

1 **TITLE:**

2 Simulating Temperature in a Soil Incubation Experiment

3

4 **AUTHORS AND AFFILIATIONS:**

5 Jianwei Li<sup>1</sup>, Precious Areeveso<sup>1</sup>, Xuehan Wang<sup>1</sup>, Siyang Jian<sup>1,2</sup>, Lahiru Gamage<sup>1</sup>

6

7 <sup>1</sup>Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville,  
8 Tennessee, USA

9 <sup>2</sup>Department of Plant Biology and Microbiology, University of Oklahoma, Norman, Oklahoma,  
10 USA

11

12 Email addresses of co-authors:

13 Precious Areeveso (pareeves@tnstate.edu)

14 Xuehan Wang (xwang3@tnstate.edu)

15 Siyang Jian (sjian@ou.edu)

16 Lahiru Gamage (lgamage@tnstate.edu)

17

18 Corresponding author:

19 Jianwei Li (jli2@tnstate.edu)

20

21 **SUMMARY:**

22 Laboratory soil warming experiments usually employ two or more constant temperatures in  
23 multiple chambers. By presenting a sophisticated environmental chamber, we provide an  
24 accurate temperature control method to imitate the magnitude and amplitude of *in situ* soil  
25 temperature and improve the experimental design of soil incubation studies.

26

27 **ABSTRACT:**

28 The study of warming impact on soils requires a realistic and accurate representation of  
29 temperature. In laboratory incubation studies, a widely adopted method has been to render  
30 constant temperatures in multiple chambers, and *via* comparisons of soil responses between  
31 low- and high-temperature chambers, to derive the warming impact on soil changes. However,  
32 this commonly used method failed to imitate both the magnitude and amplitude of actual  
33 temperatures as observed in field conditions, thus potentially undermining the validity of such  
34 studies. With sophisticated environmental chambers becoming increasingly available, it is  
35 imperative to examine alternative methods of temperature control for soil incubation research.  
36 This protocol will introduce a state-of-the-art environmental chamber and demonstrate both  
37 conventional and new methods of temperature control to improve the experimental design of  
38 soil incubation. The protocol mainly comprises four steps: temperature monitoring and  
39 programming, soil collection, laboratory incubation, and warming effect comparison. The step-  
40 by-step procedure is modified according to a former publication. One example will be presented  
41 to demonstrate different methods of temperature control and the resultant contrasting warming  
42 scenarios; that is, a constant temperature design referred to as stepwise warming (SW) and  
43 simulated *in situ* temperature design as gradual warming (GW), as well as their effects on soil  
44 respiration, microbial biomass, and extracellular enzyme activities. In addition, we present a

45 strategy to diversify temperature change scenarios to meet specific climate change research  
46 needs (e.g., extreme heat). The temperature control protocol and the recommended well-  
47 tailored and diversified temperature change scenarios will assist researchers in establishing  
48 reliable and realistic soil incubation experiments in the laboratory.

49

## 50 **INTRODUCTION:**

51 Global surface temperature is expected to increase this century by 1.8–6.4 °C<sup>1,2</sup>. Global warming  
52 may increase CO<sub>2</sub> flux from soil to the atmosphere, resulting in positive feedback with warming<sup>3–</sup>  
53<sup>6</sup>. Because microbial communities play a critical role in regulating soil respiratory responses to  
54 warming<sup>7,8</sup>, the changes in microbial respiration and the underlying microbial mechanisms with  
55 warming have been a research focus. Though soil warming experiments deployed in the field  
56 condition, *via* a heating cable<sup>9</sup> and an open top chamber<sup>10</sup>, were advantageous in capturing  
57 natural soil features such as temperature<sup>11</sup>, their high cost for installation and maintenance have  
58 limited their application. Alternatively, soil incubation experiments subject to different  
59 temperatures are a favorable choice. The primary advantage of soil incubation in a laboratory is  
60 that the well-controlled environmental conditions (e.g., temperature) are able to disentangle the  
61 one-factor effect from other confounding factors in a field experimental setting<sup>12,13</sup>. Despite  
62 differences between growth chamber and field experiments for plant growth, translation from  
63 lab results to the field are readily available<sup>14</sup>. Incubating soil samples in a laboratory setting could  
64 help improve our mechanistic understanding of soil response to warming<sup>15</sup>.

65

66 Our literature review identified several temperature control methods and, consequently, distinct  
67 temperature change modes in past soil incubation studies (**Table 1**). First, instruments used to  
68 control temperature are mostly through an incubator, growth chamber, water bath, and in a rare  
69 case, heating cable. Given these instruments, three typical temperature change patterns have  
70 been generated (**Figure 1**). These include the most implemented mode, constant temperature  
71 (CT), linear change (LC) with a non-zero constant temperature change rate, and nonlinear change  
72 (NC) featured with a diurnal type of temperature. For a case of CT pattern, the temperature may  
73 vary in magnitude over time, though constant temperature remains for a certain time period  
74 during the incubation (**Figure 1B**). For LC, the rate of temperature change could vary in different  
75 studies at more than two orders of magnitude (e.g., 0.1 °C/day vs. 3.3 °C/h; **Table 1**); For NC  
76 cases, most relied upon the intrinsic capacity of instruments used, thus leading to various modes.  
77 Despite a type of diurnal temperature, change was claimed through a heating cable or  
78 incubator<sup>16,17</sup>; however, the chamber temperatures in these experiments were not validated.  
79 Other major review results in **Table 1** include the range of incubation temperature of 0–40 °C,  
80 with most between 5–25 °C; the duration of experiments ranged from a few hours (<1 day) to  
81 nearly 2 years (~725 days). Also, soils subjected to incubations were collected from forest,  
82 grassland, and cropland ecosystems, with dominant mineral horizon, organic horizon, and even  
83 contaminated soil, located mostly in the US, China, and Europe (**Table 1**).

84

85 Given the three major temperature change modes, several distinct warming scenarios achieved  
86 in the past studies were summarized in **Table 2**. They include stepwise warming (SW), SW with  
87 varying magnitude (SW<sub>v</sub>), gradual warming linearly (GW<sub>l</sub>), gradual warming nonlinearly (GW<sub>n</sub>),  
88 and gradual warming diurnally (GW<sub>d</sub>).

89  
90 In summary, past soil incubations usually captured the average air or soil temperature in a site.  
91 In many cases, as shown in **Table 1**, incubators or chambers were manually programmed at a  
92 fixed temperature but incapable of automatically adjusting temperature as desired, lacking the  
93 ability to control the mode and rate of temperature change with time (**Eq. 1**), and thus leading  
94 to difficulty to imitate diurnal temperature of the local soil. On the other hand, though attempted  
95 in two experiments<sup>16,17</sup>, we identified no studies that explicitly imitated gradual warming  
96 diurnally ( $GW_d$ ) in their incubation experiments (**Table 1**). Based on the literature review, the  
97 major obstacle lies in poor experimental design, particularly lacking a sophisticated instrument  
98 that enables implementation and validation of diurnal or other gradual warming scenarios.  
99

100 
$$\Delta T = f(m, r, t) \quad (\text{Eq. 1})$$

101 Where  $\Delta T$  is the quantity of temperature change,  $m$  is the mode of temperature change,  $r$  is  
102 the rate of temperature change, and  $t$  is the duration of change.

103  
104 To improve the experimental rigor in soil incubation, an accurate and sophisticated temperature  
105 control method is presented in this study. Adopting a state-of-the-art environmental chamber,  
106 increasingly available and economically viable, the new design shall not only enable the accurate  
107 simulation of *in situ* soil temperature (e.g., diurnal pattern) but also, by accounting for possible  
108 temperature change extremes, provide a reliable way to minimize the artefacts of instrumental  
109 bias. The current soil incubation design should assist researchers to identify optimal strategies  
110 that meet their incubation and research needs. The overall goal of this method is to present soil  
111 biogeochemists with a highly operational approach to reform soil incubation design.

112  
113 **PROTOCOL:**

114  
115 **1. Temperature monitoring and programming**

116  
117 1.1. Identify a sampling zone within a research plot. Install one or a few automatic  
118 temperature probes in soils at 10 cm depth. Connect the weather station to a computer *via* the  
119 data transmission cable and open the software on the computer.

120  
121 1.2. Click on the **Launch/Properties** toolbar button to configure the logger for the external  
122 sensors being used.

123  
124 1.3. On the **Properties** screen, set the logger/station name (i.e., Soil incubation exp.) and the  
125 data collection interval (i.e., 60 min). Then, on the **Properties** screen, click **Enabled** on the  
126 external sensor ports being used and select the sensor/unit from the dropdown button for each  
127 sensor port (i.e., Port A; "Enabled": Temperature °C). Finally, click on **OK** to save the settings.

128  
129 1.4. Monitor the probes' reading weekly to avoid malfunction and download the dataset once  
130 a month. Obtain a complete record for several months covering the growing season (i.e., April to  
131 September).

133 1.5. Conduct data analysis of the temperature records. Obtain the mean hourly temperature  
134 of the growing season by averaging all observations.

135  
136 1.5.1. Obtain the mean temperature of each hour on a daily basis by averaging temperatures of  
137 the same hour across all days during the growing season.

138  
139 1.6. In the sophisticated chamber, launch the software and click on the **Profile** button on the  
140 main menu screen to create a new file. In the file name input line, enter "SW low". By clicking on  
141 the **Instant Change** option, enter 15.9 °C as an initial temperature as obtained in step 1.5, and  
142 enter 2 on the **Minutes** row to maintain the temperature for 2 min and click on the **Done** button.  
143 Then, under the **Ramp Time** option, enter 15.9 °C as the target set point and on the **Hours** row  
144 enter 850 h to sustain the temperature. Finally, click on the **Done** button.

145  
146 1.6.1. Repeat the above step in the second chamber by adding 5 °C to each temperature node  
147 and create a new file name "SW high".

148  
149 1.6.2. Repeat step 1.4 in the third chamber by adding 23 additional steps corresponding to 23  
150 observed hourly soil temperatures as obtained in step 1.5.1. At the last step, called **JUMP**, set 42  
151 repeated loops (Jump Count 42). This leads to the scenario of gradual warming or GW low.

152  
153 1.6.3. Repeat the above step in the fourth chamber with 5 °C added to each temperature node.  
154 This will allow a simulation of varying temperatures for 42 days at a higher temperature level  
155 (i.e., GW high).

156  
157 1.7. Conduct a preliminary run for 24 h and output the temperatures recorded by the four  
158 chambers. Plot the temperatures recorded by the chambers against those as programmed  
159 (**Figure 2A–D**).

160  
161 1.7.1. If the temperatures achieved in the chamber match the temperatures as programmed by  
162 a temperature difference <0.1 °C during the 24 h (**Figure 2A,B,E,F**), the chambers are suitable for  
163 the soil incubation experiment.

164  
165 1.7.2. If the criteria were not satisfied in any of these chambers, repeat another 24 h test or  
166 seek a new chamber.

167  
168 **2. Soil collection and homogenizing**

169  
170 2.1. Near the temperature probe area, collect five soil samples at 0–20 cm depth and put them  
171 into one plastic bag after removing the surface litter layer.

172  
173 2.2. Mix the sample thoroughly by twisting, pressing, and mingling the materials in the bag  
174 until no individual soil sample is visible.

175  
176 2.3. Store the samples in a cooler filled with ice packs and transport the samples to the lab

177 immediately.

178  
179 2.4. Remove the roots in each core, sieve it through a soil sieve of 2 mm, and thoroughly mix  
180 and homogenize the sample prior to the following analysis.

181  
182 **3. Laboratory incubation**

183  
184 3.1. Prior to incubation, weigh 10.0 g of fresh soil, oven-dry it for 24 h at 105 °C, and weigh  
185 the dry soil. Derive the difference between fresh and dry soil samples and calculate the ratio of  
186 difference over dry soil weight to determine the soil moisture content in a spreadsheet.

187  
188 3.2. Use the derived moisture content to calculate the soil microbial biomass carbon (MBC),  
189 extracellular enzyme activity (EEA), and soil heterotrophic respiration as described in the  
190 following steps. These data will help understand the treatment effects on soil respiration and the  
191 underlying microbial mechanisms.

192  
193 3.3. Prior to incubation, weigh the field moist soil subsample (10 g) and quantify the soil MBC  
194 by chloroform fumigation–K<sub>2</sub>SO<sub>4</sub> extraction and potassium persulfate digestion methods<sup>18</sup>.

195  
196 3.4. Prior to incubation, weigh the subsample of field moist soil (1.0 g) and measure soil  
197 hydrolytic and oxidative EEA<sup>19</sup>.

198  
199 3.5. Weigh 16 field moist soil subsamples (15.0 g equivalent of dry weight) in 16 polyvinyl  
200 chloride (PVC) cores (5 cm diameter, 7.5 cm tall) sealed with glass fiber paper on the bottom.

201  
202 3.6. Place the PVC cores in Mason jars (~1 L) lined with a bed of glass beads to ensure that the  
203 cores do not absorb moisture.

204  
205 3.7. Place four jars in each of the four chambers as described in step 1.4. Turn on the chambers  
206 and launch the program simultaneously in four chambers.

207  
208 3.8. During the incubation, at 2 h, days 1, 2, 7, 14, 21, 28, 35, and 42, take all jars in each of  
209 four chambers and use a portable CO<sub>2</sub> gas analyzer to measure soil respiration rate (R<sub>s</sub>) by putting  
210 the analyzer's collar to the top of each jar.

211  
212 3.9. Destructively collect all jars at the end of incubation (i.e., day 42) and quantify soil MBC  
213 as described in step 3.3.

214  
215 3.10. Destructively collect all jars at the end of incubation (i.e., day 42) and quantify soil enzyme  
216 activity as described in step 3.4.

217  
218 **4. Warming effect comparison**

219  
220 4.1. By assuming a constant respiration rate (R<sub>s</sub>) between two consecutive collections, use the

221 respiration rate times the duration to derive the cumulative respiration ( $R_c$ ).

222  
223 4.2. Conduct a three-way repeated measures analysis of variance (ANOVA) to test the main  
224 and interactive effects of time, temperature (warming), and temperature mode (warming  
225 scenario) on  $R_s$  and  $R_c$ . In addition, conduct a two-way ANOVA to test warming and warming  
226 scenario effects on MBC and EEA.

227  
228 **REPRESENTATIVE RESULTS:**

229 The selected state-of-the-art chambers replicated the target temperature with high precision  
230 (**Figure 2A,B,E,F**) and met the technical requirement of the incubation experiment. Given the  
231 easy use and operation, this signified the technique to improve the temperature simulation in  
232 soil warming studies and in other applications such as plant studies. The procedure has been  
233 employed in our recent case study based on a switchgrass cropland in Middle-Tennessee.

234  
235 Research results showed that warming led to significantly greater respiratory losses ( $R_s$  and  $R_c$ )  
236 in both warming scenarios (SW and GW), and GW doubled the warming-induced respiratory loss  
237 ( $R_c$ ) relative to SW, 81% vs. 40% (**Figure 3**). On day 42, MBC and EEA were also significantly  
238 different between SW and GW, such that MBC was higher in SW than in GW (69% vs. 38%; **Figure**  
239 **4**) and glycosidases and peroxidase (e.g., AG, BG, BX, CBH, NAG, AP, LAP) were significantly higher  
240 in GW than in SW scenarios (**Figure 5**).

241  
242 **FIGURE AND TABLE LEGENDS:**

243 **Figure 1: The illustration of temperature change mode in a soil warming experiment as**  
244 **conceptualized from Table 1.** (A) Constant temperature (CT) adopted by most studies. (B)  
245 Constant temperature with varying magnitude (CT<sub>v</sub>). (C,D) Linear change (LC) with positive and  
246 negative rates. (E,F) Nonlinear change (NC) with irregular pattern and diurnal pattern.

247  
248 **Figure 2: Temperature targeted via programming and chamber temperature during a 24-h**  
249 **testing period.** (A,B) Target temperature (grey line) and chamber temperature records (dashed  
250 line) under control and warming treatments of stepwise warming (SW); (C,D) Target temperature  
251 (grey line) and chamber temperature records (dashed line) under control and warming  
252 treatments of gradual warming (GW); (E, F) The temperature difference derived for records in  
253 panels C and D.

254  
255 **Figure 3: Mean ( $\pm$  SE) cumulative soil respiration rate ( $R_c$ ,  $\mu\text{g CO}_2\text{-C}\cdot\text{g}_{\text{soil}}^{-1}$ ) under control (hollow)**  
256 **and warming (dark) treatments in SW and GW in a 42-day soil incubation experiment.** The  
257 insets show soil respiration rates ( $R_s$ ,  $\mu\text{g CO}_2\text{-C}\cdot\text{h}^{-1}\cdot\text{g}_{\text{soil}}^{-1}$ ) applied to estimate cumulative  
258 respiration, assuming  $R_s$  was constant until the following measurement. (A) Stepwise warming  
259 (SW) and (B) gradual warming (GW). N = 4 in each collection.

260  
261 **Figure 4: Mean ( $\pm$  SE) MBC under control and warming treatments in SW and GW in a 42-day**  
262 **soil incubation experiment.** MBC = microbial biomass carbon; N = 4 in each collection. S denotes  
263 significant effect of warming scenario (SW vs. GW), at  $p < 0.05$ , based on a three-way repeated  
264 measures ANOVA.

265

266 **Figure 5: Mean ( $\pm$  SE) glycosidases and peroxidase ( $\mu\text{mol activity h}^{-1} \cdot \text{gsoil}^{-1}$ ) under control and**

267 warming treatments in SW and GW in a 42-day incubation experiment. BX =  $\beta$ -1,4-xylosidase;

268 AP = Acid Phosphatase; LAP = Leucine Aminopeptidase; NAG =  $\beta$ -1,4-N-acetyl-glucosaminidase;

269 OX = Oxidative enzymes; PHO = Phenol oxidase; PER = Peroxidase. N = 4 in each collection. S

270 denotes significant effect of warming scenario (SW vs. GW), at  $p < 0.05$ , based on a three-way

271 repeated measures ANOVA.

272

273 **Table 1: Literature review of temperature control methods and temperature change modes in**

274 **soil incubation studies**<sup>12,13,16,17,20–62</sup>. In total, 46 studies were included in the review.

275

276 **Table 2: Major temperature change modes and the corresponding warming scenarios based on**

277 **a literature review (Table 1).** Five modes and scenarios were established to represent a wide

278 range of possible temperature change and warming conditions.

279

## 280 **DISCUSSION:**

281 The constant temperature control method has been applied widely (**Table 1**). However, the

282 magnitude and temporal pattern of temperature implemented in these procedures poorly

283 simulate soil temperature observed in the field condition. Despite the emerging efforts imitating

284 the diurnal pattern in the past, such studies were scarce and failed to clarify the equipment and

285 procedure; neither did they validate the temperature simulation regarding accuracy and

286 reliability<sup>16,17</sup>. As the community strived to improve its understanding of soil warming responses,

287 optimizing the soil incubation procedure with realistic temperature and feasible control is

288 imperative. Nevertheless, such new methods have not been developed, and thus, a standard

289 method for future incubation experiments is still out of reach. In the face of the increasing

290 complexity of global temperature change in magnitude, amplitude, seasonality, duration, and

291 extremality, a comprehensive procedure is in high demand.

292

293 Here, a method for manipulating a diurnal temperature change procedure was presented, relying

294 upon the sophisticated chamber, to offer the capacity to establish constant, linear, and nonlinear

295 temperature change and subsequently various warming scenarios for meeting future research

296 needs. There are four critical steps within the protocol. The first is to determine soil temperature

297 in the field condition. Because the soil type and depth of interest—land use type of a specific

298 research plot can vary from one study to another—the soil depth and number of temperature

299 probes needed for the specific research site should be modified to best fit the soil characteristics

300 and cover the plot landscape and conditions relevant to temperature as much as possible. In

301 general, soil depth for temperature probes shall meet the most research needs at 0–20 cm, and

302 the number of probes to represent the soil temperature should be limited to one to three. The

303 key is to achieve a long-term continuous and consecutive temperature record in at least one

304 typical soil location.

305

306 The second critical step is to set up the program to achieve the targeted temperature magnitude

307 and pattern in the chamber. Because of the high sensitivity and accuracy of chamber (**Figure 4**),

308 it is feasible to program for an accurate representation of temperature as observed in the field

309 condition. Although the current protocol only presented the observed hourly temperature as  
310 targeted in the chamber, a more frequent soil temperature monitoring, such as 30 min, 15 min,  
311 or even less, can be achieved through this procedure. Nevertheless, a test of the target and  
312 chamber temperatures must be conducted over 24 h, and prior to experiment, the test results  
313 must meet the criteria of less than 0.1 °C between the target and chamber temperatures at all  
314 time points. The more frequent the temperature observation is selected to simulate, the more  
315 steps are needed to set up the program in the chamber prior to the experiment.

316

317 The third critical step is to conduct the incubation itself. To reduce the influence of soil  
318 heterogeneities<sup>63</sup>, homogenizing soil samples is key, and at least three replicates for each  
319 treatment are recommended. Prior to incubation, a pre-incubation treatment is required, and  
320 the current procedure can facilitate pre-treatment by programming the temperature and  
321 duration for this. This is advantageous for one to reduce the experimental disturbance and allow  
322 one to orchestrate the entire incubation seamlessly. The last critical step is to include both  
323 constant temperature and varying temperature treatments so that a comparison can be made as  
324 to the soil warming responses.

325

326 This protocol can be easily modified to allow one to manipulate the magnitude, amplitude, and  
327 duration of temperature change. For example, extreme temperatures during a heat wave in  
328 summer and sudden frost in early spring due to climate change, can be represented using this  
329 procedure, in addition to its capacity to account for their varying duration and intensity.  
330 Simulating the regular and irregular temperatures in combination also allow one to simulate long-  
331 term complex temperature change effects as projected in the future. As summarized in **Table 2**,  
332 those warming scenarios that have been studied in many distinct studies can be accomplished  
333 collectively in one study. This protocol is expected to provide a sophisticated method to simulate  
334 temperature in soil incubation studies. With hope for a wide application, the adoption of this  
335 protocol will help identify or validate a more accurate method for future soil warming studies  
336 based on laboratory incubation.

337

338 An important limitation of the procedure is that the chamber used in the current protocol has a  
339 relatively small volume, thus is only able to accommodate nine incubation jars in each chamber.  
340 Though a smaller jar will increase the capacity of the chamber, a big volume of chamber is  
341 recommended. A new model (e.g., TestEquity 1007) will offer eight times more capacity and is  
342 thus recommended for large scale experiments. Despite the improvement of temperature  
343 control procedure in soil incubations, the potential complications with moisture and soil  
344 homogenization will not be relieved by adopting the current protocol.

345

346 We demonstrate significant advantages of the sophisticated temperature control procedure. It  
347 provides a reliable and affordable temperature control strategy to obtain accurate temperature  
348 simulation and offers a feasible way to improve soil incubation experiment required for a better  
349 understanding of soil warming responses. Although the constant temperature control is widely  
350 accepted and logically easy to operate, the artifacts of long-term constant temperature on soil  
351 microbial communities may divert efforts to capture the genuine soil responses. The other  
352 reported laboratory warming methods are largely less controllable and replicable. The current

353 protocol is superior due to its easy operation, high accuracy and replicability of temperature  
354 simulation, explicit programing, and capacity to combine various temperature change scenarios  
355 in a single experiment. The feasibility of temperature control with high accuracy will allow  
356 researchers to explore various temperature change scenarios.

357

358 **ACKNOWLEDGMENTS:**

359 Funding sources used to support the research include a US National Science Foundation (NSF)  
360 HBCU-EiR (No. 1900885), a US Department of Agriculture (USDA) Agricultural Research Service  
361 (ARS) 1890s Faculty Research Sabbatical Program (No. 58-3098-9-005), a USDA NIFA grant (No.  
362 2021-67020-34933), and a USDA Evans–Allen Grant (No. 1017802). We thank assistance received  
363 from staff members at the TSU's Main Campus Agriculture Research and Extension Center (AREC)  
364 in Nashville, Tennessee.

365

366 **DISCLOSURES:**

367 The author has nothing to disclose.

368

369 **REFERENCES:**

- 370 1. Chatterjee, D., Saha, S. *Response of Soil Properties and Soil Microbial Communities to the*  
371 *Projected Climate Change*. In: Bal, S., Mukherjee, J., Choudhury, B., Dhawan, A. (eds). *Advances*  
372 *in Crop Environment Interaction*. Springer, Singapore, 87–136 (2018).
- 373 2. Feral. *J. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and*  
374 *III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Pachauri,  
375 R. K., Meyer, L. A. (eds). IPCC, Geneva, Switzerland. 151 (2014).
- 376 3. Davidson, E. A. Carbon dioxide loss from tropical soils increases on warming. *Nature*. **584**  
377 (7820), 198–199 (2020).
- 378 4. Davidson, E. A., Janssens, I. A. Temperature sensitivity of soil carbon decomposition and  
379 feedbacks to climate change. *Nature*. **440** (7081), 165–173 (2006).
- 380 5. Van Gestel, N. et al. Predicting soil carbon loss with warming. *Nature*. **554** (7693), E4–E5  
381 (2018).
- 382 6. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost  
383 region. *Global Biogeochemical Cycles*. **23** (2), GB2023 (2009).
- 384 7. Allison, S. D., Treseder, K. K. Warming and drying suppress microbial activity and carbon  
385 cycling in boreal forest soils. *Global Change Biology*. **14** (12), 2898–2909 (2008).
- 386 8. Allison, S. D., Wallenstein, M. D., Bradford, M. A. Soil-carbon response to warming  
387 dependent on microbial physiology. *Nature Geoscience*. **3** (5), 336–340 (2010).
- 388 9. Melillo, J. M. et al. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.  
389 *Proceedings of the National Academy of Sciences*. **108** (23), 9508–9512 (2011).
- 390 10. Pelini, S. L. et al. Heating up the forest: open-top chamber warming manipulation of  
391 arthropod communities at Harvard and Duke Forests. *Methods in Ecology and Evolution*. **2** (5),  
392 534–540 (2011).
- 393 11. Hamdi, S., Moyano, F., Sall, S., Bernoux, M., Chevallier, T. Synthesis analysis of the  
394 temperature sensitivity of soil respiration from laboratory studies in relation to incubation  
395 methods and soil conditions. *Soil Biology and Biochemistry*. **58**, 115–126 (2013).
- 396 12. Benton, T. G., Solan, M., Travis, J. M., Sait, S. M. Microcosm experiments can inform global

397 ecological problems. *Trends in Ecology & Evolution*. **22** (10), 516–521 (2007).

398 13. Schädel, C. et al. Decomposability of soil organic matter over time: the Soil Incubation  
399 Database (SIDb, version 1.0) and guidance for incubation procedures. *Earth System Science Data*.  
400 **12** (3), 1511–1524 (2020).

401 14. Poorter, H. et al. Pampered inside, pestered outside? Differences and similarities between  
402 plants growing in controlled conditions and in the field. *New Phytologist*. **212** (4), 838–855 (2016).

403 15. Jian, S. et al. Multi-year incubation experiments boost confidence in model projections of  
404 long-term soil carbon dynamics. *Nature Communications*. **11** (1), 5864 (2020).

405 16. Zhu, B., Cheng, W. Constant and diurnally-varying temperature regimes lead to different  
406 temperature sensitivities of soil organic carbon decomposition. *Soil Biology and Biochemistry*. **43**  
407 (4), 866–869 (2011).

408 17. Whitby, T. G., Madritch, M. D. Native temperature regime influences soil response to  
409 simulated warming. *Soil Biology and Biochemistry*. **60**, 202–209 (2013).

410 18. Brookes, P. C., Landman, A., Pruden, G., Jenkinson, D. S. Chloroform fumigation and the  
411 release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen  
412 in soil. *Soil Biology and Biochemistry*. **17** (6), 837–842 (1985).

413 19. Saiya-Cork, K., Sinsabaugh, R., Zak, D. The effects of long term nitrogen deposition on  
414 extracellular enzyme activity in an Acer saccharum forest soil. *Soil Biology and Biochemistry*. **34**  
415 (9), 1309–1315 (2002).

416 20. Adekanmbi, A. A., Shu, X., Zhou, Y., Shaw, L. J., Sizmur, T. Legacy effect of constant and  
417 diurnally oscillating temperatures on soil respiration and microbial community structure. *bioRxiv*.  
418 2021.04.12.439414 (2021).

419 21. Akbari, A., Ghoshal, S. Effects of diurnal temperature variation on microbial community  
420 and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site.  
421 *Environmental Microbiology*. **17** (12), 4916 – 4928 (2015).

422 22. Bai, Z. et al. Shifts in microbial trophic strategy explain different temperature sensitivity  
423 of CO<sub>2</sub> flux under constant and diurnally varying temperature regimes. *FEMS Microbiology  
424 Ecology*. **93** (5), fix063 2017).

425 23. Bao, X. et al. Effects of soil temperature and moisture on soil respiration on the Tibetan  
426 plateau. *PLoS One*. **11** (10), e0165212 (2016).

427 24. Chang, X. et al. Temperature and moisture effects on soil respiration in alpine grasslands.  
428 *Soil science*. **177** (9), 554–560 (2012).

429 25. Chen, X. et al. Evaluating the impacts of incubation procedures on estimated Q10 values  
430 of soil respiration. *Soil Biology and Biochemistry*. **42** (12), 2282–2288 (2010).

431 26. Conant, R. T., Dalla-Betta, P., Klopatke, C. C., Klopatke, J. M. Controls on soil respiration in  
432 semiarid soils. *Soil Biology and Biochemistry*. **36** (6), 945–951 (2004).

433 27. Conant, R. T. et al. Sensitivity of organic matter decomposition to warming varies with its  
434 quality. *Global Change Biology*. **14** (4), 868–877 (2008).

435 28. Ding, J. et al. Linking temperature sensitivity of soil CO<sub>2</sub> release to substrate,  
436 environmental, and microbial properties across alpine ecosystems. *Global Biogeochemical  
437 Cycles*. **30** (9), 1310–1323 (2016).

438 29. En, C., Al-Kaisi, M. M., Liange, W., Changhuan, D., Deti, X. Soil organic carbon  
439 mineralization as affected by cyclical temperature fluctuations in a karst region of southwestern  
440 China. *Pedosphere*. **25** (4), 512–523 (2015).

441 30. Fang, C., Moncrieff, J. The dependence of soil CO<sub>2</sub> efflux on temperature. *Soil Biology and*  
442 *Biochemistry*. **33** (2), 155–165 (2001).

443 31. Fierer, N., Colman, B. P., Schimel, J. P., Jackson, R. B. Predicting the temperature  
444 dependence of microbial respiration in soil: A continental - scale analysis. *Global Biogeochemical*  
445 *Cycles*. **20** (3), GB3026 (2006).

446 32. Guntinas, M., Gil-Sotres, F., Leiros, M., Trasar-Cepeda, C. Sensitivity of soil respiration to  
447 moisture and temperature. *Journal of Soil Science and Plant Nutrition*. **13** (2), 445–461 (2013).

448 33. Kittredge, H. A., Cannone, T., Funk, J., Chapman, S. K. Soil respiration and extracellular  
449 enzyme production respond differently across seasons to elevated temperatures. *Plant and Soil*.  
450 **425** (1), 351–361 (2018).

451 34. Knorr, W., Prentice, I. C., House, J., Holland, E. Long-term sensitivity of soil carbon  
452 turnover to warming. *Nature*. **433** (7023), 298–301 (2005).

453 35. Lefevre, R. et al. Higher temperature sensitivity for stable than for labile soil organic  
454 carbon – Evidence from incubations of long - term bare fallow soils. *Global Change Biology*. **20**  
455 (2), 633 – 640 (2014).

456 36. Li, J. et al. Asymmetric responses of soil heterotrophic respiration to rising and decreasing  
457 temperatures. *Soil Biology and Biochemistry*. **106**, 18–27 (2017).

458 37. Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest  
459 soils. *Global Change Biology*. **26** (3), 1873–1885 (2020).

460 38. Li, J. et al. Rising temperature may trigger deep soil carbon loss across forest ecosystems.  
461 *Advanced Science*. **7** (19), 2001242 (2020).

462 39. Liang, J. et al. Methods for estimating temperature sensitivity of soil organic matter based  
463 on incubation data: A comparative evaluation. *Soil Biology and Biochemistry*. **80**, 127–135 (2015).

464 40. Lin, J., Zhu, B., Cheng, W. Decadally cycling soil carbon is more sensitive to warming than  
465 faster - cycling soil carbon. *Global Change Biology*. **21** (12), 4602 – 4612 (2015).

466 41. Liu, H. et al. Differential response of soil respiration to nitrogen and phosphorus addition  
467 in a highly phosphorus-limited subtropical forest, China. *Forest Ecology and Management*. **448**,  
468 499–508 (2019).

469 42. Liu, H. S. et al. Respiratory substrate availability plays a crucial role in the response of soil  
470 respiration to environmental factors. *Applied Soil Ecology*. **32** (3), 284–292 (2006).

471 43. Liu, Y. et al. A new incubation and measurement approach to estimate the temperature  
472 response of soil organic matter decomposition. *Soil Biology and Biochemistry*. **138**, 107596  
473 (2019).

474 44. Meyer, N., Welp, G., Amelung, W. The temperature sensitivity (Q10) of soil respiration:  
475 Controlling factors and spatial prediction at regional scale based on environmental soil classes.  
476 *Global Biogeochemical Cycles*. **32** (2), 306–323 (2018).

477 45. Mikan, C. J., Schimel, J. P., Doyle, A. P. Temperature controls of microbial respiration in  
478 arctic tundra soils above and below freezing. *Soil Biology and Biochemistry*. **34** (11), 1785–1795  
479 (2002).

480 46. Podrebarac, F. A., Laganière, J., Billings, S. A., Edwards, K. A., Ziegler, S. E. Soils isolated  
481 during incubation underestimate temperature sensitivity of respiration and its response to  
482 climate history. *Soil Biology and Biochemistry*. **93**, 60–68 (2016).

483 47. Quan, Q. et al. Forest type affects the coupled relationships of soil C and N mineralization

484 in the temperate forests of northern China. *Scientific Reports*. **4** (1), 6584 (2014).

485 48. Robinson, J. et al. Rapid laboratory measurement of the temperature dependence of soil  
486 respiration and application to changes in three diverse soils through the year. *Biogeochemistry*.  
487 **133** (1), 101–112 (2017).

488 49. Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., Janssens, I. Sensitivity of  
489 decomposition rates of soil organic matter with respect to simultaneous changes in temperature  
490 and moisture. *Journal of Advances in Modeling Earth Systems*. **7** (1), 335–356 (2015).

491 50. Sihi, D., Inglett, P. W., Gerber, S., Inglett, K. S. Rate of warming affects temperature  
492 sensitivity of anaerobic peat decomposition and greenhouse gas production. *Global Change  
493 Biology*. **24** (1), e259–e274 (2018).

494 51. Sihi, D., Inglett, P. W., Inglett, K. S. Warming rate drives microbial nutrient demand and  
495 enzyme expression during peat decomposition. *Geoderma*. **336**, 12–21 (2019).

496 52. Subke, J.-A., Bahn, M. On the 'temperature sensitivity' of soil respiration: can we use the  
497 immeasurable to predict the unknown? *Soil Biology and Biochemistry*. **42** (9), 1653–1656 (2010).

498 53. Tucker, C. L., Bell, J., Pendall, E., Ogle, K. Does declining carbon - use efficiency explain  
499 thermal acclimation of soil respiration with warming? *Global Change Biology*. **19** (1), 252–263  
500 (2013).

501 54. Wang, J. et al. Temperature sensitivity of soil carbon decomposition due to shifts in soil  
502 extracellular enzymes after afforestation. *Geoderma*. **374**, 114426 (2020).

503 55. Wang, Q. et al. Important interaction of chemicals, microbial biomass and dissolved  
504 substrates in the diel hysteresis loop of soil heterotrophic respiration. *Plant and Soil*. **428** (1),  
505 279–290 (2018).

506 56. Wang, Q. et al. Differences in SOM decomposition and temperature sensitivity among soil  
507 aggregate size classes in a temperate grasslands. *PLoS One*. **10** (2), e0117033 (2015).

508 57. Weedon, J. T. et al. Temperature sensitivity of peatland C and N cycling: does substrate  
509 supply play a role? *Soil Biology and Biochemistry*. **61**, 109–120 (2013).

510 58. Wei, L. et al. Labile carbon matters more than temperature for enzyme activity in paddy  
511 soil. *Soil Biology and Biochemistry*. **135**, 134–143 (2019).

512 59. Wetterstedt, J. M., Persson, T., Ågren, G. I. Temperature sensitivity and substrate quality  
513 in soil organic matter decomposition: results of an incubation study with three substrates. *Global  
514 Change Biology*. **16** (6), 1806–1819 (2010).

515 60. Winkler, J. P., Cherry, R. S., Schlesinger, W. H. The Q10 relationship of microbial  
516 respiration in a temperate forest soil. *Soil Biology and Biochemistry*. **28** (8), 1067–1072 (1996).

517 61. Yan, D. et al. The temperature sensitivity of soil organic carbon decomposition is greater  
518 in subsoil than in topsoil during laboratory incubation. *Scientific Reports*. **7**, 5181 (2017).

519 62. Yang, K. et al. Temperature response of soil carbon decomposition depends strongly on  
520 forest management practice and soil layer on the eastern Tibetan Plateau. *Scientific Reports*. **7**,  
521 4777 (2017).

522 63. Li, J. W. Sampling soils in a heterogeneous research plot. *Journal of Visualized  
523 Experiments*. (143), e58519 (2019)