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An Efficient Framework for Clustered
Federated Learning

Avishek Ghosh, Jichan Chung, Dong Yin

Abstract—We address the problem of federated learning (FL)
where users are distributed and partitioned into clusters. This
setup captures settings where different groups of users have
their own objectives (learning tasks) but by aggregating their
data with others in the same cluster (same learning task), they
can leverage the strength in numbers in order to perform
more efficient federated learning. For this new framework of
clustered federated learning, we propose the Iterative Federated
Clustering Algorithm (IFCA), which alternately estimates the
cluster identities of the users and optimizes model parameters for
the user clusters via gradient descent. We analyze the convergence
rate of this algorithm first in a linear model with squared loss
and then for generic strongly convex and smooth loss functions.
We show that in both settings, with good initialization, IFCA is
guaranteed to converge, and discuss the optimality of the
statistical error rate. In particular, for the linear model with
two clusters, we can guarantee that our algorithm converges as
long as the initialization is slightly better than random. When the
clustering structure is ambiguous, we propose to train the models
by combining IFCA with the weight sharing technique in multi-
task learning. In the experiments, we show that our algorithm
can succeed even if we relax the requirements on initialization
with random initialization and multiple restarts. We also present
experimental results showing that our algorithm is efficient in
non-convex problems such as neural networks. We demonstrate
the benefits of IFCA over the baselines on several clustered FL
benchmarks.

Index Terms—Federated learning, clustering, alternating
minimization.

I. INTRODUCTION

N MANY modern data-intensive applications such as
recommendation systems, image recognition, and natural

language processing, distributed computing has become a
crucial component. In many applications, data are stored in
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end users’ own devices such as mobile phones and personal
computers, and in these applications, fully utilizing the on-
device machine intelligence is an important direction for
next-generation distributed learning. Federated learning (FL)
[1]–[3] is a recently proposed distributed computing paradigm
that is designed towards this goal, and has received significant
attention. Many statistical and computational challenges arise
in federated learning, due to the highly decentralized system
architecture. In this paper, we propose an efficient algorithm
that aims to address one of the major challenges in FL—
dealing with heterogeneity in the data distribution.

In federated learning, since the data source and computing
nodes are end users’ personal devices, the issue of data
heterogeneity, also known as non-i.i.d. data, naturally arises.
Exploiting data heterogeneity is particularly crucial in appli-
cations such as recommendation systems and personalized
advertisement placement, and it benefits both the users’ and
the enterprises. For example, mobile phone users who read
news articles may be interested in different categories of news
like politics, sports or fashion; advertisement platforms might
need to send different categories of ads to different groups of
customers. These indicate that leveraging the heterogeneity
among the users is of potential interest—on the one hand, each
machine itself may not have enough data and thus we need to
better utilize the similarity among the users; on the other hand,
if we treat the data from all the users as i.i.d. samples, we may
not be able to provide personalized predictions. This problem
has recently received much attention [4]–[6].

In this paper, we study one of the formulations of FL
with non-i.i.d. data, i.e., the clustered federated learning
[5], [7]. We assume that the users are partitioned into different
clusters; for example, the clusters may represent groups of
users interested in different categories of news, and our goal is
to train models for every cluster of users. We note that
cluster structure is very common in applications such as
recommendation systems [8], [9]. The main challenge of our
problem is that the cluster identities of the users are unknown,
and we have to simultaneously solve two problems: identifying
the cluster membership of each user and optimizing each of
the cluster models in a distributed setting. In order to achieve
this goal, we propose a framework and analyze a distributed
method, named the Iterative Federated Clustering Algorithm
(IFCA) for clustered FL. The basic idea of our algorithm is a
strategy that alternates between estimating the cluster identities
and minimizing the loss functions, and thus can be seen as an
alternating minimization algorithm in a distributed setting. We
compare with a simple one-shot clustering algorithm and
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argue that one of the major advantages of our algorithm is
that it does not require a centralized clustering algorithm, and
thus significantly reduces the computational cost at the center
machine. When the cluster structure is ambiguous, we pro-
pose to leverage the weight sharing technique in multi-task
learning [10] and combine it with IFCA. More specifically,
we learn the shared representation layers using data from all
the users, and use IFCA to train separate final layers for each
individual cluster.

We further establish convergence rates of our algorithm, for
both linear models and general strongly convex losses under
the assumption of good initialization. We prove exponential
convergence speed, and for both settings, we can obtain
near optimal statistical error rates in certain regimes. For the
linear model that we consider, when there are two clusters,
we show that IFCA is guaranteed to converge as long as the
initialization is slightly better than random. We also present
experimental evidence of its performance in practical settings:
We show that our algorithm can succeed even if we relax the
initialization requirements with random initialization and
multiple restarts; and we also present results showing that our
algorithm is efficient on neural networks. We demonstrate the
effectiveness of IFCA on two clustered FL benchmarks created
based on the MNIST and CIFAR-10 datasets, respectively, as
well as the Federated EMNIST dataset [11] which is a more
realistic benchmark for FL and has ambiguous cluster
structure.1

Here, we emphasize that clustered federated learning is
not the only approach to modeling the non-i.i.d. nature of the
problem, and different algorithms may be more suitable for
different application scenarios; see Section II for more
discussions. That said, our approach to modeling and the
resulting IFCA framework is certainly an important and rel-
atively unexplored direction in federated learning. We would
also like to note that our theoretical analysis makes contribu-
tions to statistical estimation problems with latent variables in
distributed settings. In fact, both mixture of regressions [12]
and mixture of classifiers [13] can be considered as special
cases of our problem in the centralized setting. We discuss
more about these algorithms in Section II.

Notation: We use [r] to denote the set of integers
{1, 2, . . . , r}. We use k·k to denote the `2 norm of vectors.
We use x  & y if there exists a sufficiently large constant c >
0 such that x  ≥  cy, and define x  .  y similarly. We use
poly(m) to denote a polynomial in m with arbitrarily large
constant degree.

II. RELATED WORK

During the preparation of the initial draft of this paper, we
became aware of a concurrent and independent work by [7],
in which the authors propose clustered FL as one of the
formulations for personalization in federated learning. The
algorithms proposed in our paper and by Mansour et al. are
similar. However, our paper makes an important contribution
by establishing the convergence rate of the population loss

1Implementation of our experiments is open sourced at https://github.
com/jichan3751/ifca

function under good initialization, which simultaneously guar-
antees both convergence of the training loss and generalization
to test data; whereas in [7], the authors provided only gen-
eralization guarantees. We discuss other related work in the
following.

A. Federated Learning and Non-I.I.D. Data

Learning with a distributed computing framework has been
studied extensively in various settings [14]–[16]. As men-
tioned in Section I, federated learning [1]–[3], [17] is one of
the modern distributed learning frameworks that aims to
better utilize the data and computing power on edge devices. A
central problem in FL is that the data on the users’
personal devices are usually non-i.i.d. Several formulations
and solutions have been proposed to tackle this problem. A line
of research focuses on learning a single global model from
non-i.i.d. data [18]–[23]. Other lines of research focus more
on learning personalized models [4], [5], [24]. In particular,
the MOCHA algorithm [4] considers a multi-task learning
setting and forms a deterministic optimization problem with
the correlation matrix of the users being a regularization term.
Our work differs from MOCHA since we consider a statistical
setting with cluster structure. Another approach is to formulate
federated learning with non-i.i.d. data as a meta learning
problem [6], [24], [25]. In this setup, the objective is to first
obtain a single global model, and then each device fine-tunes
the model using its local data. The underlying assumption of
this formulation is that the data distributions among different
users are similar, and the global model can serve as a good
initialization.

B. Clustered Federated Learning

The formulation of clustered FL has been considered in
a few recent works [5], [7], [26]. In comparison with some
prior works, e.g., [5], our algorithm does not require a cen-
tralized clustering procedure, and thus significantly reduces the
computational cost at the center machine. Also, as explained
in the beginning of this section, the concurrent work of
Mansour et al. [7] do not provide any convergence guarantees
for their clustering algorithm. Furthermore, [27], [28] use
ensemble methods (mixture of experts) and empirically obtain
guarantees for clustering and personalization in Federated
Learning. However, to the best of our knowledge, our work
is the first in the literature that rigorously characterize the
convergence behavior and statistical optimality for clustered
FL problems.

C. Latent Variable Problems

As mentioned in Section I, our formulation can be con-
sidered as a statistical estimation problem with latent vari-
ables in a distributed setting, and the latent variables are the
cluster identities. Latent variable problem is a classical topic
in statistics and non-convex optimization; examples include
Gaussian mixture models (GMM) [29], [30], mixture of linear
regressions [12], [31], [32], and phase retrieval [33], [34].
Expectation maximization (EM) and alternating
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minimization (AM) are two popular approaches to solving
these problems. Despite the wide applications, their conver-
gence analyses in the finite sample setting are known to be
hard, due to the non-convexity nature of their optimization
landscape. In recent years, some progress has been made
towards understanding the convergence of EM and AM in the
centralized setting [35]–[39]. For example, if started from a
suitable point, they have fast convergence rate, and occasion-
ally they enjoy super-linear speed of convergence [29], [40]. In
this paper, we provide new insights to these algorithms in the
FL setting.

III. PROBLEM FORMULATION

We begin with a standard statistical learning setting of
empirical risk minimization (ERM). Our goal is to learn
parametric models by minimizing some loss functions defined
by the data. We consider a distributed learning setting where
we have one center machine and m worker machines (i.e., each
worker machine corresponds to a user in the federated learning
framework). The center machine and worker machines can
communicate with each other using some predefined com-
munication protocol. We assume that there are k different
data distributions, D1 , . . . , Dk , and that the m machines are
partitioned into k disjoint clusters, S�, . . . , S�. We assume no
knowledge of the cluster identity of each machine, i.e., the
partition S�, . . . , S� is not revealed to the learning algorithm.
We assume that every worker machine i  � S� contains n
i.i.d. data points zi,1 , . . . , z i,n drawn from D j ,  where each data
point z i , `  consists of a pair of feature and response denoted by
z i , `  =  (xi,` , y i, ` ).

Let f (θ; z) : Θ → R  be the loss function associated with
data point z, where Θ � Rd  is the parameter space. In this
paper, we choose Θ =  Rd . Our goal is to minimize the
population loss function

F j (θ) :=  E z �D j  [f (θ; z)],

for all j  � [k]. For the purpose of theoretical analysis in
Section V, we focus on the strongly convex losses, in which
case we can prove guarantees for estimating the unique solu-
tion that minimizes each population loss function. In particular,
we try to find solutions {θ j } j = 1  that are close to

θ j  =  argminθ�ΘF j (θ), j  � [k].

Since we only have access to finite data, we use empirical loss
functions. In particular, let Z  � {z i,1 , . . . , z i,n } be a subset of
the data points on the i-th machine. We define the empirical
loss associated with Z  as

Fi (θ ; Z ) =  
1 X  

f (θ; z).
z �Z

When it is clear from the context, we may also use the
shorthand notation Fi (θ) to denote an empirical loss associated
with some (or all) data on the i-th worker.

IV. ALGORITHM

Since the users are partitioned into clusters, a natural idea
is to use some off-the-shelf clustering approaches such as the
Lloyd’s algorithm (k-means) [41]. In this section, we first

present a straightforward one-shot clustering algorithm that
aims to estimate the cluster identities within one round of
clustering at the center machine, and discuss the potential
drawbacks of this method in the real-world scenario. Then in
Section IV-B, we propose an iterative algorithm that alternates
between estimating the cluster identities and minimizing the
loss functions.

A. One-Shot Clustering

In our problem formulation, the data distribution on all the
user devices has a cluster structure, a natural idea is to run an
off-the-shelf clustering algorithm such as k-means to estimate
the cluster identities. Since the data are all stored in the worker
machines, it is not plausible to upload all the data to the
center machine and cluster the raw data points due to the large
communication cost. Instead, one straightforward approach is
to let each worker machine train a model (ERM solution) θ i

with its local data, send it to the center machine, and the
center machine estimates the cluster identities of each worker
machine by running k-means on θi’s. With the cluster identity
estimations, the center machine runs any federated learning
algorithm separately within each cluster, such as gradient-
based methods [1], the Federated Averaging (FedAvg) algo-
rithm [3], or second-order methods [42], [43]. This approach is
summarized in Algorithm 1.

Algorithm 1 One-Shot Clustering Algorithm for Federated
Learning

1: Worker machines send ERM θ i  :=  argmin Fi (θ)
(for all i  � [m]) to the center.

2: Center machine clusters {θ i } m        into S1 , . . . , Sk .
3: Within each cluster S j ,  j  � [k], run federated learning

algorithm to obtain final solution θj .

Note that Algorithm 1 is a modular algorithm. It provides
flexibility in terms of the choice of clustering and optimization
subroutines dependent on the problem instance. However, a
major drawback is that Algorithm 1 clusters the user
machines only once, and retains that throughout learning.
Thus, if the clustering algorithm produces incorrect identity
estimations, there is no chance that the algorithm can correct
them in the last stage. Moreover, in Algorithm 1 the clustering is
done in the center machine. If m is large, this job can be
computationally heavy. Note that this is not desired in the
setup of FL whose key idea is to reduce the computational cost of
the center machine and leverage the end users’ computing
power (see e.g. [1]). Another note is that for most settings, in
the first stage, i.e., computing the local ERMs, the worker
machines can only use convex loss functions, rather than more
complex models such as neural networks. The reason is that
the ERM solutions θ i  are used in distance-based clustering
algorithm such as k-means, but for neural networks, two
similar models can have parameters that are far apart due to,
e.g., the permutation invariance of the model to the hidden
units.

In order to address the aforementioned concerns, in the
following sections, we propose and analyze an iterative clus-
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Fig. 1.     An overview of IFCA (model averaging). (a) The server broadcast
models. (b) Worker machines identify their cluster memberships and run local
updates. (c) The worker machines send back the local models to server. (d)
Average the models within the same estimated cluster S j .

tering algorithm, where we improve the clustering of worker
machines over multiple iterations.

B. Iterative Federated Clustering Algorithm (IFCA)

We now discuss details of our main algorithm, named
Iterative Federated Clustering Algorithm (IFCA). The key
idea is to alternatively minimize the loss functions while
estimating the cluster identities. We discuss two variations of
IFCA, namely gradient averaging and model averaging. The
algorithm is formally presented in Algorithm 2 and illustrated
in Figure 1.

Algorithm 2 Iterative Federated Clustering Algorithm (IFCA)
1: Input: number of clusters k, step size γ, j  � [k], initial-

ization θ(0), j  � [k]
number of parallel iterations T , number of local
gradient steps τ (for model averaging).

2: for t =  0, 1, . . . , T −  1 do
3: center machine: broadcast θ (t) , j  � [k]
4: Mt ← random subset of worker machines (participating

devices)
5: for worker machine i  � Mt in parallel do
6: cluster identity estimate j  =  argminj�[k] Fi(θ(t))
7: define one-hot encoding vector s i  =  { s i , j } j = 1

with s i , j  =  1 { j  =  j }
8: option I (gradient averaging):
9: compute (stochastic) gradient: gi =  �Fi(θ (t) ), send

si , gi to center machine
10: option II (model averaging):
11: θ i  =  LocalUpdate(θ(t), γ, τ), send si , θ i

to center machine
12: end for
13: center machine:
14: option I (gradient averaging): θ ( t+1) = θ (t) −

γ si , j g i ,  � j  � [k]

15: option II (model averaging): θ ( t+1) =

i�M  s i , j θ i / i�M  si , j ,  � j  � [k]
16: end for
17: return θ (T ) , j  � [k]

LocalUpdate(θ(0), γ, τ ) at the i-th worker machine
18: for q =  0, . . . , τ −  1 do
19: (stochastic) gradient descent θ (q+1) =  θ(q) − γ�Fi (θ (q ) )
20: end for
21: return θ (τ )

The algorithm starts with k initial model parameters θ(0) ,
j  � [k]. In the t-th iteration of IFCA, the center machine

Fig. 2.     Weight sharing scheme for IFCA with neural networks.

selects a random subset of worker machines, M     � [m], and
broadcasts the current model parameters {θ ( t ) } k to
the worker machines in Mt. Here, we call Mt the set of
participating devices. Recall that each worker machine is
equipped with local empirical loss function Fi(·). Using the
received parameter estimates and F i ,  the i-th worker machine
(i � M ) estimates its cluster identity via finding the model
parameter with lowest loss, i.e., j  =  argminj�[k] Fi(θ(t)) (ties
can be broken arbitrarily). If we choose the option of gradient
averaging, the worker machine then computes a (stochastic)
gradient of the local empirical loss F i  at θ (t) , and sends

its cluster identity estimate and gradient back to the center
machine. After receiving the gradients and cluster identity
estimates from all the participating worker machines, the
center machine then collects all the gradient updates from
worker machines whose cluster identity estimates are the same
and conducts gradient descent update on the model parameter
of the corresponding cluster. If we choose the option of model
averaging (similar to FedAvg [3]), each participating device
needs to run τ steps of local (stochastic) gradient descent
updates, get the updated model, and send the new model
and its cluster identity estimate to the center machine. The
center machine then averages the new models from the worker
machines whose cluster identity estimates are the same.

C. Practical Implementation of IFCA

We clarify a few issues regarding the practical implementa-
tion of IFCA. In some practical problems, the cluster structure
may be ambiguous, which means that although the distribu-
tions of data from different clusters are different, there exists
some common properties of the data from all the users that
the model should leverage. For these problems, we propose to
use the weight sharing technique in multi-task learning [10]
and combine it with IFCA. More specifically, when we train
neural network models, we can share the weights for the first a
few layers among all the clusters so that we can learn a
good representation using all the available data, and then run
IFCA algorithm only on the last (or last few) layers to
address the different distributions among different clusters.
Using the notation in Algorithm 2, we run IFCA on a subset of

the coordinates of θ(t) , and run vanilla gradient or model
averaging on the remaining coordinates. Another benefit of
this implementation is that we can reduce the communication
cost: Instead of sending k models to all the worker machines,
the center machine only needs to send k different versions of a
subset of all the weights, and one single copy of the shared
layers. We illustrate the weight sharing method in Figure 2.
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Another technique to reduce communication cost is that
when the center machine observes that the cluster identities of
all the worker machines are stable, i.e., the estimates of
their cluster identities do not change for several parallel
iterations, then the center machine can stop sending k models to
each worker machine, and instead, it can simply send the
model corresponding to each worker machine’s cluster identity
estimate.

V. THEORETICAL GUARANTEES

In this section, we present convergence guarantees of IFCA.
In order to streamline our theoretical analysis, we make several
simplifications: we consider the IFCA with gradient averaging,
and assume that all the worker machines participate in every
rounds of IFCA, i.e., Mt =  [m] for all t. In addition, we also
use the re-sampling technique for the purpose of theoretical
analysis. In particular, suppose that we run a total of T parallel
iterations. We partition the n data points on each machine
into 2T disjoint subsets, each with n0 =  n      data points. For the
i-th machine, we denote the subsets as Z (0) , . . . , Z (T −1)  and
Z (0) , . . . , Z (T −1) . In the t-th iteration, we use Z ( t )  to
estimate the cluster identity, and use Z ( t )  to conduct gradient
descent. As we can see, we use fresh data samples for each
iteration of the algorithm. Furthermore, in each iteration, we
use different set of data points for obtaining the cluster
estimate and computing the gradient. This is done in order to
remove the inter-dependence between the cluster estimation
and the gradient computation, and ensure that in each iteration,
we use fresh i.i.d. data that are independent of the current
model parameter. We would like to emphasize that re-sampling
is a standard tool used in statistics [35], [37], [40], [44], [45],
and that it is for theoretical tractability only and is not required in
practice as we show in Section VI.

Under these conditions, the update rule for the parameter
vector of the j -th cluster can be written as

S ( t )  =  { i  � [m] : j  =  argminj 0 �[k] Fi(θ (t) ; Z (t))},

θ ( t+1)  =  θ (t) − �Fi (θ (t) ; Z (t) ),
i�S ( t )

where S ( t )  denotes the set of worker machines whose cluster
identity estimate is j  in the t-th iteration. In the following, we
discuss the convergence guarantee of IFCA under two
models: in Section V-A, we analyze the algorithm under a
linear model with Gaussian features and squared loss, and in
Section V-B, we analyze the algorithm under a more general
setting of strongly convex loss functions. In all of our results, c,
c1, c2, c3, . . . denote universal constants.

A. Linear Models With Squared Loss

In this section, we analyze our algorithm in a concrete linear
model. This model can be seen as a warm-up example for more
general problems with strongly convex loss functions that we
discuss in Section V-B, as well as a distributed formulation of
the widely studied mixture of linear regression problem [37],
[45]. We assume that the data on the worker machines

in the j-th cluster are generated in the following way: for
i  � S j  , the feature-response pair of the i-th worker machine
machine satisfies

y i , `  =  hxi,` , θ�i +  i , ` ,

where x i , `  � N (0, Id) and the additive noise i , `  � N (0, σ2) is
independent of xi , ` .  Furthermore, we use the squared loss
function f (θ; x, y) =  (y −  hx, θi)2. As we can see, this
model is the mixture of linear regression model in the
distributed setting. We observe that under the above setting,
the parameters {θ�} j = 1  are the minimizers of the population
loss function F  (·).

We proceed to analyze our algorithm. We define pj      :=
|S�|/m as the fraction of worker machines belonging to the j-
th cluster, and let p :=  min{p1, p2, . . . , pk}. We also define the
minimum separation Δ  as Δ  :=  min j = j 0  kθ� −  θ� k, and

ρ :=  2       as the signal-to-noise ratio. Before we establish our
convergence result, we state a few assumptions. Here, recall
that n0 denotes the number of data that each worker uses in
each step.

Assumption 1: The initialization of parameters θ(0) satisfy
kθ(0) −  θ j  k ≤  (1 −  α0)Δ, � j  � [k], where the closeness
parameter α0 satisfies 0 <  α0 <  2 .

Assumption 2: Without loss of generality, we assume that
maxj�[k] kθ�k .  1, and that σ .  1. We also assume that n0 &
( ρ+1 )2 log m, d & log m, p & log m ,  pmn0 & d, and Δ  &

p       m n 0  +  exp(−c( ρ+1 )2n0) for some universal constant c.

Assumption 1 states that the initialization condition is
characterized by the closeness parameter α0. If α0 is close to
1 , the initialization is very close enough to θ�. On the other
hand, if α0 is very small, Assumption 1 implies that
the initial point is only slightly biased towards θ j  . We note
that having an assumption on the initialization is standard in
the convergence analysis of mixture models [38], [46], due to
the non-convex optimization landscape of mixture model
problems. Moreoever, when k =  2, and α0 is small, this
assumption means we only require the initialization to be
slightly better than random. In Assumption 2, we put mild
assumptions on n0, m, p, and d. The condition that pmn0 & d
simply assumes that the total number of data that we use in
each iteration for each cluster is at least as large as the
dimension of the parameter space. The condition that Δ  &

p m n 0  +exp(−c( ρ+1 )2n0) ensures that the iterates stay close

to θ j  .
We first provide a single step analysis of our algorithm.

We assume that at a certain iteration, we obtain parameter
vectors θ j  that are close to the ground truth parameters θ�,
and show that θ j  converges to θ j  at an exponential rate with
an error floor.

Theorem 1: Consider the linear model and assume that
Assumptions 1 and 2 hold. Suppose that in a certain iteration of
the IFCA algorithm we obtain parameter vectors θ j  with

kθ j  −  θ�k ≤  (
2 
−  α)Δ,     0 <  α <  

2
.
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Let θ +  be iterate after this iteration. Then, when we choose
step size γ =  c1/p, with probability at least 1 −  1/poly(m),
we have for all j  � [k],

kθ j  −  θ�k ≤  
2

kθj −  θ�k +  c2 
p mn0 +  c3 exp(−c4 (

ρ  +  1
)2 n0 ).

(1)

We prove Theorem 1 in Appendix IX. We see that provided
that Assumptions 1 and 2 hold, the iterates of IFCA are
contractive. However, the contraction depends on the closeness
parameter α. From the third terms on the right hand side of (1), a
smaller α implies slower convergence. If IFCA starts with a
very small α0, the convergence can be slow at the beginning.
However, as we run more iterations, the closeness parameter α
increases, and thus the algorithm gradually converges faster. We
can also see from the proof in Appendix IX that the third term
in (1) corresponds to the misclassification probability when
estimating the cluster identities of the worker machines. Thus,
an increasing sequence of α implies the improvement of the
accuracy of cluster identity estimation.

With this theorem, we can now state the convergence
guarantee of the entire algorithm.

Corollary 1: Consider the linear model and assume that
Assumptions 1 and 2 hold. By choosing step size γ =  c1/p,

with probability at least 1 −  2
poly(m)

) , after T =  2 +  log 4ε
parallel iterations, we have for all j  � [k], kθ j  −  θ j  k ≤  ε,
where

r

ε =  c6 p mn
0

 +  c7 exp(−c8(
ρ +  1

)2n0).

We prove Corollary 1 in Appendix X. The basic proof
idea is as follows: Although the initial closeness parameter
α0 can be small, as mentioned, it increases while we run the
algorithm, and we can show that after a small number of
iterations, denoted by T0 in the proof, the closeness parameter
can increase to a fixed constant, say 1/4. Afterwards, the third
term in (1) does not explicitly depend on the initial closeness
parameter α0. Then by iterating (1) we obtain the final result,
whose error floor ε does not explicitly depend on α.

Let us examine the final accuracy. Since the number of data
points on each worker machine n =  2n0T =  2n0 log(Δ/4ε),
we know that for the smallest cluster, there are a total of
2pmn0 log(Δ/4ε) data points. According to the minimax
estimation rate of linear regression [47], we know that even if
we know the ground truth cluster identities, we cannot obtain
an error rate better than O(σ      pmn 0  log(Δ/4ε) ). Comparing this
rate with our statistical accuracy ε, we can see that the first

term p m n 0       in ε is equivalent to the minimax rate up to a
logarithmic factor and a dependency on p, and the second
term in ε decays exponentially fast in n0, and therefore, our
final statistical error rate is near optimal.

B. Strongly Convex Loss Functions

In this section, we study a more general scenario where the
population loss functions of the k clusters are strongly convex
and smooth. In contrast to the previous section, our analysis

do not rely on any specific statistical model, and thus can be
applied to more general machine learning problems. We start
with reviewing the standard definitions of strongly convex and
smooth functions F  : Rd  → R .

Definition 1: F  is λ-strongly convex if �θ, θ0, F (θ0) ≥
F (θ) +  h�F (θ), θ0 −  θ i  +  λ  kθ0 −  θk2.

Definition 2: F is L-smooth if �θ, θ0, k�F (θ) −
�F (θ0)k ≤  Lkθ  −  θ0k.

In this section, we assume that the population loss functions
F j (θ) are strongly convex and smooth.

Assumption 3: The population loss function F j (θ) is
λ-strongly convex and L-smooth, �j  � [k].

We note that we do not make any convexity or smoothness
assumptions on the individual loss function f (θ; z). Instead,
we make the following distributional assumptions on f (θ; z)
and �f (θ; z).

Assumption 4: For every θ and every j  � [k], the variance of
f (θ; z) is upper bounded by η2, when z is sampled
according to D j ,  i.e., E z �D j  [(f (θ; z) −  F j (θ))2 ] ≤  η2

Assumption 5: For every θ and every j  � [k], the variance of
�f (θ; z) is upper bounded by v2, when z is sampled
according to D j ,  i.e., E z �D j  [k�f (θ; z) −  �F j (θ)k2] ≤  v2

Bounded variance of gradient is very common in analyzing
SGD [48]. In this paper we use loss function value to deter-
mine cluster identity, so we also need to have a probabilistic
assumption on f (θ; z). We note that bounded variance is a
relatively weak assumption on the tail behavior of probability
distributions. In addition to the assumptions above, we still use
some definitions from Section V-A, i.e., Δ  :=  min j = j 0  kθ� −  θ�

k, and p =  minj�[k] pj  with pj  =  |S�|/m. We make the
following assumptions on the initialization, n , p, and Δ .

Assumption 6: Without loss of generality, we assume that
maxj�[k] kθ j  k .  1. We also assume that kθ(0) −  θ j  k ≤  (1 −

α0) L  Δ ,  �j  � [k], n0 & α 0 λ 2 Δ 4  , p & log(mn0 ) , and that

Δ  ≥  O(max{α−2/5(n0)−1/5 , α−1/3m−1/6(n0 )−1/3 }).

Here, for simplicity, the O  notation omits any logarithmic
factors and quantities that do not depend on m and n0. As we
can see, again we need to assume good initialization, due to
the nature of the mixture model, and the assumptions that we
impose on n0, p, and Δ  are relatively mild; in particular, the
assumption on Δ  ensures that the iterates stay close to an
`2 ball around θ j  . Similar to Section V-A, we begin with the
guarantee for a single iteration.

Theorem 2: Suppose Assumptions 3-6 hold. Choose step
size γ =  1/L .  Suppose that in a certain iteration of IFCA
algorithm, we obtain the parameter vectors θ j  with kθ j −θ j  k ≤

(1 −  α) λ  Δ  with 0 <  α <  1 . Let θ j      be the next iterate
in the algorithm. Then, for δ � (0, 1), we have for any fixed j  �
[k], with probability at least 1 −  δ,

kθ+ −  θ j  k ≤  (1 −  
8L

)kθ j  −  θ j  k +  ε0,

where

v η2 vηk3/2

0 δ L  pmn0 δα2λ2Δ4n0 δ3/2αλLΔ2      mn0
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We prove Theorem 2 in Appendix XI. With this theorem, we
can then provide the convergence guarantee of the entire
algorithm.

Corollary 2: Suppose Assumptions 3-6 hold. Choose step
size γ =  1/L .  Then, with probability at least 1 −  δ, after
T =  8 L  log 2Δ       parallel iterations, we have for all j  � [k],

kθ j  −  θ�k ≤  ε, where

vkL log(mn0) η2 L2k log(mn0) 1

p5/2λ2δ mn0                p2λ4δΔ4n0                        n0     
 m

We prove Corollary 2 in Appendix XII. The basic proof
idea is to first show that after T0 =  8 L  log(4     L/λ),  the
closeness parameter α0 grows from α0 to at least 1/4. Then
after another T −T 0 parallel iterations, the algorithm converges
to the desired accuracy ε. Note that this ensures that there is no
explicit dependence on the initial closeness parameter α0 in ε.

To better interpret the result, we focus on the dependency
on m and n and treat other quantities as constants. Then, since
n =  2n0T , we know that n and n0 are of the same scale up to a
logarithmic factor. Therefore, the final statistical error rate that

we obtain is  =  O ( √ 1  n
 +  1 ). As discussed in Section V-A, √

is the optimal rate even if we know the cluster identities;
thus our statistical rate is near optimal in the regime where n
& m. In comparison with the statistical rate in linear models
O ( √ 1 +  exp(−n)), we note that the major difference is in
the second term. The additional terms of the linear model and
the strongly convex case are exp(−n) and 1 , respectively.
We note that this is due to different statistical assumptions: in
for the linear model, we assume Gaussian noise whereas here
we only assume bounded variance.

VI. EXPERIMENTS

In this section, we present our experimental results, which
not only validate the theoretical claims in Section V, but
also demonstrate that our algorithm can be efficiently applied
beyond the regime we discussed in the theory. We emphasize
that we do not re-sample fresh data points at each iteration in
our empirical study. Furthermore, the requirement on the
initialization can be relaxed. More specifically, for linear
models, we observe that random initialization with a few
restarts is sufficient to ensure convergence of Algorithm 2. In
our experiments, we also show that our algorithm works
efficiently for problems with non-convex loss functions such
as neural networks.

A. Synthetic Data

We begin with evaluation of Algorithm 2 with gradient
averaging (option I) on linear models with squared loss, as
described in Section V-A. For all j  � [k], we first generate θ� �
Bernoulli(0.5) coordinate-wise, and then rescale their ̀ 2 norm
to R .  This ensures that the separation between the θ�’s is
proportional to R  in expectation, and thus, in this experi-ment,
we use R  to represent the separation between the ground truth
parameter vectors. Moreover, we simulate the scenario where
all the worker machines participate in all iterations, and all
the clusters contain same number of worker machines.

Fig. 3.     Success probability with respect to: (a), (b) the separation scale R  and
the scale of additive noise σ; (c), (d) the number of worker machines m and
the sample size on each machine n. In (a) and (b), we see that the success
probability gets better with increasing R ,  i.e., more separation between ground
truth parameter vectors, and in (c) and (d), we note that the success probability
improves with an increase of mn, i.e., more data on each machine and/or more
machines.

For each trial of the experiment, we first generate the para-
meter vectors θ�’s, fix them, and then randomly initialize

θ(0) according to an independent coordinate-wise Bernoulli
distribution. We then run Algorithm 2 for 300 iterations, with a
constant step size. For k =  2 and k =  4, we choose the step
size in {0.01, 0.1, 1}, {0.5, 1.0, 2.0}, respectively. In order to
determine whether we successfully learn the model or not,
we sweep over the aforementioned step sizes and define the
following distance metric: dist =  1

j = 1  kθj  −  θ�k,

where {θ j } j = 1  are the parameter estimates obtained from
Algorithm 2. A trial is dubbed successful if for a fixed set of
θ�, among 10 random initialization of θ(0), at least in one
scenario, we obtain dist ≤  0.6σ.

In Fig. 3 (a-b), we plot the empirical success probabil-
ity over 40 trials, with respect to the separation parame-ter
R .  We set the problem parameters as (a) (m, n, d) =
(100, 100, 1000) with k = 2, and (b) (m, n, d) =
(400, 100, 1000) with k =  4. As we can see, when R  becomes
larger, i.e., the separation between parameters increases, and
the problem becomes easier to solve, yielding in a higher
success probability. This validates our theoretical result that
higher signal-to-noise ratio produces smaller error floor. In
Fig. 3 (c-d), we characterize the dependence on m and n,
with fixing R  and d with (R, d) =  (0.1, 1000) for (c)
and (R, d) =  (0.5, 1000) for (d). We observe that when we
increase m and/or n, the success probability improves. This
validates our theoretical finding that more data and/or more
worker machines help improve the performance of the
algorithm.
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TABLE I

TEST ACCURACIES(%) ± STD ON ROTATED MNIST (k =  4) AND ROTATED CIFAR (k =  2)

B. Rotated MNIST and CIFAR
We also create clustered FL datasets based on the

MNIST [49] and CIFAR-10 [50] datasets. In order to simulate
an environment where the data on different worker machines
are generated from different distributions, we augment the
datasets using rotation, and create the Rotated MNIST [51]
and Rotated CIFAR datasets. For Rotated MNIST, recall that
the MNIST dataset has 60000 training images and 10000 test
images with 10 classes. We first augment the dataset by apply-
ing 0, 90, 180, 270 degrees of rotation to the images, resulting
in k =  4 clusters. For given m and n satisfying mn =  60000k,
we randomly partition the images into m worker machines so
that each machine holds n images with the same rotation.
We also split the test data into mtest =  10000k/n worker
machines in the same way. The Rotated CIFAR dataset is
also created in a similar way as Rotated MNIST, with the
main difference being that we create k =  2 clusters with 0
and 180 degrees of rotation. We note that creating different
tasks by manipulating standard datasets such as MNIST and
CIFAR-10 has been widely adopted in the continual learning
research community [51]–[53]. For clustered FL, creating
datasets using rotation helps us simulate a federated learning
setup with clear cluster structure.

For our MNIST experiments, we use the fully connected
neural network with ReLU activations, with a single hidden
layer of size 200; and for our CIFAR experiments, we use a
convolution neural network model which consists of 2 convo-
lutional layers followed by 2 fully connected layers, and the
images are preprocessed by standard data augmentation such
as flipping and random cropping.

We compare our IFCA algorithm with two baseline algo-
rithms, i.e., the global model, and local model schemes. For
IFCA, we use model averaging (option II in Algorithm 2).
For MNIST experiments, we use full worker machines par-
ticipation (Mt     =  [m] for all t). For LocalUpdate step in
Algorithm 2, we choose τ =  10 and step size γ =  0.1. For
CIFAR experiments, we choose |Mt| =  0.1m, and apply step
size decay 0.99, and we also set τ =  5 and batch size 50 for
LocalUpdate process, following prior works [1]. In the global
model scheme, the algorithm tries to learn single global model
that can make predictions from all the distributions. The algo-
rithm does not consider cluster identities, so model averaging
step in Algorithm 1 becomes θ ( t+1)  = i�M  θi/|Mt|, i.e.
averaged over parameters from all the participating machines.
In the local model scheme, the model in each node performs
gradient descent only on local data available, and model
averaging is not performed.

For IFCA and the global model scheme, we perform infer-
ence in the following way. For every test worker machine,

we run inference on all learned models (k models for IFCA
and one model for global model scheme), and calculate the
accuracy from the model that produces the smallest loss value.
For testing the local model baselines, the models are tested by
measuring the accuracy on the test data with the same
distribution (i.e. those have the same rotation). We report the
accuracy averaged over all the models in worker machines.
For all algorithms, we run experiment with 5 different random
seeds and report the average and standard deviation.

Our experimental results are shown in Table I. We can
observe that our algorithm performs better than the two
baselines. As we run the IFCA algorithm, we observe that we
can gradually find the underlying cluster identities of the
worker machines, and after the correct cluster is found, each
model is trained and tested using data with the same
distribution, resulting in better accuracy. The global model
baseline performs worse than ours since it tries to fit all the
data from different distributions, and cannot provide personal-
ized predictions. The local model baseline algorithm overfits to
the local data easily, leading to worse performance than ours.
In Figure 4, we illustrate the accuracy of cluster identity
estimation during the algorithm. As we can see, the algorithm
identifies all the clusters after a relatively small number of
communication rounds (around 30 for Rotated MNIST and
10 for Rotated CIFAR).

C. Federated EMNIST

We provide additional experimental results on the Federated
EMNIST (FEMNIST) [11], which is a realistic FL dataset
where the data points on every worker machine are the
handwritten digits or letters from a specific writer. Although
the data distribution among all the users are similar, there
might be ambiguous cluster structure since the writing styles of
different people may be clustered. We use the weight sharing
technique mentioned in Section IV-C. We use a neural network
with two convolutional layers, with a max pooling layer after
each convolutional layer, followed by two fully connected
layers. We share the weights of all the layers, except the last
layer which is trained by IFCA. We treat the number of
clusters k as a hyper parameter and run the experiments with
different values of k. We compare IFCA with the global model
and local model approaches, as well as the one-shot
centralized clustering algorithm described in Section IV-A.
The test accuracies are shown in Table II, with mean and
standard deviation computed over 5 independent runs. As we
can see, IFCA shows clear advantage over the global model
and local model approaches. The results of IFCA and the
one-shot algorithm are similar. However, as we emphasized
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Fig. 4.     Accuracy of cluster identity estimation at the end of each parallel
iteration (communication round).

in Section IV, IFCA does not run a centralized clustering
procedure, and thus reduces the computational cost at the
center machine. As a final note, we observe that IFCA is robust to
the choice of the number of clusters k. The results of the
algorithm with k =  2 and k =  3 are similar, and we notice that
when k >  3, IFCA automatically identifies 3 clusters, and the
remaining clusters are empty. This indicates the applicability
of IFCA in realistic problems where the cluster structure is
ambiguous and the number of clusters is unknown.

VII. DIFFERENCES AND IMPROVEMENTS FROM [54]

A subset of the results in this paper have been pub-
lished in the Thirty-fifth Conference on Neural Information
Processing Systems (NeurIPS, 2020) as a poster with the
same title (see [54]). In this short (9 page) conference paper,
we established the basic problem formulation for clustered
federated learning, and proposed a clustering algorithm namely
Iterative Federated Clustering Algorithm (IFCA). Theoretical
analysis of IFCA was presented only when the initialization of
parameter estimates is sufficiently close to the truth (warm
start). Although we mention some practical implementation
aspects of IFCA in the conference paper, we did not expand on
that.

On the other hand, in this submission we have made
several significant contributions towards strengthening [54].
First, we begin our discussion with a simple one-shot clus-
tering algorithm for federated learning that uses the empir-
ical risk minimizers (ERM) of the worker machines to

cluster them. We discuss the potential drawbacks of this
approach, which leads to the design of IFCA. We note
that the study of the one-shot algorithm has appeared in
our another previous paper “Robust Federated Learning
in a Heterogeneous Environment”, which is on arXiv at
https://arxiv.org/pdf/1906.06629.pdf, and is presented at ICML
Workshop on Security and Privacy of Machine Learning, 2019.

Second, we have provided an improved theoretical analysis
on the initialization of IFCA, and in special cases, we show
that initialization that is slightly better than a random guess
is sufficient to ensure convergence. Defining an initializa-
tion parameter, we show that as we run more iterations,
IFCA gradually converges faster. Furthermore, the accuracy
of cluster identity estimation also improves with iterations.
We have studied this for both the quadratic and the general
(strongly convex) loss functions, and completely characterize
the convergence rate and the final statistical accuracy. On the
other hand, in [54], we assumed sufficiently close initialization,
without any control parameter. Our analysis in this submission
is more refined, and we analogously modified the requirements
on the problem parameters and obtain a complete character-
ization of IFCA as a function of the initialization parameter,
showing a trade-off between initialization and convergence.

Third, we have a more detailed discussion on the practical
implementation aspects of IFCA. Via Figure 2 (of the submit-
ted paper), we illustrate the weight-sharing scheme (popularly
used in multi-task and representation learning) better. In par-
ticular, this technique further reduces the communication cost
(which is often the bottleneck in federated learning) between
the center and the worker machines. We also added Figure 4,
which shows how the cluster identity estimation accuracy
improves over the iterations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we address the clustered FL problem. We pro-
pose an iterative algorithm and obtain convergence guarantees
for strongly convex and smooth functions. In experiments,
we achieve this via random initialization with multiple restarts,
and we show that our algorithm works efficiently beyond
the convex regime. Fufure directions include extending the
analysis to weakly convex and non-convex functions, stochas-
tic gradients on the worker machines, and small subset of
participating devices.

APPENDIX

In our proofs, we use c, c1, c2, . . . to denote positive univer-
sal constants, the value of which may differ across instances.
For a matrix A ,  we write kAkop and kAkF  as the operator
norm and Frobenius norm, respectively. For a set S ,  we use S
to denote the complement of the set.

IX. PROOF OF THEOREM 1

Since we only analyze a single iteration, for simplicity we
drop the superscript that indicates the iteration counter.
Suppose that at a particular iteration, we have model parame-
ters θj , j  � [k], for the k clusters. We denote the estimation of
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TABLE II

TEST ACCURACIES (%) ±  STD ON FEMNIST

the set of worker machines that belongs to the j-th cluster by
S j ,  and recall that the true clusters are denoted by S j  , j  � [k].

a) Probability of Erroneous Cluster Identity Estimation:
We begin with the analysis of the probability of incorrect
cluster identity estimation. Suppose that a worker machine i
belongs to S�. We define the event E j, j 0      

as the event when
the i-th machine is classified to the j0-th cluster, i.e., i  � S  0 .

Thus the event that worker i  is correctly classified is E j, j ,  and
we use the shorthand notation E :=  E j, j .  We now provide

the following lemma that bounds the probability of E j, j 0      
for

j0 =  j .
Lemma 1: Suppose that worker machine i  � S�. Let

ρ :=  2  . Then there exist universal constants c1 and c2 such
that for any j0 =  j ,

P(E j,j 0  
) ≤  c1 exp −c2n0(

ρ +  1
)2      ,

and by union bound

P(Ei) ≤  c1k exp −c2n0(
ρ +  1

)2      .

We prove Lemma 1 in Appendix IX-A.
Now we proceed to analyze the gradient descent step.

Without loss of generality, we only analyze the first cluster.
The update rule of θ1 in this iteration can be written as

θ1 =  θ1 −  
γ

�Fi(θ1; Zi),
i�S 1

where Z i  is the set of the n0 data points that we use to compute
gradient in this iteration on a particular worker machine.

We use the shorthand notation Fi (θ) :=  Fi (θ ; Zi ), and note
that Fi (θ) can be written in the matrix form as

Fi (θ) =  
1 

kYi −  Xiθk2 ,

where we have the feature matrix X i  � R n 0 × d  and response
vector Yi     =  X i θ� +  i . According to our model, all the
entries of X i  are i.i.d. sampled according to N (0, 1), and i  �
N (0, σ2 I ).

We first notice that

kθ+ −  θ�k =  k θ1 −  θ� −  
γ

�Fi(θ1)

|
i�S 1 ∩S �

}
T 1

−  
m

�Fi(θ1) k ≤  kT1k +  kT2k.

| 
i�S 1 ∩S

z }
T 2

We control the two terms separately. Let us first focus on kT1k.
b) Bound kT1k: To simplify notation, we concatenate all

the feature matrices and response vectors of all the worker

machines in S1 ∩ S� and get the new feature matrix X  �
R N × d ,  Y � R N  with Y =  X θ� + ,  where N  :=  n0|S1 ∩ S�|. It
is then easy to verify that

T1 =  ( I  −  
2γ0

 X
> X ) (θ 1  −  θ�) +  

2γ0 X >

=  ( I  −  
mn

0 E [X > X ] )(θ1  −  θ�)

+  
mn

0 ( E [ X > X ]  −  X > X ) (θ 1  −  θ�) +  
mn

0 X >

=  (1 −  
2γN 

)(θ1 −  θ1)

+  
mn

0 ( E [ X > X ]  −  X > X ) (θ 1  −  θ�) +  
mn

0 X > .

Therefore

kT1k ≤  (1 −  
2γN

 
)kθ1 −  θ1k

+  
mn

0 k X > X  −  E[X > X ]ko p kθ1  −  θ�k +  
mn

0 k X > k .

(2)

Thus in order to bound kT1k, we need to analyze two
terms, k X > X − E [ X > X ] k o p  and k X > k .  To bound k X > X −
E [X > X ]k o p ,  we first provide an analysis of N  showing that it is
large enough. Using Lemma 1 in conjunction with Assump-
tion 2, we see that the probability of correctly classifying any
worker machine i, given by P(Ei), satisfies P(Ei) ≥  1 . Hence,
we obtain

E[|S1 ∩ S1|] ≥  E[
2

|S1 |] =  
2

p1 m,

where we use the fact that |S1| =  p1m. Since |S1 ∩ S1 | is a
sum of Bernoulli random variables with success probability at
least 1 , we obtain

P |S1 ∩ S�| ≤  
1

p1m

≤  P |S1 ∩ S1 | −  E[|S1 ∩ S1 |] ≥  
4

p1m

≤  2 exp(−cpm),

where p =  min{p1, p2, . . . , pk}, and the second step follows
from Hoeffding’s inequality. Hence, we obtain |S1 ∩ S�| ≥
1 p1m with high probability, which yields

P(N ≥  
4

p1mn0) ≥  1 −  2 exp(−cpm). (3)

By combining this fact with our assumption that pmn0 & d,
we know that N  & d. Then, according to the concentration of
the covariance of Gaussian random vectors [47], we know that
with probability at least 1 −  2 exp(− 1 d),

k X > X  −  E [ X > X ] k o p  ≤  6
√

d N  .  N . (4)
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We now proceed to bound k X > k .  In particular, we use the
following lemma.

Lemma 2: Consider a random matrix X  � R N × d  with
i.i.d. entries sampled according to N (0, 1), and  � R N  be a
random vector sampled according to N (0, σ2 I), inde-
pendently of X .  Then we have with probability at least 1 −
2 exp(−c max{d, N }),

kX kop ≤  c max {
√

d,
√

N },

and with probability at least 1 −  c2 exp(−c3 min{d, N }),

k X > k  ≤  c4σ dN .

We prove Lemma 2 in Appendix IX-B. Now we can com-
bine (2), (4), (3), and Lemma 2 and obtain with probability at
least 1 −  c1 exp(−c2pm) −  c3 exp(−c4d),

r

kT1k ≤  (1 −  c5γp)kθ1 −  θ1k +  c6γσ mn
0 . (5)

Since we assume that p & log m  and d & log m, the success
probability can be simplified as 1 −  1/poly(m).

c) Bound kT2k We first condition on S1 . We have the
following:

�Fi(θ1) =  
n

0 X i  (Yi −  Xiθ1 ).

For i  � S1 ∩ S�, with j  =  1, we have Yi =  X i θ� + i ,  and so
we obtain

n0�Fi(θ1) =  2 X > X i (θ� −  θ1) +  2 X >
i ,

which yields

n0k�Fi(θ1)k .  kXi kop +  k X i  ik, (6)

where we use the fact that kθ� −  θ1k ≤  kθ�k + kθ�k +  kθ� −
θ1k .  1. Then, we combine (6) and Lemma 2 and get with
probability at least 1 −  c1 exp(−c2 min{d, n0}),

k�Fi (θ1 )k ≤  
1 

(c3 max{d, n0 } +  c4σ
√

dn0 ) ≤  c5 max{1, 
d 

} ,

(7)

where we use our assumption that σ     .  1. By union
bound, we know that with probability at least 1 −
c1m exp(−c2 min{d, n0}), (7) holds for all j  � S�. In addi-
tion, since we assume that n0     & log m, d & log m, this
probability can be lower bounded by 1 −  1/poly(m). This
implies that conditioned on S1 , with probability at least 1
−  1/poly(m),

kT2k ≤  c5 m
|S1 ∩ S�| max{1, 

n
0 } . (8)

Since we choose γ =  c , we have γ  max{1, d }  .  1, where
we use our assumption that pmn0 & d. This shows that with
probability at least 1 −  1/poly(m),

kT2k ≤  c5|S1 ∩ S�|. (9)

We then analyze |S1 ∩ S�|. By Lemma 1, we have

E[|S1 ∩ S�|] ≤  c6m exp(−c7(
ρ +  1

)2n0). (10)

According to Assumption 2, we know that n0 ≥
α 2  ( ρ+1 )2 log m, for some constant c that is large enough.
Therefore, m ≤  exp( c ( ρ+1 ) n ), and thus, as long as c is
large enough such that <  c7 where c7 is defined in (10),
we have

E[|S1 ∩ S�|] ≤  c6 exp(−c8(
ρ +  1

)2n0). (11)

and then by Markov’s inequality, we have

P |S1 ∩ S�| ≤  c6 exp(− 
2 

(
ρ +  1

)2n0)

≥  1 −  exp(− 
2 

(
ρ +  1

)2n0)) ≥  1 −  poly(m). (12)

Combining (9) with (12), we know that with probability at
least 1 −  1/poly(m),

kT2k ≤  c1 exp(−c2(
ρ +  1

)2n0).

Using this fact and (5), we obtain that with probability at least
1 −  1/poly(m),

kθ+ −  θ1k ≤  (1 −  c1γp)kθ1 −  θ1k

+  c2γσ mn
0

 +  c3 exp(−c4(
ρ +  1

)2n0).

Then we can complete the proof for the first cluster by
choosing γ =  1 . To complete the proof for all the k clusters, we
can use union bound, and the success probability is 1 −
k/poly(m). However, since k ≤  m by definition, we still have
success probability 1 −  1/poly(m).

A. Proof of Lemma 1

Without loss of generality, we analyze E 1 , j  for some j  =  1.
By definition, we have

E 1 , j  =  {F i (θ j ; Z i ) ≤  Fi (θ1 ; Zi )},

where Z i  is the set of n0 data points that we use to estimate the
cluster identity in this iteration. We write the data points in Z i

in matrix form with feature matrix X i  � R n 0 × d  and response
vector Yi =  X i θ� +  i . According to our model, all the entries
of X i  are i.i.d. sampled according to N (0, 1), and i  �
N (0, σ2 I ). Then, we have

P{E 1 , j }  =  P kXi (θ� −  θ1) +  ik2 ≥  kXi (θ� −  θj ) +  ik2     .
Consider the random vector Xi (θ� −  θ j ) +  i , and in

particular consider the `-th coordinate of it. Since X i  and i  are
independent and we resample (Xi , Yi ) at each iteration, the `-th
coordinate of X i (θ�− θ j ) + i  is a Gaussian random variable with
mean 0 and variance kθ j  −  θ�k2 +  σ2. Since X i  and i  contain
independent rows, the distribution of kXi (θ� −  θj ) +  ik2 is
given by (kθj −  θ�k2 +  σ2)uj , where uj  is a standard Chi-
squared random variable n0 degrees of freedom. We now
calculate the an upper bound on the following probability:

P kXi (θ� −  θ1) +  ik2 ≥  kXi (θ� −  θ j ) +  ik2 ≤
P kXi(θ� −  θj ) +  ik2 ≤  t
+  P kXi (θ� −  θ1) +  ik2 >  t
≤  P (kθj −  θ�k2 +  σ2)uj ≤  t
+  P (kθ1 −  θ�k2 +  σ2)uj >  t , (13)
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where (i) holds for all t ≥  0. For the first term, we use the
concentration property of Chi-squared random variables.
Using the fact that kθ j  −  θ�k ≥  kθ� −  θ�k −  kθ j  −  θ�k ≥  Δ
−  (1 −  α)Δ =  ( 1

 
+  α)Δ, we have

P (kθj −  θ�k2 +  σ2)uj ≤  t
≤  P     ((

2 
+  α)2Δ2 +  σ2)uj ≤  t     . (14)

Similarly, using the initialization condition, kθ1 −  θ�k ≤  1Δ,
the second term of equation (13) can be simplified as

P (kθ1 −  θ�k2 +  σ2)uj >  t
≤  P     ((

2 
−  α)2Δ2 +  σ2)uj >  t     . (15)

Based on the above observation, we now choose t =  n0((4 +
α2)Δ2 +  σ2). Recall that ρ := 2  . Then the inequality (14)
can be rewritten as

P (kθj −  θ�k2 +  σ2)uj ≤  t
 
≤

P
n0 −  1 ≤  −

(1 +  2α)2ρ +  4     
.

According to the concentration results for standard Chi-
squared distribution [47], we know that there exists universal
constants c1 and c2 such that

P (kθj −  θ�k2 +  σ2)uj ≤  t
≤  c1 exp

−
c2n0(

(1 +  2α)ρ +  1
)2

≤  c1 exp −c2n0(
ρ +  1

)2 (16)

where we use the fact that α <  1 . Similarly, the inequality (15)
can be rewritten as

P (kθ1 −  θ�k2 +  σ2)uj >  t
uj 4αρ
n0 (1 −  2α)2ρ +  4

and again, according to the concentration of Chi-squared
distribution, there exists universal constants c3 and c4 such
that

P (kθ1 −  θ�k2 +  σ2)u1 >  t
≤  c3 exp

−
c4n0(

(1 +  2α)ρ +  1
)2

≤  c3 exp −c4n0(
ρ +  1

)2      , (17)

where we use the fact that α >  0. The proof can be completed
by combining (13), (16) and (17).

B. Proof of Lemma 2

According to Theorem 5.39 of [55], we have with proba-
bility at least 1 −  2 exp(−c1 max{d, N }),

kX kop ≤  c max {
√

d,
√

N },

where c and c1 are universal constants. As for k X > k ,  we
first condition on X .  According to the Hanson-Wright
inequality [56], we obtain for every t ≥  0

 P
k X > k  −  σ k X > k F   >  t ≤  2 exp −c

σ2 kX > k2
p        

.

(18)

Using Chi-squared concentration [47], we obtain with proba-
bility at least 1 −  2 exp(−cdN ),

k X k F  ≤  c
√

dN .

Furthermore, using the fact that kX > k o p      =  kX kop     and
substituting t =  σ dN in (18), we obtain with probability at
least 1 −  c2 exp(−c3 min{d, N }),

k X > k  ≤  c4σ
√

dN .

X. PROOF OF COROLLARY 1

Let αt � R  be the real number such that

kθ(t) −  θ�k ≤  (
1 
−  αt)Δ, �j  � [k].

Recall that according to Theorem 1, we have
r

kθ (t+1) −  θ�k ≤  
2

kθ(t) −  θ�k +  c2 p mn
0

+  c3 exp −c4(
ρ +  1

)2n0      .

Note that with Assumption 2 and the fact that 0 <  α0 <  1 ,

we can ensure that for all t, kθ (t+1) −  θ�k ≤  kθ (t) −  θ�k.
Hence the sequence {α0, α1, . . .} is non-decreasing. Let

r
ε0 :=  c2 p      mn

0
 +  c3 exp −c4(

ρ +  1
)2n0

be the initial error floor. Now, we show that if IFCA is run for
T0 =  log(C1(1 − 2α0)) iterations, we obtain a sufficiently large
value of αT 0 , i.e., αT 0 ≥  1 . After T0 iterations, we have

kθ (T 0 ) −  θ�k ≤  (
2

)T 0 
(

2 
−  α0)Δ +  2ε0,

and we hope to ensure that the right hand side of the above
equation is upper bounded by 1Δ, yielding αT 0 ≥  1 . Note that
the conditions (a) ( 1 )T 0 

(1

 
−  α0)Δ ≤  1 Δ  and (b) 2ε0 ≤  1 Δ

suffice. Part (b) follows directly from the separation condition
of Assumption 2. For part (a), observe that 1

 
−  α0 <  1 , and

thus it suffices to ensure that ( 1 )T 0 
≤  1 . Thus, after a constant

number of iterations (T0 ≥  2), we have αt ≥  1 . Afterwards,
the iterates of IFCA satisfies kθ(t) −  θ�k ≤  1Δ, for t ≥  T 0.
After additional T iterations, we obtain

kθ (T ) −  θ�k ≤  (
2

)T 0 

4 
+  2ε,

with high probability. Finally observe that plugging T =
log(Δ/4ε), the final accuracy is O(ε), and this completes the
proof.
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XI. PROOF OF THEOREM 2

Suppose that at a certain step, we have model parameters
θj , j  � [k] for the k clusters. Assume that kθ j  −  θ j  k ≤  (1 −

α) L Δ ,  for all j  � [k].

a) Probability of Erroneous Cluster Identity Estimation:
We first calculate the probability of erroneous estimation of

worker machines’ cluster identity. We define the events E j, j 0  
in

the same way as in Appendix IX, and have the following
lemma.

Lemma 3: Suppose that worker machine i  � S�. Then there
exists a universal constants c1 such that for any j0 =  j ,

P(E j,j 0  
) ≤  c1 α2λ2Δ4n

0 ,

and by union bound
2

P(Ei) ≤  c1 α2λ2Δ4n
0 .

We prove Lemma 3 in Appendix XI-A. Now we proceed to
analyze the gradient descent iteration. Without loss of
generality, we focus on θ1. We have

kθ+ −  θ�k =  kθ1 −  θ� −  
γ

�Fi(θ1)k,
i�S 1

where Fi (θ) :=  Fi (θ ; Zi ) with Z i  being the set of data
points on the i-th worker machine that we use to compute the
gradient, and S1 is the set of indices returned by Algorithm 2
corresponding to the first cluster. Since

S1 =  (S1 ∩ S�) � (S1 ∩ S1 )

and the sets are disjoint, we have

kθ+ −  θ�k =  k θ1 −  θ� −  
γ                 

�Fi(θ1) |
i�S 1∩S �                             

}

−  
m

X
�Fi(θ1) k.

| 
i�S 1∩S

z }
T 2

Using triangle inequality, we obtain

kθ+ −  θ1k ≤  kT1k +  kT2k,

and we control both the terms separately. Let us first focus
on kT1k.

b) Bound kT1k: We first split T1 in the following way:

T1 =  θ1 −  θ� −  γb�F 1(θ1)

T 1 1

+  γb �F 1(θ1) −  
|S1 ∩ S1| 

i�S 1 ∩ S 1  

�Fi(θ1) , (19)

T 1 2

where γb :=  γ |S1∩S1  |. Let us condition on S1 . According to
standard analysis technique for gradient descent on strongly
convex functions, we know that when bγ ≤  L ,

kT11k =  kθ1 −  θ� −  γb�F 1(θ1)k ≤  (1 −  
γb
λ

L 
)kθ1 −  θ�k.

(20)

Further, we have E[kT12k2] =  n0 |S ∩S�| , which implies
E[kT12k] ≤

n0 |S ∩S�|
, and thus by Markov’s inequality, for

any δ0 >  0, with probability at least 1 −  δ0,

kT12k ≤  
δ0

p
n0 |S1 ∩ S1 |

. (21)

We then analyze |S1 ∩S�|. Similar to the proof of Theorem 1,
we can show that |S1∩S�| is large enough. From Lemma 3 and
using our assumption, we see that the probability of correctly
classifying any worker machine i, given by P(Ei), satisfies
P(Ei) ≥  1 . Recall p =  min{p1, p2, . . . , pk}, and we obtain
|S1 ∩ S�| ≥  1 p1m with probability at least 1 − 2 exp(−cpm).
Let us condition on |S1 ∩ S�| ≥  1 p1m and choose γ =  1/L .
Then bγ ≤  1 / L  is satisfied, and on the other hand bγ ≥ .
Plug this fact in (20), we obtain

kT11k ≤  (1 −  
8

L
)kθ1 −  θ�k. (22)

We then combine (21) and (22) and have with probability at
least 1 −  δ0 −  2 exp(−cpm),

kT1k ≤  (1 −  
pλ

)kθ1 −  θ�k +  
δ0 L 

2
pmn

0
 . (23)

c) Bound kT2k: Let us define T2 j  := S 1 ∩S � �Fi(θ1), j
≥  2. We have T2 =  γ k T2j . We condition on S1 and
first analyze T2j . We have

T2j  =  |S1 ∩ S�|�F j (θ1) +
X

�Fi(θ1) −  �F j (θ1).
i�S 1 ∩S �

(24)

Due to the smoothness of F j (θ), we know that

k�F j (θ1)k ≤  Lkθ1 −  θ�k ≤  3L, (25)

where we use the fact that kθ1 −  θ�k ≤  kθ�k +  kθ�k +  kθ1 −
θ�k ≤  1 +  1 +  ( 2 −  α) L Δ  .  1. Here, we use the fact that
Δ  .  2. In addition, we have

�  �

E � 
X

�Fi(θ1) −  �F j (θ1) � =  |S1 ∩ S�|
v 0

 ,
i�S 1 ∩S �

which implies
� �

E � �Fi(θ1) −  �F j (θ1)� ≤ |S1 ∩ S�| √  
0 
,

i�S 1 ∩ S j

and then according to Markov’s inequality, for any δ1 � (0, 1),
with probability at least 1 −  δ1,

 X
�Fi(θ1) −  �F j (θ1) ≤  

q
|S 1  ∩ S�|

v 
0 
. (26)

i�S 1 ∩ S j

Then, by combining (25) and (26), we know that with proba-

bility at least 1 −  δ1,
qkT2j k ≤  c1L|S1 ∩ S�| + |S1 ∩ S�|

δ1
√
n0 

. (27)
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By union bound, we know that with probability at least 1−kδ1,
(27) applies to all j  =  1. Then, we have with probability at
least 1 −  kδ1,

kT2k ≤  
c1γL

|S1 ∩ S1| +  
δ1m

√
n0

|S1 ∩ S1 |. (28)

According to Lemma 3, we know that
2

E[|S1 ∩ S�|] ≤  c1 α2λ2Δ4n0
 .

Then by Markov’s inequality, we know that with probability
at least 1 −  δ2,

2

|S1 ∩ S�| ≤  c1 δ2α2λ2Δ4n0 . (29)

Now we combine (28) with (29) and obtain with probability
at least 1 −  kδ1 −  δ2,

√
kT2k ≤  c1 δ2α2λ2Δ4n0 +  c2 δ1

√
δ2αλLΔ2

√
mn0 

. (30)

Combining (23) and (30), we know that with probability at
least 1 −  δ0 −  kδ1 −  δ2 −  2 exp(−cpm),

kθ1 −  θ1k ≤(1 −  
pλ

)kθ1 −  θ1k +  
δ0 L 

2
pmn√

+  c1 δ2α2λ2Δ4n0 +  c2 δ1
√
δ2αλLΔ2

√
mn0

 
.

(31)

Let δ ≥  δ0 +kδ1 +δ2 + 2 exp(−cpm) be the failure probability
of this iteration, and choose δ0 =  δ , δ1 =  δ , and δ2 =  δ .
Then the failure probability is upper bounded by δ as long as
2 exp(−cpm) ≤  δ , which is guaranteed by our assumption
that p &     1 log(mn0). Therefore, we conclude that with
probability at least 1 −  δ, we have

kθ+ −  θ1k ≤  (1 −  
pλ

)kθ1 −  θ1k +  
δ L  

c
pmn

0

c1η2 c2vηk3/2

δα2λ2Δ4n0 δ3/2αλLΔ2      mn0

which completes the proof.

A. Proof of Lemma 3

Without loss of generality, we bound the probability of E 1 , j

for some j  =  1. We know that

E 1 , j  =  Fi (θ1 ; Zi ) ≥  F i (θ j ; Zi ) ,

where Z i  is the set of n0 data points that we use to estimate the
cluster identity in this iteration. In the following, we use the
shorthand notation Fi (θ) :=  Fi (θ ; Zi ). We have

P(E 1,j ) ≤  P (Fi(θ1) >  t) +  P (Fi (θ j ) ≤  t)

for all t ≥  0. We choose t =  F 1 (θ 1 ) + F 1 (θ j ) .  With this choice,
we obtain

P (Fi(θ1) >  t) =  P Fi(θ1) >  
F 1(θ1)

 
+

 
F 1(θ j )               

(32)

=  P Fi(θ1) −  F 1(θ1 ) > 
F 1(θ j ) −  F 1(θ1)

.

(33)

Similarly, for the second term, we have

P (Fi(θ j ) ≤  t) = P(Fi (θ j ) −  F 1(θ j ) ≤  −
F 1 (θ j )

 
−  F 1(θ1)

).

(34)

Based on our assumption, we know that kθ j  − θ1k ≥  Δ − ( 1  −
α) λ  Δ  ≥  (1 +  α)Δ. According to the strong convexity of

F 1(·),

F 1(θ j ) ≥  F 1(θ�) + 
2

kθj − θ�k2 ≥  F 1(θ�) + 
2

(
2 

+α)2λΔ2 ,

and according to the smoothness of F 1(·),

F 1(θ1) ≤  F 1(θ�)+ 
2 

kθ1−θ�k2 ≤  F 1(θ�)+ 
2 
λ( 1 −  α)2 

Δ2

=  F 1(θ�) +  
2

(
2 
−  α)2λΔ2 .

Therefore, F 1(θ j ) −  F 1(θ1) ≥  αλΔ2 . Then, according to
Chebyshev’s inequality, we obtain that P(Fi(θ1) >  t) ≤

2      2  

2

4      0      and that P(Fi (θ j ) ≤  t) ≤      2      2  

2

4      0 , which com-
pletes the proof.

XII. PROOF OF COROLLARY 2

Recall that the error floor at the initial step according to
Theorem 2 is

v η2k vηk3/2

0 δ L  pmn0 δα2λ2Δ4n0 δ3/2α0λLΔ2      mn0

Note that the iterate of IFCA is contractive, i.e., kθ (t+1) −
θ�k ≤  kθ (t) −  θ�k, provided

r

ε0 .  
L  

(
2 
−  α0)

L
Δ .

This is ensured via Assumption 6, particularly the condition

Δ  ≥  O(max{α−2/5(n0 )−1/5 , α−1/3 m−1/6(n0)−1/3 })

in conjunction with the fact that 0 <  α0 <  1 . Let αt � R  be
the real number such that

r

kθ(t) −  θ�k ≤  (
2 
−  αt) L

Δ ,  �j  � [k].

From the argument above, the sequence {α0, α1, . . .} is non-
decreasing.

Now, we show that if IFCA is run for T0    
 iterations,

we obtain a sufficiently large value of αT 0 , i.e., αT 0      ≥  1 .
After T0 iterations, we have

kθ (T 0 ) −  θ�k ≤  (1 −  
pλ

)T 0  
(

1 
−  α0)Δ +  

8L
ε0 ,

and if the right hand side of the above equation is upper

bounded by 4 L  Δ ,  we can have α T q
≥  4 . Note that the

conditions (a) (1− 8 L  )
T 0 

(2 −α0 )Δ  ≤  8 L  Δ  and (b) pλ
 ε0 ≤

8        L Δ  suffice. Part (b) follows directly from the separation

condition of Assumption 6. For part (a), observe that it suffices
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q
to ensure that (1 −  8L )T 0  

≤  4 L .  Thus, we know it sufices
to have

0 log(4
log(  p λ  )

8 L

Using the fact that log(1 −  x) ≤  − x  for any x  � (0, 1),
we further know that after

T0 ≥  
8 L  

log(4
p

L/λ) (35)

iterations, we have kθ (T 0 ) −  θ j  k ≤  4

q
L  Δ .

q
Now that after T0 iterations, we have kθ (t) −θ�k ≤  4        L Δ ,

we keep running the algorithm for another T iterations.
In these iterations, since αt ≥  1/4, the error floor according to
Theorem 2 becomes

ε0 .  
δ0 L 

v 
mn0 +  

δ0 

η2k
4

n0
 +  

δ 3 / 2 λLΔ

/ 2  

mn0 
, (36)

since α can be merged into the constant. Note that we also
use the new symbol δ0 as the failure probability of a fixed
cluster j  � [k] in a fixed iteration, instead of δ. We will use the
definitions of ε0 and δ0 in (36) in the following. Let T :=  T0

+ T 00. We then have with probability at least 1 − kT δ0, for all
j  � [k],

kθ (T ) −  θ�k ≤  (1 −  
pλ

)T 00 
kθ (T 0 ) −  θ�k +  

8L
ε0 .

Then, we know that when we choose

T00 =  
pλ 

log
32ε0 L

3 / 2       
, (37)

we have
r

(1 −  
8

L
)T 0 0  

kθ (T 0 ) −  θ�k ≤  exp(−
8

L
T 00)

4 L
Δ  ≤  

pλ
ε0,

which implies kθ (T ) −  θ�k ≤  16L  ε0. The total number of
iterations we need is then at most

r      !

T =
 
T0 +

 
T00 ≤  

pλ 
log

32ε0     L  

3/2 
· 4

λ

8 L             pλΔ
pλ            8ε0 L

according to (35) and (37). Finally, we check the failure
probability. Let δ be the upper bound of the failure probability
of the entire algorithm. Let us choose

δ0 =  
ckL log(mn0)

(38)

with some constant c >  0. The failure probability is

8kL Δ pλδ 8δ log( Δ )
0 pλ ε0 ckL log(mn0) c log(mn0)

log( ε0 
)

log((mn0)c/
8)

On the other hand, according to (36), we know that

1 
≤  O(max{

√
mn0, n0}),

0

then, as long as c is large enough, we can guarantee that
(mn0)C/8 >  1 , which implies that the failure probability is
upper bounded by δ. Our final error floor can be obtained by
replacing δ0 in (36) with (38) and redefining

ε :=  
16L

ε0 .
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