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SUMMARY:

Laboratory soil warming experiments usually employ two or more constant temperatures in
multiple chambers. By presenting a sophisticated environmental chamber, we provide an
accurate temperature control method to imitate the magnitude and amplitude of in situ soil
temperature and improve the experimental design of soil incubation studies.

ABSTRACT:

The study of warming impact on soils requires a realistic and accurate representation of
temperature. In laboratory incubation studies, a widely adopted method has been to render
constant temperatures in multiple chambers, and via comparisons of soil responses between
low- and high-temperature chambers, to derive the warming impact on soil changes. However,
this commonly used method failed to imitate both the magnitude and amplitude of actual
temperatures as observed in field conditions, thus potentially undermining the validity of such
studies. With sophisticated environmental chambers becoming increasingly available, it is
imperative to examine alternative methods of temperature control for soil incubation research.
This protocol will introduce a state-of-the-art environmental chamber and demonstrate both
conventional and new methods of temperature control to improve the experimental design of
soil incubation. The protocol mainly comprises four steps: temperature monitoring and
programming, soil collection, laboratory incubation, and warming effect comparison. The step-
by-step procedure is modified according to a former publication. One example will be presented
to demonstrate different methods of temperature control and the resultant contrasting warming
scenarios; that is, a constant temperature design referred to as stepwise warming (SW) and
simulated in situ temperature design as gradual warming (GW), as well as their effects on soil
respiration, microbial biomass, and extracellular enzyme activities. In addition, we present a
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strategy to diversify temperature change scenarios to meet specific climate change research
needs (e.g., extreme heat). The temperature control protocol and the recommended well-
tailored and diversified temperature change scenarios will assist researchers in establishing
reliable and realistic soil incubation experiments in the laboratory.

INTRODUCTION:

Global surface temperature is expected to increase this century by 1.8—6.4 °C*2. Global warming
may increase CO; flux from soil to the atmosphere, resulting in positive feedback with warming3-
6, Because microbial communities play a critical role in regulating soil respiratory responses to
warming’2, the changes in microbial respiration and the underlying microbial mechanisms with
warming have been a research focus. Though soil warming experiments deployed in the field
condition, via a heating cable® and an open top chamber!?, were advantageous in capturing
natural soil features such as temperature®?, their high cost for installation and maintenance have
limited their application. Alternatively, soil incubation experiments subject to different
temperatures are a favorable choice. The primary advantage of soil incubation in a laboratory is
that the well-controlled environmental conditions (e.g., temperature) are able to disentangle the
one-factor effect from other confounding factors in a field experimental setting'®'3. Despite
differences between growth chamber and field experiments for plant growth, translation from
lab results to the field are readily available!®. Incubating soil samples in a laboratory setting could
help improve our mechanistic understanding of soil response to warming®®.

Our literature review identified several temperature control methods and, consequently, distinct
temperature change modes in past soil incubation studies (Table 1). First, instruments used to
control temperature are mostly through an incubator, growth chamber, water bath, and in a rare
case, heating cable. Given these instruments, three typical temperature change patterns have
been generated (Figure 1). These include the most implemented mode, constant temperature
(CT), linear change (LC) with a non-zero constant temperature change rate, and nonlinear change
(NC) featured with a diurnal type of temperature. For a case of CT pattern, the temperature may
vary in magnitude over time, though constant temperature remains for a certain time period
during the incubation (Figure 1B). For LC, the rate of temperature change could vary in different
studies at more than two orders of magnitude (e.g., 0.1 °C/day vs. 3.3 °C/h; Table 1); For NC
cases, most relied upon the intrinsic capacity of instruments used, thus leading to various modes.
Despite a type of diurnal temperature, change was claimed through a heating cable or
incubator'®’; however, the chamber temperatures in these experiments were not validated.
Other major review results in Table 1 include the range of incubation temperature of 0—40 °C,
with most between 5-25 °C; the duration of experiments ranged from a few hours (<1 day) to
nearly 2 years (~725 days). Also, soils subjected to incubations were collected from forest,
grassland, and cropland ecosystems, with dominant mineral horizon, organic horizon, and even
contaminated soil, located mostly in the US, China, and Europe (Table 1).

Given the three major temperature change modes, several distinct warming scenarios achieved
in the past studies were summarized in Table 2. They include stepwise warming (SW), SW with
varying magnitude (SW,), gradual warming linearly (GW,), gradual warming nonlinearly (GWn),
and gradual warming diurnally (GW4).
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In summary, past soil incubations usually captured the average air or soil temperature in a site.
In many cases, as shown in Table 1, incubators or chambers were manually programmed at a
fixed temperature but incapable of automatically adjusting temperature as desired, lacking the
ability to control the mode and rate of temperature change with time (Eq. 1), and thus leading
to difficulty to imitate diurnal temperature of the local soil. On the other hand, though attempted
in two experiments'®'’, we identified no studies that explicitly imitated gradual warming
diurnally (GW4y) in their incubation experiments (Table 1). Based on the literature review, the
major obstacle lies in poor experimental design, particularly lacking a sophisticated instrument
that enables implementation and validation of diurnal or other gradual warming scenarios.

AT = f(m,r,t) (Eg.1)
Where AT is the quantity of temperature change, m is the mode of temperature change, r is
the rate of temperature change, and t is the duration of change.

To improve the experimental rigor in soil incubation, an accurate and sophisticated temperature
control method is presented in this study. Adopting a state-of-the-art environmental chamber,
increasingly available and economically viable, the new design shall not only enable the accurate
simulation of in situ soil temperature (e.g., diurnal pattern) but also, by accounting for possible
temperature change extremes, provide a reliable way to minimize the artefacts of instrumental
bias. The current soil incubation design should assist researchers to identify optimal strategies
that meet their incubation and research needs. The overall goal of this method is to present soil
biogeochemists with a highly operational approach to reform soil incubation design.

PROTOCOL:
1. Temperature monitoring and programming
1.1. Identify a sampling zone within a research plot. Install one or a few automatic

temperature probes in soils at 10 cm depth. Connect the weather station to a computer via the
data transmission cable and open the software on the computer.

1.2.  Click on the Launch/Properties toolbar button to configure the logger for the external
sensors being used.

1.3.  On the Properties screen, set the logger/station name (i.e., Soil incubation exp.) and the
data collection interval (i.e., 60 min). Then, on the Properties screen, click Enabled on the
external sensor ports being used and select the sensor/unit from the dropdown button for each
sensor port (i.e., Port A; "Enabled": Temperature °C). Finally, click on OK to save the settings.

1.4.  Monitor the probes' reading weekly to avoid malfunction and download the dataset once
a month. Obtain a complete record for several months covering the growing season (i.e., April to
September).
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1.5. Conduct data analysis of the temperature records. Obtain the mean hourly temperature
of the growing season by averaging all observations.

1.5.1. Obtain the mean temperature of each hour on a daily basis by averaging temperatures of
the same hour across all days during the growing season.

1.6. Inthe sophisticated chamber, launch the software and click on the Profile button on the
main menu screen to create a new file. In the file name input line, enter “SW low”. By clicking on
the Instant Change option, enter 15.9 °C as an initial temperature as obtained in step 1.5, and
enter 2 on the Minutes row to maintain the temperature for 2 min and click on the Done button.
Then, under the Ramp Time option, enter 15.9 °C as the target set point and on the Hours row
enter 850 h to sustain the temperature. Fianlly, click on the Done button.

1.6.1. Repeat the above step in the second chamber by adding 5 °C to each temperature node
and create a new file name “SW high".

1.6.2. Repeat step 1.4 in the third chamber by adding 23 additional steps corresponding to 23
observed hourly soil temperatures as obtained in step 1.5.1. At the last step, called JUMP, set 42
repeated loops (Jump Count 42). This leads to the scenario of gradual warming or GW low.

1.6.3. Repeat the above step in the fourth chamber with 5 °C added to each temperature node.
This will allow a simulation of varying temperatures for 42 days at a higher temperature level
(i.e., GW high).

1.7. Conduct a preliminary run for 24 h and output the temperatures recorded by the four
chambers. Plot the temperatures recorded by the chambers against those as programmed
(Figure 2A-D).

1.7.1. If the temperatures achieved in the chamber match the temperatures as programmed by
a temperature difference <0.1 °C during the 24 h (Figure 2A,B,E,F), the chambers are suitable for

the soil incubation experiment.

1.7.2. If the criteria were not satisfied in any of these chambers, repeat another 24 h test or
seek a new chamber.

2. Soil collection and homogenizing

2.1. Nearthetemperature probe area, collect five soil samples at 0-20 cm depth and put them
into one plastic bag after removing the surface litter layer.

2.2. Mix the sample thoroughly by twisting, pressing, and mingling the materials in the bag
until no individual soil sample is visible.

2.3. Store the samples in a cooler filled with ice packs and transport the samples to the lab
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immediately.

2.4. Remove the roots in each core, sieve it through a soil sieve of 2 mm, and thoroughly mix
and homogenize the sample prior to the following analysis.

3. Laboratory incubation

3.1.  Prior to incubation, weigh 10.0 g of fresh soil, oven-dry it for 24 h at 105 °C, and weigh
the dry soil. Derive the difference between fresh and dry soil samples and calculate the ratio of
difference over dry soil weight to determine the soil moisture content in a spreadsheet.

3.2. Use the derived moisture content to calculate the soil microbial biomass carbon (MBC),
extracellular enzyme activity (EEA), and soil heterotrophic respiration as described in the
following steps. These data will help understand the treatment effects on soil respiration and the
underlying microbial mechanisms.

3.3.  Priortoincubation, weigh the field moist soil subsample (10 g) and quantify the soil MBC
by chloroform fumigation—K,SO4 extraction and potassium persulfate digestion methods?®.

3.4. Prior to incubation, weigh the subsample of field moist soil (1.0 g) and measure soil
hydrolytic and oxidative EEA'°.

3.5. Weigh 16 field moist soil subsamples (15.0 g equivalent of dry weight) in 16 polyvinyl
chloride (PVC) cores (5 cm diameter, 7.5 cm tall) sealed with glass fiber paper on the bottom.

3.6. Place the PVC cores in Mason jars (~1 L) lined with a bed of glass beads to ensure that the
cores do not absorb moisture.

3.7.  Placefourjarsineach of the four chambers as described in step 1.4. Turn on the chambers
and launch the program simultaneously in four chambers.

3.8.  During the incubation, at 2 h, days 1, 2, 7, 14, 21, 28, 35, and 42, take all jars in each of
four chambers and use a portable CO; gas analyzer to measure soil respiration rate (Rs) by putting

the analyzer's collar to the top of each jar.

3.9. Destructively collect all jars at the end of incubation (i.e., day 42) and quantify soil MBC
as described in step 3.3.

3.10. Destructively collect all jars at the end of incubation (i.e., day 42) and quantify soil enzyme
activity as described in step 3.4.

4. Warming effect comparison

4.1. Byassuming a constant respiration rate (Rs) between two consecutive collections, use the
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respiration rate times the duration to derive the cumulative respiration (Rc).

4.2. Conduct a three-way repeated measures analysis of variance (ANOVA) to test the main
and interactive effects of time, temperature (warming), and temperature mode (warming
scenario) on Rs and Rc. In addition, conduct a two-way ANOVA to test warming and warming
scenario effects on MBC and EEA.

REPRESENTATIVE RESULTS:

The selected state-of-the-art chambers replicated the target temperature with high precision
(Figure 2A,B,E,F) and met the technical requirement of the incubation experiment. Given the
easy use and operation, this signified the technique to improve the temperature simulation in
soil warming studies and in other applications such as plant studies. The procedure has been
employed in our recent case study based on a switchgrass cropland in Middle-Tennessee.

Research results showed that warming led to significantly greater respiratory losses (Rs and R¢)
in both warming scenarios (SW and GW), and GW doubled the warming-induced respiratory loss
(R¢) relative to SW, 81% vs. 40% (Figure 3). On day 42, MBC and EEA were also significantly
different between SW and GW, such that MBC was higher in SW than in GW (69% vs. 38%; Figure
4) and glycosidases and peroxidase (e.g., AG, BG, BX, CBH, NAG, AP, LAP) were significantly higher
in GW than in SW scenarios (Figure 5).

FIGURE AND TABLE LEGENDS:

Figure 1: The illustration of temperature change mode in a soil warming experiment as
conceptualized from Table 1. (A) Constant temperature (CT) adopted by most studies. (B)
Constant temperature with varying magnitude (CTy). (C,D) Linear change (LC) with positive and
negative rates. (E,F) Nonlinear change (NC) with irregular pattern and diurnal pattern.

Figure 2: Temperature targeted via programming and chamber temperature during a 24-h
testing period. (A,B) Target temperature (grey line) and chamber temperature records (dashed
line) under control and warming treatments of stepwise warming (SW); (C,D) Target temperature
(grey line) and chamber temperature records (dashed line) under control and warming
treatments of gradual warming (GW); (E, F) The temperature difference derived for records in
panels C and D.

Figure 3: Mean (x SE) cumulative soil respiration rate (R, pg CO2-C-gsoii’t) under control (hollow)
and warming (dark) treatments in SW and GW in a 42-day soil incubation experiment. The
insets show soil respiration rates (Rs, pg CO2-C-hl-gsii) applied to estimate cumulative
respiration, assuming Rs was constant until the following measurement. (A) Stepwise warming
(SW) and (B) gradual warming (GW). N = 4 in each collection.

Figure 4: Mean (+ SE) MBC under control and warming treatments in SW and GW in a 42-day
soil incubation experiment. MBC = microbial biomass carbon; N = 4 in each collection. S denotes
significant effect of warming scenario (SW vs. GW), at p < 0.05, based on a three-way repeated
measures ANOVA.
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Figure 5: Mean (t SE) glycosidases and peroxidase (umol activity h™*-gsoil') under control and
warming treatments in SW and GW in a 42-day incubation experiment. BX = 8-1,4-xylosidase;
AP = Acid Phosphatase; LAP = Leucine Aminopeptidase; NAG = 8-1,4-N-acetyl-glucosaminidase;
OX = Oxidative enzymes; PHO = Phenol oxidase; PER = Peroxidase. N = 4 in each collection. S
denotes significant effect of warming scenario (SW vs. GW), at p < 0.05, based on a three-way
repeated measures ANOVA.

Table 1: Literature review of temperature control methods and temperature change modes in
soil incubation studies!?3:16:17.20-62 | total, 46 studies were included in the review.

Table 2: Major temperature change modes and the corresponding warming scenarios based on
a literature review (Table 1). Five modes and scenarios were established to represent a wide
range of possible temperature change and warming conditions.

DISCUSSION:

The constant temperature control method has been applied widely (Table 1). However, the
magnitude and temporal pattern of temperature implemented in these procedures poorly
simulate soil temperature observed in the field condition. Despite the emerging efforts imitating
the diurnal pattern in the past, such studies were scarce and failed to clarify the equipment and
procedure; neither did they validate the temperature simulation regarding accuracy and
reliability®1’. As the community strived to improve its understanding of soil warming responses,
optimizing the soil incubation procedure with realistic temperature and feasible control is
imperative. Nevertheless, such new methods have not been developed, and thus, a standard
method for future incubation experiments is still out of reach. In the face of the increasing
complexity of global temperature change in magnitude, amplitude, seasonality, duration, and
extremality, a comprehensive procedure is in high demand.

Here, a method for manipulating a diurnal temperature change procedure was presented, relying
upon the sophisticated chamber, to offer the capacity to establish constant, linear, and nonlinear
temperature change and subsequently various warming scenarios for meeting future research
needs. There are four critical steps within the protocol. The first is to determine soil temperature
in the field condition. Because the soil type and depth of interest—land use type of a specific
research plot can vary from one study to another—the soil depth and number of temperature
probes needed for the specific research site should be modified to best fit the soil characteristics
and cover the plot landscape and conditions relevant to temperature as much as possible. In
general, soil depth for temperature probes shall meet the most research needs at 0—20 cm, and
the number of probes to represent the soil temperature should be limited to one to three. The
key is to achieve a long-term continuous and consecutive temperature record in at least one
typical soil location.

The second critical step is to set up the program to achieve the targeted temperature magnitude
and pattern in the chamber. Because of the high sensitivity and accuracy of chamber (Figure 4),
it is feasible to program for an accurate representation of temperature as observed in the field
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condition. Although the current protocol only presented the observed hourly temperature as
targeted in the chamber, a more frequent soil temperature monitoring, such as 30 min, 15 min,
or even less, can be achieved through this procedure. Nevertheless, a test of the target and
chamber temperatures must be conducted over 24 h, and prior to experiment, the test results
must meet the criteria of less than 0.1 °C between the target and chamber temperatures at all
time points. The more frequent the temperature observation is selected to simulate, the more
steps are needed to set up the program in the chamber prior to the experiment.

The third critical step is to conduct the incubation itself. To reduce the influence of soil
heterogeneities®®, homogenizing soil samples is key, and at least three replicates for each
treatment are recommended. Prior to incubation, a pre-incubation treatment is required, and
the current procedure can facilitate pre-treatment by programming the temperature and
duration for this. This is advantageous for one to reduce the experimental disturbance and allow
one to orchestrate the entire incubation seamlessly. The last critical step is to include both
constant temperature and varying temperature treatments so that a comparison can be made as
to the soil warming responses.

This protocol can be easily modified to allow one to manipulate the magnitude, amplitude, and
duration of temperature change. For example, extreme temperatures during a heat wave in
summer and sudden frost in early spring due to climate change, can be represented using this
procedure, in addition to its capacity to account for their varying duration and intensity.
Simulating the regular and irregular temperatures in combination also allow one to simulate long-
term complex temperature change effects as projected in the future. As summarized in Table 2,
those warming scenarios that have been studied in many distinct studies can be accomplished
collectively in one study. This protocol is expected to provide a sophisticated method to simulate
temperature in soil incubation studies. With hope for a wide application, the adoption of this
protocol will help identify or validate a more accurate method for future soil warming studies
based on laboratory incubation.

An important limitation of the procedure is that the chamber used in the current protocol has a
relatively small volume, thus is only able to accommodate nine incubation jars in each chamber.
Though a smaller jar will increase the capacity of the chamber, a big volume of chamber is
recommended. A new model (e.g., TestEquity 1007) will offer eight times more capacity and is
thus recommended for large scale experiments. Despite the improvement of temperature
control procedure in soil incubations, the potential complications with moisture and soil
homogenization will not be relieved by adopting the current protocol.

We demonstrate significant advantages of the sophisticated temperature control procedure. It
provides a reliable and affordable temperature control strategy to obtain accurate temperature
simulation and offers a feasible way to improve soil incubation experiment required for a better
understanding of soil warming responses. Although the constant temperature control is widely
accepted and logistically easy to operate, the artifacts of long-term constant temperature on soil
microbial communities may divert efforts to capture the genuine soil responses. The other
reported laboratory warming methods are largely less controllable and replicable. The current
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protocol is superior due to its easy operation, high accuracy and replicability of temperature
simulation, explicit programing, and capacity to combine various temperature change scenarios
in a single experiment. The feasibility of temperature control with high accuracy will allow
researchers to explore various temperature change scenarios.
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