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Abstract

Endowing automated agents with the ability to provide support, entertainment and interaction with human beings requires sensing of
the users’ a�ective state. These a�ective states are impacted by a combination of emotion inducers, current psychological state, and
various contextual factors. Although emotion classification in both singular and dyadic settings is an established area, the e�ects of
these additional factors on the production and perception of emotion is understudied. This paper presents a dataset, Multimodal Stressed
Emotion (MuSE), to study the multimodal interplay between the presence of stress and expressions of a�ect. We describe the data
collection protocol, the possible areas of use, and the annotations for the emotional content of the recordings. The paper also presents
several baselines to measure the performance of multimodal features for emotion and stress classification.
Keywords: multimodal emotion, stressed emotion, natural language, spontaneus speech

1. Introduction

Virtual agents have become more integrated into our
daily lives than ever before (Lucas et al., 2014). For ex-
ample, Woebot is a chatbot developed to provide cognitive
behavioral therapy to a user (Fitzpatrick et al., 2017). For
this chatbot agent to be e�ective, it needs to respond dif-
ferently when the user is stressed and upset versus when
the user is calm and upset, which is a common strategy in
counselor training (Thompson et al., 2013). While virtual
agents have made successful strides in understanding the
task-based intent of the user, social human-computer inter-
action can still benefit from further research (Clark et al.,
2019). Successful integration of virtual agents into real-
life social interaction requires machines to be emotionally
intelligent (Bertero et al., 2016; Yuan, 2015).

But humans are complex in nature, and emotion is not
expressed in isolation (Gri�ths, 2003). Instead, it is af-
fected by various external factors. These external factors
lead to interleaved user states, which are a culmination of
situational behavior, experienced emotions, psychological
or physiological state, and personality traits. One of the ex-
ternal factors that a�ects psychological state is stress. Stress
can a�ect everyday behavior and emotion, and in severe
states, is associated with delusions, depression and anxiety
due to impact on emotion regulation mechanisms (Kingston
and Schuurmans-Stekhoven, 2016; Schlotz et al., 2011; Tull
et al., 2007; Wang and Saudino, 2011). Virtual agents can
respond in accordance to users’ emotions only if the ma-
chine learning systems can recognize these complex user
states and correctly perceive users’ emotional intent. We
introduce a dataset designed to elicit spontaneous emotional
responses in the presence or absence of stress to observe and
sample complex user states.

There has been a rich history of visual (You et al., 2016;
Jiang et al., 2014), speech (Lotfian and Busso, 2017), lin-
guistic (?), and multimodal emotion datasets (Busso et al.,
2017; Busso et al., 2008; Ringeval et al., 2013). Vision
datasets have focused both on facial movements (Jiang et
al., 2014) and body movement (Lazarus and Cohen, 1977).
Speech datasets have been recorded to capture both stress

and emotion separately but do not account for their inter-
dependence (Rothkrantz et al., 2004; Horvath, 1982; Kur-
niawan et al., 2013; Zuo and Fung, 2011). Stress datasets
often include physiological data (Yaribeygi et al., 2017; Sun
et al., 2012).

Existing datasets are limited because they are designed
to elicit emotional behavior, while neither monitoring exter-
nal psychological state factors nor minimizing their impact
by relying on randomization. However, emotions produced
by humans in the real world are complex. Further, our natu-
ral expressions are often influenced by multiple factors (e.g.,
happiness and stress) and do not occur in isolation, as typ-
ically assumed under laboratory conditions. The primary
goal of this work is to collect a multimodal stress+emotion
dataset – Multimodal Stressed Emotion (MuSE) – to pro-
mote the design of algorithms that can recognize complex
user states.

The MuSE dataset consists of recordings of 28 Univer-
sity of Michigan college students, 9 female and 19 male, in
two sessions: one in which they were exposed to an exter-
nal stressor (final exams period at University of Michigan)
and one during which the stressor was removed (after finals
have concluded). Each recording is roughly 45-minutes.
We expose each subject to a series of emotional stimuli,
short-videos and emotionally evocative monologue ques-
tions. These stimuli are di�erent across each session to
avoid the e�ect of repetition, but capture the same emo-
tion dimensions. At the start of each session, we record
a short segment of the user in their natural stance with-
out any stimuli, to establish a baseline. We record their
behavior using four main recording modalities: 1) video
camera, both close-up on the face and wide-angle to cap-
ture the upper body, 2) thermal camera, close-up on the
face, 3) lapel microphone, 4) physiological measurements,
in which we choose to measure heart rate, breathing rate,
skin conductance and skin temperature (Figure 1). The
data include self-report annotations for emotion and stress
(Perceived Stress Scale, PSS) (Cohen, 1988; Cohen et al.,
1994), as well as emotion annotations obtained from Ama-
zon Mechanical Turk (AMT). To understand the influence of
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Figure 1: Broad visual overview of recordings

personality on the interaction of stress and emotion, we ob-
tain Big-5 personality scores (Goldberg, 1992), which was
filled by 18 of the participants, due to the participation be-
ing voluntary. The extracted features for each modality, and
the anonymized dataset (other than video) will be released
publicly along with all the corresponding data and labels.
We present baseline results for recognizing both emotion
and stress in the paper, in order to validate that the presence
of these variables can be computationally extracted from the
dataset, hence enabling further research.

2. Related Work

In the past years, there have been multiple emotional
databases collected and curated to develop better emotion
recognition systems. Table 1 shows the major corpora that
are used for emotion recognition. However, some aspects
of the datasets limit their applicability, including: a lack of
naturalness, unbalanced emotion content, unmeasured con-
founding variables, small size, small number of speakers,
and presence of background noise. These datasets are also
limited in the number of modalities they use, usually relying
on visual and acoustic/lexical information.

2.1. Recorded Modalities

As shown in Table 1, the most common modalities are
video, acoustics, and text. In addition to these modali-
ties, we chose to record two more modalities: thermal and
physiological. Previous research has shown that thermal
recordings perform well as non-invasive measurement of
physiological markers like, cardiac pulse and skin tempera-
ture (Pavlidis et al., 2000; Pavlidis and Levine, 2002; Gar-
bey et al., 2007). They have been shown to be correlated to
stress symptoms, among other physiological measures. We
used the physiological modality to measure stress responses
(Yaribeygi et al., 2017; Sun et al., 2012) to psychological
stressors. This modality has been previously noted in litera-
ture for measuring stress (Horvath, 1978), usually measured
in polygraph tests. We perform baseline experiments to
show that the modalities collected in the dataset are indeed
informative for identifying stress and emotion.

2.2. Lack of Naturalness

A common data collection paradigm for emotion is to
ask actors to portray particular emotions. These are usually
either short snippets of information (Busso et al., 2008),

a single sentence in a situation (Busso et al., 2017), or
obtained from sitcoms and rehearsed broadcasts (Chen et
al., 2018). A common problem with this approach is that
the resulting emotion display is not natural (Jürgens et al.,
2015). These are more exaggerated versions of singular
emotion expression rather than the general, and messier,
emotion expressions that are common in the real world (Au-
dibert et al., 2010; Batliner et al., 1995; Fernández-Dols and
Crivelli, 2013). Further, expressions in the real world are
influenced by both conversation setting and psychological
setting. While some datasets have also collected sponta-
neous data (Busso et al., 2008; Busso et al., 2017), these
utterances, though emotionally situated, are often neutral
in content when annotated. The usual way to get natu-
ral emotional data is to either collect data using specific
triggers that have been known to elicit a certain kind of
response or to completely rely on in-the wild data, which
however often leads to unbalanced emotional content in the
dataset (Ringeval et al., 2013).

2.3. Unbalanced Emotion Content

In-the-wild datasets are becoming more popular (Chen
et al., 2018; Khorram et al., 2018; Li et al., 2016). The
usual limitation to this methodology is that, firstly, for most
people, many conversations are neutral in emotion expres-
sion. This leads to a considerable class imbalance (Ringeval
et al., 2013). To counter this issue, MSP-Podcast (Lotfian
and Busso, 2017) deals with unbalanced content by pre-
selecting segments that are more likely to have emotional
content. Secondly, data collected in particular settings, e.g.,
therapy (Nasir et al., 2017), or patients with clinical is-
sues (Lassalle et al., 2019) comprise mostly of negative
emotions because of the recruitment method used in the
collection protocol.

2.4. Presence of Interactional Variables

The common way of inducing emotions involves either
improvisation prompts or scripted scenarios. Emotion has
been shown to vary with a lot of factors that are di�erent
from the intended induction (Siedlecka and Denson, 2019;
Zhang et al., 2014; Mills and D’Mello, 2014). These factors
in general can be classified into: (a) recording environment
confounders and (b) collection confounders. Recording
environment-based variables hamper the models’ ability to
to learn the emotion accurately. These can be environment
noise (Banda and Robinson, 2011), placement of sensors or
just ambient temperature (Bruno et al., 2017).

The data collection variations influence both the data
generation and data annotation stages. The most common
confounders are gender, i.e., ensuring an adequate mix of
male vs female, and culture, i.e., having a representative
sample to train a more general classifier. Another confound-
ing factor includes personality traits (Zhao et al., 2018),
which influence how a person both produces (Zhao et al.,
2018) and perceives (Mitchell, 2006) emotion. Another
confounder that can occur at the collection stage is the fa-
miliarity between the participants, like RECOLA (Ringeval
et al., 2013), which led to most of the samples being mainly
positive due to the colloquial interaction between the par-
ticipants. They also do not account for the psychologi-
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Table 1: Summary of some of the existing emotion corpora. Lexical modality is mentioned for manually transcribed
datasets. A - Audio, L - Lexical, T- Thermal, V- Visual, P - Physiological.

Corpus Size Speakers Rec. Type Language Modality Annotation Type
1. IEMOCAP 12h26m 10 improv/acted English A, V, L Ordinal, Categorical
2. MSP-Improv 9h35m 12 improv/acted English A, V Ordinal
3. VAM 12h 47 spontaneous German A, V Ordinal
4. SEMAINE 6h21m 20 spontaneous English A, V Ordinal, Categorical
5. RECOLA 2h50m 46 spontaneous French A, V, P Ordinal
6. FAU-AIBO 9h12m 51 spontaneous German A, L Categorical
7. TUM AVIC 0h23m 21 spontaneous English A, V, L Categorical
8. Emotion Lines 30k samples - spont/scripted English A, L Categorical
9. OMG-Emotion 2.4k samples - spontaenous English A, V, L Ordinal
10. MSP-Podcast 27h42m 151 spontaenous English A Ordinal, Categorical
11. MuSE 10h 28 spontaneous English A, V, L, T, P Ordinal (Random, Context)

cal state of the participant. Psychological factors such as
stress (Lech and He, 2014), anxiety (Werner et al., 2011)
and fatigue (Berger et al., 2012) have been shown previ-
ously to have significant impact on the display of emotion.
But the relation between these psychological factors and the
performance of models trained to classify emotions in these
situations has not been studied.

The second set of confounders occurring from collec-
tion protocols are due to the way annotations are collected.
Previous research has shown the di�erence between ob-
taining continuous vs single label per utterance (Jaiswal et
al., 2019a). (Yannakakis et al., 2017) have also looked at
the di�erences between ordinal vs categorical measures of
emotion, showing that humans use anchors to evaluate the
emotional state of a stimulus; suggesting again that ordi-
nal labels are a more suitable way to represent emotions.
Many of these collected emotion datasets rely on either ex-
pert evaluation or crowdsourced annotations (Busso et al.,
2017). Previous work has looked at the trade-o� between
quality and quantity of the annotations received from crowd-
sourcing workers. Research in human- computer interaction
and economics has also looked at the quality of annotations
received as a function of hourly pay (Horton and Chilton,
2010), and of annotators psychological state (Paulmann et
al., 2016) and found how increased pay leads to exponen-
tially better annotations. Out of the datasets mentioned
in Table 1, some of them present all information to the
annotator to label the utterances while others just provide
a single sentence. The authors have studied the e�ect of
these labeling schemes on the annotations received and the
performance of the machine learning algorithms trained on
these annotations. The e�ect of these labelling schemes on
the annotations received has been compared in terms of the
annotations themselves and the change in classifiers’ perfor-
mance on the dataset (Jaiswal et al., 2019a). We collect a
dataset that is indicative of how stress, a psychological con-
founding factor, interleaves with emotion production. We
present baselines to verify that these outputs can be compu-
tationally extracted from the dataset.

3. MuSE Dataset

3.1. Experimental Protocol

We collect a dataset that we refer to as Multimodal
Stressed Emotion (MuSE) to facilitate the learning of the
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Figure 2: Experimental Protocol For Recording

interplay between stress and emotion. The protocol for data
collection is shown in Figure 2. There were two sections
in each recording: monologues and watching emotionally
evocative videos. We measure the stress level at the begin-
ning and end of each recording. The monologue questions
and videos were specifically chosen to cover all categories of
emotions. At the start of each recording, we also recorded
a short one-minute clip without any additional stimuli to
register the baseline state of the subject.

Previous research has elicited situational stress such as
public speaking (Kirschbaum et al., 1993; Giraud et al.,
2013; Aguiar et al., 2014), mental arithmetic tasks (Liao
and Carey, 2015) or use Stroop Word Test (Tulen et al.,
1989). However, these types of stress are often momentary
and fade rapidly in two minutes (Liao and Carey, 2015).
We alleviate this concern by recording both during and af-
ter final exams (we anticipate that these periods of time
are associated with high stress and low stress, respectively)
in April 2018. We measure stress using Perceived Stress
Scale (Cohen et al., 1994) for each participant. We measure
their self-perception of the emotion using Self-Assessment
Manikins (SAM) (Bradley and Lang, 1994). The recordings



1502

and the survey measures were coordinated using Qualtrics1

enabling us to ensure minimal intervention and limit the
e�ect of the presence of another person on the emotion
production.

Each monologue section comprised of five questions
broken into sections meant to elicit a particular emotion
(Table 2). These questions were shown to elicit thought-
ful and emotional responses in their data pool to generate
interpersonal closeness (Aron et al., 1997). We include an
icebreaker and ending question to ensure cool o� periods
between change in recording section, i.e., from neutral to
monologues, and from monologues to videos, hence de-
creasing the amount of carry-over emotion from the previ-
ous monologue to the next. Each subject was presented with
a di�erent set of questions over the two recordings to avoid
repetition e�ect. We also shu�e the order of the other three
questions to account for order e�ects (Lee et al., 2011). Each
subject was asked to speak for a minimum of two minutes.
After their response to each question, the subjects marked
themselves on two emotion dimensions: activation and va-
lence on a Likert Scale of one to nine using self-assessment
manikins (Bradley and Lang, 1994).

For the second part of the recording, the subjects were
asked to watch videos in each of the four quadrants i.e., the
combination of {low, high} ⇥ {activation, valence} of emo-
tion. These clips were selected from the corpus (Lichtenauer
and Soleymani, 2011; Bartolini, 2011), which tested for the
emotion elicited from the people when watching these clips
(Table 3). The subjects were monitored for their reaction to
the clips. After viewing a clip, subjects are asked to speak
for thirty seconds about how the video made them feel. Af-
ter their response, they marked a emotion category, e.g.,
angry, sad, etc. for the same clip. When switching videos,
the subjects were asked to view a one-minute neutral clip
to set their physiological and thermal measures back to the
baseline (Samson et al., 2016).

The 28 participants were also asked to fill out an on-
line survey used for personality measures on the big-five
scale (Goldberg, 1992), participation being voluntary. This
scale has been validated to measure five di�erent dimensions
named OCEAN (openness, conscientiousness, extraversion,
agreeableness, and neuroticism) using fifty questions and
has been found to correlate with passion (Dalpé et al., 2019),
ambition (Barrick and Mount, 1991), and emotion mecha-
nisms (Querengässer and Schindler, 2014). We received
responses for this survey from 18 participants. These labels
can be used in further work to evaluate how these person-
ality measures interact with the a�ects of stress in emotion
production, as previously studied in (Zhao et al., 2018).

3.2. Equipment Setup

The modalities considered in our setup are: thermal
recordings of the subject’s face, audio recordings of the
subject, color video recording of the subject’s face, a wide-
angle color video recording the subject from the waist up and
physiological sensors measuring skin conductance, breath-
ing rate, heart rate and skin temperature. For these modali-
ties we have set up the following equipment:

1 umich.qualtrics.com

Table 2: Emotion elicitation questions.
Icebreaker

1. Given the choice of anyone in the world, whom would you
want as a dinner guest?

2. Would you like to be famous? In what way?
Positive

1. For what in your life do you feel most grateful?
2. What is the greatest accomplishment of your life?

Negative

1. If you could change anything about the way you were raised,
what would it be?

2. Share an embarrassing moment in your life.
Intensity

1. If you were to die this evening with no opportunity to commu-
nicate with anyone, what would you most regret not having
told someone?

2. Your house, containing everything you own, catches fire.
After saving your loved ones and pets, you have time to
safely make a final dash to save any one item. What would it
be? Why?

Ending

1. If you were able to live to the age of 90 and retain either the
mind or body of a 30-year old for the last 60 years of your
life, which would you choose?

2. If you could wake up tomorrow having gained one quality or
ability, what would it be?

Table 3: Emotion elicitation clips.

Movie Description

Low Valence, Low Activation (Sad)

City of Angels Maggie dies in Seth’s arms
Dangerous Minds Students find that one of their class-

mates has died

Low Valence, High Activation (Anger)

Sleepers Sexual abuse of children
Schindler’s List: Killing of Jews during WWII

High Valence, Low Activation (Contentment)

Wall-E Two robots dance and fall in love
Love Actually Surprise orchestra at the wedding

High Valence, High Activation (Amusement)

Benny and Joone Actor plays the fool in a co�ee shop
Something About Mary Ben Stiller fights with a dog

Neutral

A display of zig-zag lines across the screen
Screen-saver pattern of changing colors

1. FLIR Thermovision A40 thermal camera for record-
ing the close-up thermal recording of the subject’s face.
This camera provides a 640x512 image in the thermal
infrared spectrum.

2. Raspberry Pi with camera module V2 with wide-

angle lens used for the waist up shot of the subject.
We have chosen Raspberry Pi’s due to its low price
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Figure 3: Close-up view of the thermal and video recording
equipment.

and support for Linux OS, which integrates easily into
a generic setup.

3. Raspberry Pi with camera module V2 used to record
the subject from the waist up.

4. TASCAM DR-100 mk II used to record audio. We
chose this product for its high fidelity. It can record
24-bit audio at 48kHz.

5. ProComp
1

-8 channel biofeedback and neurofeed-

back system v6.0 used to measure blood volume pulse
(BVP sensor), skin conductance (SC sensor), skin tem-
perature (T sensor), and abdominal respiration (BR
sensor)

The equipment operator started and marked the syn-
chronization point between video and audio recordings us-
ing a clapper. Subsequent time stamps are recorded by the
qualtrics survey using subject click timings.

3.3. Post-processing

Splitting of the Recordings. Each modality is split into
neutral recordings of one-minute, five questions and four
video recordings with associated monologues, resulting in
fourteen recordings for emotional content, thus 28 record-
ings per subject. In total we have 784 distinct recordings
over five modalities, 28 subjects and two stress states, for a
total of 3920 recording events. Temperatures are clamped
to between 0oC and 50oC. This helps reduce the size of the
thermal recording files after being zipped.

Utterance Construction. The five monologues ex-
tracted above were divided into utterances. However, since
the monologues are a form of spontaneous speech, there
are no clear sentence boundaries marking end of utterance.
We manually created utterances by identifying prosodic
or linguistic boundaries in spontaneous speech as defined
by (Kolá�, 2008). The boundaries used for this work are:
(a) clear ending like a full stop or exclamation, (b) a change
in context after filler words or completely revising the sen-
tence to change meaning, or (c) a very long pause in thought.
This method has been previously shown to be e�ective in
creating utterances that mostly maintain a single level of
emotion (Khorram et al., 2018).

The dataset contains 2,648 utterances with a mean dura-
tion of 12.44 ± 6.72 seconds (Table 4). The mean length of
stressed utterances (11.73 ± 5.77 seconds) is significantly

di�erent (using two-sample t-test) from that of the non-
stressed utterances (13.30± 6.73 seconds). We remove ut-
terances that are shorter than 3-seconds and longer than 35-
seconds and end up retaining 97.2% of our dataset. This al-
lows us to to avoid short segments that may not have enough
information to capture emotion, and longer segments that
can have variable emotion, as mentioned in (Khorram et
al., 2018). Because our dataset is comprised of sponta-
neous utterances, the mean length of utterance is larger than
those in a scripted dataset (Busso et al., 2017) due to more
corrections and speech overflow.

Stress State Verification. We perform a paired t-test for
subject wise PSS scores, and find that the mean scores are
significantly di�erent for both sets (16.11 vs 18.53) at p <
0.05. This implied that our hypothesis of exams eliciting
persistently more stress than normal is often true. In our
dataset, we also provide levels of stress which are binned into
three categories based on weighted average (using questions
for which the t-test score was significant).

4. Emotional Annotation

4.1. Crowdsourcing

Crowdsourcing has previously been shown to be an ef-
fective and inexpensive method for obtaining multiple an-
notations per segment (Hsueh et al., 2009; Burmania and
Busso, 2017). We posted our experiments as Human In-
telligence Tasks (HITs) on Amazon Mechanical Turk and
used selection and training mechanisms to ensure quality
(Jaiswal et al., 2019a). HITs were defined as sets of utter-
ances in a monologue. The workers were presented with a
single utterance and were asked to annotate the activation
and valence values of that utterance using Self-Assessment
Manikins (Bradley and Lang, 1994). Unlike the strategy
adopted in (Chen et al., 2018), the workers could not go
back and revise the previous estimate of the emotion. We
did this to ensure similarity to how a human listening into the
conversation might shift their perception of emotion in real
time. These HITs were presented in either the contextual or
the random presentation condition defined below.

In the contextual experiment, we posted each HIT as
a collection of ordered utterances from each section of a
subject’s recording. Because each section’s question was
designed to elicit an emotion, to randomize the carry-over
e�ect in perception, we posted the HITs in a random order
over the sections from all the subjects in our recording. For
example, a worker might see the first HIT as Utterance 1...N

from Section 3 of Subject 4’s stressed recording and see the
second HIT as Utterance 1...M from Section 5 of Subject

10’s non-stressed recording where N, M are the number of
utterances in those sections respectively. This ensures that
the annotator adapts to the topic and fluctuations in speaking
patterns over the monologue being annotated.

In the randomized presentation, each HIT is an utterance
from any section, by any speaker, in random order. So, a
worker might see the first HIT as Utterance 11 from Section

2 of Subject 1’s stressed recording monologue and see the
second HIT as Utterance 1 from Section 5 of Subject 10’s

non-stressed monologue recording. We use this method of
randomization to ensure lack of adaptation to both speaker
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Table 4: Data summary (R:random, C:context, F:female,
M:male).

Monologue Subset

Mean no. of utterances/monologue 9.69± 2.55
Mean duration of utterances 12.44± 6.72 seconds
Total no. of utterances 2,648
Selected no. of utterances 2,574
Gender distribution 19 (M) and 9 (F)
Total annotated speech duration ⇠ 10 hours

Crowdsourced Data

Num of workers 160 (R) and 72 (C)
Blocked workers 8

Mean activation 3.62±0.91 (R)
3.69±0.81 (C)

Mean valence 5.26±0.95 (R)
5.37±1.00 (C)

Figure 4: Distribution of the activation and valence ratings
in random labeling scheme (on left) and contextual labeling
scheme (on right).

specific style and the contextual information. Our previ-
ous work (Jaiswal et al., 2019a) showed that a mismatch
between annotation and training conditions leads to poorer
performance of the trained machine learning model. Hence,
the per-utterance and the contextual labels can be used to
train di�erent machine learning models that are apt for ei-
ther singular one-o� instances or for holding multiple turn
natural conversation, respectively.

4.2. Emotion Content Analysis

We show the distribution of the annotations received in
both the random and contextual setting in Table 4 and Fig-
ure 4. The labels obtained for our dataset form a distribution
that mostly covers negative and neutral levels of activation,
and all but extremities for valence. This can also be seen
in the data summary in Table 4. We performed a paired
t-test between the labels obtained from random vs contex-
tual presentation and found that these labels are significantly
di�erent (using paired t-test at p < 0.05 for both activation
and valence for utterances in the non-stressed situation).
Although the obtained labels are significantly di�erent for
valence in the stressed category using the same method as
above, the same does not hold true for the activation anno-
tations in this category.

Figure 5: An overview of the instructions provided to the
annotators for annotating an utterance.

Figure 6: Annotation scale used by MTurk workers to an-
notate the emotional content of the corpus. They annotate
valence and activation for each utterance.

5. Experiments

In this section, we describe our baseline experiments for
predicting emotion and stress in the recorded modalities.
We have a more granular marked annotation of emotion, i.e.,
over each utterance, as compared to stress over the complete
monologue. Hence, we extract features for each modality
over continuous one second frame intervals for predicting
stress, and over the complete utterance for emotion. Au-
dio and lexical features are still extracted over a complete
utterance for stress due to higher interval of variation over
time.

5.1. Evaluation of Emotion Recognition

We use the following set of features for our baseline
models:

1. Acoustic Features. We extract acoustic features using
OpenSmile (Eyben et al., 2010) with the eGeMAPS
configuration (Eyben et al., 2016). The eGeMAPS
feature set consists of 88 utterance-level statistics over
the low-level descriptors of frequency, energy, spectral,
and cepstral parameters. We perform speaker-level z-
normalization on all features.

2. Lexical Features. We extract lexical features us-
ing Linguistic Inquiry and Word Count (LIWC) (Pen-
nebaker et al., 2001). These features have been shown
to be indicative of stress, emotion, veracity and sat-
isfaction (Golbeck et al., 2011; Monin et al., 2012;
Newman et al., 2003). We normalize all the frequency
counts by the total number of words in the sentence
accounting for the variations due to utterance length.

3. Thermal Features. For each subject a set of four re-
gions were selected in the thermal image: the forehead
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area, the eyes, the nose and the upper lip as previ-
ously used in (Pavlidis and Levine, 2002; Garbey et
al., 2007; Abouelenien et al., 2016). These regions
were tracked for the whole recording and a 150-bin
histogram of temperatures was extracted from the four
regions per frame, i.e., 30 frames a second for ther-
mal recordings. We further reduced the histograms to
the first four measures of central tendency, e.g. Mean,
Standard Deviation, Skewness and Kurtosis. We com-
bined these features over the utterance using first delta
measures (min, max, mean, SD) of all the sixteen ex-
tracted measures per frame, resulting in 48 measures
in total.

4. Close-up Video Features. We use OpenFace (Bal-
truöaitis et al., 2016) to extract the subject’s facial ac-
tion units. The AUs used in OpenFace for this purpose
are AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10,
AU12, AU14, AU15, AU17, AU20, AU23, AU25,
AU26, AU28 and AU25 comprising of eyebrows, eyes
and mouth. These features have been previously shown
to be indicative of emotion (Wegrzyn et al., 2017; Du et
al., 2014) and have been shown to be useful for predict-
ing deception (Jaiswal et al., 2016). We summarize all
frames into a feature using summary statistics (maxi-
mum, minimum, mean, variance, quantiles) across the
frames and across delta between the frames resulting
in a total of 144 dimensions.

Network Setup. We train and evaluate multiple uni-
modal Deep Neural Networks (DNN) models for predicting
valence and activation using Keras (Gulli and Pal, 2017).
(Jaiswal et al., 2019a) have shown that a match between the
context provided to the classifier and the annotator leads
to better classification performance. Because we are per-
forming single utterance classification, for all further exper-
iments, we use the annotations obtained in a random manner
as mentioned above. In all cases, we predict the continuous
annotation using regression.

We also use an ensemble of these four networks (au-
dio, lexical, visual and thermal) to measure multimodal
performance. For each network setup, we follow a five-fold
subject independent evaluation scheme and report the av-
erage RMSE across the folds. For each test-fold, we use
the previous fold for hyper-parameter selection and early
stopping. The hyper-parameters include: number of lay-
ers {2, 3, 4} and layer width {64, 128, 256}. We use ReLU
activation and train the networks with MSE loss using the
Adam optimizer.

We train our networks for a maximum of 50 epochs and
monitor the validation loss after each epoch. We perform
early stopping if the loss doesn’t decrease for 15 consecutive
epochs. We save the weights that achieved the lowest vali-
dation performance during training. We train each network
five times with di�erent seeds and average the predictions
to account for variations due to random initialization.

Results. We show our results in Table 5. We find that
between acoustic and lexical modalities, the acoustic modal-
ity carries more information about activation and the lexical
for valence. This is in line with previous research (Yang and
Chen, 2011; Cambria et al., 2017). We also note that the

Table 5: RMSE for emotion classification models using
multiple modalities. Significance established at p < 0.05.

Activation Valence

Unimodal Models

Acoustic (A) 1.004
⇤ 1.122

Lexical (L) 1.343 0.980
Close Video (V) 1.111 0.879

⇤⇤

Thermal (T) 2.012 1.565

Ensemble

A+L 0.987 0.981
A+V 0.970 0.899
L+V 0.981 0.901
A+L+V 0.972 0.856

⇤

A+L+V+T (All) 0.961
⇤ 0.868

visual modality significantly outperforms both the speech
and lexical modalities for valence prediction.

When we merge these networks using late voting on each
modality (decision fusion), we find that the combination of
all modalities performs the best for predicting activation.
But for predicting valence, the best performance is shown
by the combination of acoustic, lexical, visual and thermal
modalities. We believe this is true because previous work
has shown that thermal features are mostly indicative of
intensity and discomfort (Herborn et al., 2015) and hence
improves performance on activation prediction, while the
visual expressions are most informative about valence (Rubo
and Gamer, 2018).

5.2. Evaluation of Presence of Stress

We use the following set of features for our baseline
models. Given that stress vs non-stressed state is classified
for the complete section (monologue or neutral recording),
we extract visual features di�erently to use the the sequential
information over the whole segment, i.e., a monologue. We
also use physiological features for our network, since we
found that even though they are highly variable over shorter
segments (utterances), they are informative for recognizing
physiological state on a whole section.

1. Acoustic, Lexical, and Thermal Features. We use
the same features as extracted for predicting emotion.

2. Wide-angle Video Features. We extract the subject’s
pose using OpenPose (Cao et al., 2017; Simon et al.,
2017; Wei et al., 2016) at 25 frames per second. For
each frame, we extract 14 three-dimensional points
representing anchor points for the upper body. For
classification of each 3D point is interpolated over one
second using a 5th order spline (Oikonomopoulos et
al., 2008; Huang and Cohen, 1993). The parameters of
the splines are then used as features for classification.

3. Close-up Video Features. We use OpenFace to extract
the subject’s action units (Baltruöaitis et al., 2016). The
features are extracted for every frame. In each frame,
features include the gaze direction vectors, gaze angles,
2D eye region landmarks, head locations, rotation an-
gles of the head, landmark locations, and facial action
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Table 6: Baseline results for classifying stressed and
non-stressed situations per time unit, unless specified
otherwise. A - Accuracy, P - Precision, R - Recall.

Recording Parts A P R F1

Thermal
Neutral 0.61 0.67 0.62 0.64

Questions 0.50 0.64 0.52 0.57
Wide-angle Video

Neutral 0.66 0.41 0.96 0.58
Questions 0.69 0.45 0.82 0.58

Close-up Video
Neutral 0.61 0.78 0.33 0.46
Questions 0.65 0.65 0.69 0.67

Physiological
Neutral 0.66 0.47 0.89 0.64
Questions 0.70 0.55 0.88 0.67

Audio - Per utterance
Questions 0.67 0.70 0.69 0.69

Text - Per utterance
Questions 0.60 0.74 0.61 0.67

Late Fusion - Voting
Questions 0.60 0.74 0.61 0.67

units. Landmarks locations o�set by the nose location.
We window the data into segments of one-second win-
dows with 0.5 second overlap and calculate summary
statistics (maximum, minimum, mean, variance). We
retain the top 300 features based on the F values be-
tween the training features and corresponding labels
(stressed vs non-stressed).

4. Physiological Features. While the physiological fea-
tures varied greatly per second to be informative for
emotion, they are informative for recognizing pres-
ence or absence of stress. We consider the raw mea-
surements for heart rate, breathing rate, skin conduc-
tance and skin temperature and compute the first four
measures of central tendency, e.g. mean, standard de-
viation, skewness, and kurtosis.

Network. We train a DNN to perform binary classifi-
cation, i.e., to recognize stressed vs. non-stressed situation
using ReLU as activation, with softmax as the classifica-
tion method.The final layer uses a soft-max activation. We
train six di�erent networks for thermal, wide-angle video,
close-up video, physiological, audio, and lexical modalities.
Each network is trained in a subject-independent manner.
We train network to recognize stress vs non-stress situation
in both neutral recording,i.e., when the subject isn’t speak-
ing at the beginning of the recording, and during emotional
monologue questions. To do so, we decide the final pre-
diction by a majority vote over one-second predictions for
the complete section of the recording. For the lexical and
acoustic modality, we train the network for the question
monologues, and decide the final prediction based on a ma-
jority vote over prediction for each utterance.

Results. We report our results for prediction of stress
vs non-stress situation using various modalities in Table 6.
We see that the captured modalities are indeed informative

for recognizing stress vs non-stressed situations. We find
that for recognizing this distinction when the subjects are
speaking, audio and physiological features perform the best.
This is in agreement with previous related work (Lazarus
and Cohen, 1977; Yaribeygi et al., 2017; Horvath, 1978).
Interestingly, we also find that the thermal and physiological
modality is apt at recognizing di�erences in stress, even in
the neutral recording, i.e., when the subject is not speak-
ing. This advantage of thermal modality has been previ-
ously documented by researchers (Abouelenien et al., 2014;
Pavlidis et al., 2000; Pavlidis and Levine, 2002; Garbey et
al., 2007). We find that answering emotional monologue
questions interferes with the recorded thermal modality,
leading to a poorer performance at stress recognition.

6. Conclusions and Future Work

In this paper, we introduced a dataset that aims to capture
the interplay between psychological factors such as stress
and emotion. While various other datasets have explored
the relationship between gender or personality measures
and emotion production and perception, the relationship
between psychological factors and emotion is understudied
from a data collection point of view, and hence an automated
modeling perspective.

We verified that the presence of emotion and stress can
be detected in our dataset. Our baseline results for emotion
classification using DNNs with acoustic, linguistic and vi-
sual features on our dataset are similar to reported results on
other datasets such as IEMOCAP (Busso et al., 2008) and
MSP-Improv (Busso et al., 2017). For classifying stressed
vs non-stressed session, we observed that all modalities are
discriminative, although at di�erent levels of accuracy; for
instance, visual and physiological modalities work best for
recognizing stress under emotional influence.

Through our experiments, we found that the modalities
that we use for the prediction of emotion are also good
predictors of stress. The acoustic features are highly in-
formative for both activation and stress, which is concur-
rent with previous research (Paulmann et al., 2016) that
showed how speech patterns are heavily modulated in the
presence of adversarial psychological factors. We know that
the emotion representations obtained from our classification
models would likely be interleaved with the distributions of
stress (Chattopadhyay et al., 2019). Hence, the corpus is
especially useful in developing models that e�ectively pre-
dict emotional states while accounting for the presence of
these confounders (Jaiswal et al., 2019b). We anticipate
that this will lead to robust emotion recognition models that
generalize to emotion perception under varying conditions
of production.

In the future, we plan to conduct additional annotation
experiments using randomized blocks of utterances from
single speakers (random order of utterances from random
sections). This will better match the block of single-speaker
tasks in context, where the annotator can adapt to the speaker
but not to the topic of conversation. We will also explore
the causal interaction between emotion production and the
stress levels of the subjects using personalized and con-
trolled modeling techniques. We are interested in uncover-
ing how these stress measures a�ect each subject di�erently



1507

and if this relates to personality. Through this dataset, we
hope the community can make progress on understanding
the correlation patterns between the distribution of emo-
tion and stress, and how this can impact the performance of
emotion and stress classifiers.

The MuSE dataset will be publicly available at: http:
//lit.eecs.umich.edu/downloads.html.
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