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a b s t r a c t

This paper focuses on realistic hybrid SIR models that take into account stochasticity. The
proposed systems are applicable to most incidence rates that are used in the literature
including the bilinear incidence rate, the Beddington–DeAngelis incidence rate, and a
Holling type II functional response. Given that many diseases can lead to asymptomatic
infections, this paper looks at a system of stochastic differential equations that also
includes a class of hidden state individuals, for which the infection status is unknown.
Assuming that the direct observation of the percentage of hidden state individuals being
infected, α(t), is not given and only a noise-corrupted observation process is available.
Using nonlinear filtering techniques in conjunction with an invasion type analysis, this
paper shows that the long-term behavior of the disease is governed by a threshold λ ∈ R
that depends on the model parameters. It turns out that if λ < 0 the number I(t) of
infected individuals converges to zero exponentially fast (extinction). However, if λ > 0,
the infection is endemic and the system is persistent. We showcase our theorems by
applying them in some illuminating examples.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The SIR epidemic models introduced first by [1,2] look at the dynamics of susceptible, infected, and recovered
ndividuals, whose densities at the time t are denoted by S(t), I(t), and R(t), respectively. In the absence of random effects,
he dynamics are described by the following system of differential equations⎧⎨⎩

dS(t) =
[
a1 − µSS(t) − F (S(t), I(t))

]
dt,

dI(t) =
[
−(µI + r)I(t) + F (S(t), I(t))

]
dt,

dR(t) =
[
−µRR(t) + rI(t)

]
dt.

(1.1)
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ere a1 > 0 is the recruitment rate of the population, µS, µI , µR > 0 are the death rates of the susceptible, infected,
nd recovered individuals, r > 0 is the recovery rate of the infected individuals and F (S(t), I(t)) is the incidence rate.
he dynamics of recovered individuals has no effect on that of the disease transmission. As a result, it is common not
o consider the recovered individuals as part of the problem formulation. We adopt this practice throughout this paper.
arious types of incidence rates F (S, I) have been considered in the literature, for example, the Holling type II functional
esponse F (S, I) =

βSI
m1+S [3], the bilinear functional response F (S, I) = βSI [4,5], the nonlinear functional response

(S, I) =
βSI l

1+m2Ih
[6–8], and the Beddington–DeAngelis functional response F (S, I) =

βSI
1+m1S+m2I

[9–11].
It is by now widely known that in order to have a realistic model, one cannot ignore random environmental fluctuations

(temperature, climate, water resources, etc.). This fact leads to extensive studies of stochastic epidemic models of the
form {

dS(t) =
[
a1 − b1S(t) − I(t)f (S(t), I(t))

]
dt + σ1S(t)dB1(t),

dI(t) =
[
−b2I(t) + I(t)f (S(t), I(t))

]
dt + σ2I(t)dB2(t),

(1.2)

where B1(t) and B2(t) are independent Brownian motions and σ1, σ2 ̸= 0 are the noise intensities. Moreover, in the above
we have rewritten the coefficients: b1 := µS, b2 := µI + r and F (S, I) = If (S, I) (compare this to (1.1)). This system has
been analyzed in a general setting in [12].

It is well-known that there are diseases for which certain infected individuals are asymptomatic. Covid-19 is one such
example — there have been many reports of infections where the infected exhibit no symptoms. We aim to capture this
type of behavior in our model. In order to do this, we assume that the group of infected individuals that has incidence rate
I(t)f (S(t), I(t)) (the rate that describes how the disease spreads from infected groups to susceptible groups) in the classical
setting, now contains 2 sub-groups. The first group contains individuals who have been confirmed to be infected and with
the incidence rate I(t)f1(S(t), I(t)) (we will still denote this incidence rate by I(t)f (S(t), I(t)) for notational simplicity). The
second group has incidence rate I(t)h(S(t), I(t)) and contains people whose infection status is unknown or hidden. Let
α(t) be a Markov process taking values in M = [0, 1]. We suppose that α(t) represents the percentage of individuals in
the hidden-status class that are infected at time t ≥ 0 and that only noise-corrupted observations of α(t) are available.
More specifically, one can only observe α(t) with additive white noise.

It is natural to assume that the hidden status of potentially infected individuals affects the spread of the disease. As
a result, we let the functions f and h depend on α(t). With the hidden state dynamics in (1.2), we obtain the following
hybrid stochastic epidemic system⎧⎨⎩dS(t) =

[
a1 − b1S(t) − I(t)f (α(t), S(t), I(t)) − α(t)I(t)h(α(t), S(t), I(t))

]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + I(t)f (α(t), S(t), I(t)) + α(t)I(t)h(α(t), S(t), I(t))

]
dt + σ2I(t)dB2(t).

(1.3)

Remark 1. One can understand the dynamics by looking at individuals from group S, in which susceptible individuals
are infected at the rate If (S, I). We assume that α(t) percent of the potentially infected individuals are actually infected.
Then we can say that members of the hidden group infect susceptible individuals at the rate αIh(S, I).

Remark 2. We could combine I(t)f (α(t), S(t), I(t)) + α(t)I(t)h(α(t), S(t), I(t)) to produce a new function. However, we
choose the current setup to make the formulation and motivation clear. Moreover, this will also be more convenient for
later discussions.

Our results can be summarized as follows. Because the infection status of certain individuals is hidden, and α(t) is
not directly available, the dynamics of (1.3) are difficult to study. To overcome the difficulty, we use nonlinear filtering
techniques by considering the conditional distribution of the process α(t) given the observations. This enables us to replace
the hidden Markov process α(t) in (2.3) with the corresponding conditional distribution. We start by studying the well-
posedness of the equation under consideration together with the positivity of solutions, the Markov–Feller property, and
some moment estimates. Next, we study the long-term behavior of the system. Under the assumption for ergodicity of
nonlinear filtering [13,14] and using ideas from dynamical systems, by considering the boundary equation and growth
rate (see e.g., [4,12,15]), we are able to prove that there is a threshold λ such that if λ < 0, the number of the infected
individuals I(t) tends to zero exponentially fast and if λ > 0, all invariant probability measures of the system concentrate
on R2,◦

+ := (0, ∞)2, and then the system is permanent. We show that the threshold λ also characterizes the permanence
and extinction of the original (hidden) system (1.3). We also study the case when the process α(t) is a hidden Markov
chain taking values in a finite set. Next, we demonstrate our results using simple examples and numerical simulations.

The rest of the paper is organized as follows. We give the mathematical formulation of our problem in Section 2.
Section 3 introduces the threshold λ. The sign of λ will be used to characterize the longtime behavior of the underlying
system. Section 4 is devoted to the characterization of the longtime dynamics of our system. Section 5 offers some
interpretations and implications of our results. Finally, Section 6 provides some simple examples and simulations to
illustrate our theoretical results.
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. Problem formulation

Throughout this paper we use R+ := [0,∞), R◦
+

:= (0, ∞), R2
+

:= [0,∞) × [0,∞), and R2,◦
+ := (0, ∞) × (0, ∞). Let

(Ω,F, {Ft}t≥0,P) be a complete probability space with filtration {Ft}t≥0 satisfying the usual conditions, and B1(t), B2(t),
and W (t) be mutually independent standard Brownian motions. The process α(t) (termed a signal process) is assumed to
e an adapted stochastic process taking values in [0, 1] that is independent of B1(t), B2(t), and W (t). Moreover, M will
enote the space of probability measures on ([0, 1],B([0, 1])) endowed with the weak topology, and C[0, 1] the spaces
f all real-valued continuous functions on [0, 1]. For any function l ∈ C[0, 1] and µ ∈ M, set

µ(l) :=

∫ 1

0
l(x)µ(dx).

As discussed above, we consider the setting where the precise values α(t) are not available and only noisy observations
re available. The observation process y(t) of the signal process α(t) is given by

dy(t) = g(α(t))dt + dW (t), y(0) = 0, (2.1)

here g : [0, 1] → R is a continuous function. Let Fy
t := σ {y(s) : 0 ≤ s ≤ t}

⋁
σ (α(0)), where

⋁
denotes the smallest

-algebra generated by the union of some σ -algebras. Let Πt (·) ∈ M be the conditional distribution of the signal process
(t) given the observation y(t) and the initial data, i.e.,

Πt (A) = P[α(t) ∈ A|Fy
t ], A ∈ B([0, 1]).

uch {Πt (·)} is called nonlinear filtering.
The field of nonlinear filtering has a long history. The main idea stems from replacing the unknown state by its

onditional distributions. The earliest result was the well-known Kushner’s equation [16]. Subsequently, the Duncan–
ortensen–Zakai equation came into being [17–19]. In this paper, we make use of the version of filtering developed by
ujisaki–Kallianpur–Kunita [20]. We will also make use of the Wonham filter for hidden Markov chains, which is one of
he handful finite-dimensional filters in existence [21].

To proceed, we next detail the results of Fujisaki–Kallianpur–Kunita [20] (see also [22]), which involve a differential
quation for the nonlinear filtering Πt (·). Define

β(t) = y(t) −

∫ t

0
Πs(g)ds,

nd note that the process β(t) is a one-dimensional Wiener process, see e.g., [23, Theorem 7.2]. Moreover, σ {β(t2)−β(t2) :

2 ≥ t1 ≥ t} and Fy
t are independent for all t ≥ 0. If the signal process α(t) is a Markov process with infinitesimal generator

, then Πt (·) is the solution of

Πt (l) = Π0(l) +

∫ t

0
Πs(Al)ds +

∫ t

0
(Πs(lg) − Πs(l)Πs(g)) dβ(s), ∀l ∈ D(A). (2.2)

The interested reader is referred to the detailed analysis given in [20,22].
We will not make use of (2.2) often in our analysis, except for establishing some preliminary properties. The stochastic

ifferential equation for Πt (·) is rather complex and is not the main concern of the current paper. As will be seen in the
ext section, we only need to establish the related ergodicity. Thus, for us, it suffices to consider Πt (·) as a stochastic
rocess taking values in M. In addition, we use the continuous measurable modification of Πt (·); it is well known that
uch a modification always exists [14].
Under the premise that one only observes a noisy version of α(t), we proceed to study system (1.3) by using the

onlinear filter {Πt (·)} with given the information of the observation process y(t). More precisely, we consider the system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t) =

[
a1 − b1S(t) −

∫ 1
0 I(t)f (x, S(t), I(t))Πt (dx)

−I(t)
∫ 1
0 xh(x, S(t), I(t))Πt (dx)

]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) +

∫ 1
0 I(t)f (x, S(t), I(t))Πt (dx)

+I(t)
∫ 1
0 xh(x, S(t), I(t))Πt (dx)

]
dt + σ2I(t)dB2(t),

(2.3)

here
Πt (A) = P[α(t) ∈ A|Fy

t ], ∀A ∈ B([0, 1]),
dy(t) = g(α(t))dt + dW (t), y(0) = 0.

enote by Pu,v,π and Eu,v,π the probability and expectation corresponding to the initial values S(0) = u, I(0) = v, Π0 = π ,
nd the distribution of α(0), respectively. We next make some assumptions that will be used throughout this paper.
ssumption 2.1. The following conditions hold:

3
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• The function f : [0, 1]×R2
+

→ R+ is nonnegative, f (x, 0, i) = 0, ∀x ∈ [0, 1], i ≥ 0. Furthermore, f is Lipschitz continuous,
i.e., there exists a positive constant L1 such that for all x1, x2 ∈ [0, 1], s1, s2, i1, i2 ≥ 0

|f (x1, s1, i1) − f (x2, s2, i2)| ≤ L1(|x1 − x2| + |s1 − s2| + |i1 − i2|).

• The function h : [0, 1] × R2
+

→ R+ satisfies h(x, 0, i) = 0, and is Lipschitz continuous with Lipschitz constant L2, i.e., for
all s1, s2, i1, i2 ≥ 0, x1, x2 ∈ [0, 1],

|h(x1, s1, i1) − h(x2, s2, i2)| ≤ L2(|x1 − x2| + |s1 − s2| + |i1 − i2|).

• For each x ∈ [0, 1], functions h(x, ·, 0) and f (x, ·, 0) are non-decreasing.

Remark 3. We note that almost all of the incidence rate functions used in the literature (such as the bilinear incidence
rate, the Beddington–DeAngelis incidence rate, the Holling type II functional response, etc.) satisfy these conditions. Recall
that the incidence rate in our setting is If (S, I) rather than f (S, I).

The third condition is imposed because the incidence rate and the growth rate of the hidden class should increase
when S(t) and I(t) increase. Since we have rewritten these rates as If (S, I) and Ih(α, S, I), only an increasing condition on
S is assumed.

Assumption 2.2. The signal process α(t) is a Markov–Feller process that has a unique invariant measure µ∗ and

lim
t→∞

∥P(t, x, ·) − µ∗(·)∥TV = 0,

where P(t, x, ·) is the transition probability and ∥ · ∥TV is the total variation norm.

Remark 4. This assumption is needed to guarantee the ergodicity of the nonlinear filtering as discussed in Section 3.1
later. Using this, we can then define a threshold that fully characterizes the longtime behavior of the underlying system;
see Section 3.2.

For V (s, i) : R2
→ R, define the operator LV by

LV [s, i, π] =
∂V
∂s

[
a1 − b1s − if (s, i) − i

∫ 1

0
xh(x, s, i)π (dx)

]
+

∂V
∂ i

[
−b2i + if (s, i) + i

∫ 1

0
xh(x, s, i)π (dx)

]
+

σ 2
1 s

2

2
∂2V
∂s2

+
σ 2
2 i

2

2
∂2V
∂ i2

.

n the above, (s, i, π ) ∈ R2
× M represents the variable of LV rather than that of V .

Discrete state space and Wonham filter. If the Markov process α(t) takes values in a finite space {m1, . . . ,mn∗} ⊂ [0, 1]
and has generator {qik}i,k∈{1,...,n∗}, the formulation will be simpler and more explicit. We can formulate the problem as
follows. Let

ek(t) := P(α(t) = mk|F
y
t ) = E[1{α(t)=mk}|F

y
t ], k = 1, . . . , n∗,

e(t) = (e1(t), . . . , en∗ (t)),

Sn∗ :=

{
e = (e1, . . . , en∗ ) ∈ Rn∗

: ek ≥ 0,
n∗∑
k=1

ek = 1

}
,

gk := g(mk), k = 1, . . . , n∗, ḡ(e) :=

n∗∑
k=1

gkek, e = (e1, . . . , en∗ ) ∈ Sn∗ .

It was shown in [21] that the posterior probability e(t) satisfies the following system of stochastic differential equations⎧⎪⎪⎨⎪⎪⎩
dek(t) =

[
n∗∑
i=1

qikei(t) − (gk − ḡ(e(t)))ḡ(e(t))ek(t)

]
dt+(gk − ḡ(e(t)))ek(t)dy(t), k = 1, . . . , n∗,

0 ∗

(2.4)
ek(0) = ek, k = 1, . . . , n .

4
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I
n this case, instead of considering system (2.3), one can study the following system of stochastic differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =

[
a1 − b1S(t) − I(t)

∑n∗

k=1 f (mk, S(t), I(t))ek(t)

−I(t)
∑n∗

k=1 mkh(mk, S(t), I(t))ek(t)
]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + I(t)

∑n∗

k=1 f (mk, S(t), I(t))ek(t)

+I(t)
∑n∗

k=1 mkh(mk, S(t), I(t))ek(t)
]
dt + σ2I(t)dB2(t),

dek(t) =

[∑n∗

i=1 qikei(t) − (gk − ḡ(e(t)))ḡ(e(t))ek(t)
]
dt + (gk − ḡ(e(t)))ek(t)dy(t), k = 1, . . . , n∗.

(2.5)

Moreover, the process

W̄ (t) = y(t) −

∫ t

0
ḡ(e(s))ds

is a one-dimensional Brownian motion adapted to Fy
t ; see e.g., [23, Theorem 7.2]. Therefore, system (2.5) can be rewritten

as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =

[
a1 − b1S(t) − I(t)

∑n∗

k=1 f (mk, S(t), I(t))ek(t)

−I(t)
∑n∗

k=1 mkh(mk, S(t), I(t))ek(t)
]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + I(t)

∑n∗

k=1 f (mk, S(t), I(t))ek(t)

+I(t)
∑n∗

k=1 mkh(mk, S(t), I(t))ek(t)
]
dt + σ2I(t)dB2(t),

dek(t) =
∑n∗

i=1 qikei(t) + ek(t)(gk − ḡ(e(t)))dW̄ (t), k = 1, . . . , n∗.

(2.6)

This system is easier to analyze than (2.3). However, in this case, we need to assume that the signal process α(t)
representing the portion of the rate of the infection in the group of individuals with hidden infection status takes only
finitely many values. This significantly limits the setting as well as the possible applications to real-world problems.

One may simplify the problem further by assuming that α(t) takes values in {0, 1}. This would mean that at any given
time all individuals in the hidden status group are either susceptible or infected.

3. Ergodicity of nonlinear filter and threshold for permanence and extinction

3.1. Ergodicity of nonlinear filter

The study of the asymptotic properties of the nonlinear filter has a long history in the literature. We briefly summarize
the developments. One of the first works is Kunita’s paper [14]. We restate the main result (Theorem 3.3) of this reference
as follows.

Proposition 3.1. (Kunita 1971) Assume that the signal process α(t) taking values in a compact separable Hausdorff space is
a Markov–Feller process with semigroup Pt that has a unique invariant measure µ∗ and

lim sup
t→∞

∫
|Pt l(x) − µ∗(l)|µ(dx) = 0, ∀l ∈ C([0, 1]).

Then the process Πt (·) is an M-valued Markov–Feller process that has unique invariant measure Φ∗. Moreover, µ∗ is the
barycenter of Φ∗, i.e.,

µ∗(l) =

∫
M

ν(l)Φ∗(dν), ∀l ∈ C[0, 1].

Unfortunately, it was pointed out in [24] that there was a serious gap in the proof of the main result in [14]. A key
role in the verification of the uniqueness for the invariant measure of Πt (·) is the following identity⋂

t≥0

Fy
[0,∞)

⋁
σ {α(s) : s ≥ t} = Fy

[0,∞)

⋁(
∩t≥0σ {α(s) : s ≥ t}

)
, (3.1)

where Fy
[0,∞) :=

⋁
t≥0 F

y
t . This identity is indispensable in the proof of the uniqueness of the invariant measure of

nonlinear filtering; see the counterexample given in [24]. Moreover, the exchange of intersection and supremum is not
always permitted in general.6 However, in Kunita’s proof, this identity was not proved. On the other hand, it is important
to note that all the known counterexamples are based on the degeneracy of the observation, i.e., there is no added noise.
Therefore, it was tempting to conjecture that the identity (3.1) still holds provided the nondegeneracy of the observation.

6 According to Williams [25] this incorrect identity ‘‘...tripped up even Kolmogorov and Wiener’’; see [26, p. 837], and [27, pp. 91–93]
5
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In 2009, R. Handel [13] has partially solved this open problem in a general setting. In fact, [13, Theorem 4.2] proved that
identity (3.1) does indeed hold under conditions of ergodicity of signal process [13, Assumption3.1] and nondegeneracy
of the observation process [13, Assumption3.2], which are only mildly stronger than those in [14].7 Finally, we state the
following theorem on the ergodicity of the filter Πt (·) under our setting and our assumption.

Proposition 3.2. Under Assumption 2.2, the process Πt (·) is an M-valued Markov–Feller process and has a unique invariant
measure Φ∗. Moreover, µ∗ is the barycenter of Φ∗, i.e.,

µ∗(l) =

∫
M

ν(l)Φ∗(dν), ∀l ∈ C[0, 1].

Moreover, let MΦ∗ ⊂ M be the support of the invariant measure Φ∗ of the nonlinear filter Πt (·). In general, one
should not expect that MΦ∗ = M. In fact, this does not hold even in the simple setting of the Wonham filter when the
state space has only 3 states [28, Section 4].

3.2. Threshold for permanence and extinction

We next use the ergodicity of the nonlinear filter developed in the previous section in conjunction with a Lyapunov
exponent analysis (sometimes called invasion type analysis in population dynamics) coming from dynamical systems [4,
12,15]. This allows us to introduce a threshold λ, which characterizes the longtime behavior of system (2.3).

Consider the equation on boundary when the infected individuals are absent, i.e.,

dϕ(t) =
(
a1 − b1ϕ(t)

)
dt + σ1ϕ(t)dB1(t), ϕ(0) = u ≥ 0. (3.2)

By solving the Fokker–Planck equation, Eq. (3.2) has a unique stationary distribution µ̂ with density given by
ba

Γ (a)
y−(a+1)e−

b
y , y > 0, (3.3)

here c1 = b1 +
σ 2
1

2
, a =

2c1
σ 2
1

, b =
2a1
σ 2
1

and Γ (·) is the Gamma function. The main idea is to determine whether I(t)

converges to 0 or not by looking at the Lyapunov exponent lim supt→∞

ln I(t)
t

when I(t) is small. Using Itô’s formula
yields

ln I(t)
t

=
ln v

t
+

σ2B2(t)
t

− c2 +
1
t

∫ t

0

∫ 1

0
f (x, S(s), I(s))Πs(dx)ds

+
1
t

∫ t

0

∫ 1

0
xh(x, S(s), I(s))Πs(dx)ds,

(3.4)

here c2 = b2 +
σ 2
2

2
. Intuitively, lim supt→∞

ln I(t)
t < 0 implies limt→∞ I(t) = 0. As a result, if I(t) is small then S(t) is

close to ϕ(t) provided S(0) = ϕ(0). Therefore, when t is sufficiently large we have

1
t

∫ t

0

∫ 1

0
f (x, S(s), I(s))Πs(dx)ds +

1
t

∫ t

0

∫ 1

0
xh(x, S(s), I(s))Πs(dx)ds

≈
1
t

∫ t

0

∫ 1

0
f (x, ϕ(s), 0)Πs(dx)ds +

1
t

∫ t

0

∫ 1

0
xh(x, ϕ(s), 0)Πs(dx)ds.

y the strong law of large numbers for ϕ(t) and Πt from (3.4), we obtain that the Lyapunov exponent of Iu,v(t) can be
pproximated by

− c2 +

∫
∞

0

∫
M

(f (x, y, 0)ν(dx)) Φ∗(dν)µ̂(dy) +

∫
∞

0

∫
M

(∫ 1

0
xh(x, y, 0)ν(dx)

)
Φ∗(dν)µ̂(dy). (3.5)

ince µ∗ is the barycenter of Φ∗, the Lyapunov exponent of I(t) is approximated by

−c2 +

∫
∞

0

∫ 1

0
f (x, y, 0)µ∗(dx)µ̂(dy) +

∫
∞

0

∫ 1

0
xh(x, y, 0)µ∗(dx)µ̂(y).

herefore, we define the threshold λ by

λ := −c2 +

∫
∞

0

∫ 1

0
f (x, y, 0)µ∗(dx)µ̂(dy) +

∫
∞

0

∫ 1

0
xh(x, y, 0)µ∗(dx)µ̂(dy). (3.6)

7 According to Handel [13] whether Kunita’s condition is already sufficient to guarantee uniqueness of the invariant measure with barycenter µ∗

remains an open problem.
6
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n the next section, we prove that the sign of λ characterizes the longtime behavior of the system (2.3). It is also noted
hat when α(t) is available, so is (1.3), and the permanence or extinction of (1.3) is also determined by the sign of λ
efined in (3.6) (see e.g., [29]).

. Characterization of longtime properties: Permanence and extinction

.1. The existence and uniqueness of the solution and preliminary results

We begin with the following theorem on the existence and uniqueness of the solution of (2.3) and then proceed with
a complete characterization of its positivity and some other important properties.

Theorem 4.1. For any (u, v, π ) ∈ R2
+

× M, there exists a unique global solution to system (2.3) with initial value (u, v, π ).
The three-component process {(S(t), I(t), Πt ), t ≥ 0} is a Markov process.

Proof. We prove the existence and uniqueness of the solution of (2.3) first. It is noted that although we have assumed
f (s, i) is Lipschitz continuous, the coefficient if (s, i) in the system (2.3) is not globally Lipschitz in general. Since the
coefficients of the equation are locally Lipschitz continuous, there is a unique solution (S(t), I(t)) with the initial value
(u, v, π ) ∈ R2

+
× M, defined on maximal interval t ∈ [0, τe), τe := inf{t ≥ 0 : S(t) ∨ I(t) = ∞} with the convention

inf∅ = ∞; see e.g., [30, Theorem 3.8 and Remark3.10]. We need to show τe = ∞ a.s. If we define

τk = inf
{
t ≥ 0 : S(t) ∨ I(t) > k

}
,

then τe = limk→∞ τk. Consider V1(s, i) = s + i, then we have from definition of LV1 that

LV1(s, i, π ) = a1 − b1s − b2i ≤ a1 ∀(s, i, π ) ∈ R2
+

× M.

Hence, by applying Itô’s formula and taking expectation, we obtain

Eu,v,πV1
(
S(τk ∧ t), I(τk ∧ t)

)
≤ V1(u, v) + a1t,

which together with Markov’s inequality implies that

Pu,v,π

{
τk < t

}
≤ Pu,v,π

{
V1

(
S(τk ∧ t), I(τk ∧ t), α(τk ∧ t)

)
≥ k

}
≤

V1(u, v) + a1t
k

→ 0 as k → ∞.

Therefore, we have Pu,v,π {τe ≤ t} = 0 or Pu,v,π {τe > t} = 1 for all t > 0. As a consequence, Pu,v,π {τe = ∞} = 1. Hence,
ystem (2.3) has a unique, global, and continuous solution.
We proceed to prove the Markov property. Since Πt is a Markov process and is independent of B1(t) and B2(t), the

arkov property of the joint process (S(t), I(t), Πt ) follows by standard arguments; see for example, [30, Theorem 3.27
nd Lemma 3.2] or [20, Lemma 6.1]. To see why the argument in [30] can be applied, note that Πt satisfies the stochastic
q. (2.2) driven by β(t) and the σ -algebra generated by increments {β(t2)− β(t1) : t2 ≥ t1 ≥ t} is independent of Fy

t . □

Next, using Lyapunov functions, we estimate the moments of S(t) and I(t), and obtain some related results. Define
σ 2

∗
:= max{σ 2

1 , σ 2
2 }.

Lemma 4.1. The following assertions hold:

(i) For any 0 < p < 2κ
σ2
∗

there is a constant Q1 such that

lim sup
t→∞

Eu,v,π (S(t) + I(t))1+p
≤ Q1 ∀(u, v, π ) ∈ R2

+
× M.

(ii) For any ε > 0, H > 1, T > 0, there is H̄ = H̄(ε,H, T ) such that

Pu,v,π

{
1
H̄

≤ S(t) ≤ H̄, ∀t ∈ [0, T ]

}
≥ 1 − ε if (u, v, π ) ∈ [H−1,H] × [0;H] × M,

and

Pu,v,π {0 ≤ S(t), I(t) ≤ H̄, ∀t ∈ [0, T ]} ≥ 1 − ε if (u, v, π ) ∈ [0,H] × [0;H] × M.

Proof. Consider the Lyapunov function V3(s, i) = (s+ i)1+p. By directly calculation with the differential operator LV3 and
using Assumption 2.1, we obtain

LV3(s, i, π ) =(1 + p)(s + i)p(a1 − b1s − b2i) +
p(1 + p)

2
(s + i)p−1

(
σ 2
1 s

2
+ σ 2

2 i
2
)

≤ − (1 + p)(s + i)p−1
[
−

p
σ 2(s + i)2 − a1(s + i)

]
, ∀(s, i, π ) ∈ R2

× M.

2 ∗ +

7
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et 0 < C4 <
p(1+p)

2 σ 2
∗
. By some standard calculations, we get

C5 = sup
(s,i,π )∈R2

+
×M

{LV3(s, i, π ) + C4V3(s, i)} < ∞.

his implies

LV3 ≤ C5 − C4V3. (4.1)

pplying [31, Theorem 5.2, p.157] proves part (i) of the lemma. The proof of part (ii) follows from part (i) and standard
rguments; see [12, Lemma 2.1]. □

heorem 4.2. The process (S(t), I(t), Πt ) is a strong Markov and Feller process. Moreover, we have Pu,v,π {S(t) > 0, t > 0} = 1
and Pu,0,π {I(t) = 0, t > 0} = 1, Pu,v,π {I(t) > 0, t > 0} = 1 provided v > 0.

Proof. It is easily seen that the solution of (2.3) is a homogeneous strong Markov and Feller process provided that the
coefficients are globally Lipschitz; see e.g., [31, Theorem 2.9.3] and [32, Section 2.5]. It is noted that the space M of
probability measures in [0, 1] endowed with the weak topology can be metricized by the bounded Lipschitz metric defined
by

∥π1 − π2∥BL := sup
{
|π1(l) − π2(l)| : ∥l∥ ≤ 1, sup

x̸=y∈[0,1]

|l(x) − l(y)|
|x − y|

≤ 1
}

.

Therefore, by using the results in Lemma 4.1, we obtain from the local Lipschitz property of coefficients of (2.3) and a
truncation argument that (S(t), I(t), Πt ) is a homogeneous strong Markov and Feller process. The details of this truncated
argument and this result can be found in [33, Theorem 5.1].

Next, we establish the positivity of solutions. First, suppose that u, v > 0. Let us consider the Lyapunov function
V2 : R2

+
→ R+

V2(s, i) = (s − 1 − ln s) + (i − 1 − ln i).

By direct calculations, we have

LV2(s, i, π ) =

(
1 −

1
s

)(
a1 − b1s − if (x, s, i) − i

∫ 1

0
xh(x, s, i)π (dx)

)
+

σ 2
1 s

2

2s2

+

(
1 −

1
i

)(
−b2i + if (x, s, i) + i

∫ 1

0
xh(x, s, i)π (dx)

)
+

σ 2
2 i

2

2i2
.

t follows from Assumption 2.1 that f (x, s, i) = |f (x, s, i) − f (x, 0, i)| ≤ L1s and h(x, s, i) = |h(x, s, i) − h(x, 0, i)| ≤ L2s.
herefore, it is easily seen that

LV2(s, i) ≤ C1 +
f (s, i)i

s
+

i
∫ 1
0 h(x, s, i)π (dx)

s
≤ C1 + (L1 + L2)(s + i),

where C1 = a1 + b1 +
σ2
1
2 + b2 +

σ2
2
2 . As a result, if we let C2 = L1 + L2 + 1 and C3 = C1 + 2C2 ln C2 + 2C2 then

LV2(s, i, π ) − C2V (s, i) ≤ C1 − s − i + C2(ln s + ln i) + 2C2

≤ C1 + 2C2 ln C2 + 2C2 = C3.
(4.2)

or k > 1, denote

η = inf
{
t ≥ 0 : S(t) ∧ I(t) ≤ 0

}
,

ηk = inf
{
t ≥ 0 : S(t) ∧ I(t) <

1
k

}
.

Then η = limk→∞ ηk. Therefore, by using the same argument as above, we obtain from (4.2) that

Pu,v,π {ηk < t} ≤
V2(u, v) + C3t
e−C2t (ln k − 1)

→ 0 as k → ∞.

As a result, Pu,v,π {η∞ = ∞} = 1. This implies that

Pu,v,π

{
S(t) > 0 : t > 0

}
= Pu,v,π

{
I(t) > 0 : t > 0

}
= 1 ∀u, v > 0. (4.3)

If u > 0, v = 0, the result Pu,v,π

{
S(t) > 0 : t > 0

}
= 1 can be shown similarly. Moreover, it is obvious that

P
{
I(t) = 0 : t > 0

}
= 1.
u,0,π

8
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We are in a position to consider the case u = 0 and v ≥ 0 and prove the positivity of S(t). Let ε > 0 be sufficiently
small such that

a1 − b1ũ − ṽ sup
x∈[0,1]

(
f (x, ũ, ṽ) + h(x, ũ, ṽ)

)
≥

a1
2

, (4.4)

or any (ũ, ṽ) ∈ R2 satisfying ũ + |ṽ − v| < ε. Such an ε exists due to Assumption 2.1. Set

τ̃1 = inf{t > 0 : S(t) + |I(t) − v| ≥ ε}.

y the continuity of (S(t), I(t)) it is clear that P0,v,π {τ̃1 > 0} = 1. It follows from (4.4) that

a1 − b1S(t) − I(t)
∫ 1

0
f (x, S(t), I(t))Πt (dx) + I(t)

∫ 1

0
xh(x, S(t), I(t))Πt (dx) > 0 if t ∈ (0, τ̃1].

his and the variation of constants formula (see [31, Chapter 3]) imply that

P0,v,π {S(t) > 0, t ∈ (0, τ̃1]} = 1,

hich combined with (4.3) and the strong Markov property of (S(t), X(t), Π(t)) yields that

P0,v,π {S(t) > 0, t ∈ (0, ∞)} = 1.

he theorem is therefore proved. □

.2. Extinction

Consider the case λ < 0. We shall show that the number of the infected individuals I(t) tends to zero at an exponential
ate while the number of the susceptible individuals S(t) converges to ϕ(t).

heorem 4.3. Assume that λ < 0. Then for any initial point (u, v, π ) ∈ R2,◦
+ ×M, the number of the infected individuals I(t)

ends to zero at an exponential rate, i.e.,

Pu,v,π

{
lim sup
t→∞

ln I(t)
t

= λ

}
= 1,

and the susceptible class S(t) converges weakly to the solution ϕ(t) on the boundary.

In order to prove Theorem 4.3, we need the following auxiliary results.

Lemma 4.2. For any T ,H > 1, ε > 0, θ > 0, there is a δ = δ(H, T , ε, θ ) such that

Pu,v,π {τθ ≥ T } ≥ 1 − ε, ∀ (u, v, π ) ∈ [0,H] × (0, δ] × M,

where τθ = inf{t ≥ 0 : Iu,v(t) > θ}.

Proof. By the exponential martingale inequality [31, Theorem 7.4, p. 44], we have Pu,v,π (Ω1) ≥ 1 −
ε

2
, where

Ω1 =

{
σ2B2(t) ≤

σ 2
2 t
2

+ ln
2
ε

∀t ≥ 0
}

.

n view of part (ii) Lemma 4.1, there exists a H̄ = H̄(T ,H, ε) such that Pu,v,π (Ω2) ≥ 1 −
ε

2
, where

Ω2 = {0 ≤ S(t), I(t) ≤ H̄ ∀t ∈ [0, T ]}.

Applying Itô’s formula to Eq. (2.3) yields that

ln I(t) = ln i − c2t +

∫ t

0

∫ 1

0
f (x, Su,v(s), Iu,v(s))Πs(dx)ds

+

∫ t

0

∫ 1

0
xh(x, S(s), I(s))Πs(dx)ds + σ2B2(t).

(4.5)

Therefore, for any (s, i, π ) ∈ [0,H] × (0,H] × M and ω ∈ Ω1 ∩ Ω2 we have from (4.5) and the Lipschitz continuity of f
and h that

ln I(t) < ln i − b2T + T
(
2L1H̄ + 2L2H̄

)
+ ln

2
ε
, ∀t ∈ [0, T ].

Hence, we can choose a sufficiently small δ = δ(H, T , ε, θ ) < H such that for all (s, i, π ) ∈ [0,H] × (0, δ] × M and
0 ≤ t ≤ T , ln I(t) < ln θ, ∀ω ∈ Ω ∩ Ω . The proof is complete. □
1 2

9
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roposition 4.1. Suppose that the assumptions from Theorem 4.3 hold. For any 0 < ε < min{
1
5 , −

λ
5 } and H > 1, there

exists δ̂ = δ̂(ε,H) ∈ (0,H−1) such that

Pu,v,π

{
lim sup
t→∞

ln I(t)
t

= λ

}
≥ 1 − 4ε, ∀(u, v, π ) ∈ [H−1

;H] × (0; δ̂] × MΦ∗ .

Proof. Let θ0 = θ0(ε) < ε
L1+L2

∧
b1

L1+L2
be such that

a1 + θ0(L1 + L2 + L1θ0 + L2θ0)
b1 − (L1 + L2)θ0

−
a1
b1

<
ε

L1 + L2
. (4.6)

onsider the following stochastic differential equation

dϕ̄(t) =
(
ā1 − b̄1ϕ̄(t)

)
dt + σ1ϕ̄(t)dB1(t), (4.7)

here ā1 = a1 + L1 + L2 + L1θ0 + L2θ0, b̄1 = b1 − (L1 + L2)θ0 > 0. A comparison result shows that ϕ(t) ≤ ϕ̄(t), t ≥ 0 a.s.
rovided that ϕ(0) = ϕ̄(0). Moreover, the strong law of large numbers yields that

lim
t→∞

1
t

⏐⏐⏐⏐ ∫ t

0

∫ 1

0
f (x, ϕ̄(s), 0)Πs(dx)ds +

∫ t

0

∫ 1

0
xh(x, ϕ̄(s), 0)Πs(dx)ds

−

∫ t

0

∫ 1

0
f (x, ϕ(s), 0)Πs(dx)ds −

∫ t

0

∫ 1

0
xh(x, ϕ(s), 0)Πs(dx)ds

⏐⏐⏐⏐
≤ lim

t→∞

1
t

∫ t

0
(L1 + L2)(ϕ̄(s) − ϕ(s))ds

= (L1 + L2)
(
ā1
b̄1

−
a1
b1

)
a.s.

(4.8)

ombining (4.6) and (4.8) implies that

lim
t→∞

1
t

⏐⏐⏐⏐ ∫ t

0

∫ 1

0
f (x, ϕ̄(s), 0)Πs(dx)ds +

∫ 1

0
xh(x, ϕ̄(s), 0)Πs(dx)ds

−

∫ t

0

∫ 1

0
f (x, ϕ(s), 0)Πs(dx)ds −

∫ t

0

∫ 1

0
xh(x, ϕ(s), 0)Πs(dx)ds

⏐⏐⏐⏐ < ε a.s.
(4.9)

Therefore, there exists T1 = T1(ε) such that P(Ω3) ≥ 1 − ε, where

Ω3 :=

{ ⏐⏐⏐⏐1t
∫ t

0

∫ 1

0
f (x, ϕ̄(s), 0)Πs(dx)ds +

1
t

∫ t

0

∫ 1

0
xh(x, ϕ̄(s), 0)Πs(dx)ds

−
1
t

∫ t

0

∫ 1

0
f (x, ϕ(s), 0)Πs(dx)ds −

1
t

∫ t

0

∫ 1

0
xh(x, ϕ(s), 0)Πs(dx)ds

⏐⏐⏐⏐ < 2ε, ∀t ≥ T1

}
By definition of λ and ergodicity of ϕ(t), Πt , we obtain

PH,π

{
−c2 + lim

t→∞

1
t

∫ t

0

∫ 1

0
f (x, ϕ(s), 0)Πs(dx)ds + lim

t→∞

1
t

∫ t

0

∫ 1

0
xh(x, ϕ(s), 0)Πs(dx)ds = λ

}
= 1,

here PH,π indicates the initial values of (ϕ(t), Πt ). As a result, there exists T2 = T2(H, ε) > 1 such that PH,π (Ω4) ≥ 1−ε,
where

Ω4 =

{
−c2 +

1
t

∫ t

0

∫ 1

0
f (x, ϕ(s), 0)Πs(dx)ds +

1
t

∫ t

0

∫ 1

0
xh(x, ϕ(s), 0)Πs(dx)ds ≤ λ + ε, ∀t ≥ T2

}
.

n view of the uniqueness of solutions, we have for all u ∈ [0,H] that ϕu(s) ≤ ϕH (s), s ≥ 0 almost surely where the
ubscript of ϕ(s) indicates the initial value ϕ(0). This implies that Pu,π (Ω4) ≥ 1 − ε for all (u, π ) ∈ [0,H] × MΦ∗ .

Since limt→∞

B2(t)
t

= 0 a.s., there is a T3 = T3(ε) > 1 such that P(Ω5) ≥ 1 − ε where

Ω5 =

{
σ2

B2(t)
t

< ε ∀t ≥ T3

}
.

10
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et T = max{T1, T2, T3}. By Lemma 4.2, there is a δ̂ = δ̂(ε,H) < θ0 such that for all (u, v, π ) ∈ [0,H] × (0, δ̂] × M,
u,v,π (Ω6) ≥ 1 − ε, where

Ω6 = {τθ0 ≥ T }.

Now, it follows from (4.5) that ∀(u, v, π ) ∈ [0,H] × (0, δ] × MΦ∗ we have in
⋂6

j=3 Ωj, for all t ∈ [T , τθ0 ] that

ln I(t) = ln v − c2t +

∫ t

0

(∫ 1

0
f (x, S(s), I(s))Πs(dx) +

∫ 1

0
xh(x, S(s), I(s))Πs(dx)

)
ds + σ2B2(t)

= ln v − c2t +

∫ t

0

(∫ 1

0
f (x, S(s), 0)Πs(dx) +

∫ 1

0
xh(x, S(s), 0)Πs(dx)

)
ds + σ2B2(t)

+

∫ t

0

( ∫ 1

0
f (x, S(s), I(s))Πs(dx) +

∫ 1

0
xh(x, S(s), I(s))Πs(dx)

−

∫ 1

0
f (x, S(s), 0)Πs(dx) −

∫ 1

0
xh(x, S(s), 0)Πs(dx)

)
ds

≤ ln v − c2t +

∫ t

0

(∫ 1

0
f (x, ϕ̄(s), 0)Πs(dx) +

∫ 1

0
xh(x, ϕ̄(s), 0)Πs(dx)

)
ds

+ εt + (L1 + L2)
∫ t

0
I(s)ds

≤ ln v − c2t +

∫ t

0

(∫ 1

0
f (x, ϕ(s), 0)Πs(dx) +

∫ 1

0
xh(x, ϕ(s), 0)Πs(dx)

)
ds + 3εt

≤ ln v + (λ + 4ε)t < ln δ̂ < ln θ0.

(4.10)

n the above, we have used the fact of that whenever I(t) ≤ θ0, one has

I(s)
∫ 1

0
xh(x, S(s), I(s))Πs(dx) ≤ θ0(h(0, 0, 0) + L2 + L2S(s) + L2I(s))

≤ θ0(L2 + L2θ0) + L2θ0S(s),

o S(s) ≤ ϕ̄(s) for all t ∈ [0, τθ0 ].
As a result of (4.10), we must have τθ0 = ∞ for ω ∈

⋂6
j=3 Ωj. We obtain this claim by a contradiction argument

s follows. If the claim is false then we have a set Ω7 ⊂
⋂6

i=3 Ωi with P(Ω7) > 0 and τθ0 < ∞ for any ω ∈ Ω7. We
lready proved that τθ0 > T for ω ∈

⋂6
i=3 Ωi. Moreover, in view of (4.10), we have I(t) ≤ δ̂ < θ0 for any t ∈ [T , τθ0 ].

ecause I(t) is continuous almost surely, for almost all ω ∈ Ω7 we have that limt→τθ0
I(t) = I(τθ0 ) < δ̂ < θ0, which is

contradiction. So, τθ0 = ∞ for ω ∈
⋂4

j=1 Ωj. We deduce from τθ0 = ∞ and (4.10) that limt→∞ I(t) = 0 for almost
∈

⋂6
j=3 Ωj.

Next, because I(t) ≤ θ0 for any t ≥ 0 for almost all ω ∈
⋂6

j=3 Ωj, we have shown that S(t) ≤ ϕ̄(t), ∀t ≥ 0 almost surely
n

⋂6
j=3 Ωj. Similar to (3.2), since b̄1 > 0, the solution to (4.7) has a unique invariant measure, say µ̄. Then we have from

he ergodicity of ϕ̄(t) that for some small p̂ > 0,

lim sup
t→∞

1
t

∫ t

0
S1+p̂(u)du ≤ lim

t→∞

1
t

∫ t

0
ϕ̄1+p̂(u)du =

∫
x1+p̂µ̄(dx) < ∞ almost surely in

6⋂
j=3

Ωj. (4.11)

sing (4.11), the fact that limt→∞ I(t) = 0, and the compactness of M, the family of random occupation measures

Ũ t
u,v,π (·) :=

1
t

∫ t

0
1{(S(s),I(s),Πs)∈·}ds

is tight for almost all ω ∈
⋂3

j=1 Ωj. From [15, Lemma 5.6], with probability 1, any weak limit of Ũ t
u,v,π (·) as t → ∞ (if it

exists) is an invariant probability measure, which has support on [0, ∞)×{0}×M. Because µ̂×δ×Φ∗, where δ is the Dirac
measure concentrated at 0, is an invariant probability measure on [0, ∞)×{0}×M, the family Ũ t

u,v,π (·) converges weakly
to µ × δ almost surely in

⋂6
Ω as t tends to ∞. One has from the weak convergence and the uniform integrability in
0 j=3 j

11
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D

4.11) that

lim
t→∞

ln I(t)
t

= lim
t→∞

1
t

[
−b2t −

σ 2
2 t
2

−

∫ t

0

∫ 1

0
f (x, S(s), I(s))Πs(dx)ds

+

∫ t

0

∫ 1

0
xh(x, S(s), I(s))Πs(ds)ds

]
+ lim

t→∞

σ2B2(t)
t

= lim
t→∞

∫
R2

+
×P(M)

[
−c2 +

∫ 1

0
f (x, y, i)ν(dx) +

∫ 1

0
xh(x, y, i)ν(dx)

]
Ũ t
u,v,π (dy, di, dν)

= − c2 +

∫
∞

0

∫
M

[∫ 1

0
f (x, y, 0)ν(dx)

]
Φ∗(dν)µ̂(dy)

+

∫
∞

0

∫
M

[∫ 1

0
xh(x, y, 0)ν(dx)

]
Φ∗(dν)µ̂(dy)

=λ < 0,

or almost every ω ∈
⋂6

j=3 Ωj, (u, v, π ) ∈ [0,H] × (0, δ̂] × MΦ∗ . The proof is complete by noting that P(
⋂6

j=3 Ωj) >

1 − 4ε. □

Proof of Theorem 4.3. Let ε > 0 be arbitrary. In view of Proposition 4.1, the process (S(t), I(t)) is transient (see e.g., [34]
for definition) in R2,◦

+ . Thus, the process has no invariant probability measure in R2,◦
+ . Thus µ̂ × δ × Φ∗ is the unique

invariant probability measure of (S(t), I(t), Πt ) in R2
+

× MΦ∗ .
Let H be sufficiently large that µ̂((0,H)) > 1 − ε. Thanks to Lemma 4.1 part (i) and compactness of M, the process

(S(t), I(t), Πt ) is tight. Consequently, the occupation measure

U t
u,v,π (·) :=

1
t

∫ t

0
Pu,v,π {(S(s), I(s), Πs) ∈ ·} ds

is tight in R2
+

× M. Since any weak limit of U t
u,v,π as t → ∞ must be an invariant probability measure of (S(t), I(t), Πt )

(see [15]), we have that U t
u,v,π converges weakly to µ̂ × δ × Φ∗ as t → ∞. As a result, for any δ > 0, there exists a T̂ > 0

such that

U T̂
u,v,π ((0,H) × (0, δ) × MΦ∗ ) > 1 − ε,

or equivalently,

1

T̂

∫ T̂

0
Pu,v,π {(S(t), I(t), Πt ) ∈ (0,H) × (0, δ) × MΦ∗}dt > 1 − ε.

As a result, we have

Pu,v,π {τ̂ ≤ T̂ } > 1 − ε,

where τ̂ = inf{t ≥ 0 : (S(t), I(t), Πt ) ∈ (0,H)× (0, δ)×MΦ∗}. Using the strong Markov property and Proposition 4.1, we
have that

Pu,v,π

{
lim
t→∞

ln I(t)
t

≤ λ + 4ε
}

≥ 1 − ε,

for any (u, v, π ) ∈ R2,∗
+ × M. Therefore, since ε > 0 is arbitrary, the assertion in convergence of I(t) follows. Once we

have the exponentially fast convergence to 0 of I(t), the convergence of S(t) to ϕ(t) follows from standard arguments;
ee, for example, [4,12]. □

.3. Permanence

In this section, we deal with the case λ > 0 and prove that the system is permanent in the following sense.

efinition 4.1. We say that system (2.3) is permanent (in mean) if for any initial value (u, v, π ) ∈ R2,◦
+ × M

lim inf
t→∞

1
t

∫ t

0
Eu,v,πS(s)ds > 0, lim inf

t→∞

1
t

∫ t

0
Eu,v,π I(s)ds > 0.

Theorem 4.4. Assume that λ > 0. Then for any initial data (u, v, π ) ∈ R2,◦
× M, system (2.3) is permanent (in mean).
+

12
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roof. We first prove that all invariant measures of (S(t), I(t), Π(t)) concentrate on R2,◦
×M. We assume by contradiction

hat there is no invariant measure on R2,◦
+ of (S(t), I(t)). Therefore, there is no invariant measure on R2,∗

+ since the solutions
tarting in R2,∗

+ will enter and remain in R2,◦
+ due to Theorem 4.1. As a result, µ̂ × δ × Φ∗ (the unique invariant on the

boundary R+ ×{0}×M) is the unique invariant probability measure of the process {S(t), I(t), Πt} on R2
+

×M. Therefore,
y applying [15, Lemma 3.4], we have

lim
t→∞

1
t
Eu,v,π

∫ t

0

∫ 1

0
f (x, S(s), I(s))Πs(dx)ds

=

∫
R2

+
×M

∫ 1

0
f (x, y, i)µ̂(dy)δ(di)Φ∗(dν)

=

∫
∞

0

∫ 1

0
f (x, y, 0)µ∗(dx)µ̂(dy).

(4.12)

nd

lim
t→∞

1
t
Eu,v,π

∫ t

0

∫ 1

0
xh(x, S(s), I(s))Πs(dx)ds

=

∫
R2

+
×M

∫ 1

0
xh(x, y, i)ν(dx)µ̂(dy)δ(di)Φ∗(dν)

=

∫
R+×M

∫ 1

0
xh(x, y, 0)ν(dx)µ̂(dy)Φ∗(dν)

=

∫
∞

0

∫ 1

0
xh(x, y, 0)µ∗(dx)µ̂(dy).

(4.13)

n the other hand,

Eu,v,π

ln Y (t)
t

=Ex,y
ln v

t
− c2 +

1
t
Ex,y

( ∫ t

0

∫ 1

0
f (x, S(s), I(s))Πs(dx)ds

+

∫ t

0

∫ 1

0
xh(x, S(s), I(s))Πs(dx)ds

)
+Ex,y

σ2W2(t)
t

.

As a result, we have

lim
t→∞

Eu,v,π

ln I(t)
t

= − c2 + lim
t→∞

Ex,y
1
t

(∫ t

0

∫ 1

0
f (x, S(s), I(s))Πs(dx)ds +

∫ t

0

∫ 1

0
xh(x, S(s), I(s))Πs(dx)ds

)
= − c2 +

∫
∞

0

∫ 1

0
f (x, y, 0)µ∗(dx)µ̂(dy) +

∫
∞

0

∫ 1

0
xh(x, y, 0)µ∗(dx)µ̂(dy)

=λ > 0.

his contradicts the fact that

lim
t→∞

Eu,v,π

ln I(t)
t

≤ lim
t→∞

Eu,v,π

I(t)
t

= 0

because ln y ≤ y while Lemma 4.1 implies limt→∞ Eu,v,π
I(t)
t = 0. As a result, all invariant measures of (S(t), I(t), Π(t))

oncentrate on R2,◦
+ × MΦ∗ (the existence of an invariant measure follows from Lemma 4.1).

By the moment boundedness in Lemma 4.1, we obtain that there exists a sequence Tk → ∞ as k → ∞ such that

lim inf
t→∞

1
t

∫ t

0
Eu,v,πS(s)ds = lim

k→∞

1
Tk

∫ Tk

0
Eu,v,πS(s)ds,

lim inf
t→∞

1
t

∫ t

0
Eu,v,π I(s)ds = lim

k→∞

1
Tk

∫ Tk

0
Eu,v,π I(s)ds.

Therefore, by applying [15, Lemma 3.4] and the fact that all invariant measures of (S(t), I(t), Π(t)) concentrate on
2,◦

× M ∗ , we obtain the desired result. □
+ Φ

13
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.4. Hidden Markov chain

This section is devoted to the case when the signal process α(t) takes values in a finite set {m1, . . . ,mn∗} ⊂ [0, 1] and
admits a unique invariant measure (µ∗

1, . . . , µ
∗
n) ∈ Sn∗ . In this case, system (2.3) is replaced by (2.6). We first have the

ollowing well-posedness and other preliminary results.

heorem 4.5. Consider system (2.6). For any (u, v, e) ∈ R2
+

× Sn∗ , there exists a unique global solution to system (2.6) with
nitial data (u, v, e). The three-component process {(S(t), I(t), Πt ) : t ≥ 0} is a Markov–Feller process. Moreover, we have
u,v,e{S(t) > 0, t > 0} = 1 and Pu,0,π {I(t) = 0, t > 0} = 1, Pu,v,e{I(t) > 0, t > 0} = 1 provided v > 0.

roof. The proof of this Theorem is as same as that of Theorems 4.1 and 4.2, and is thus omitted. □

To proceed, we classify the persistence and extinction of system (2.6) by the following threshold λ:

λ := −c2 +

n∗∑
k=1

µ∗

k

∫
∞

0
f (mk, y, 0)µ̂(dy) +

n∗∑
k=1

mkµ
∗

k

∫
∞

0
h(mk, y, 0)µ̂(dy). (4.14)

heorem 4.6. The following results hold.

(i) If λ < 0 then for any initial point (u, v, e) ∈ R2,◦
+ × Sn∗ , the number of the infected individuals I(t) tends to zero at an

exponential rate, that is,

Pu,v,e

{
lim sup
t→∞

ln I(t)
t

= λ

}
= 1,

and the susceptible class S(t) converges weakly to the solution ϕ(t) on the boundary.
(ii) If λ > 0, then for any initial point (u, v, e) ∈ R2,◦

+ × Sn∗ , system (2.6) is permanent (in mean).
(iii) Moreover, the observable system (2.6) and original system (1.3) share the same threshold for the persistence and extinction.

Proof. The proofs of part (i) and (ii) in this Theorem are the same as that of Theorems 4.3, and 4.3 and, therefore are
omitted. Part (iii) follows immediately from the formulation of λ given in (4.14) and the threshold for system (1.3) given
in [29]. □

Remark 5. Note that in Theorem 4.6, we have collected several results. These results may be presented in separate
theorems. Given that they are all related to the same hidden process and that we have carried out an extensive analysis
in the last section, it seemed reasonable to collect these results in one theorem.

In Section 6.2, we present numerical examples for Theorem 4.6. The reader can see that although the observable system
(2.6) may not approximate well the original at every point in time, it preserves the longtime properties (permanence or
extinction).

5. Discussion and interpretation

When a pandemic arises, there are usually multiple options one can take in order to control it. If we apply an extreme
policy to control the disease transmission (i.e., we try to reduce the infection rate to be very small or almost 0), we
can certainly control the pandemic. This can be seen by looking at λ defined in the previous section and noting that if
f (S, I) ≈ 0 then λ ≈ −c2 < 0. However, this type of highly restrictive policy may hurt the economy. It is important to
balance public health and the economic issues. In our context, this is equivalent to ensuring that λ < 0, which ensures
the pandemic is under control, but not making λ too negative, since in the process of doing this (lockdowns, bankruptcy
of businesses, unemployment) the economy could suffer significantly.

Definition 5.1. We say a proposed threshold λ1 is overcautious if it is greater than the exact threshold, that is λ1 > λ.
We say a proposed threshold λ1 is incautious if it is less than the exact threshold, that is λ1 < λ.

Remark 6. We say a threshold λ1 > λ (the exact one) is an overcautious proposed threshold because if this threshold
is implemented, we tend to apply a policy to make λ1 < 0. But this may not be necessary because the exact threshold
is λ < λ1. Conversely, a threshold λ1 < λ is an incautious one because reducing λ1 to be less than 0 may not be enough
and the pandemic would still not be controlled.

Let us consider the case when α(t) takes the finitely many values 0 = m1 < m2 < · · · < mn∗ = 1. We note that our
analysis is still true for the general case when α takes values in [0, 1]. Recall that we assume α(t) has a unique invariant

∗ ∗
(discrete) measure (µ1, . . . , µn∗ ).

14
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Since α(t) is not directly available, we have two options. One option is to use filtering to estimate α(t) and then consider
he corresponding system with filtering. It was shown that this method preserves the longtime behavior of the original
ystem. In particular, from Section 4.4 the exact threshold for this method is

λ = −c2 +

n∗∑
k=1

µ∗

k

∫
∞

0
f (mk, y, 0)µ̂(dy) +

n∗∑
k=1

mkµ
∗

k

∫
∞

0
h(mk, y, 0)µ̂(dy).

Another possible option is to estimate some prediction for α(t) and give that value for α(t). Let k0 ∈ {1, 2, . . . , n∗
}.

Assume that we estimate α(t) = mk0 and consider the system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t) =

[
a1 − b1S(t) − I(t)f (mk0 , S(t), I(t))

−α0I(t)h(mk0 , S(t), I(t))
]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + I(t)f (mk0 , S(t), I(t))

+mk0 I(t)h(mk0 , S(t), I(t))
]
dt + σ2I(t)dB2(t).

(5.1)

Using the results from [29], the threshold for persistence and extinction of (5.1) is given by

λpre = −c2 +

∫
∞

0
f (mk0 , y, 0)µ̂(dy) + mk0

∫
∞

0
h(mk0 , y, 0)µ̂(dy).

The following results tell us when λpre is an incautious or overcautious threshold.

Proposition 5.1.

(i) If

µ∗

k0

∫
∞

0
(f (mk0 , y, 0) + mk0h(mk0 , y, 0))µ̂(dy)

<

n∗∑
k=1

µ∗

k

∫
∞

0
f (mk, y, 0)µ̂(dy) +

n∗∑
k=1

mkµ
∗

k

∫
∞

0
h(mk, y, 0)µ̂(dy)

then λpre < λ. As a result, λpre is an incautious threshold.
(ii) If

µ∗

k0

∫
∞

0
(f (mk0 , y, 0) + mk0h(mk0 , y, 0))µ̂(dy)

>
1

1 − µ∗

n∗

(n∗
−1∑

k=1

µ∗

k

∫
∞

0
f (mk, y, 0)µ̂(dy) +

n∗
−1∑

k=1

mkµ
∗

k

∫
∞

0
h(mk, y, 0)µ̂(dy)

)
then λpre > λ. As a result, λpre is an overcautious threshold.

It is natural to assume that f (x, y, 0) is an increasing function w.r.t. x because the higher infection rate in the group of
otentially infected individuals would make the disease spread faster. Note that this intuition is natural but not always
rue because we are examining functions at the boundary, i.e., there is no infected group.

ssumption 5.1. For each fixed y, the functions f (x, y, 0) and h(x, y, 0) are increasing in x.

Under this natural assumption, we will see that assuming that all potentially infected individuals are infected will lead
o an overcautious policy. Conversely, it will be incautious if we assume that all individuals with hidden infection status
re free of the disease. We will make this analysis clearer in the following two subsections.

.1. The overcautious case: assuming that all individuals in the hidden group are infected

Suppose we do not use the filtering to consider the observable problem, make the assumption α(t) = 1, t ≥ 0 and
onsider the system (5.1) with mk0 = mn∗ = 1. Under Assumption 5.1, this is an overcautious prediction. The following
theorem is consistent with this intuition.
15
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roposition 5.2. Under Assumption 5.1,∫
∞

0
(f (1, y, 0) + h(1, y, 0))µ̂(dy)

>
1

1 − µ∗

n∗

(n∗
−1∑

k=1

µ∗

k

∫
∞

0
f (mk, y, 0)µ̂(dy) +

n∗
−1∑

k=1

mkµ
∗

k

∫
∞

0
h(mk, y, 0)µ̂(dy)

) (5.2)

s a result, λpre > λ and λpre is an overcautious threshold.

roof. The estimate (5.2) follows immediately from Assumption 5.1. We omit the details here. □

.2. The incautious case: assuming that all individuals in the hidden group are not infected

If we make the assumption that α(t) = 0, t ≥ 0 and consider the system (5.1) with mk0 = m1 = 0, this is an incautious
prediction (under Assumption 5.1). The following result is consistent with this fact.

Proposition 5.3. Under Assumption 5.1,∫
∞

0
(f (0, y, 0) + h(0, y, 0))µ̂(dy)

<
1

1 − µ∗

1

( n∗∑
k=2

µ∗

k

∫
∞

0
f (mk, y, 0)µ̂(dy) +

n∗∑
k=2

mkµ
∗

k

∫
∞

0
h(mk, y, 0)µ̂(dy)

)
s a result, λpre < λ and λpre is an incautious threshold.

. Examples and simulations

.1. A simple example

In this section, we consider a simple example. Assume that all the individuals in the hidden class have the same status
susceptible or infected). In other words, the signal Markov process α(t) has only two possible states, 0 or 1, (corresponding
o the case that all individuals in the hidden class are disease-free or infected, respectively). Assume that α(t) has the
enerator

Q =

[
−q1 q1
q2 −q2

]
.

e can only observe α(t) through the observation process y(t) given by

dy(t) = g(α(t))dt + dW (t), y(0) = 0,

here g : {0, 1} → R and set g1 = g(0), g2 = g(1). Let e(t) = E[1{α(t)=0}|F
y
t ].

The dynamics of this epidemic system under the (Wonham) filter is described by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =

[
a1 − b1S(t) − I(t)f (0, S(t), I(t))e(t) − I(t)f (1, S(t), I(t))(1 − e(t))

−I(t)h(1, S(t), I(t))(1 − e(t))
]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + I(t)f (0, S(t), I(t))e(t) + I(t)f (1, S(t), I(t))(1 − e(t))

+I(t)h(1, S(t), I(t))(1 − e(t))
]
dt + σ2I(t)dB2(t),

de(t) = [q2 − (q1 + q2)e(t)]dt + (g1 − g2)e(t)(1 − e(t))dW̄ (t).

(6.1)

e will also assume that q1, q2 > 0 and g := g1 − g2 ̸= 0 since the other cases are trivial. Consider the equation of the
third component

de(t) = [q2 − (q1 + q2)e(t)]dt + ge(t)(1 − e(t))dW̄ (t), e(0) ∈ [0, 1]. (6.2)

y using the Lyapunov functional method as in Theorem 4.1, we obtain the following result.

heorem 6.1. For any initial value in [0, 1], Eq. (6.2) has a unique solution and

P{e(t) ∈ (0, 1), ∀t > 0} = 1.
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Now, by solving the Fokker–Planck equation, Eq. (6.2) has a unique invariant measure supported in [0, 1] with density
iven by

φ∗(x) = Ce−
d1
1−x (1 − x)2(d1−d2−1)e−

d2
x x2(d2−d1−1), x ∈ (0, 1),

where d1 =
q1
g2
, d2 =

q2
g2
, and C is a normalizing constant.

As developed in the main results, the threshold λ is defined by

λ = − c2 +
q2

q1 + q2

∫
∞

0
f (0, y, 0)µ̂(dy)

+
q1

q1 + q2

∫
∞

0
f (1, y, 0)µ̂(dy) +

q1
q1 + q2

∫
∞

0
h(1, y, 0)µ̂(dy),

(6.3)

here µ̂ is the invariant measure with the density given by (3.3).

heorem 6.2. Consider system (6.1) and λ as in (6.3).

• If λ < 0 then for any initial point (u, v, e0) ∈ R2,◦
+ × S2, the number of the infected individuals I(t) tends to zero at an

exponential rate, i.e.,

Pu,v,e0

{
lim sup
t→∞

ln I(t)
t

≤ λ

}
= 1,

and the susceptible class S(t) converges weakly to the solution ϕ(t) on the boundary.
• If λ > 0, then for any initial point (u, v, e0) ∈ R2,◦

+ ×S2, all invariant probability measures of the solution (S(t), I(t), e(t))
concentrate on R2,◦

+ × [0, 1]. Moreover, the system (6.1) is permanent.

6.2. Numerical examples

In this section, we consider a simple example and provide some numerical simulations. Consider Eq. (6.1) with
(x, s, i) = m1(x)s, h(x, s, i) =

m2(x)s
1+s+i , g(x) = x, (x ∈ {0, 1}), i.e., consider⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =

[
a1 − b1S(t) − m1(0)S(t)I(t)e(t) − m1(1)S(t)I(t)(1 − e(t))

−
m2(1)(1 − e(t))S(t)I(t)

1 + S(t) + I(t)

]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + m1(0)S(t)I(t)e(t) + m1(1)S(t)I(t)(1 − e(t))

+
m2(1)(1 − e(t))S(t)I(t)

1 + S(t) + I(t)

]
dt + σ2I(t)dB2(t),

de(t) = [q2 − (q1 + q2)e(t)]dt + e(t)(1 − e(t))dW̄ (t).

(6.4)

he above is the corresponding system with a filtering of hidden Markov chain α(t), whereas the following system is one
nder hidden process α(t)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =

[
a1 − b1S(t) − m1(α(t))S(t)I(t)

−
α(t)m2(α(t))S(t)I(t)

1 + S(t) + I(t)

]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + m1(α(t))S(t)I(t)

+
α(t)m2(α(t))S(t)I(t)

1 + S(t) + I(t)

]
dt + σ2I(t)dB2(t).

(6.5)

ere α(t) is the Markov chain taking values in {0, 1} with the generator Q .
Suppose one does not use the filtering to consider the corresponding observable system (6.4), and considers instead

he system under some predictions for α(t). If one uses the incautious prediction and assumes that α(t) = 0 (i.e., considers
ll individuals in the hidden group not to be infected), the corresponding system is⎧⎨⎩dS(t) =

[
a1 − b1S(t) − m1(0)S(t)I(t)

]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b I(t) + m (0)S(t)I(t)

]
dt + σ I(t)dB (t).

(6.6)

2 1 2 2
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Fig. 1. Left top subfigure: Sample paths of S(t), in which the red curve is for system under the hidden α(t) in (6.5), the blue curve corresponding
to the known α(t) in (6.4). Right top subfigure: Sample paths of I(t), the red curve is for system (6.5) with hidden state, the blue curve is that of
(6.4) with known α(t). Bottom subfigure: the sample path of the Markov chains, the red is of the signal process α(t), the blue is its filter e(t). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

If one uses the overcautious prediction and assumes that α(t) = 1 (i.e., considers all individuals in the hidden group
to be infected), the corresponding system is⎧⎪⎪⎨⎪⎪⎩

dS(t) =

[
a1 − b1S(t) − m1(1)S(t)I(t) −

m2(1)S(t)I(t)
1 + S(t) + I(t)

]
dt + σ1S(t)dB1(t),

dI(t) =

[
−b2I(t) + m1(1)S(t)I(t) +

m2(1)S(t)I(t)
1 + S(t) + I(t)

]
dt + σ2I(t)dB2(t).

(6.7)

xample 6.1. Consider (6.4) with a1 = 0.5, b1 = 1, σ1 = 1, b2 = 2, σ2 = 0.5,m1(0) = 0.1,m1(1) = 4,m2 =

.1, q1 = 5, q2 = 25. Our computation shows that λ = −1.7252, the (exact) threshold determining the longtime behavior
persistence and extinction) for both systems (6.4) and (6.5). Similarly, we can compute λ0 = −2.0750, the threshold for
ystem (6.6) and λ1 = 0.0241, the threshold for system (6.7).
Note that λ1 > λ > λ0 and as a result λ1 is an overcautious threshold. In this case, if we use system (6.7), we may

onclude that the disease may not be controlled although it will indeed be controlled. Some unnecessarily restrictive
olicy might be chosen and this might lead to economic downturns. Conversely, λ0 is an incautious threshold which
ould lead to overly optimistic expectations.
As our theoretical results show the number of infected I(t) will tend to 0 as t → ∞, i.e., the infected group goes

xtinct. We have also shown that systems (6.4) and (6.5) have the same longtime behavior. We provide the numerical
simulations for this example in Fig. 1.
18
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Fig. 2. Left top subfigure: Sample path of S(t), the red curve is for the system under noisy observation of α(t), the blue is the system with precise
known value of α(t). Right top subfigure: Sample path of S(t), the red curve is for system under noisy observation, the blue curve is for system
with precise known value of α(t). Bottom subfigure: the sample path of the Markov chain, the red curve is of the signal process, the blue curve is
its filter. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Example 6.2. Consider (6.4) with a1 = 10, b1 = 1, σ1 = 1, b2 = 3, σ2 = 1,m1(0) = 0.1,m1(1) = 2,m2(1) = 0.1, q1 =

0, q2 = 1. Direct computations yield λ = 14.8522, the (exact) threshold determining the longtime behavior (persistence
nd extinction) for both systems (6.4) and (6.5). Similarly, we can compute λ0 = −2.5000, the threshold for system (6.6)
nd λ1 = 16.5874, the threshold for system (6.7). Because λ1 > λ > λ0, we note that λ1 is an overcautious threshold.
onversely, λ0 is an incautious threshold. [It is readily seen that the system is actually permanent, i.e., the disease will not
e controlled but λ0 recommends the disease will be extinct. Conversely, λ1 is an overcautious threshold which would
ead to overly pessimistic expectations.]

Applying our theoretical results to this example, we get that I(t) never converges to 0 and the system is permanent.
s before, the systems (6.4) and (6.5) have the same longtime behavior. The numerical simulations of this example are
rovided in Figs. 2 and 3.
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2

Fig. 3. Left top and right top subfigures: The density of the invariant probability measure (the marginal one in the space of (S(t), I(t))) of (6.5) in
D and 3D settings, respectively. Bottom subfigure: The density of the invariant probability measure (the marginal one in the space of (S(t), I(t)))

of (6.6) in 2D and 3D settings, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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