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ABSTRACT

Emotion labeling is a central component of automatic emo-
tion recognition. Evaluators are asked to estimate the emo-
tion label given a set of cues, produced either by them-
selves (self-report label) or others (perceived label). This
process is complicated by the mismatch between the inten-
tions of the producer and the interpretation of the perceiver.
Traditionally, emotion recognition systems use only one of
these types of labels when estimating the emotion content
of data. In this paper, we explore the impact of jointly
modeling both an individual’s self-report and the perceived
label of others. We use deep belief networks (DBN) to learn
a representative feature space, and model the potentially
complementary relationship between intention and percep-
tion using multi-task learning. We hypothesize that the
use of DBN feature-learning and multi-task learning of self-
report and perceived emotion labels will improve the perfor-
mance of emotion recognition systems. We test this hypoth-
esis on the IEMOCAP dataset, an audio-visual and motion-
capture emotion corpus. We show that both DBN feature
learning and multi-task learning offer complementary gains.
The results demonstrate that the perceived emotion tasks
see greatest performance gain for emotionally subtle utter-
ances, while the self-report emotion tasks see greatest per-
formance gain for emotionally clear utterances. Our results
suggest that the combination of knowledge from the self-
report and perceived emotion labels lead to more effective
emotion recognition systems.
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1. INTRODUCTION

Expressions of emotion convey information about the un-
derlying state of an individual. This information can be par-
tially masked either intentionally or unintentionally, leading
to variability in the labels associated with emotional dis-
plays. This variability in the label space is one of the main
differences between emotion recognition and other machine
learning tasks. As a result, emotion labeling experiments
must clearly identify the purpose of a given set of labels: will
the labels capture the felt sense of the individual who pro-
duces the emotion, will they instead capture how that per-
son believes others will perceive his/her emotional display
(self-report label), or will they instead capture how others
actually do perceive the display (perceived label)?

All three types of labels are important in real use-cases.
For example, emotion recognition systems that are designed
for applications are often focused on correctly identifying
felt-sense and/or self-report labels (e.g., intelligent personal
assistants and computer games [20]). The recognition of
perceived emotion labels has important application in the
monitoring and treatment of disease associated with emo-
tion perception deficits [9,14]. However, emotion recognition
systems have focused only on a single type of label tradition-
ally, rather than leveraging the potentially complementary
information conveyed by the separate strategies. This paper
explores the impact of jointly modeling both an individual’s
self-report and the perceived labels of others.

Individuals differ in their ability to convey emotion. There-
fore, the patterns of emotion expression can vary across indi-
viduals, resulting in difficulty in transferring models learned
from a set of speakers to a new speaker when using self-
reported emotion, as observed in [34]. The emotion labels
provided by others can act as stabilizers to reduce fluctua-
tions caused by individual differences. On the other hand,
the varying patterns (e.g., intensity of cues) of emotion ex-
pression can result in different levels of difficulty for ob-
servers, as found in [17]. The emotion labels provided by the
speakers themselves can work as a stabilizer to explain how
a single individual expresses a range of emotions. Therefore,
our motivating hypothesis is that if we can control for the
manner in which others perceive emotion and how one per-
ceives one’s own emotion, we will see improvement in both
tasks. In addition, we hypothesize that we can get comple-
mentary improvement by better capturing the complexity
inherent in the interactions between multimodal cues. We
ask the following research questions: (1) can joint modeling
lead to better performance across both types of labels; (2)
can the same performance gain be achieved through com-
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plex feature learning; and (3) is the performance gain from
joint modeling and complex feature learning additive?

We conduct an experiment on the IEMOCAP dataset [6]
using a subset that contains both perceived and self-report
labels. We construct the emotion recogntion problem as bi-
nary one-against-rest classifications to account for the fact
that an utterance can be labeled with multiple emotions.
We use linear support vector machines (SVMs) as the base-
line method. We propose a multi-task learning method that
jointly models self-report and perceived emotion (each label
type is a task). We also explore the influence of non-linear
feature learning using deep belief networks (DBNs). Finally,
we analyze the combined impact of both components.

Our experimental results suggest that joint modeling is
able to utilize the complementary knowledge presented in
both self-report and perceived labels and that the combina-
tion of non-linear feature learning and joint modeling results
in more effective emotion recognition systems. The novelty
of this work includes: (1) the first attempt to jointly learn
self-reported and perceived emotion; (2) an exploration of
the influence of feature learning, using DBN feature pre-
training, on multi-task learning.

2. RELATED WORKS

2.1 Emotion Expression and Perception

Brunswik’s functional lens model is a theory of human
perception [5]. Adaptations of this model have been used
to study emotional communication [3,18,28,29]. In this
model there are two entities: an encoder (e.g., performer or
speaker) and one or more decoders (e.g., listeners or evalua-
tors). The encoder produces a message that conveys his/her
communicative goals, accompanied by various paralinguistic
properties (e.g., emotion, age, and gender). This message is
encoded in a set of cues that are expressed over multiple
channels (e.g., the face and the voice), called distal indica-
tors. The cues are transmitted to the decoders, who per-
ceive and interpret the information, referred to as proximal
percepts. The proximal percepts contain redundancy and
through the combination of multimodal percepts, the de-
coders are able to arrive at a higher-level judgment of both
the communicative intent and the paralinguistic informa-
tion. Laukka et al. studied the link between distal indi-
cators and proximal percepts [22]. They found that there
are a wide variety of cues, such as sound level, rhythm,
tempo and timbre, are associated with both the intended
and perceived emotion. It shows that intended emotion and
perceived emotion are linked through cues, which provides
support for jointly modeling two types of labels.

Researchers in psychology and cognitive science have found
support for the idea that the expression and perception of
emotion can be influenced by cultural, gender and individ-
ual differences [24,37]. Matsumoto et al. investigated the
display rules of emotion on participants from five different
countries and found that there were culturally-specific dis-
play rules. The works of Elfenbein et al. [10,11] found that
people from the same national, ethnic, or regional group can
recognize emotion more accurately than people from differ-
ent backgrounds. Further, people may depend on different
cues when perceiving emotions. Yuki et al. [37] found that
individuals from cultures that control for emotional display
depend more heavily on the eyes, compared to the mouth,
while people from cultures that encourage emotional display
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focus more on the mouth than the eyes. Emotion expres-
sion and perception are also heavily influenced by individ-
ual factors. Hall et al. found that women are better at
conveying emotion through facial expression, compared to
men [15]. Rotter et al. found that females can recognize
emotion expression of both males and females more accu-
rately in general [27]. Moreover, Martin et al. found that
emotional sensitivity, represented by the minimum time re-
quired to recognize pleasant vs. unpleasant emotion given
images of emotional faces, is different across individuals [23].
Their findings suggest that there are differences in the inter-
pretation of proximal percepts and the production of distal
indicators, resulting in variability in the label space of both
self-report and perceived emotion.

2.2 Automatic Recognition of Self-Reported
and Perceived Emotion

Research in affective computing has compared the auto-
matic recognition of self-reported and perceived emotion.
Truong et al. investigated the agreement rate between self-
reported and perceived emotion labels [35]. They found that
the agreement increased when data from multiple modalities
were provided (a finding also supported by Busso et al. [7]),
and that the agreement between self-rated and perceived la-
bels were lower than the agreement among the perceived la-
bel evaluators (inter-evaluator agreement). Busso et al. [§]
compared the self-report and perceived labels across cate-
gorical and dimensional descriptors, and found that there
are discrepancies between self-reported and perceived emo-
tion labels. They further found that the use of self-reported
labels significantly lower the inter-rater agreement and that
self-reported labels tend to have more extreme values for
dimensional descriptors. In Truong et al. [34], the authors
trained regressors for recognizing valence (pleasant vs. not
pleasant) and activation (energetic vs. calm). Separate
models were built for self-reported and perceived emotions.
They found that perceived emotion was harder to predict.

The work of Busso et al. supports the notion that there
are differences between self-reported and perceived emotion
labels [8]. The work of Truong et al. has demonstrated the
challenges in predicting self-report labels [34]. The works
in Section 2.1 supported the notion that there is variation
in the production of distal indicators and in the interpreta-
tion of proximal percepts. The combination of this body of
research leads us to hypothesize that we can improve the ac-
curacy of emotion recognition systems if we can: (1) capture
the complexity of distal indicators (feature learning) and (2)
better understand the relationship between how an encoder
interprets his/her own distal indicators and how decoders
interpret the associated proximal percepts (multi-task learn-
ing). We posit that the combination of these two approaches
will lead to a more stable and robust system.

3. DATA

We experiment on the Interactive Emotional Dyadic Mo-
tion Capture (IEMOCAP) database [6]. IEMOCAP con-
tains five sessions of dyadic interactions between pairs of
male-female actors. The emotional behaviors are elicited us-
ing scripted and improvised scenarios. The dataset includes
12 hours of data across three modalities: audio, video, and
motion-capture (referred to as “mocap”). The mocap record-
ing was made over a single actor at a time. Consequently,
only half of the data have matched audio-visual and mocap
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Figure 1: The number of utterances in each emotion.

recordings (see [6] for details about the recording setup).

The data were segmented into speaker turns (utterances)
and were evaluated at the utterance-level. The evaluations
include both categorical and dimensional labels; in this pa-
per, we focus only on the categorical labels. The categorical
labels were evaluated by at least three evaluators. The la-
bels were chosen from the set of {angry, happy, neutral, sad,
frustrated, excited, disgusted, fearful, surprised, other}. We
merge the classes of happiness and excitement as in [25].
There was no limitation on the number of labels an evalu-
ator could select for a given utterance. This subset, which
we refer to as the original data, contains 5,042 utterances.

Six out of ten actors were asked to self-report the emo-
tional content of their own recordings of the improvised sce-
narios. They used the same evaluation paradigm as the eval-
uators, described above. This subset contains 1,184 utter-
ances from the original data that have self-reported emotion
labels and matched audio and mocap data. The data in this
subset have two labels: (1) perceived emotion and (2) self-
reported emotion. The perceived emotion labels are a vector
that describe the emotions perceived by the evaluators. We
define the perceived emotion ground truth as any emotion
label noted by at least two (out of three) evaluators. For
example, the perceptual evaluations of three evaluators for
utterance; may be distributed as[2002 10 ... 0], where two
evaluators noted anger, two noted sadness, and one noted
frustration (evaluators were not restricted to the number of
emotions selected). Therefore, utterance; would be associ-
ated with the perceived emotions of anger and sadness. The
perceived ground truth label for each emotion is a binary
vector that describes the presence of each label (e.g., for
the example above the final label would be [1 0010 ...
0]). The self-report label is also a binary vector that marks
the presence or absence of a given label. We downsample
the self-evaluation subset to include only utterances with
at least one perceived emotion and one self-reported emo-
tion from the set of {angry, happy/excited, neutral, sad, and
frustrated}. This results in 967 utterances. We refer to this
data as the self-evaluation subset.

On average, each utterance in the self-evaluation subset
has 1.15 £ 0.39 self-reported emotion labels and 1.01 4+ 0.11
perceived emotion labels. We compare the distribution of
self-reported emotion and perceived emotion in Figure 1.
There are differences between the two distributions, notably
for the class of anger. We compute the Hamming similarity
between the two types of emotion, defined as the proportion
of instances that have the same label in self-report and per-
ceived emotions, given an emotion class. The similarity for
neutral, frustrated, angry, sad, and happy/excited are 0.87,
0.83, 0.88, 0.91 and 0.90, respectively, and the average over
all classes is 0.88.

We use both the original and self-evaluation sets of data.
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Figure 2: The positions of the markers and the dis-
tance features (only shown on right side of face).
Image courtesy E. Mower, M. J. Mataric, and S.
Narayanan [25]. Each marker position is represented
in three-dimensional vector coordinates (z,y, z).

The original data are used for unsupervised feature learning
(see details in Section 4.2). The self-evaluation data are used
for supervised classification (see details in Section 4.3-4.4).

4. METHODOLOGY
4.1 Feature Extraction

4.1.1 Acoustic Features

We extract the Interspeech 2009 Emotion Challenge fea-
tures [30] using openSMILE [12]. We use a relatively small
feature set due to the limited size of the data. The feature
set contains 16 frame-level Low-Level Descriptors (LLDs),
including zero-crossing-rate, root mean square energy, pitch
frequency, harmonics-to-noise ratio, and Mel-Frequency Cep-
stral Coefficients (MFCC) 1-12. Twelve statistics are ap-
plied to the frame-level LLDs and the first-order delta coef-
ficient of the LLDs to generate the 384 utterance-level fea-
tures. The statistics are: max, min, range, the position of
the maximum and minimum value, arithmetic mean, stan-
dard deviation, the slope and onset of the linear approxima-
tion of the contours, quadratic error (between actual contour
and the linear approximation), skewness and kurtosis.

4.1.2 Visual Features

We extract visual features using the 3D motion-capture
markers. The mocap features are the Euclidean distances
between the (z,y, z) coordinates of the markers. The posi-
tions of the markers and the distances calculated are shown
in Figure 2. These features were introduced [25] and used
n [19,25]. They capture movements associated with emo-
tional facial expressions. For example, the distance be-
tween TNOSE and MOU1/MOUS5 changes as a function of
smiles and frowns. We apply five statistics to the frame-level
distance features, including mean, variance, quantile max-
imum, quantile minimum and quantile range. This results



Table 1: Number of units in each layer of the DBN
models for audio, mocap and combined features.

Modality Input Layer 1 Layer 2 Layer 3
Audio 384 600 600 {100,200}
Mocap 540 800 800 {200,300}

Combined 924 1400 1400 {300,400,500}

in 540 utterance-level features. We exclude missing data in
our utterance-level calculations.

We perform speaker-dependent z-normalization on each
feature. The normalization is applied separately for the orig-
inal and self-evaluated data. In this way, the initial input
for classification is identical for models that do and do not
use feature learning, allowing for a more direct comparison.

4.2 Feature Learning

We use the pretraining of deep belief networks (DBNs) [16]
for feature learning. DBNs are formed by stacking Re-
stricted Boltzmann Machines (RBMs) [31], which are undi-
rected neural networks that only have inter-layer connec-
tions. RBMs learn the posterior probability of the output
(often binary, referred to as “hidden units”) given the inputs
(binary or Gaussian, referred to as “visible units”). We select
DBN feature learning because: (1) it can capture complex
non-linear interactions between features; (2) its unsuper-
vised nature makes the learned features task-independent;
(3) it has been shown to be effective for reducing dimen-
sion and can outperform traditional feature selection meth-
ods, such as Information Gain and Principal Feature Anal-
ysis [19].

We train three DBN models on the original data, one
each for audio, mocap, and both modalities, using the im-
plementation in [33]. We set the number of hidden lay-
ers to 3, as in [19]. We choose Gaussian-Bernoulli RBM
(GBRBM) as the first layer, since it takes Gaussian visible
units, and is suitable for our real-valued features. The sec-
ond and third layers of the models are Bernoulli-Bernoulli
RBMs (BBRBMs), where both the visible units and hidden
units are binary. It is suggested in [4] that it is often more
beneficial to have an over-complete first layer (i.e. number
of hidden units > number of visible units), compared to an
under-complete first layer (i.e. number of hidden units <
number of visible units). In addition, previous work [21]
found that networks that have the same number of hidden
units for each layer generally outperform networks that have
increasing or decreasing numbers of hidden units at each
layer. We use these insights and set the number of hidden
units in the first and second layer to be approximately 1.5
times over-complete of the original input features. We de-
creased the size of the final layer to be in line with prior work
on this dataset [19]. The number of units for each layer are
shown in Table 1. The number of units in the final layer is
selected in cross-validation (Section 4.4). We fix the size of
the mini-batches to 32, according to [4]. and set the learn-
ing rate to 0.004 for the GBRBM layer and 0.02 for other
BBRBM layers based on empirical re-construction error.

4.3 Classification Models

We form the recognition of neutral, frustrated, angry, sad
and happy/excited as five one-against-rest binary classifica-
tion problems and train five separate models. This is be-
cause each utterance can be labeled with multiple emotions.

The main question we ask in this work is: can jointly mod-
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eling self-reported and perceived emotion lead to better per-
formance for both types of emotions? Therefore, we propose
two approaches: independent modeling (denoted as IM) and
joint modeling (denoted as JM). The models are compared
on the self-evaluation data. In IM, we train separate clas-
sifiers, one each for self-report and perceived emotion. We
use linear Support Vector Machine (SVM) for the IM base-
line. When training on the original features, we adopt Li-
regularization to serve as a “built-in” feature selection in ad-
dition to the commonly used Lo-regularization, since it can
enforce sparsity of the features. We weight the cost of er-
ror in the positive class and negative class differently during
training to deal with unbalanced data, as suggested in [36].
The per-class weight is calculated by the reciprocal of the
proportion of that class in the training data.

In JM, we model self-report and perceived emotion in a
single classifier using multi-task learning, with each emo-
tion type as a task. We use the multi-task feature learning
(MTFL) algorithm of [1,2]. This method is based on the
hypothesis that task 1 through T share a common feature
representation. Therefore, the weight vectors wi through
wr for the tasks can be jointly learned. The weight matrix
W, defined as [w1, wa, ..., wr], can be rewritten as U A, where
U is an orthogonal matrix for feature transformation, and
A = [a1, a2, ...,ar| is the weight matrix on the new space.

T m
ZZ Colyep) Max(0, 1 — yui{ar, UM zs)) + 7] Al3, (1)

=1

Equation (1) shows the objective function of MTFL used
in this work. Here, m is the number of training instances,
yri € {—1,1} is the label of the i-th training instance in
task ¢, x; is the i-th training instance, <> stands for in-
ner product, c(,,,) is the cost for error in task ¢ for the
class y:; belongs to, and ~ is the regularization parameter.
We use hinge loss (max(0,1 — ysi{as, UTx;))) to match the
linear SVM. MTFL encourages sparsity of the transformed
features and couples the tasks by regularizing on A using
the Lo j-regularizer. In the general case, U and A are both
learned from the data. However, if we force U = I, the reg-
ularization would be directly imposed on W, in which case
the “feature learning” problem reduces to a “feature selec-
tion” problem [1,2]. The convex variants of Equation (1)
can be solved by iteratively performing a supervised task-
specific step and an unsupervised task-independent step.
The former step becomes solving linear SVM with a vari-
able transformation process when hinge loss is used [38].
More details about the algorithm can be found in [1,2]. In
this work, we use both the general setting and the special
case where U = [ as the multi-task equivalent of L2 and
Lq-regularization when training on the original features. Li-
blinear is used to solve the linear SVMs [13].

We ask an additional question in this work: can IM and
JM be improved by operating on a feature space learned
through DBN? We investigate whether the advantages of
JM are diminished given a non-linear feature preprocessing
step. We also train a single task linear SVM model and
multi-task MTFL model on the DBN pretrained features.
When feature pretraining is applied, we use only the Lo
regularization for linear SVM and the general case of U for
MTFL. The reason we are not selecting the input features
by enforcing sparsity is that the DBN feature learning has
already played the part of dimensionality reduction.
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Figure 3: Average differences in F-score between the baseline SVM and MTFL/DBN-SVM/DBN-MTFL.
The average is taken for (a) self-reported and perceive emotion, across modality and emotion classes; (b)
combined modality, mocap and audio, across types of emotion and emotion classes; (c¢) each emotion class,

across types of emotion and modalities.

4.4 Cross-Validation and Model Selection

It is important to make the reader aware that we use F-
score as a performance measure, rather than the common
metric of unweighted recall, to account for the multi-label
binary classification problem. The F-score is defined as the
harmonic mean of the precision and recall of the positive
class (i.e. the presence of the emotion), as in [32]. We
report the leave-one-speaker-out cross-validation F-score for
each model. At each round, data from one speaker is left
out as the test set, while data from other speakers are used
for training. In the DBN pretraining, the data of the test
speaker are also excluded.

We compare four different settings: modeling self-reported
emotion and perceived emotion individually or jointly, on
the original features or on the DBN pretrained features.
This leads to four models: original-SVM (SVM), original-
MTFL (MTFL), DBN-SVM and DBN-MTFL, with SVM
being the baseline. There are at least two versions for each
model to be selected from: L; vs. La-regularization for
SVM, learned U vs. U = I for MTFL and different number
of final hidden units (input to classifiers) for DBN-SVM and
DBN-MTFL. We select the version and the hyper-parameters
by optimizing the cross-validation F-score on the training set
only, where cross-validation is also performed in a leave-one-
training-speaker-out way. The range of the regularization
parameter v (in all models) is {107%, 1072, ..., 10°} and the
range of the permutation parameter € (in MTFL and DBN-
MTFL) is {107%, 1077, ..., 107 '}. Note that v is equivalent
to the cost of error C for linear SVM, and C = 1/(2 X 7).

S. RESULTS AND DISCUSSION

5.1 Performance of Classification Models

We compare the performance of the SVM, MTFL, DBN-
SVM, and DBN-MTFL on the task of recognizing perceived
and self-reported emotion labels. On average, all models
outperformed the baseline SVM model, in the order SVM <
MTFL < DBN-SVM < DBN-MTFL (Table 2). MTFL per-
forms better than SVM in the majority of the cases, except-
ing the prediction of the self-reported emotion label given
the unimodal mocap data. The improvement in performance
from SVM to MTFL suggests that jointly predicting self-
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Table 2: Average F-score of SVM, MTFL, DBN-
SVM and DBN-MTFL. The best results in each
combination of modality and emotion type is under-
lined. S: self-report, P: perceived emotion, Com-
bined: both modalities.

Combined Mocap Audio
Model g P g P g P Avg.
SVM 0.574 0.534 0.532 0.475 0.477 0.492 0.514
MTFL 0.579 0.551 0.513 0.487 0.493 0.500 0.521
DBN-SVM 0.578 0.584 0.533 0.533 0.487 0.497 0.535
DBN-MTFL 0.588 0.585 0.555 0.534 0.502 0.499 0.544

reported and perceived emotion is beneficial with respect to
performance on both tasks. We find that the DBN feature
learning increases the performance for both SVM and the
MTFL (DBN-SVM and DBN-MTFL, Table 2). The DBN-
MTFL model produces the highest accuracy overall (excep-
tion: perceived emotion from unimodal acoustic features).
This suggests that the individual benefits of the non-linear
feature learning and the joint modeling are additive.

The statistical significance are assessed using repeated
measure ANOVA on the F-score of each emotion. Model and
modality are treated as the two within-subject factors. We
find that the influence of model and the interaction between
modality and model are significant for perceived emotion (p
= 0.011 and 0.005, respectively), but not for self-reported
emotion. We compare the difference in F-score between each
pair of models over the 5 emotions x 3 modalities for per-
ceived emotion using paired t-test. We find that DBN-SVM
is significantly better than SVM and MTFL (p = 0.006 and
0.020, t = 3.26 and 2.64, respectively), and DBN-MTFL is
significantly better than SVM and MTFL (p = 0.004 and
0.010, t = 3.44 and 2.99, respectively).

We compare the performance of the models in Figure 3,
assessing the influence of self-reported vs. perceived label
(Figure 3a), modality (Figure 3b) and emotion class (Figure
3c). In each figure, we treat SVM as the baseline model and
assess the change in F-score as a function of the model types
(MTFL, DBN-SVM, DBN-MTFL). We find that the overall
performance gain is higher for the perceived labels, and that
the advantage of non-linear feature learning is more obvious
for perceived labels, compared to the self-reported labels.
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In the self-reported emotion problem, joint modeling and
DBN feature learning, by themselves, show little improve-
ment. However, we see that the combined influence of the
two approaches is greater than simple addition.

We find that, of the two unimodal systems (mocap and
audio), the mocap modality benefits more from the DBN
feature learning. In fact, only using MTFL harms the per-
formance for mocap, yet the combination of feature learning
and MTFL leads to a large gain in average performance.
On the contrary, the performance gain for joint modeling
is higher for audio than mocap, and the addition of DBN
feature learning introduces a relatively smaller gain.

We find that the increase in performance is the highest
for the emotions of sadness and happiness/excitement. The
system performs worse, across all model types, for neutral-
ity compared to the baseline SVM system. In addition,
MTFL has lower performance, compared to baseline SVM,
for the emotions of frustration and anger. The emotion-
specific results mirror the trend in similarity from Section
3. The self-reported and perceived emotion labels for the
classes of sadness and happiness/excitement are the most
similar, compared to those of neutrality, frustration, and
anger. This may suggest joint modeling on the original fea-
ture space is most effective when the discrepancies between
self-evaluation and perception are smaller. However, the
performance gain of DBN-MTFL over DBN-SVM is quite
consistent in all the five emotions, indicating feature learn-
ing increases the robustness of joint modeling.

For each utterance, there are three different situations for
prediction: (1) both self-report and perceived label are cor-
rect, (2) one label is correct, the other is incorrect, and
(3) both labels are incorrect. We present the three situa-
tions (averaged over emotion class and modality) for SVM,
MTFL, DBN-SVM and DBN-MTFL in Figure 4. We find
that the proportion of the co-occurrence of success mir-
rors the overall performance of the models, namely SVM <
MTFL < DBN-SVM < DBN-MTFL. Interestingly, we find
that DBN feature learning decreases both (2) and (3) (SVM
vs. DBN-SVM, MTFL vs. DBN-MTFL), yet joint modeling
only contributes to reducing (2), not (3) (SVM vs. MTFL,
DBN-SVM vs. DBN-MTFL). The fact that joint modeling
increases the co-occurrence of both success and error gives
support to our hypothesis that joint modeling leverages the
knowledge carried in both labeling methods.

5.2 Prototypical vs. Non-Prototypical
Emotion

The performance of emotion recognition systems is of-
ten assessed as a function of subtlety, described in terms
of prototypicality. Prototypicality is defined as complete
agreement between evaluators, while non-prototypicality is
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Table 3: Average F-score of self-reported and per-
ceived emotion on prototypical and non-prototypical
utterances. The best results in each column are un-
derlined. The performance gain of feature pretrain-
ing + joint modeling is shown in the bottom line. S:
self-report, P: perceived emotion.

Prototypical ~ Non-Prototypical
Model g p g P
SVM 0.541 0.511 0.490 0.452
MTFL 0.538 0.517 0.494 0.470
DBN-SVM 0.542 0.535 0.498 0.504
DBN-MTFL 0.559 0.536 0.512 0.505
Performance Gain  0.017 0.025 0.022 0.053

defined as only majority vote agreement. Previous works
have found that it is harder to classify utterances with non-
prototypical emotions, compared to utterances with proto-
typical emotions [19,26]. In this study, we compare the
performance of the proposed techniques as a function of the
prototypicality over the perceived emotion label only.

In the self-evaluation subset, 52% of the data are proto-
typical. The Hamming similarity (averaged over five emo-
tions) between two types of labels are 0.92 and 0.83 for pro-
totypical and non-prototypical data, respectively. This sug-
gests a larger discrepancy between self-report and perception
for non-prototypical data.

We present the average performance of each model on pro-
totypical and non-prototypical data for self-reported emo-
tion and perceived emotion in Table 3. Similar to previous
works, we also find that results on prototypical data consis-
tently outperform results on non-prototypical data for both
self-reported and perceived emotion. DBN-MTFL achieved
the highest average performance, on both prototypical data
and non-prototypical data. We compare DBN-MTFL with
the baseline SVM on the bottom line. We find that the per-
formance gain for non-prototypical data is higher than for
prototypical data, especially for perceived emotion.

We assess the performance change of the models over the
prototypical data and non-prototypical data, again using re-
peated measure ANOVA. We find that the influence of model
and the interaction between modality and model are signif-
icant on the non-prototypical data for perceived emotion
(p = 0.023 and 0.004, respectively), but not on prototypi-
cal data or for self-reported emotion. Comparing the mod-
els in a pairwise manner for the perceived emotion of non-
prototypical data using paired t-test, we find that MTFL is
significantly better than SVM (p = 0.016, t = 2.75), DBN-
SVM is significantly better than both SVM and MTFL (p =
0.013 and 0.043, t = 2.85 and 2.23, respectively), and DBN-
MTFL is significantly better than both SVM and MTFL (p
= 0.008 and 0.029, t = 3.11 and 2.43, respectively).

5.3 Mixed vs. Clear Emotion

The definition of prototypicality used in Section 5.2 does
not extend well to self-reported labels because they are de-
rived from a single evaluator (the actor). Instead, we de-
scribe subtlety in self-reported labels in terms of the number
of labels provided by the actor. We use the term “mixed”
when the actor describes his/her data with multiple labels
and “clear” when only one label is provided.

In the self-evaluation subset, 14% of the utterances are
mixed. The average Hamming similarity between self-report
and perceived labels for mixed and clear emotions is 0.75



Table 4: Average F-score of self-reported and
perceived emotion on utterances with mixed self-
reported emotion (>1 labels) and clear self-reported
emotion (=1 labels). The best results in each col-
umn are underlined. The performance gain of fea-
ture pretraining + joint modeling is shown in the
bottom line. S: self-report, P: perceived emotion.

Mixed Clear
Model g p g p
SVM 0.618 0.404 0.492 0.505
MTFL 0.603 0.438 0.497 0.514
DBN-SVM 0.564 0.447 0.510 0.540
DBN-MTFL 0.582 0.428 0.525 0.543
Performance Gain -0.036 0.024 0.033 0.038

and 0.90, respectively. This suggests that when an indi-
vidual notes variability in his/her performance, it is more
likely that the self-report and perceived emotion will dis-
agree. However, this does not automatically lead to a desig-
nation of non-prototypicality; only 54% of mixed emotions
are non-prototypical. This highlights a difference between
the perception of variability for self and for other evaluators.

We present the average performance of each model on
mixed and clear data for self-reported and perceived emo-
tion in Table 4, again listing the difference in performance
between DBN-MTFL and the baseline SVM on the bot-
tom line. We find the largest performance gain for per-
ceived emotion labels from the clear subset. Joint model-
ing and DBN pretraining actually have negative influence
on the self-reported emotion of mixed data. Interestingly,
we notice that the performance of perceived emotion on the
mixed data is lower than on the clear data. This indicates
that when emotion expression is considered subtle by the
producer, it is indeed harder for both the classifier (Table
4) and the human evaluator (Hamming similarity result) to
accurately recognize it, although this subtlety itself may not
be fully captured by variation in evaluation.

The repeated measure ANOVA shows that for data with
mixed emotion, the influence of model on self-reported emo-
tion is significant (p = 0.009). Pairwise comparison using
paired t-test indicates that SVM is significantly better than
DBN-SVM and DBN-MTFL (p = 0.002 and 0.015, t = 3.72
and 2.77, respectively), and so is MTFL (p = 0.004 and
0.024, t = 3.44 and 2.54, respectively). This suggests that
non-linear feature learning has a negative effect in this case.
For data with clear emotion, the influence of model is sig-
nificant for both self-reported and perceived emotion (p =
0.038 and 0.019, respectively), and the combined influence
of model and modality is significant for perceived emotion
(p = 0.020). Pairwise model comparison shows that DBN-
MTFL is significantly better than SVM (p = 0.002, t =
3.76), MTFL (p = 0.002, t = 3.74) and DBN-SVM (p =
0.021, t = 2.59) for self-reported emotion. For perceived
emotion, DBN-SVM is significantly better than both SVM
and MTFL (p = 0.011 and 0.022, t = 2.94 and 2.57, respec-
tively), and DBN-MTFL is significantly better than both
SVM and MTFL (p = 0.005 and 0.007, t = 3.29 and 3.16,
respectively).

6. CONCLUSION AND FUTURE WORKS

In this paper, we explore the impact of jointly predict-
ing self-reported emotion and perceived emotion in addition
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to non-linear feature learning. We hypothesize that joint
modeling using multi-task learning leads to performance in-
creases for both kind of labels, and the performance gain of
joint modeling and DBN feature learning is complementary.
We experiment on IEMOCAP using a multi-label classifica-
tion paradigm to test this hypothesis.

Our results show that overall, DBN feature learning and
joint modeling together produce the highest performance,
suggesting the individual benefits of the two approaches
are additive. The performance gain is higher for the per-
ceived labels, compared to the self-reported labels, yet we
notice that the combined influence of the two approaches
is greater than simple addition for self-reported labels. We
find that while DBN feature learning does not show prefer-
ence over different kinds of error, joint modeling increases
the co-occurrence of both success and error, and decreases
the mismatch of correct and incorrect predictions for self-
report and perceived labels. Our findings suggest that joint
modeling is able to leverage the potentially complementary
information conveyed by both individual labeling strategies,
and combining non-linear feature learning with joint model-
ing leads to more effective emotion recognition systems.

The Brunswik Lens model discusses how communicative
cues produced by an encoder (distal indicators), are altered
by transmission (proximal percepts), and interpreted by a
decoder. Our results suggest that when an individual pro-
duces an emotional message that he/she believes to be clear,
there is benefit to capturing variability in the distal indica-
tors (feature learning) and variability due to transmission
(multi-task learning). Interestingly, when an individual does
not believe his/her emotion to be clear, this approach is in-
effective. This suggests that additional research is needed to
understand how to automatically interpret ambiguous emo-
tional expressions.

A limitation of this work is the size of the data for the
supervised emotion classification task. We plan to conduct
experiments on additional datasets to further test our pro-
posed methods. In addition, we will explore the impact of
these methods on the prediction of dimensional labels.
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