars show the difference in UAR as a func-
tion of regularization (L,-regularization minus L,-regularization) in the
simple and ST models. The right bars show the same difference as a
function of feature handling (feature learning minus feature selection) in
MTL, GMTL and MTL-KDG. The black lines represent the 95% confi-
dence interval of the Tukey’s honest significant difference test.

(Tukey test, p = 2.8e-05) and activation (p = 5.3e-04), as
shown in Fig. 2.

These results indicate that we cannot find a sparse feature
representation on the original feature space that transfers well
across corpora, which is different compared to the results
from experiment 1. This may be because nearly six times
more features are used in experiment 2. The orthogonal pro-
jection decouples the original features by “collapsing” similar
information onto the same dimension. Therefore, the sparse
representation on the new feature space might be able to keep
more emotion-related information. In addition, there are
higher variations in languages, lexical content, speakers and
recording conditions within each individual task, and across
tasks. As a result, the emotion-related patterns on the original
feature space may be further masked. Therefore, we may
need to learn a feature space where a sparse representation
that generalizes well from the data.

For simplicity, we only present results of the L,-regulari-
zation (simple and ST) and the feature learning setting
(MTL, GMTL and MTL-KDG) for the rest of the analyses on
experiment 2. We present the UAR of simple, ST and MTL
with a single training corpus in Table 5 (only experiment 2g
has multiple tasks). We present the UAR of all models
when using multiple training corpora, with corpora, gen-
ders and corpus-gender pairs as tasks in Table 6.

6.2.2 Different Corpus as Training Set

While we treat corpus as a single factor in this experiment, it
includes variations in language, type of emotion, in addition
to recording condition. We compare the cross-corpus UAR
of classifiers trained on each dataset, and each combination
of two datasets, to get some insights on the impact of lan-
guage and type of emotion (i.e., acted and spontaneous).
When a single corpus is used for training, we find that the
models trained on VAM achieve the highest UAR (bolded in
Table 5) on EmoDB, eNTERFACE and AVEC for activation.
We also find when testing on eNTERFACE, models trained
on VAM outperform cross-corpus models from the literature
(e.g., [29] achieved a maximal UAR of 63.9 percent, Table 7).
This is surprising because eNTERFACE is in a different lan-
guage and with a different type of emotion. There may be sev-
eral reasons. First, VAM contains recordings about personal
and very emotional topics (e.g., paternity questions or affairs)
[65], which makes the content more emotionally expressive.
Second, VAM only contains the speakers evaluated as “very

TABLE 5
Experiment 2. UAR (%) of Valence and
Activation Using a Single Training Corpus

Valence Activation
Teston Train on Task: Gender Task: Gender
imple Simple
MTL ST MTL

EmoDB  eNT 56.1 61.0 60.7 72.0 78.7 75.5
EmoDB VAM 48.1 46.3 471 86.4 87.8 81.1
EmoDB AVEC 523 52.6 525 515 58.6 54.0
eNT EmoDB  49.6 48.0 489 632 65.5 63.7
eNT VAM 49.3 47.1 479 66.2 66.7 69.8
eNT AVEC 545 53.3 56.0 54.3 62.1 69.5
VAM EmoDB  50.6 494 50.0 67.7 68.0 68.2
VAM eNT 59.3 56.8 56.7 61.7 61.1 58.6
VAM AVEC 514 56.0 534 534 64.2 72.2
AVEC EmoDB 54.1 529 54.0 55.1 55.7 55.2
AVEC eNT 53.5 53.7 543 55.9 57.2 56.1
AVEC VAM 499 51.2 50.0 58.8 60.2 60.7

Total Avg. 524 52.4 52.6 622 65.5 65.4

The best result for each test corpus and dimension is bolded. eNT:
eNTERFACE.

good” and “good”, which also results in data that are more
emotionally expressive. In addition, the speakers in eNTER-
FACE are from 14 different nations. This may reduce the
advantage of training on corpus with the same language, due
to the presence of different accents in the testing data.

However, the models trained on VAM do not achieve the
highest UAR for valence, even when the test corpus is of the
same language (EmoDB) or same type of emotion (AVEC).
This may be because it has very unbalanced data for
valence, as shown in Table 3. These findings suggest that
the cross-corpus performance is not only related to the con-
nection in language or type of emotion between training
and testing datasets, but is also influenced by other aspects,
such as data distribution and quality.

We compare different combinations of training corpora for
activation, where the data are more balanced compared to
valence. We noticed that the highest UAR of each test corpus
(italicized in Table 6) is achieved by training on two corpora.
Interestingly, for EmoDB, VAM and AVEC, the best training
combinations consist of the two corpora that have an aspect
in common with the test corpus (i.e., a corpus with same lan-
guage, and a corpus with the same type of emotion), but do
not share common factors between them. The only exception
is eNTERFACE, in which the performances of different train-
ing combinations are similar. This may be because: (1) we are
able to combine knowledge related to language and type of
emotion by training on corpora that each share a different
common factor with the test corpus; (2) when the training cor-
pora are more dissimilar in language and type of emotion, the
common ground between them have higher possibility to be
emotion-related. However, when the training corpora have
the same language or type of emotion, we may be overfitting
to this common factor. Therefore, the classifiers do not gener-
alize well when the factor is different in the test corpus.

6.2.3 The Influence of Model

We hypothesize that the influence of model is significant,
when task definition is controlled. Specifically, multi-task
learning models are better than the simple model and the

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2023 at 17:33:25 UTC from IEEE Xplore. Restrictions apply.



94 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL.10, NO.1, JANUARY-MARCH 2019

TABLE 6
Experiment 2. UAR (%) of Valence and Activation Using Multiple Training Corpora

Di Test Train on Simol Task: Corpus  Task: Gender Task: Corpus-gender Pair
im imple
on  EmoDB eNT VAM AVEC P ST MIL ST MTL ST MTL GMTL MTL-GC MTL-GG
EmoDB v Vv 529 578 584 538 557 568 56.8 59.6 56.0 56.3
EmoDB v v 599 583 579 589 599 608 56.6 56.6 55.0 60.4
EmoDB v v 541 51.8 508 533 572 514 509 53.0 50.0 49.0
EmoDB v v v 570 581 588 595 571 571 579 59.1 56.3 59.8
eNT v v 49.7 484 49.9 50.4 51.3 46.3 483 474 47.5 48.1
eNT v v 542 505 499 529 540 484 505 505 54.0 50.5
eNT v v 490 527 524 508 600 491 565 56.7 55.4 55.8
eNT v v v 50.5 505 513 521 577 470 507 49.0 54.3 49.8
v VAM v Vv 482 540 511 496 511 526 515 538 52.7 52.1
VAM v v 489 510 489 549 553 530 493 493 52.9 49.3
VAM v v 51.7 564 581 532 558 569 569 569 55.9 57.5
VAM v v v 516 542 520 535 573 51.0 522 524 54.5 522
AVEC v v 549 559 552 547 550 549 551 554 55.3 55.1
AVEC v v 51.0 534 539 531 546 529 522 53.0 54.0 53.8
AVEC v v 526 538 533 533 543 531 53.8 538 53.4 54.0
AVEC v Vv v 533 549 557 539 544 547 556 550 55.2 54.7
Avg. of Valence 52.5 53.9 53.6 53.6% 55.7xf 529 534 53.9 53.9 53.7
EmoDB v v 747 862 876 842 860 891 889 876 81.7 88.0
EmoDB v v 568 708 730 582 629 771 753 753 56.8 70.4
EmoDB v v 747 830 791 769 700 8.8 757 757 70.4 75.7
EmoDB v v Vv 690 8.2 8.6 755 791 872 854 856 712 80.3
eNT v v 65.7 670 685 664 677 672 682 66.8 69.6 67.2
eNT v v 593 634 678 627 671 659 682 681 69.7 67.8
eNT v Vv 645 669 699 645 690 678 705 705 70.2 70.5
A eNT v v v 628 669 692 640 680 675 683 683 70.2 68.6
VAM v v 621 682 680 657 652 678 672 64.6 67.1 67.7
VAM v Vv 638 681 731 683 745 693 748 742 73.8 74.6
VAM v v 601 61.0 659 621 696 655 686 @ 68.6 72.1 73.4
VAM v Vv v 631 689 707 656 726 689 711 710 73.6 73.8
AVEC v Vv 562 561 557 583 567 568 567 557 56.4 57.2
AVEC v v 590 569 592 586 591 578 594 585 60.5 60.1
AVEC v v 588 593 599 597 601 602 606 612 60.6 61.7
AVEC v v v 588 572 585 591 591 585 582 585 60.7 59.5
Avg. of Activation 63.1 67.8% 69.5%1 65.6*% 67.9x1 69.5% 69.8*% 694 67.8%  69.8

The best average performance for each dimension in each experiment is bolded. The overall best performance of each dimension is underlined. The * (1) indicates
that the difference in the mean UAR between the marked model and the simple (ST with same task definition) model is statistically significant when tested using

the Tukey’s honest significant difference test at 95% confidence level. V: valence; A: activation; GC/GG: group tasks by corpus/gender; eNT: eNTERFACE.

ST model. We test this hypothesis when corpus, gender or
the corpus-gender pair is used to define tasks, respectively,
using RMs with model as the WSF.

When corpus is used as the task, the influence of model is
significant for activation (RANOVA, F(2, 24) = 54.5, p =
1.2e-09), but not for valence. A pairwise comparison for acti-
vation shows that MTL significantly outperforms both sim-
ple and ST (Tukey test, p = 1.0e-05 and 0.016, respectively).
This supports the notion that different corpora should be
treated as related tasks for the prediction of activation.

When gender is used as the task, we test the influence of
model on the results from training on single datasets (from
Table 5) and on multiple datasets (from Table 6). This is to be
consistent with other task definitions (i.e., corpus and cor-
pus-gender pair), where only multiple training datasets
results can be compared. We find that the influence of model
is significant for both valence (RANOVA, F(2,24) =14.3,p =
8.2e-05) and activation (F(2, 24) = 16.8, p = 2.8e-05) when
training on multiple corpora, but not when training on a

single corpus. This may be because we are not capturing the
full range of gender variability with only one training cor-
pus. In addition, splitting data by gender for a single corpus
may result in insufficient training data per task. The Tukey
tests show that when we use multiple training corpora, MTL
significantly outperforms both simple and ST for valence (p
= 0.0025 and 0.018, respectively) and activation (p = 0.0016
and 0.043, respectively). This reinforces the importance of
separating data from different genders, yet still considering
the relatedness between them.

When corpus-gender pairs are used as tasks, we find that
the influence of model is significant for activation (RANOVA,
F(5, 60) = 24.3, p = 2.8e-13), but not for valence. The Tukey
test for activation shows that all models that explicitly con-
sider the variations in corpus and gender (ST, MTL, GMTL,
MTL-GC and MTL-GQG) significantly outperform the simple
model (p = 1.7e-06, 5.0e-04, 0.0015, 7.3e-04 and 1.3e-04 for ST,
MTL, GMTL, MTL-GC and MTL-GG versus simple, respec-
tively). Interestingly, there is no significant difference between
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Fig. 3. Experiment 2. Difference in UAR between different experimental conditions (e.g., C-G is the difference between defining the tasks by corpus
and gender), along with the 95% confidence interval of the Tukey test, between: different task definitions for (a) ST and (b) MTL; different numbers of
training corpora when (c) defining corpus as the task (using MTL) and (d) defining gender as the task (using MTL). Note that for (c) and (d), results
with fewer training corpora are averaged across each corpus (1TC) or each combination of training corpora (2TC). MTL with only one training corpus
in (c) is the same as simple. C: corpus as the task; G: gender as the task; CG: corpus-gender pairs as the tasks; TC: training corpora.

ST and other multi-task learning models. This may be because
we fuse the results by weighted majority vote over all the
tasks. Therefore, we are not only considering the differences
in corpus and gender by training task-dependent classifiers,
but also utilizing knowledge learned from all the tasks instead
of just one. Comparing the multi-task learning methods, we
can see that on average, GMTL and MTL-GC perform the best
for valence, and MTL and MTL-GG perform the best for acti-
vation. However, the differences between the multi-task
learning models are very small and not statistically signifi-
cant, except for between MTL-GC and MTL-GG for activation
(p = 0.019). We notice that grouping the tasks by corpus or
gender generates the highest UAR on several classification
tasks (e.g., MTL-GG for valence of VAM when using eNTER-
FACE and AVEC for training, and for activation of AVEC
when using eNTERFACE and VAM for training, MTL-GC for
activation of eNTERFACE and AVEC when training on three
corpora), but their performances are not stable. For example,
the UARs of MTL-GC on the activation of EmoDB are the low-
est for all the training corpora combinations, compared to all
other models except for the simple model. This may indicate
that the closeness between the tasks may be related to the
common factors between them, but that the relationship is not
guaranteed.

These results support the notion that variations in
training corpus, gender, and their interactions all modu-
late the data. It is beneficial to control for these sources of
variation by defining tasks and allowing the tasks to share
information using multi-task learning. Improvement in
valence is harder to achieve, compared to activation, as
found in [9].

6.2.4 The Influence of Task Definition

We hypothesize that the way we define the tasks signifi-
cantly influences the performance of a model. We test this
hypothesis using RMs for ST and MTL, respectively, across
experiment 2¢, 2g and 2cg, with task definition as the WSF.

For ST, the effect of task definition (i.e., corpus, gender, cor-
pus-gender) is significant for activation (RANOVA, F(2,24) =
19.7, p = 8.8e-06), but not for valence. The pairwise Tukey test
for ST (Fig. 3a) suggests that for activation, using either
corpora or corpus-gender pairs as tasks is significantly better
than using genders as tasks (p = 0.015 and 7.6e-04,
respectively) and that the corpus-gender pairs significantly
outperform corpora as tasks. (p = 0.0021).

For MTL, the impact of task definition is significant for
both valence (RANOVA, F(2,24) = 7.1, p = 0.0038) and acti-
vation (F(2, 24) = 7.8, p = 0.0025). The pairwise comparison
for MTL is shown in Fig. 3b. For valence, gender is a signifi-
cantly better task-separator than corpus-gender pair (Tukey
test, p = 0.021), while for activation, the result is the oppo-
site (p = 0.012). In addition, the advantage of gender over
corpus is approaching significance for valence (p = 0.066),
and the advantage of corpus over gender as the task is
approaching significance for activation (p = 0.05).

The results indicate that defining tasks by gender is the
best for valence, while defining a task as a corpus-gender
pair is the most beneficial for activation. Interestingly, the
benefits of using corpus-gender pairs as tasks in activation is
consistent for ST and MTL, but the advantage of using gen-
der as the task in valence only shows in MTL. This suggests
that information sharing between genders is important for
learning a more robust pattern associated with valence.

6.2.5 Number of Training Corpora

We hypothesize that the number of training corpora
(denoted as TC) significantly influences the system perfor-
mance, when both task definition and model are controlled.
Specifically, we hypothesize that adding additional TC is
helpful. We test this hypothesis by comparing the perfor-
mance as the number of TC changes. The model is MTL and
the task is either corpus or gender. We build RMs with the
number of TC as the WSF for three settings: (a) 2TC versus
1TC, (b) 3TC versus 1TC, and (c) 3TC versus 2TC. The chal-
lenge is that each TC size is associated with a different num-
ber of results. We compare by averaging over relevant
subsets. For example, in the 3TC setting, where we are testing
on VAM, the training corpora include EmoDB, eNTERFACE,
and AVEC. We compare this result to the 2TC results, still
with VAM as a testing corpus. In this case, we take the aver-
age performance of systems trained on EmoDB and eNTER-
FACE, EmoDB and AVEC, and eNTERFACE and AVEC.
When comparing to 1TC, we calculate the average obtained
by training systems on each of the training corpora, individu-
ally. We repeat this over all test corpora. The same compari-
son applies to 2TC versus 1TC. Thus, in (a) there are 12
results for each dimension, in (b) and (c) there are four results
for each dimension. The comparisons between different
numbers of TC are shown in Figs. 3¢ (corpus as task) and 3d
(gender as task).
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TABLE 7
Within-Corpus UAR (“Within”) Using the Simple Model and
the Best Cross-Corpus UAR (“Cross”) in Experiment 2 (%)
from Our Models, and the Within-Corpus and
Cross-Corpus UAR from Literature

Dim Setting From EmoDB eNT VAM AVEC
. OurModel 845 834 532 536
Within 1¢6) 870 787 492 ;

v OurModel 610  60.0 593 559
Cross  [iierature - 584[29] 586([8] -
. OurModel 959 840 761 565
Within 461 %8 781 76.5 -

A Our Model ~ 89.1 70.5 748 617
Cross  [iterature - 63.9[29] 71.9[24] -

eNT: eNTERFACE; Dim: dimension; V: valence; A: activation.

We find that when corpus is used to define the tasks, the
influence of the number of TC is significant for activation
(RANOVA for 2TC versus 1TC, F(1,8) = 53.7, p = 8.2e-05), but
not for valence. The Tukey test demonstrates that 2TC is sig-
nificantly better than 1TC (p = 8.2e-05). The improvements of
3TC over 1TC and 2TC are not significant. However, there are
only four results to be compared in these two tests.

When gender is used to define the tasks, the influence
of the number of TC is significant for valence (RANOVA,
F(1,8) = 8.7, p = 0.018 for 2TC versus 1TC, F(1,3) = 14.3,p =
0.033 for 3TC versus 1TC), but not for activation. Both 2TC
and 3TC are significantly better than 1TC for valence (p =
0.018 and 0.033, respectively). The performance gain of add-
ing a third training corpus to a set already composed of two
is not statistically significant.

These findings suggest that the addition of training cor-
pora is helpful, especially given limited variability in the
data (e.g., single training corpus). The results also support
our earlier findings that gender is a better task-separator
than corpus for valence, while corpus is a better task-sepa-
rator than gender for activation.

6.2.6 Cross-Corpus versus Within-Corpus

We present our best cross-corpus UAR and within-corpus
LOSO UAR using the simple model in Table 7. We compare
these results to both the benchmark within-corpus LOSO
UAR from [66] and the state-of-the-art cross-validation
UAR from the literature (see Table 7). We are not able to
compare to [6], [9] because the UARs of the individual test
datasets are not provided. Note that the number of instances
in this paper is off by 1 for EmoDB and VAM, and off by 10
for eNTERFACE, compared to [8], [29], [66]. We do not com-
pare the results of EmoDB to [24] because the label match-
ing method is different.

We find that the advantage of within-corpus classifica-
tion is dominant for datasets with acted emotion (EmoDB
and eNTERFACE). A possible explanation is that these
acted datasets use fixed lexical content, making emotion rec-
ognition much easier. However, We find that cross-corpus
classification is effective for datasets with spontaneous
emotion. The performance of cross-corpus classification is
higher for VAM valence and for AVEC valence and activa-
tion. It is slightly lower for VAM activation. Direct compari-
son between our model and the literature is not possible
due to the small differences in data described above and the
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differences in training datasets. We note that our models
achieve comparable results to the state of the art.

7 DISCUSSION

In this paper, we explore the influence of domain, corpus
and gender in emotion recognition by conducting two sets
of experiments. We propose a multi-task learning approach
to recognize emotion across corpora, with data from multi-
ple domains or datasets as the training set. We present five
different models: the simple model, the separate-task
model, the multi-task learning model, the group multi-task
learning model, and the multi-task learning model with
knowledge-driven grouping. These models correspond to
five assumptions about the relationship between the tasks:
identical, independent, related, partially related and can be
grouped based on data similarity, and partially related and
can be grouped based on knowledge.

Our results show that a generalizable sparse feature
representation on the original space can be found across two
acted corpora with both spoken and sung data (experiment
1). However, we find that for the speech domain (experiment
2), a common sparse feature representation on a transformed
feature space is more beneficial, compared to on the original
feature space. We assume that this may be due to the higher
dimensionality of the features and larger variability in lan-
guages, types of emotion, lexical content, speakers and
recording conditions.

In experiment 2, the best cross-corpus performance with a
single training corpus is not always achieved by training on
a corpus that shares common language or type of emotion
with the test corpus. This may indicate that the quality of the
training corpus, in terms of cross-corpus generalizability, is
not only related to its similarity with the test corpus, but is
also influenced by factors such as class imbalance and the
quality of the emotion content. This is inline with Schuller
et al. [9]. They found that models trained on VAM produced
the best cross-corpus performance on various testing data-
sets for activation, and that the supreme performance of
VAM could be related to the large distance between the posi-
tive and negative classes. In experiment 2, we also observed
that training on corpora that each share common factors
with the test corpus, but not with each other, improves acti-
vation recognition, in most cases.

Our results support that variations in corpus, domain
and gender all influence emotion recognition. Overall, sepa-
rating tasks by these factors and allowing for information
sharing between tasks using multi-task learning methods is
advantageous. When a single factor is considered, the best
performances happen predominantly in cases where we
treat the tasks as related, instead of identical or indepen-
dent. When multiple factors are considered (domain and
gender, corpus and gender), group multi-task learning
either achieves the highest performance or is comparable to
the best performance generated by other multi-task learning
models. This suggests that when defining the tasks by more
than one factor, some tasks are more closely related than
others. Although we are not able to get a stable grouping
since group multi-task learning is non-convex, we find that
data-driven grouping works better than knowledge-driven
grouping for domain and gender, and is comparable to
knowledge-driven grouping for corpus and gender.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2023 at 17:33:25 UTC from IEEE Xplore. Restrictions apply.



ZHANG ET AL.: CROSS-CORPUS ACOUSTIC EMOTION RECOGNITION WITH MULTI-TASK LEARNING: SEEKING COMMON GROUND WHILE... 97

Comparing different factors, we find that domain is a
larger differentiating factor than gender for multi-domain
data. This explains why researchers often consider speech
emotion recognition and music (or song) emotion recogni-
tion as separate fields of research. One might expect that cor-
pus is a more dominant differentiating factor for speech
emotion recognition, compared to gender. However, we find
that when using multiple datasets for training, separating
data based on either corpus or gender, and training emotion
classifiers with multi-task learning generates better results,
compare to merging all the data together or training inde-
pendent classifiers. This is inline with the findings in [40]
that differences between genders can be as large as the differ-
ences between datasets. More specifically, we find that gen-
der is a better task-separator for valence, compared to corpus
or corpus-gender pair, while corpus and corpus-gender pair
are better task-separators for activation, compared to gender.

The best cross-corpus performance in our experiments is
better than or comparable to the within-corpus performance
using the baseline method in two situations: (1) when the
test corpus has limited data (experiment 1); (2) when the
test corpus contains spontaneous emotion (VAM and AVEC
in experiment 2). The first situation supports the findings of
Lefter et al. [7] that cross-corpus performance could be
higher than within-corpus performance when the intra-cor-
pus training set suffers from data scarcity. In the second sit-
uation, our findings may be influenced by the high degree
of variability within the spontaneous dataset, which may
have reduced the advantage of within-corpus testing.

8 CONCLUSION

In this paper, we investigate methods of increasing the gen-
eralizability of audio emotion recognition systems, by con-
trolling for three sources of variation: corpus, domain, and
gender. These factors define our tasks. We use multi-task
learning to enable the information sharing across tasks.

In general, defining the tasks by domain, corpus and/or
gender, and allowing for information sharing across tasks is
beneficial. For multi-domain data, domain is a stronger dif-
ferentiating factor than gender. For speech domain, defining
tasks by corpus or both corpus and gender is better than by
gender for activation predictions, while gender is the best
task-separator for valence predictions. When multiple fac-
tors are used to define the tasks, data-driven grouping per-
forms at least comparably to knowledge-driven grouping.
On average, the system performance increases with the
number of training corpora.

In the future, we plan to continue this work in the follow-
ing directions. First, inspired by our observation from
Section 6.2.2, we are interested in investigating (1) how the
cross-corpus performance of the same pair of training-testing
datasets changes as a function of emotion expressiveness,
class distribution, or noise level of the training dataset; and
(2) how cross-corpus performance changes as a function of
the similarity between training corpora, or the similarity
between training and testing corpora, where similarity is
defined by either language or type of emotion. Further, we
will investigate how these findings change when informa-
tion about the corpus-level similarity is not known.

Second, we would like to explore finer-grain tasks, such as
separating the data by speaker identity. We plan to jointly

train speaker-dependent multi-task emotion classifiers, by
learning latent representative tasks, and treating the known
tasks as combinations of the latent tasks. We will use this
approach and unsupervised transfer learning to achieve
both the advantage of sufficient training data, and the benefit
of speaker-dependent emotion classification.

Finally, we will explore feature modeling with deep
learning methods that are effective and robust for cross-cor-
pus emotion recognition.
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