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Abstract North American Monsoon (NAM) rainfall is a vital water resource in the United States 
Southwest, providing 60–80% of the region's annual precipitation. However, NAM rainfall is highly variable 
and water managers lack skillful guidance on summer rainfall that could help inform their management 
decisions and operations. Here we show that NAM season (June–October) precipitation can be forecasted by 
the European Centre for Medium-Range Weather Forecast's model months ahead at catchment scales. This is 
possible by identifying the frequency of days with synoptic-scale moisture advection into the NAM region, 
which greatly improves predictability over directly utilizing modeled precipitation. Other forecasting systems 
fail to provide useful guidance due to deficiencies in their data assimilation systems and biases in representing 
key synoptic features of the NAM including its teleconnections. 

Plain Language Summary Managing freshwater resources in the United States (U.S.) Southwest 
is difficult due to the region's large year-to-year precipitation variability and increasing population density. 
Additionally, climate change is expected to reduce the region's water availability making the efficient 
management of water a necessity. However, the lack of skill in predicting regional precipitation on sub-seasonal 
to seasonal timescales makes it extremely difficult to reach this goal. We use state-of-the-art seasonal forecasts 
to investigate their skill in predicting North American Monsoon season rainfall. Consistent with previous 
studies, we find that the models fail in forecasting rainfall in the region. However, using the frequency of 
atmospheric moisture surges into the U.S. Southwest as a proxy for rainfall results in skillful predictions starting 
in April. This novel forecasting method will allow regional water managers to make more informed decisions 
and can mitigate the impacts of droughts and floods in the future. 

 

 
1. Introduction 
The U.S. Southwest is a global hotspot for water scarcity (Liu et al., 2017; Mekonnen & Hoekstra, 2016) and is 
currently battling one of its most severe droughts in decades. With diminishing water resources from snowmelt 
(Ikeda et al., 2021; Milly & Dunne, 2020; Mote et al., 2005; Rasmussen et al., 2011) and steadily increasing 
population and freshwater demand (MacDonald, 2010), U.S. Southwest water resource managers are interested 
in potential opportunities from the secondary source of rainfall from the North American Monsoon (NAM). 
The NAM contributes approximately 35%–45% to the annual precipitation in the desert Southwest (Higgins 
et al., 1999) and up to 60% in New Mexico. However, NAM rainfall is extremely variable on inter-seasonal 
(Carleton, 1986), inter-annual (Carleton et al., 1990; Higgins et al., 1998, 1999; Higgins & Shi, 2000), and 
decadal time-scales (Castro et al., 2001; Yu & Wallace, 2000). 

Meteorologically, the NAM is related to the poleward propagation of the subtropical high, that is, the monsoon 
high, over North America, which starts in May and June in Mexico and is centered over New Mexico in July 
and August (Adams & Comrie, 1997; Higgins et al., 1998). This shift results in anomalous flow patterns from 
the southeast over Arizona and New Mexico, transporting warm and moist air from the Gulf of Mexico and the 
Pacific Ocean onto the continent. This leads to convective precipitation and a distinct summer maximum in 
the precipitation annual cycle. The onset of the monsoon in Arizona and New Mexico is variable but typically 
happens in early July. The NAM season is characterized by intermittent monsoonal moisture surges and dry 
spells related to shifts in the monsoonal high pressure system (Higgins et al., 2004; Jiang & Lau, 2008; Pascale 
& Bordoni, 2016; Schiffer & Nesbitt, 2012; Seastrand et al., 2015). 
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Predicting NAM precipitation on seasonal to sub-seasonal (S2S) time scales remains challenging. Historic 
observations show that NAM characteristics are modulated by Pacific sea surface temperature patterns (Castro 
et al., 2001). Observations also show that wet winters tend to be followed by dry monsoon seasons and vice 
versa in New Mexico and Arizona (Gutzler & Preston, 1997; Higgins et al., 1998). However, tree-ring recon- 
structions covering the last five centuries indicate that this link is weak, at best, and not stable over time (Griffin 
et al., 2013). Zhu et al. (2005) found no significant relationships between the antecedent soil moisture conditions 
during NAM onset and total precipitation. Additionally, S2S forecasting systems have no significant skill in 
predicting precipitation in the U.S. Southwest after two to 3 weeks of leadtime (Krishnamurti et al., 2002; Li & 
Robertson, 2015; Slater et al., 2019). The dominant processes that could contribute to S2S predictability of early 
season NAM precipitation are warm-season atmospheric teleconnection modes such as the West Pacific North 
America pattern or quasi-stationary Rossby wave trains (Castro et al., 2012; Ciancarelli et al., 2014). These tele- 
connections influence the positioning and seasonality of the monsoon high and thereby the amount of precipita- 
tion in the region (Carleton et al., 1990). 

In many snowmelt-driven basins in the Western U.S., operational seasonal water supply forecasts decisions are 
mainly based upon snowpack and don't explicitly consider any information about monsoon precipitation due to 
its low predictability. Skillful forecasting products that intersect with decision points on seasonal and annual 
planning horizons are extremely valuable to water managers and are a research priority (Bureau of Reclama- 
tion, 2018, 2021; Raff et al., 2013). 

Here we present a forecasting framework that leverages the ability of current seasonal forecasting systems in 
simulating large-scale circulation patterns that are associated with monsoonal rainfall rather than utilizing erro- 
neously modeled rainfall directly (Crochemore et al., 2016). The goal of this study is to establish a set of weather 
types (WTs) that can be used in a seasonal forecasting framework to investigate the potential to predict NAM 
precipitation variability. Therefore, we use a novel data-driven weather typing algorithm based on clustering 
(Prein & Mearns, 2021) that uses objective criteria to identify archetypal WTs. Specifically, we derive WTs that 
are optimized for NAM precipitation in catchments in Arizona and New Mexico, which include the Lower Colo- 
rado River Basin and Rio Grande Basin, respectively. The algorithm tests many combinations of atmospheric 
predictor variables, establishing the optimal set of WTs from two skill scores based on the precipitation average 
and standard deviation of the derived WTs. Similar approaches have been shown to provide novel insights into the 
origin of precipitation changes on climate time scales (Lehner et al., 2017; Prein et al., 2016). Further, we inves- 
tigate the potential for skillful forecasts of NAM season rainfall by examining the ability of seasonal forecasts to 
predict the identified WTs, versus predicting precipitation directly. 

 
 

2. Data and Methods 
2.1. Season and Region of Interest 

We investigate June to October conditions, which incorporates the core monsoon season from July to September 
and helps to assess the onset and decay of the monsoonal high. Our focus region includes eight catchments in 
Arizona and six in New Mexico (Figure 1a). Those catchments were selected due to their importance for water 
management in these states. We derive WTs for each of these catchments based on the skill scores discussed below. 

 
 

2.2. Observations and Reanalysis 

We use the Parameter-elevation Regressions on Independent Slopes Model (PRISM, Daly et al., 1997) gridded 
daily precipitation data for calculating precipitation statistics. PRISM provides data for the 1982–2018 period on 
a 4 km horizontal grid over the conterminous United States. 

For the WT classification, we use daily average atmospheric variables from ECMWF's Interim Reanalysis within 
the period 1982–2018 (Dee et al., 2011). The selection of predictor variables is limited by variables that are 
commonly stored by seasonal forecasting centers; we include the following 12 variables in the analysis: sea 
level pressure, 850 hPa zonal, meridional, and total wind speed, 850 hPa and 500 hPa moisture flux, water vapor 
mixing ratio, and air temperature, 500 hPa geopotential height, and 200 hPa wind speed. The same variables are 
also important on weather forecast timescales, as they related to dynamic forcing and thermodynamic instability. 
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Figure 1. Three weather types—a wet (monsoon), normal, and dry weather type (WT)—characterize the major modes of synoptic-scale variability during the North 
American monsoon season. (a) Basin clusters that feature similar WTs include Arizona West (AZ West, dark red), Arizona East (AZ East; light red), New Mexico 
North (NM North, blue), and New Mexico South (NM South, green). Hatching shows the basin that was used to derive the WTs. (b) Monthly average precipitation 
in each region. (c) Average June to October precipitation during monsoon (d), normal (e), and dry (f) days in the AZ West region. Average WT precipitable water 
anomalies (colored contour) for each WT (d–f) in the AZ West region (red contour). The histogram in the lower left shows the monthly frequency of WT days. The 
inset in the top left shows the precipitation anomaly for each WT and the WT frequency is shown in the title of each panel. 

 
2.3. Weather Typing Methodology 

The WT algorithm was modified from the one presented in (Prein & Mearns, 2021). In short, it is a data-driven 
clustering algorithm that tests atmospheric predictor combinations to find optimal WTs based on objective skill 
scores associated with NAM precipitation. The details of the WTing algorithm are outlined below. 

All days between June and October within the period 1982–2018 are considered in the clustering. We consider all 
12 above-mentioned variables and up to combinations of three variables (220 possible combinations) as predic- 
tors for catchment precipitation. First, we calculate daily anomalies from the mean climate state of each predictor 
on a grid cell basis and apply Gaussian spatial smoothing (sigma = 0.5) to remove small-scale variability from 
the predictor variables. Next, we normalize the anomalies by their regional average mean and daily standard devi- 
ation. The normalized anomaly fields are then clustered using the results of a hierarchical (using Ward's linkage 
on a condensed distance matrix) cluster algorithm as initial seed for a k-means clustering (Romesburg, 2004). 
The combination of these two cluster algorithms showed high skill in a WT intercomparison study (Schiemann & 
Frei, 2010) and was successfully applied to capture precipitation characteristics over the US (Prein et al., 2016) 
and weather conditions in other regions (Comrie, 1996; Ekstrom et al., 2002). 

For each catchment, we assess how these skill scores change if WTs from the remaining 13 basins are used as 
predictors of the selected catchment's NAM precipitation (Figure S1 in Supporting Information S1). In Arizona, 
using the WTs from the two northernmost catchments (Lower Colorado-Lake Mead subregion—HUC1501; 
Little Colorado subregion—HUC1502) results in higher skill in characterizing precipitation in southern (upwind 
during NAM conditions) catchments. Based on these results we cluster the catchments in Arizona in two 
regions—Arizona West (AZ West containing HUC1501, HUC1503, HUC1507, HUC1810) and Arizona East 
(AZ East containing HUC1502, HUC1504, HUC1506, HUC1508). Similarly, we cluster the catchments in New 

 
 

PREIN ET AL. 3 of 11 

19448007, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021G

L095602, W
iley O

nline Library on [28/04/2023]. See the Term
s and Conditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable Creative Com
m

ons License 



Geophysical Research Letters 10.1029/2021GL095602 

 

 
 

 
 

Mexico into Northern catchments (NM North containing HUC1301, HUC140801, HUC130201, HUC130202) 
and southern catchments (NM South containing HUC130301 and HUC1306). The differences between Arizona 
and New Mexico WTs is not surprising since previous literature showed that spatial variability of monsoon 
precipitation differs east and west of the U.S. continental divide (Castro et al., 2012; Ciancarelli et al., 2014). 

We derive clusters for each of the 14 target catchments (Figure 1a) and test the sensitivity of the cluster domain 
size by adding 2°, 5°, and 10° around a rectangle that includes the catchment of interest to test sensitivities to the 
clustering region (Beck et al., 2016). 

We use two skill scores to assess the quality of derived WTs dependent on the predictor variables and WT domain 
size. The first is the absolute average of WT centroid (cluster mean state) precipitation anomalies (PRanom), 
which should be maximized—the precipitation in the derived WTs should be as different as possible from the 
climatological precipitation. The second skill score is the ratio of the intra- versus inter-cluster standard deviation 
of precipitation (IvI), which should also be maximized. Although these two scores are correlated (Figure S2 in 
Supporting Information S1) combining them helps to improve the robustness of the derived WTs. This score 
favors WTs that have days with similar precipitation within WTs and whose precipitation is different between 
WTs. The combination of these two scores has been successfully used in previous WTing applications (Prein 
et al., 2016). 

Based on these skill scores we select the top 10% of the tested predictor combinations and count how often each 
variable is included in a well-performing setting (Figure S3 in Supporting Information S1). Water vapor mixing 
ratio at 850 hPa (Q850) is by far the most frequently used predictor in well-performing settings in all catchments 
and results in close to optimal performance as a single predictor. Performance differences between different WT 
domain sizes are small but adding 5° around each catchment performed best in Arizona catchments and adding 2° 
was best in New Mexico. WTs are derived for each basin based on ERA-Interim data. The WT centroids are then 
use to associate each day in the seasonal forecasts to the most similar WT centroid according to their Euclidean 
distance. 

 
 

2.4. Seasonal Prediction Systems 

We use seasonal forecasts from the North American Multi-Model Ensemble (NMME; Kirtman et al., 2014) 
and the Integrative Forecasting System (IFS, Version 5) seasonal forecasts from ECMWF from the Copernicus 
Climate Change Service. We included all NMME models that provide daily Q850 for their hindcast (retrospective 
forecasts) runs, which are: NCAR CESM1, UM-RSMAS CCSM4, and ECMWF IFS. We also include NASA- 
GMAO GEOS-5 and CCCMA CanCM4 but use Q650 and Q675 respectively instead due to missing data at 
the 850 hPa level. This should have little impact on the predictive skill of those models since moisture patterns 
are well correlated between the 850 hPa and 650 hPa level (absolute differences do not matter due to the use of 
daily anomalies in the WTing). All models have a horizontal grid spacing of one degree. NMME models run a 
ten-member ensemble forecast while ECMWF runs 25 members. All models are initialized on the first of each 
month and forecast 365 days except for NASA-GMAO GEOS-5 and ECMWF IFS, which forecast 273 and 
215 days respectively. The common hindcast period for the NMME models is 1982–2010 while ECMWF IFS 
provides hindcasts for 1993–2016. 

To associate seasonal forecasts days with one of the derived WTs we use the same pre-processing as described 
above (i.e., for the predictor variables we derive daily anomalies, apply spatial smoothing, and normalize the 
anomalies). Next, we regrid the ERA-Interim based WT centroids to the one-degree model grid and calculate 
Euclidean distances to all WTs for each forecast day. A forecast day is assigned to a WT according to the lowest 
Euclidean Distance. We use linearly detrended time series for calculating anomaly correlation coefficients. 

 
 

3. Results 
Monsoon season (June–October) precipitation contributes between 60% (AZ West) to 80% (NM South) to the 
annual rainfall in the four study areas (Figure 1b). The precipitation in this period typically comes from moisture 
surges from the Gulf of Mexico and tropical Pacific (Favors & Abatzoglou, 2013; Higgins et al., 1997) inter- 
cepted by dry periods. We aim to capture this variability with our WTing analysis. 
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Figure 2. The frequency of North American monsoon season total monsoon weather type (WT) days is significantly correlated with seasonal catchment precipitation. 
(a) June to October daily average precipitation over the Arizona (AZ) West region (blue) and seasonal frequency of monsoon WT days (red) between 1982 and 2018. 
(b) Scatter plot and linear relationship estimate for the data shown in (a). The Pearson correlation coefficient is shown in the title. (c) Pearson correlation coefficient for 
all regions and WTs. Hatching indicated significant correlation coefficient (two-tailed p-value < 0.05). 

 
3.1. Dominant Weather Types 

Three weather patterns are sufficient to characterize the dominant effects of synoptic-scale variability on precipi- 
tation in the four target regions. The centroids of the three WTs in the AZ West region are shown in Figures 1d–1f. 
The first WT (monsoon) is associated with monsoonal moisture surges and characterized by tropical moisture 
advection from the Gulf of California and the eastern tropical Pacific further south into the target catchments 
resulting in a high water vapor mixing ratio at 850 hPa (Q850) and precipitable water anomalies. Monsoon WT 
days have a rapid onset in July, peak in August, and decay in September. This WT resembles the published defi- 
nition of the NAM large-scale circulation and seasonal occurrence (Vera et al., 2006) and are often referred to as 
“moisture surges” (Pascale & Bordoni, 2016). Although only 19% of days within June to October are associated 
with this WT, they produce the majority of monsoon season precipitation (Figure 1c). Our definition of wet NAM 
days is more general than most published definition of synoptic patterns that cause wet surges. This is because 
we aim to used these patterns in a probabilistic predictive framework rather than understanding the drivers of 
wet surges in this region, which is already well studied (Higgins et al., 2004; Jiang & Lau, 2008; Schiffer & 
Nesbitt, 2012; Seastrand et al., 2015). Our wet WT definition includes the classical definition of wet surges but 
also allows capturing wet days with other synoptic-scale patterns (see Figure S13 in Supporting Information S1 
and Movie S1 for an example). The second weather pattern (normal, Figure 1e) is associated with more zonal 
flow, a subtropical height that is weaker and centered on the coast of Texas, and climatologically average precipi- 
table water anomalies. Days within this WT are 20%–40% dryer than average days and only contribute about one 
fifth of the precipitation of monsoonal flow days. The third WT (dry, Figures 1c and 1f) is associated with anom- 
alously dry air advection, zonal flow, and extremely dry precipitation anomalies and resembles previously found 
dry patterns (Schiffer & Nesbitt, 2012). Dry WT days occur most frequently in June and October. Deriving WTs 
based on July–September conditions results in similar patterns (not shown), which indicates that these patterns 
are robust and inherent to the core monsoon season. An example of the occurrence of wet, normal, and dry WT 
days compared to daily average precipitation in the AZ West region for the dry 2009 and wet 2018 NAM season 
is shown in Figure S12 in Supporting Information S1. 

The WTs for the other focus areas are shown in the supplement (Figures S4–S11 in Supporting Information S1). 
Each area features a monsoon, normal, and dry WT. The monsoonal WTs mainly differ in the size and location 
of the subtropical high-pressure system (Figure S15 in Supporting Information S1 shows 500 hPa geopotential 
height anomalies). The high-pressure system is shifted further to the east and south particularly in the NM North 
and South region, which facilitates the advection of Gulf of Mexico moisture rather than moisture from the 
Pacific as in the Arizona catchments. 

The pronounced relationship between WTs and precipitation anomalies in the target regions results in a signifi- 
cant (Pearson's r = 0.65) correlation between the seasonal average frequency of monsoon WT days and observed 
monsoon season mean precipitation in the AZ west region (Figures 2a and 2b). Similarly high correlations are 
found in the other three regions (Figure 2c). Also, a high frequency of dry WT days is significantly negatively 
correlated with monsoon seasonal average precipitation. 
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Figure 3. ECMWF's IFS model can skillfully forecast North American monsoon season precipitation starting in April when using monsoon weather type (WT) 
frequencies as a proxy for catchment average precipitation. ERA-Interim (gray), (a) NCAR-CESM1, and (b) ECMWF-IFS climatological average Q850 over the AZ 
West region. Thin gray lines show individual years from ERA-Interim and colors show different forecast initialization months. (c and d) Similar to (a and b) but for 
climatological average monsoon day frequencies. (e and f) Annual average detrended and normalized regional averaged observed (gray) and May forecast precipitation 
(orange). (g and h) Similar to (e and f) but for May forecast average detrended and normalized monsoon day frequency (orang) versus observed precipitation. (i–l) 
Heatmaps showing the Pearson correlation coefficient between the detrended and normalized observed basin average precipitation and forecasted monsoon WT 
frequency. Panels (i–l) show results from the AZ West, AZ East, NM North, and NM South watershed (from left to right). Each panel shows results from each modeling 
system (columns) and forecast start months (rows). Each month and model segment (see explanation on the bottom left) shows correlation coefficients for June–October 
(top two rows), June–August and September–October (second row from below), and each month (bottom row). Hatching indicates significant correlation coefficients 
(p < 0.1). 

 
3.2. Seasonal Forecasts of Monsoon Precipitation in Hindcasts 

There are large differences between the performance of the analyzed models in simulating the position and 
seasonal evolution of the monsoonal high pressure system that partly depend on the lead time of the forecast 
(Figure S15 in Supporting Information S1). The ECMWF-IFS system has the best climatological representa- 
tion of the monsoonal high, while the other models feature a too far northward extension and partly erroneous 
seasonal progression. 

Also, the ability to simulate the seasonal evolution of Q850 over the AZ West WT domain strongly depends on 
the forecasting system and the forecast lead time (Figures 3a and 3b). National Center for Atmospheric Research's 
Community Earth System Model v1 (NCAR-CESM1) forecasts feature a dry bias in Q850 during the peak 
monsoon season. This is not necessarily a problem as long as this bias is systematic since we perform the WTing 
with Q850 anomalies. A more severe issue is the considerable initiation shock—visible in the June, July, and 
August forecasts—which typically has strong negative impacts on the forecast quality (Mulholland et al., 2015). 
Similar to the positioning of the monsoonal high, the ECMWF-IFS v5 model forecasts show a much better 
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climatological evolution of the Q850 seasonal cycle and do not feature an initialization shock. The other fore- 
casting systems (not shown) feature initialization shocks that are typically not as severe as the ones in the NCAR- 
CESM1 system. 

The quality of simulating climatological Q850 conditions is reflected in the model's ability to capture the 
frequency and seasonality of monsoonal flow WT days (Figure 3c and 3d and Figure S16 in Supporting Informa- 
tion S1). NCAR-CESM1 has too many monsoon WT days in June and too few during the peak monsoon season. 
The impacts of the initialization shock are also visible in the forecasted monsoon WT frequencies. IFS has a much 
better simulation of the amount and seasonality of monsoon WT days (Figure 3d) and generally outperforms any 
of the other forecasting systems (Figure S16 in Supporting Information S1). 

Using the modeled precipitation for forecasting observed NAM season precipitation results in no significant 
skill—measured by the anomaly correlation coefficient (Figures 3e and 3f)—confirming results from previous 
studies (Slater et al., 2019). This is also true for using NAM season monsoon WT frequencies from the NCAR- 
CESM1 forecast (Figure 3g; and the other NMME models). However, using the May forecast from the IFS 
model allows us to skillfully predict monsoon season precipitation in the AZ West region (Figure 3h; Pearson's 
r = 0.66). Even the April forecast is skillful (Figure 3i). Predicting the precipitation in individual months is more 
challenging except for the July and August forecast, which are skillful in predicting precipitation during the first 
forecasting month. Generally, June to August precipitation is more predictable than September and October 
rainfall. 

IFS has similar high skill in forecasting precipitation in the AZ East region (Figure 3j; except for the April fore- 
cast) compared to AZ West. Predictability is generally lower in New Mexico and skillfully forecasting NAM 
season precipitation in the NM North region becomes feasible in June (Figure 3k) while no significant predicta- 
bility is found in the NM South region (Figure 3l). 

 
 

3.3. Sources for Predictability 

Here we investigate the potential sources of predictability that allow skillful sub-seasonal precipitation forecasts 
by the IFS model. 

Compositing the top 25% of years (top 9 years out of 37) with the highest frequency of monsoonal flow WT days 
in June and July in the AZ West region show significant 500 hPa geopotential height anomalies that resemble 
a Rossby wave train with alternating high and low anomalies (Figure 4a). Using the top 10% of years results in 
similar patterns (not shown). We focus on June on July conditions since they have the highest predictability (see 
Figure 3). A similar pattern has been identified previously as driver of continental-scale precipitation variability 
in the U.S. (Castro et al., 2012; Ciancarelli et al., 2014). This pattern is associated with La Nina like tropical 
Pacific sea surface temperatures (Figure 4b), which is in line with some previous studies (Ciancarelli et al., 2014; 
Higgins & Shi, 2001) but in opposition to others (Grantz et al., 2007). The anomaly patterns change gradually 
when moving from the AZ-West to the NM-South region with the high anomaly over the CONUS moving east- 
ward and weakening and the low anomalies in the Gulf of Alaska and near the Gulf of California becoming 
stronger (Figure S17 in Supporting Information S1). 

None of the forecasting systems is able to capture these anomaly patterns perfectly although we should expect 
some differences due to the different simulation periods. The June forecasts from the IFS model resemble the 
observed pattern best (Figure 4l) while the model's April forecasts miss the low anomaly in the Gulf of Alaska 
but still feature a correctly but too weak high anomaly over the central U.S. (Figure 4k). Nevertheless, IFS's April 
forecast better captures the observed pattern than most of the models forecast in June. for example, the GEOS-5 
model has too strong and negative connections to the tropical Pacific (Figure 4f) while CanCM4 has too strong 
positive connections (Figure 4j). Most models struggle with correctly simulating the positive height anomaly in 
the western U.S. and many models show fundamentally different patterns in their April forecasts compared to 
their June forecasts. 
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Figure 4. Coefficient of variation of the 500 hPa geopotential height (ZG500) anomaly of the 25% years with the highest June and July monsoon weather type 
frequencies compared to the climatological average. Shown is data from ERA-Interim (a; 1982–2018), the four included North American multi-model ensemble models 
(c–j; 1982–2010); and the ECMWF forecast (k–l; 1993–2016). Coefficients of variation are shown for April (left) and June (right) forecasts for each modeling system. 
Additionally, coefficient of variation of sea surface temperatures are shown based on ERA-Interim data (b). Hatched areas show significant anomalies based on the 
Mann-Whitney U test (p ≤ 0.1). 
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4. Discussion and Conclusion 
We assess the ability of seasonal forecasting systems to predict the North American Monsoon (NAM, June to 
October) precipitation in Arizona and New Mexico catchments that are important for water management. Due 
to significant biases in simulating precipitation in state-of-the-art seasonal forecasting systems (Crochemore 
et al., 2016), we developed a forecasting framework that uses hydrologically important synoptic-scale weather 
types (WTs) for catchment-scale precipitation predictions. We found that three WTs—a dry, normal, and wet 
(monsoonal flow) WT—are sufficient to characterize the interseasonal and interannual variability of precipita- 
tion in the U.S. NAM region. 

We show that the observed seasonal average frequency of monsoonal flow WTs significantly correlates with 
catchment-scale seasonal average precipitation in all regions. Most importantly, we show that ECMWF's IFS 
forecasting system can skillfully predict NAM season rainfall at catchment scales with several months lead-time 
(i.e., the April forecast is skillful over the AZ West catchments) except for the NM South catchments while using 
the model's precipitation as a predictor does not provide predictive skill. The other evaluated forecasting systems 
do not have predictive skills partly due to large initialization shocks (Mulholland et al., 2015), and an erroneous 
simulation of the low-level moisture transport into the study regions. Additionally, ECMWF-IFS has a superior 
simulation of the location and seasonal evolution of the monsoonal high pressure ridge and outperforms the other 
models in simulating teleconnection patterns (Castro et al., 2012; Ciancarelli et al., 2014) that control the position 
of the monsoon high and the amount of regional precipitation. The superior performance of the ECMWF-IFS 
system is not dependent on the use of ERA5 reanalysis data, since using MERRA2 data (Gelaro et al., 2017) 
results in similar seasonal and inter-annual WT properties (not shown). 

These results push the boundaries of seasonal predictability of regional precipitation (Slater et al., 2019) and 
offer novel opportunities for improved water resource management on S2S time scales in the U.S. Southwest. The 
presented WTing framework is flexible and could offer enhanced predictive skill also for sub-seasonal forecasts 
and in other drought-prone regions around the world. The presented results also show that many S2S systems have 
to advance their data assimilation systems and reduce biases in their climatological representation of regional 
phenomena such as monsoon circulations. Having multiple prediction systems with the quality of ECMWF-IFS 
would allow us to construct more skillful multi-model ensemble forecasts resulting in further improvements 
of predictive skill. Importantly, even skillful models such as ECMWF-IFS are not able to simulate the mesos- 
cale processes that drive local precipitation. Future research should focus on the potential added value of using 
convection-permitting models (Prein et al., 2015) for S2S prediction, which could result in a step-improvement 
in our skill to simulate mesoscale weather phenomena and their extremes (Clark et al., 2016; Prein et al., 2021), 
snowpack dynamics (Rasmussen et al., 2011), land-atmosphere interactions (Barlage et al., 2021), and could 
result in improved S2S predictive skills by better simulating teleconnections due to the dynamic interaction of 
convective scales with larger-scale processes (Weber & Mass, 2019). 
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