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ABSTRACT
Emotion perception is person-dependent and variable. Dimensional
characterizations of emotion can capture this variability by describ-
ing emotion in terms of its properties (e.g., valence, positive vs. neg-
ative, and activation, calm vs. excited). However, in many emotion
recognition systems, this variability is often considered “noise” and
is attenuated by averaging across raters. Yet, inter-rater variability
provides information about the subtlety or clarity of an emotional
expression and can be used to describe complex emotions. In this pa-
per, we investigate methods that can e�ectively capture the variabil-
ity across evaluators by predicting emotion perception as a discrete
probability distribution in the valence-activation space. We propose:
(1) a label processing method that can generate two-dimensional
discrete probability distributions of emotion from a limited number
of ordinal labels; (2) a new approach that predicts the generated
probabilistic distributions using dynamic audio-visual features and
Convolutional Neural Networks (CNNs). Our experimental results
on the MSP-IMPROV corpus suggest that the proposed approach is
more e�ective than the conventional Support Vector Regressions
(SVRs) approach with utterance-level statistical features, and that
feature-level fusion of the audio and video modalities outperforms
decision-level fusion. The proposed CNN model predominantly
improves the prediction accuracy for the valence dimension and
brings a consistent performance improvement over data recorded
from natural interactions. The results demonstrate the e�ectiveness
of generating emotion distributions from limited number of labels
and predicting the distribution using dynamic features and neural
networks.
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1 INTRODUCTION
Emotions are not perceived uniformly across individuals. In emo-
tion recognition experiments, inter-rater variability is often mit-
igated by averaging the ratings of groups of evaluators, under
the assumption that this amalgamation can remove perceptual
“noise”. However, inter-rater variability contains signal, in addition
to noise. It provides information about the subtlety or clarity of the
an emotional display. In this paper, we investigate methods that
can e�ectively capture and predict the variation that is present in a
population of evaluators.

We focus on dimensional descriptions of emotion, which charac-
terize emotion in terms of continuous values. This characterization
naturally captures variation in emotion perception [38], allowing
us to retain rich information about the emotional content of a
given expression. This information could provide high-level fea-
tures for tasks such as the prediction of mental health (e.g., depres-
sion, autism), complex emotions, and cross-corpus / cross-language
emotion recognition where categorical labels may have di�erent
meanings as a function of context [24].

Among the various de�nitions of the dimensions, valence (pos-
itive vs. negative) and activation (calm vs. excited) are the most
commonly accepted [7, 23]. Compared to categorical emotion de-
scriptions (e.g., anger, happiness, and sadness), these dimensions
are less dependent on context or language [24] and therefore more
commonly used in cross-corpus / cross-language emotion recogni-
tion [28, 29, 41, 43].

Previous work in music emotion recognition has explored meth-
ods for generating and predicting distributions of emotion percep-
tion [25, 26, 34, 35, 38, 42]. However, they often require a large
number of real-valued evaluations, focus on a single modality (i.e.,
audio), and do not fully exploit short-term temporal information.
In speech emotion recognition, there has been work incorporat-
ing inter-rater consistency into systems using categorical labels
[31, 37]. However, most work using dimensional labels focuses on
predicting either the mean evaluation across multiple evaluators
[10, 13, 17, 19, 21, 36] or the classes caterogized from the mean
evaluation [18, 28]. Works that seek to provide emotion variation
as a usable and modelable signal for speech are still missing.

In this paper, we present a new approach that generates proba-
bilisty distributions on the valence-activation space and captures
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the variability of emotion perception from speech, using a lim-
ited number of ordinal evaluations. We demonstrate how these
two-dimensional distributions can be predicted using frame-level
audio-visual features. We then ask the following two research ques-
tions: (1) can we predict a probability distribution more accurately
by modeling local temporal patterns; and (2) can we combine audio
and video modalities to result in better performance compared to
when a single modality is used?

We conduct experiments on the MSP-IMPROV dataset [5]. We
upsample the evaluations for each utterance by repeatedly perform-
ing random subsampling and averaging. We use the resulting set of
evaluations to calculate ground-truth probability distributions. We
use convolutional neural networks (CNNs) to predict these distribu-
tions by leveraging regional temporal patterns for both unimodal
and multimodal input. We compare the proposed CNN approach
with support vector regression (SVR), the state-of-the-art approach
[38, 42], to answer our �rst question, and compare the performance
of di�erent modalities and fusion methods to answer our second.

Our experimental results suggest that modeling local tempo-
ral patterns is bene�cial with respect to both Total Variation and
Jensen-Shannon Divergence compared to SVR with utterance-level
statistical features. Combining audio and video modalities at the
feature-level outperforms approaches that either use a single modal-
ity or combine the modalities at the decision-level. The proposed
CNN model predominantly improves the prediction of valence. The
novelty of this work includes: (1) a label processing method for
generating two-dimensional probability distribution from scarce
ordinal labels; (2) the �rst attempt to predict two-dimensional prob-
ability distributions of emotion perception for speech using a dy-
namic approach; (3) an exploration of the in�uence of modality on
predicting the distribution of emotion perception.

2 RELATEDWORKS
2.1 Emotion Recognition using Dimensional

Labels
Dimensional descriptions of emotion have become increasingly
common in emotion recognition research. The majority either pre-
dict the mean of a group of evaluations [10, 13, 17, 19, 21, 36] or
the mean weighted by rater-reliability [12], or restructure the emo-
tion recognition problem as classi�cation along each dimension
[18, 28, 29, 41, 43]. While it is common practice for emotion datasets
to collect multiple evaluations [4, 8, 22], neither approach models
the variability in emotion perception captured by these dimensional
evaluations. This is compounded by the low inter-rater agreement
common in these datasets [30].

There has been work in music emotion recognition and cross-
domain (song and speech) emotion recognition on predicting prob-
ability distributions on the valence-activation space. There are
two popular approaches: parametric (e.g., bivariate Gaussian and
GMMs) [25, 34, 35] or non-parametric (discrete grid representation)
[26, 38, 42]. In general, both approaches rely upon a large number
of real-valued annotations.

Schmidt et al. �rst proposed to model emotion perception from
music as a probability distribution [25]. They assumed that the
individual evaluations could be represented by a bivariate Gaussian.

They formulated the task as a prediction of the Gaussian parame-
ter associated with each short clip using several regression meth-
ods. They found that support vector regression (SVR) produced
the best single-feature performance. However, the underlying as-
sumption that the evaluations are guaranteed to follow a Gaussian
distribution may not be valid, as noted in [35, 38]. Wang et al. pro-
posed a generative model that learns two Gaussian mixture models
(GMMs), one from acoustic features and the other from emotion
labels [34, 35]. They predicted the emotional content of music as a
probability distribution over the a�ective GMM components and
summarized the prediction as a single Gaussian. However, while
this approach used frame-level features directly, the utterance-level
predictions were calculated by averaging the frame-level labels over
the entirety of the utterance. The interactions across consecutive
frames were not considered.

Another work of Schmidt et al. represented emotion perception
as a probability heatmap [26]. The evaluations were discretized into
equally spaced grids. No assumption of the distribution of labels
was made. They predicted the heatmaps over 1-second periods us-
ing Conditional Random Fields (CRF). The acoustic features were
averaged over the 1-second window to reduce the frame-rate to
that of the labels. Therefore, while CRF is context-dependent, there
was information loss in the feature downsampling process. Yang et
al. generated a smooth probability density function from individ-
ual evaluations using Kernel Density Estimation (KDE) and then
discretized the space [38]. The bene�t is that the distribution is
not biased by the position of the binning grids. They predicted the
probability in each grid separately using SVR with utterance-level
statistic features. Our previous work used a similar approach for
predicting emotion perception across song and speech [42]. The dif-
ference is that we performed evaluator-dependent z-normalization
to smooth the ordinal labels. This was valid because the evaluators
were presented with relatively balanced data. However, both works
used a static approach.

We note that these works often rely on a large number of real-
valued labels, which are not available in most popular emotion
datasets. Besides, they mostly focus on using the audio modality.
In addition, either feature downsampling or ignoring interactions
across frames will result in information loss. The short-time tem-
poral information is not fully exploited. Therefore, we propose the
following improvements: (1) developing a method to make use of a
limited number of ordinal labels, (2) capturing emotionally salient
temporal patterns using dynamic modeling, and (3) investigating
the impact of modality. We posit that the combination of these three
approaches will lead to a system with better performance.

2.2 CNN for Modeling Temporal Patterns in
Emotion Recognition

CNNs have been used in a�ective computing to learn emotionally
salient features from audio [14, 16, 32] and video [11, 39]. Recent
works have explored the e�cacy of CNNs for modeling temporal
patterns. Mao et al. extracted emotion-salient features for speech
emotion recognition using CNNs [16]. They �rst used a sparse auto-
encoder to learn �lters at di�erent scales from unlabeled speech sig-
nals and convolved the spectrogram segments with learned �lters
to form a series of feature maps. They performed mean-pooling and
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(a) (b)

Figure 1: Dataset details about MSP-Improv: (a) number of
evaluations per utterance (in log scale); (b) average valence-
activation per utterance (size of dot proportional to the num-
ber of utterances).

stacked the feature maps into a feature vector. After that, they used
the feature vector as the input to a fully-connected layer to learn
emotion-salient features before feeding the learned features into a
Support Vector Machine (SVM) classi�er. Aldeneh et al. used a CNN
with a convolutional layer, a global max-pooling layer, and several
dense layers to identify emotionally salient local patterns and clas-
sify emotion from temporal low-level acoustic features [1]. They
obtained comparable results to the state of the art utterance-level
statistic features and SVMs. Khorram et al. used dilated CNN and
downsampling-upsampling CNNs for predicting time-continuous
valence and activation labels [15]. Their methods outperformed
BLSTMs and were 46 times faster. These works support that CNNs
can be used to model temporal patterns.

3 DATA
We experiment on MSP-Improv, an audio-visual dyadic emotion
corpus [5]. We choose MSP-Improv because: (1) the available modal-
ities and size of the dataset allow us to train multimodal models
and (2) the crowdsourcing evaluation method and the number of
evaluations capture variations in emotion perception.

MSP-Improv consists of six sessions, each including interactions
between a male and a female actor. This results in 12 speakers
in total. The emotional expressions of the speakers were elicited
through carefully designed scenarios that include improvisations
and target sentences with speci�c lexical content. Because of the
recording paradigm of MSP-Improv, there are four types of record-
ings in the database: (1) the target sentences read by the actors; (2)
the target sentences from the improvised scenes collected using
emotionally evocative scenarios; (3) the speaker turns in the im-
provised scenes; (4) the natural spontaneous interactions during
breaks between improvisations. The database includes over nine
hours of data, segmented into 8,438 utterances (i.e., speaker turns or
target sentences). The numbers of utterances corresponding to the
four types of recordings are 620, 652, 4,381, and 2,785, respectively.

The emotional content of MSP-Improv was evaluated using
crowdsourcing (Amazon Mechanical Turk). A scheme was designed
to ensure the reliability of the labels by stopping evaluators when
their inter-rater agreement with known “gold-standard” evalua-
tions dropped [5]. Each utterance was annotated by at least �ve
evaluators using both dimensional and categorical rating paradigms.

For the dimensional labels, the evaluators were required to access
the valence, activation, dominance (dominant vs. submissive) and
naturalness (acted vs. natural) of the utterances using a �ve-point
Likert-scale. In this paper, we focus only on the dimensional labels
of valence and activation. We rescale the evaluations to [-1, 1] from
[1, 5].

We show the distribution of the number of evaluations per utter-
ance in Figure 1a. The majority of the utterances were annotated by
less than ten evaluators, yet a portion of the database has approxi-
mately 30 evaluations. Figure 1b illustrates the distribution of the
mean evaluations of each utterance on the valence-activation space.
The database is relatively balanced along the valence dimension
but skewed towards positive for the activation dimension.

4 METHODOLOGY
4.1 Label Processing
Dimensional annotations are often collected using evaluations over
m-point Likert-scales [4, 5, 42]. Previous work has approximated
the distribution over evaluations using Kernel Density Estimation
(KDE) either from original continuous labels [38] or after apply-
ing evaluator-dependent z-normalization [42]. KDE assigns a two-
dimensional Gaussian “energy” to each evaluation. The probability
density of any point in the valence-activation space can be calcu-
lated by summing over the “energy” emitted by all the evaluations.
In this work, we adopt the same method because of its ability to
generate smooth probability density distributions. However, there
are a few challenges that we need to address �rst:
(1) The majority of the utterances have less than 10 evaluations,

which may not be su�cient to conduct KDE.
(2) The dimensional labels are ordinal instead of continuous. There-

fore, we cannot apply KDE directly.
(3) It is not guaranteed that each evaluator was given utterances

with balanced emotional content. As a result, we cannot use
evaluator-dependent z-normalization as in [10, 36, 42].
We argue that the mean of any subset of evaluations of each

utterance can be considered a potential ground-truth label of that
utterance, inspired by the fact that researchers often use themean of
evaluations as the ground truth, and that the number of evaluations
varies within and across datasets. Therefore, for a given utterance,
we randomly subsample from one to N evaluations, where N is the
total number of evaluations for that utterance, and use the mean
as a new annotation. We repeat the process 200 times for each
utterance. We add random noise to each generated annotation to
avoid the same value being repeated multiple times. The random
noise follows a uniform distribution centered at zero, with the
width and height corresponding to half of the standard deviation
of the valence and activation for the given utterance, respectively.
The generated annotations share similar statistical properties with
the original evaluations. On a -1 to 1 scale, the mean absolute
di�erence across all utterances between the mean of original labels
and the mean of generated labels are 0.011 and 0.015 for valence and
activation, respectively. The correlations between the per-utterance
standard deviation of the original labels and generated labels across
all utterances are 0.96 for valence and 0.95 for activation. We show
an example of the original labels and the corresponding generated
labels in Figure 2a-2b, respectively.
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(a) (b) (c) (d)

Figure 2: The process of generating the two-dimensional discrete probability distributions: (a) individual evaluations (size of
dot proportional to the number of evaluations); (b) annotation cloud generated by averaging subsample of evaluations and
adding random noise; (c) probability density distribution calculated by KDE; (4) discretized probability distribution at 4 ⇥ 4
resolution.

Table 1: Action Unit Features Used in Experiments.

AU Description AU Description
1 Inner Brow Raiser 2 Outer Brow Raiser
4 Brow Lowerer 5 Upper Lid Raiser
6 Cheek Raiser 7 Lid Tightener
9 Nose Wrinkler 10 Upper Lip Raiser
12 Lip Corner Puller 14 Dimpler
15 Lip Corner Depressor 17 Chin Raiser
20 Lip Stretcher 23 Lip Tightener
25 Lips Part 26 Jaw Drop
45 Blink

We then perform KDE using the approach from [3]. Since pre-
dicting a continuous function is both challenging and unnecessary,
we transform the density function to a discrete probability distribu-
tion by creating equally spaced partitions along both valence and
activation. Note that we create partitions from a smoothed density
distribution instead of from individual labels directly, because the
latter approach highly depends on the position of the partitions and
can lead to biasing. For example, if the annotations are far apart
and we want to predict at a higher resolution, we may end up with
grids with high probability surrounding grids with zero probability.
We use the mean of the density values within a grid to represent
this grid. The values of all the grids are then normalized to sum
to one. We show the density function from KDE and the discrete
probability distribution in Figure 2c-2d, respectively.

4.2 Feature Extraction
4.2.1 Acoustic Features. We use 40 log Mel-frequency �lterbank

features (MFBs) for the audio modality, as in [1]. We �rst trim the
silence at the beginning and end of each utterance and then extract
the MFBs from each frame with a window size of 25ms and a step
size of 10ms using Kaldi [20].

4.2.2 Visual Features. We use the intensity of facial action units
(AUs) for the video modality. The AUs, which are the contraction
or relaxation of single or multiple facial muscles, stem from the
Facial Action Coding System (FACS) proposed by Ekman et al. [9].

Using FACS, common facial expressions can be deconstructed into
the speci�c Action Units (AU) that produced the expression. We
choose to use AUs to represent the video modality because of the
close relationship between facial expression and emotion.

We extract the intensity of 17 AUs (Table 1) using OpenFace [2],
which provides a intra-class correlation coe�cient of approximately
0.6 on the test set of the 2015 Facial Expression Recognition and
Analysis challenge [33]. We use the “static” prediction model, which
relies on a single frame to estimate the intensity of the AUs at each
time step. This is because some videos have a limited dynamic
range, thus using the dynamic model that attempts to perform pose
calibration may be harmful [2].

4.3 Model
We ask two main research questions: (1) can we better predict the
distribution of emotion perception by focusing on salient local
regions and jointly optimizing the predictions across the grids; (2)
can we understand the in�uence of modality?

We answer the �rst question by comparing a static regression
approach from [38] and our approach that takes regional temporal
patterns into account. We answer the second question by build-
ing four models for both approaches: two unimodal models (audio
modality and video modality), a model combining the two modali-
ties at decision-level by averaging (denoted as combined-late), and
a model combining the two modalities at feature-level (denoted as
combined-early).

Past research has found that �-Support Vector Regression (SVR)
with a Gaussian kernel is e�ective for predicting the discrete prob-
ability distribution of emotion [38, 42]. We use this approach with
the same implementation (LibSVM [6]) as our baseline. SVR takes in
static utterance-level features and predicts the probability of each
grid separately. Because the regressors are optimized individually
and the predictions are not bounded, we truncate negative values
to zero and normalize the estimations over all grids to sum to one,
as in [38, 42]. We concatenate the acoustic and visual features for
the combined-early model.

We choose convolutional neural networks (CNNs) as our sec-
ond approach. CNNs have been demonstrated to be e�ective in
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Figure 3: The structure of the unimodal CNN.

Figure 4: The structure of the multimodal CNN with the
combined-early approach.

capturing regional saliency in speech emotion recognition [1]. We
reframe the problem as classi�cation using soft labels, rather than
as regression. This leverages the fact that the output layer is usually
a softmax, the output of which can be interpreted as the probability
of each class.

We design our unimodal (i.e., audio or video) CNNs similar to [1],
with an 1D-convolutional layer, a global max-pooling layer, several
dense layers and a softmax layer (Figure 3). The 1D-convolutional
layer takes in variable-length input and learns a sequence of fea-
ture representations by sliding NF �lters of length LF through time.
Each �lter takes LF consecutive frames and outputs an activation.
By learning the �lters, we are �nding emotion-salient local tem-
poral patterns. The global max-pooling layer identi�es the highest
activation of each �lter over time and produces a feature vector
of length NF . This step allows us to focus on the most informa-
tive portion of an utterance and minimize the in�uence of padding
and frames with invalid features. The interactions between the
NF features are further learned by applying several dense layers.
Finally, we use a softmax layer to output the probability of emotion
perception in each grid.

For the multimodal combined-early model, we build a separate
1D-convolutional layer and corresponding global max-pooling layer
for audio and video, respectively. We concatenate the output of
the two global max-pooling layers before feeding the features into
dense layers. In this way, we allow for the di�erence in frame-rate of
audio and video input, while still being able to explore the complex
non-linear relationships between features across modalities. Our
multimodal CNN is shown in Figure 4.

We use the Recti�ed Linear Unit (ReLU) [40] as the activation
function for the convolutional and dense layers, and cross-entropy
as the loss function. We apply L2-regularization (0.0001) on the
learned weights of the convolutional layers. The �lter length of the
convolutional layer (LF ), layer size (NF ), and the number of dense
layers are treated as hyper-parameters.

5 EXPERIMENTAL SETTINGS
5.1 Feature Preparation
While the CNN models use frame-level features directly, the SVR
models use a static approach with utterance-level features. We cal-
culate 11 statistics over the frame-level MFBs and AUs and their
�rst-order delta coe�cient to generate the 880 and 374 utterance-
level features for audio and video, respectively. The statistics in-
clude mean, standard deviation, max, position of the max frame,
min, position of the min frame, range, interquartile range, mean
absolute deviation, skewness, and kurtosis. For the video modality,
the statistics calculation is applied only to frames with successfully
extracted features (>98%). We also extract the state of the art Inter-
speech 2013 acoustic feature set [27] (6,373 utterance-level features,
denoted as “IS13”) to use in the SVR models for comparison.

We perform speaker-dependent z-normalization on all features
before they are input into models. We normalize the features at
the frame-level for CNN models and at the utterance-level for SVR
models. Similarly, we exclude frames with unsuccessful AU extrac-
tion when z-normalizing the frame-level AUs. We replace these
frames with zeros after normalization. We do not interpolate be-
tween frames that are successfully extracted because the unsuc-
cessful extractions are usually a consecutive sequence of frames,
and interpolation may introduce noise.

5.2 Performance Evaluation and Validation
We conduct experiments at two grid resolutions: 2 ⇥ 2 and 4 ⇥
4. We use two metrics to evaluate the performance of the models:
Total Variation (TV) and Jensen-Shannon divergence (JS). Both
metrics canmeasure the di�erence between two discrete probability
distributions. The metrics are calculated per utterance, and the
lower TV and JS, the better the performance.

The value of Total Variation ranges in [0,1]. Given two probabil-
ity distribution X and Y over N states, The total variation between
them is de�ned as

TV (X ,Y ) =
1
2

NX

i=1
|Xi � Yi |, (1)

Jensen-Shannon divergence is extended from the Kullback-Leibler
divergence (denoted as KL). It is de�ned as

�S (X ,Y ) =
1
2
KL(X ,M ) +

1
2
KL(Y ,M ), (2)

whereM =
1
2
(X + Y ) and KL(X ,Y ) =

NX

i=1
Xi log

Xi
Yi
.

We use JS instead of KL because: (1) JS is symmetric while KL is
not, and (2) the value of JS ranges in [0, 1] when using lo�2. Note
that we replace zeros with 1e-8 when calculating the KL step in JS.

We train the models using a leave-one-speaker-out approach.
At each round, a speaker is left out as the test set, while the other
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(a) (b)

Figure 5: Performance di�erence at 2 ⇥ 2 and 4 ⇥ 4 resolutions, between: (1) SVR and CNN (in both total variation and JS-
divergence), along with 95% con�dence intervals of paired t-test; (2) di�erent modalities for SVR and CNN (direction of sub-
traction shown as x-labels), along with 95% con�dence intervals of Tukey’s honest test.

Table 2: Range of Hyper-parameters in CNNs

Modality Input Filter length Layer size # Dense Layers
Audio 40 {8,16} {128,256} {1,2,3}
Video 17 {2,4} {64,128,256} {1,2,3}

Combined 40; 17 {8,16}; {2,4} {64,128,256} {1,2,3}

speaker in the same session is used as the validation set. The re-
maining ten speakers are used for training. We calculate the mean
TV and JS for each test speaker and report the value averaged across
all rounds as the performance of the models.

We use TV as the main validation metric because of its robust-
ness to zeros. We select the hyper-parameters according to the
validation TV. For the SVR models, the ranges are C (cost of error)
2 {10�3,10�2, ...,101}, � (kernel width) 2 {10�5,10�4, ...,10�1} and
� (lower bound on the proportion of support vectors) 2 {0.5, 0.6, 0.7,
0.8}. For the CNN models, the ranges of the �lter length, layer size
and the number of dense layers are shown in Table 2. Note that the
number of �lters in the convolutional layer and the size of the dense
layers are kept the same. We use a training strategy of learning rate
decay after N epochs. We randomly initialize the weights and start
training with a learning rate of 0.001. We maintain the learning
rate for 10 epochs, and select the one with the best validation TV to
continue training. After that, we restore the previous weights and
halve the learning rate when there is no improvement in validation
TV after an epoch. We stop training when we reach the minimum
learning rate or have �ve consecutive epochs with no improvement
in validation performance, whichever comes �rst.

6 RESULTS AND DISCUSSION
6.1 Performance Comparison
We present the performance of the SVR and CNN models at two
resolutions for di�erent modalities in Table 3. In addition to the
baseline, we provide chance performance of: (1) a uniform distribu-
tion across grids (denoted as Uniform), and (2) the mean distribution
of the training set (denoted as MTrain). To answer the two research
questions, we compare the performance between: (1) the SVR and

Table 3: The performance of SVR andCNNmodels at two res-
olutions for each modality and combination. The best per-
formance for each metric-resolution combination is bolded.
The chance performances are also provided.

Modality Model Features 2⇥2 4⇥4
TV JS TV JS

Chance Uniform - .531 .303 .680 .481
Mtrain - .475 .260 .596 .391

Audio
SVR IS13 .390 .204 .528 .329
SVR MFB .399 .213 .536 .340
CNN MFB .383 .196 .519 .316

Video SVR AU .384 .200 .516 .318
CNN AU .381 .191 .516 .312

Combined
-late

SVR IS13+AU .373 .185 .510 .307
SVR MFB+AU .377 .189 .513 .311
CNN MFB+AU .366 .176 .502 .293

Combined
-early

SVR IS13+AU .362 .181 .507 .304
SVR MFB+AU .357 .178 .501 .300
CNN MFB+AU .342 .166 .484 .281

CNN models when controlling for modality, and (2) the di�erent
modalities and combinations when controlling for the model.

We show the performance di�erence between the SVR models
with utterance-level MFB and/or AU features and CNN models
with the corresponding frame-level features in Figure 5a, along
with the 95% con�dence interval of paired t-test. We see signi�cant
performance improvement when using CNN for both resolution
and evaluation metrics (in the order of TV (2⇥2), JS (2⇥2), TV
(4⇥4), and JS (4⇥4)), for audio (p = 5.6e-5, 9.7e-5, 9.4e-5, and 2.1e-5,
respectively), combined-late (p = 0.0041, 0.0012, 0.0077, and 7.4e-4,
respectively), and combined-early (p = 0.0057, 0.0081, 0.0026, and
0.0010, respectively). We also compare our CNN models with SVR
with the state of the art IS13 feature set for models using audio input.
The performance improvement of CNN is signi�cant for audio (p
= 0.0011 and 0.013 for TV and JS, respectively), combined-late (p
= 0.0081 for JS) and combined-early (p = 2.7e-4 and 0.0014 for TV
and JS, respectively). This indicates that focusing on salient local
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Table 4: TV of SVR and CNN models (using matching
utterance-level and frame-level features) along valence and
activation, calculated from the prediction at 2 ⇥ 2 and 4
⇥ 4 resolutions. The best performance for each dimension-
resolution combination is bolded. V: Valence; A: Activation.

Modality Model 2⇥2 4⇥4
V A V A

Chance Uniform .362 .356 .362 .356
MTrain .363 .271 .363 .271

Audio SVR .322 .182 .324 .189
CNN .300 .182 .298 .183

Video SVR .267 .216 .272 .216
CNN .258 .221 .257 .224

Combined-late SVR .285 .190 .291 .196
CNN .269 .191 .267 .193

Combined-early SVR .264 .176 .272 .184
CNN .248 .176 .254 .173

regions and jointly optimizing for all the grids together is bene�cial
for audio input and multimodal input with either decision-level
or feature-level fusion. Audio input bene�ts the most from the
CNN architecture. Of the two multimodal systems, the performance
gain from feature-level fusion is higher than decision-level fusion.
However, there is no signi�cant di�erence between the performance
of CNN and SVR for video input, except when using JS as metric
at 2⇥2 resolution (p = 0.024). This may be because that while the
close relationship between AUs and emotion ensured the relevance
of the features, the small dimensionality of the input and the high-
level nature of the AUs limit the learning ability of the CNN. In
addition, the errors propagated fromAU estimationmay have larger
in�uence on the dynamic and more complex CNN models.

We perform the repeated-measure ANOVA (denoted as RA-
NOVA) to compare di�erent modalities for SVR and CNN. As the
compound symmetry assumption may not be satis�ed, we evalu-
ate signi�cance of the in�uence of modality based on the p-value
with Lower bound adjustment (pLB ). If pLB is smaller than 0.05, we
perform the Tukey’s honest signi�cant di�erence test (denoted as
Tukey test) for pairwise comparison using the model statistics of
RANOVA. For simplicity, we only compare TV because it is used
as the validation metric. We �nd that the in�uence of modality is
signi�cant for both SVR (F (3,33) = 48.4 and 47.9, pLB = 2.4e-5 and
2.5e-5 for 2⇥2 and 4⇥4, respectively) and CNN (F (3,33) = 35.1 and
31.5, pLB = 1.0e-4 and 1.6e-4 for 2⇥2 and 4⇥4, respectively). We
show the pairwise comparison with the 95% con�dence interval of
the Tukey test in Figure 5b. For both SVR and CNN, combined-early
signi�cantly outperforms both unimodal models and combined-late.
This suggests that both models have the ability to learn the inter-
action between audio and video when we perform fusion at the
feature level. While decision-level fusion also brings improvement,
this improvement is not always signi�cant (e.g., combined-late vs.
video for SVR). For unimodal inputs, video performs signi�cantly
better than audio for SVR while the performance of audio and video
modalities are comparable when using CNN. This again supports
that the CNN architecture may not be ideal for the high-level AU
features and that there may be a larger information loss in the video
modality.

Figure 6: Performance di�erence (in TV) between SVR and
CNN along valence and activation dimensions, calculated
from predictions at 2 ⇥ 2 and 4 ⇥ 4 resolutions, with 95% con-
�dence intervals of paired t-test. The best performance for
each type-resolution combination is bolded.

6.2 Analysis along Valence and Activation
We assess the ability of the models to predict valence and activation.
We marginalize by summing over the predictions along valence or
activation to generate distributions of resolution 2⇥1 for negative
and positive activation or 1⇥2 for negative and positive valence,
and compare to the ground truth distribution processed in the
same way. We show the resulting TV in Table 4, along with the
chance of Uniform and MTrain for reference. We �nd that the audio
modality is better at predicting activation, while the video modality
is better at predicting valence. This is in line with previous �ndings
[10, 21, 36]. We see multimodal improvement in the feature-level
fusion setting (combined-early). In addition, when we compress
the output to a two-state probability distribution along valence or
activation, the predictions for 2⇥2 and 4⇥4 resolution have similar
performance.

We illustrate the drop in TV of CNN compared to SVR along
valence and activation dimensions in Figure 6, together with the
95% con�dence interval of paired t-test. While most works using
dynamic approaches witness higher performance improvement in
activation [10, 21, 36], we surprisingly �nd that the performance
gain of our CNN predominantly comes from valence, regardless of
modality. More speci�cally, the di�erence between CNN and SVR
is signi�cant for valence for audio (p = 1.3e-4 and 2.6e-4 for 2⇥2
and 4⇥4, respectively), video (p = 6.1e-5 for 4⇥4), combined-late (p
= 8.9e-4 and 2.0e-5 for 2⇥2 and 4⇥4, respectively), and combined-
early (p = 0.0042 and 0.0093 for 2⇥2 and 4⇥4, respectively). The only
signi�cant result for activation comes from combined-early with
4⇥4 resolution (p = 0.030). These results indicate that identifying
salient local patterns using CNN brings more bene�t in predicting
valence, compared to activation. This might be related to the ob-
servation in Section 3 that our data is more balanced along valence
compared to activation.

6.3 Analysis of Di�erent Types of Recordings
We investigate the performance di�erence between SVR and CNN
for di�erent types of recordings. As mentioned in Section 3, MSP-
IMPROV consists of four types of recordings: read target sentences,
target sentences from improvised scenes, other speaker turns from
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Table 5: TV of SVR and CNN models (using matching
utterance-level and frame-level features) for each type of
recordings. T: Target sentences; I: Improvised turns; N: Nat-
ural interactions.

Modality Model 2⇥2 4⇥4
T I N T I N

Chance Uniform .530 .530 .529 .695 .676 .680
MTrain .489 .478 .456 .613 .595 .585

Audio SVR .410 .415 .366 .541 .549 .508
CNN .381 ⇤ .411 .337 ⇤ .533 .539 ⇤ .481 ⇤

Video SVR .372 .402 .358 .502 .535 .488
CNN .367 .405 .346 .519 .533 .486

Combined
-late

SVR .377 .395 .347 .509 .530 .483
CNN .357 ⇤ .394 .326 ⇤ .511 .522 ⇤ .467

Combined
-early

SVR .342 .377 .328 .495 .519 .469
CNN .315 ⇤ .370 .313 .479 .507 .451 ⇤

improvised scenes, and natural interaction during the breaks. We
combine the �rst two types in this analysis, because of the lack of
the read target sentences for �ve of the speakers.

We present the TV of prediction for di�erent types of recordings
in Table 5, together with the chance performances. We �nd that
in general, all the models are the best at predicting the emotion
perceived from natural interactions, followed by target sentences.
The emotion perceived from improvised scenes is the hardest to
predict. This matches the classi�cation accuracies of di�erent types
of recording using categorical labels reported in [5]. This might
be because that the improvised scenes contain a wider range of
emotion than the natural interactions since they were designed to
enable the speakers to express a variety of emotions. The standard
deviation of the mean evaluation of each utterance is higher in
improvised scenes, suggesting a larger di�erence in the emotional
content across utterances.

We mark the signi�cant improvement (paired t-test, p<0.05)
of CNN compared to SVR using “⇤” in Table 5. We �nd that the
performance gain of CNN is not consistent across di�erent reso-
lutions. For example, CNN signi�cantly outperforms SVR for the
target sentences for audio (p = 0.0028), combined-late (p = 0.011),
and combined-early (p = 0.029) in the 2⇥2 case, but not in the 4⇥4
case. On the other hand, CNN signi�cantly outperforms SVR for
the improvised scenes for audio (p = 0.010) and combined-late (p
= 0.011) in the 4⇥4 case, but not in the 2⇥2 case. The most con-
sistent improvement is observed in natural interaction with audio
and multimodal inputs. The performance di�erence between CNN
and SVR is signi�cant for audio at both resolutions (p = 0.0093
for 2⇥2, p = 0.018 for 4⇥4), combined-late at 2⇥2 (p = 0.011) and
combined-early at 4⇥4 (p = 0.048), and is approaching signi�cance
for combined-early at 2⇥2 (p = 0.052).

7 CONCLUSION AND FUTUREWORKS
In this paper, we proposed a label processing method to generate
two-dimensional discrete probability distributions on the valence-
activation space from a limited number of ordinal labels.We showed
that this method can preserve the mean evaluation of the original
labels and that the correlation between the standard deviations

of the original labels and up-sampled labels is high. Further, we
explored the impact of modeling approaches (i.e., static SVR with
individual optimization for each grid vs. dynamic CNN with joint
optimization for all grids) and modalities on predicting the prob-
ability distribution of emotion perception. We hypothesized that
using CNN models with a focus on salient local temporal patterns
leads to a performance gain. In addition, combining audio and video
modalities results in better performance compared to using each
individual modality.

Our results show that the CNN models signi�cantly outperform
the SVR models when using the audio modality and combined au-
dio and video modalities, supporting the e�ectiveness of modeling
locally salient patterns and jointly predicting the distribution over
all grids. CNN and SVR are comparable when the video modality
is used. This indicates that the potential of CNN may not be fully
explored when using a limited number of high-level AUs as inputs.
In addition, the errors from AU estimation may have larger in�u-
ence on the dynamic and more complex CNN models. We �nd that
using both audio and video modalities is better than using either
individually and that feature-level fusion is more bene�cial than
decision-level fusion. Analyses along di�erent dimensions show
that the audio modality is better at predicting activation while video
modality is more advantageous at predicting valence, and that we
can obtain improvement over the joined valence-activation space
with feature-level fusion. This is in line with previous �ndings.
In addition, we �nd that the performance gain brought by CNN
mainly comes from the valence dimension. We see a consistent
performance improvement over natural interactions when using
CNN models, compared to SVR models.

A limitation of this work is that we combine features from the
two modalities after global max-pooling. While this method allows
us to overcome the di�erence in frame-rate, it disrupts the inter-
action between acoustic and visual features in real-time. Besides,
using AU features and conducting global max-pooling may not be
the best choice for dynamically modeling the video modality, as
shown by our results. In the future, we plan to design models that
combine audio and video inputs at an earlier stage, and explore
the impact of using 2D or 3D facial landmarks or use raw video
frames as input to the models. In addition, we will learn long-term
interaction using methods such as recurrent neural networks with
long short-term memory or dilated convolutional neural networks.
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