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ABSTRACT: We revisit the stability of black hole saddles for the Euclidean path integral
describing the canonical partition function Z(f) for gravity inside a spherical reflecting
cavity. The boundary condition at the cavity wall couples the transverse-traceless (TT)
and pure-trace modes that are traditionally used to describe fluctuations about Euclidean
Schwarzschild black holes in infinite-volume asymptotically flat and asymototically AdS
spacetimes. This coupling obstructs the familiar Gibbons-Hawking-Perry treatment of
the conformal factor problem, as Wick rotation of the pure-trace modes would require
that the TT modes be rotated as well. The coupling also leads to complex eigenvalues
for the Lichnerowicz operator. We nevertheless find that the Lichnerowicz operator can
be diagonalized in the space of coupled modes. This observation allows the eigenmodes
to define a natural generalization of the pure-trace Wick-rotation recipe used in infinite
volume, with the result that a mode with eigenvalue A is stable when Re A > 0. In any
cavity, and with any cosmological constant A < 0, we show this recipe to reproduce the
expectation from black hole thermodynamics that large Euclidean black holes define stable
saddles while the saddles defined by small Euclidean black holes are unstable.
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1 Introduction

Gibbons and Hawking [1] argued long ago that gravitational partition functions Z(53) are
naturally described by Euclidean path integrals. Such integrals can be evaluated in the
semiclassical approximation using saddle points associated with Euclidean black holes.
The behavior of the action under small fluctuations indicates stability or instability of
these saddles and determines which saddles are relevant to a given computation.

Unfortunately, due to the conformal factor problem, the Euclidean gravitational action
is unbounded below. This prevents one from taking the integral over all Euclidean metrics
as a definition of the problem to be studied. Many authors [2-10] have argued that the
fundamental definition should instead be made in Lorentz signature, with implications
for Euclidean path integrals determined by further careful study. While we are deeply
sympathetic to this point of view, it has not yet led to a useful recipe to determine the
stability of general Euclidean saddles.

As a result, past work has sometimes simply proposed a defining contour in particular
contexts and then checked that it yields physically sensible results. In particular, for path
integrals that compute partition functions in the canonical ensemble in asymptotically
flat or asymptotically AdS spacetimes, it was suggested in [11] that the conformal factor



should be integrated over a contour parallel to the imaginary axis while the conformal
metric should be integrated over real values. This recipe has a mathematical elegance and
has the important property that black holes saddles for the canonical partition function are
unstable when they have negative specific heat and when the above classes of perturbations
can be decoupled (see [12] for the asymptotically AdS context and section 4.3 of [13] for a
more general argument; in the latter case it is generally clear that the associated negative-
action deformation preserves the determinant of the metric and thus remains a physical
negative mode after the above Wick rotation).

At the level of linearized fluctuations about saddles, this recipe is easiest to implement
by first decomposing the Euclidean-signature perturbations into pure-trace, transverse-
traceless (TT), and pure-gauge modes. The proposal then implies that one should integrate
the Euclidean pure-trace modes over imaginary field values while integrating transverse-
traceless modes over the real contour. Since pure-gauge modes do not change the action,
the particular contour chosen for such modes will not affect the result and can be chosen
to help preserve boundary conditions not discussed in detail in [11].

Mode stability in this approach is often discussed by noting (see e.g. [14]) that the
quadratic action for perturbations h about a saddle §,;, may be written as an expectation
value

S [n] = (h, Lh) (1.1a)

where

(h,h) /dxfhwm%m (1.1b)

327TG
is the inner product defined by the DeWitt_; metric!

A 1/ . ~ab A
gab cd _ 5 (gacgbd + gadgbc - gabgcd) 7 (110)

(G is Newton’s constant and

(Lh)ab = (ALh)ab + Qﬁ(aﬁpﬁb)p (1.1d)
where N
Bab = hab - %h, (116)
and
(ALh)ab = _@pﬁpha‘b -2 Racbd th (11f)

is the Lichnerowicz operator. In particular, L reduces to the usual Lichnerowicz operator
Ay on perturbations that satisfy the de Donder gauge, i.e. @“hab = 0. The inner prod-
uct (1.1c) has indefinite signature but, in the above thermodynamic context, Wick-rotating

Tt was pointed out by DeWitt [15] that there is a one-parameter family of ‘ultralocal’ metrics

+ gad ~bc

5ab cd 1 AacAbd
g/\DW - 5 (

+ )\DWgabng)
on the space of Riemannian metrics on M. Here we have added the subscript DW to DeWitt’s parameter A
to avoid confusion with the eigenvalues we study below. Eq. (1.1¢) corresponds to Apw = —1, or a = —1/2
in the conventions of [14]. We refer to the general such metric as DeWitty,,, so (1.1c) is DeWitt_;.



the pure-trace modes makes the inner product positive definite while leaving L self-adjoint.
Positivity of the Wick-rotated version of (1.1a) is thus determined by the spectrum of L,
with positive eigenvalues of L corresponding to stable modes. In the presence of mat-
ter, the pure-trace modes generally couple to matter modes, but by using the approach
of [16] analogous coupled modes can often be identified by inspection with correspondingly
successful results [17]. See also [18-20] in the cosmological context.

We will be interested below in a more complicated situation that occurs when one
studies gravitational thermodynamics in a finite-sized cavity with fixed boundary metric.
As in the case with matter fields, such boundary conditions again couple the pure-trace
modes to other modes, which in this case are T'T' gravitational modes. This coupling is
described in detail in section 3.1, but it should not be surprising: when they are both real,
there are particular combinations of pure-trace perturbations and TT perturbations that
preserve the induced metric on the cavity wall, even though each piece separately would
change the induced metric. But if we Wick rotate the pure trace modes to imaginary
values while keeping the TT modes real, then such cancellations cannot occur and the
contributions of pure-trace and TT modes to the induced metric would have to vanish
independently. Naively Wick rotating the pure-trace modes would thus have the effect
of imposing an additional non-physical boundary condition which should be expected to
invalidate any results. And since the bulk action is of course the same as in the infinite
volume case, the issue is not immediately resolved by following [16].

It thus seems that the contour rotation prescription of [11] must be modified inside a
reflecting cavity. As a first step in doing so we note that the DeWitt_; metric G% ¢ can
still be used to define an operator L via (1.1a). We study this L below and find that it
can again be diagonalized, though some of its eigenvalues may be complex.? We then use
this observation to propose that the pure-trace Wick-rotation recipe from infinite volume
be generalized to Wick-rotation of appropriate negative-norm parts of the L eigenmodes.
The upshot of our generalization turns out to be that mode stability is again determined
by the eigenvalues A of L, with stable modes having Re A > 0. This is in turn equivalent to
analyzing stability under Ricci flow (perhaps modified by a cosmological term) as proposed
n [14], though that reference did not explicitly discuss either complex eigenvalues or a
definite proposal for Wick-rotation.

In either our formulation or that of [14], the critical input lies in giving a preferred
status to the DeWitt_; inner product. From our present point of view, this choice is
as ad hoc as the Wick-rotation of pure-trace modes in [1, 29]. Nonetheless, its physical
viability is demonstrated below by showing (again, in analogy with [12]) that the above
recipe reproduces the prediction from black-hole thermodynamics that in any cavity the
large and small black hole saddles are respectively stable and unstable.

2There are active discussions as to whether the full non-linear theory is physically sensible with such
Dirichlet boundary conditions; see [21-25] for discussions of mathematical issues and [26] for discussion
of more physical issues. However the linearized problem is well-defined in the context we study below.
Furthermore, we have verified that following [22, 23, 27, 28] and using instead boundary conditions that
fix the conformal metric and the trace of the extrinsic curvature again leads both to couplings between the
pure-trace and TT modes and to complex eigenvalues for the Lichnerowicz operator, though we leave a
detailed study of such boundary conditions future work.



We begin with general formalism in section 2, describing both the sense in which com-
plex eigenvalues are natural and our proposed Wick-rotation. This section also introduces
the particular approach we will take to discretizing our system for numerical investigation,
which involves discretizing the system at the level of the action (from which a discrete L
operator follows immediately) rather than using the continuum action to define a contin-
uum L (and then attempting to discretize the result). This discussion also refers to some
useful properties of the de Donder gauge that are reviewed in appendix A.

This sets the scene for section 3 to study fluctuations around the associated Euclidean
black holes in d = 4,5 spacetime dimensions. In particular, we show there that our
proposed Wick-rotation reproduces the thermodynamic stability /instability of large/small
black holes. The associated thermodynamic calculations are of a standard form but, since
they do not seem to appear in the existing literature for black holes in a reflecting cavity
with negative cosmological constant, we provide the details of this analysis in appendix B.
We close with some final comments and discussion in section 4.

2 Formalism: Wick rotation, stability, and discretization

2.1 Wick rotation and mode stability

It is useful to begin by stating our Wick rotation prescription in very general terms. We
thus consider any action S, which is a quadratic function of independent and unconstrained
real field variables Q' that is stationary at Q' = 0, and where we will explain the reason
for the decoration ~in section 2.2. Setting § =0 at the stationary point we thus have

S = ZQIé7[JQJ, (2.1)
1J

where the subscript , I.J denotes the indicated second derivative of the action. We take
our action to be real for real Q’, so that the coefficients é 1J are real as well. Since our
discussion is general, the label I may take either continuous values (as in the problem we
wish to study) or discrete values (as in the numerical approximations that we will use in
practice). In the latter case >°;, > ;; represents the appropriate integral and , IJ denotes
functional derivatives. The above notation is chosen to match that used in later sections
in our study of particular systems.

Our goal will be to investigate positivity of (2.1). However, since we will study Eu-
clidean gravity, the conformal factor problem will ensure that (2.1) is not positive definite
for real Q. We therefore wish to introduce some structure that defines a ‘Wick rotation’
Q=Y WJI R’ for some complex matrix W} and to instead investigate positivity of S for
real R! using

S= > RMW{S L WERE. (2.2)
TJKM

As foreshadowed in the introduction, we will define our Wick rotation W} by making
use of a (real) metric Gy on the configuration space, which in practice will be the DeWitt_;
metric or a discrete approximation thereof. Indeed, one property we require (which in some



sense justifies the name ‘Wick rotation’) is that the ‘Wick rotated metric’

N]JEZWIK@KLW} (2.3)
KL

be positive definite. We also require W} to be invertible so that the Wick rotation can be
undone.

However, this property alone does not suffice to define a unique W} To specify a
particular Wick rotation, we first use the inverse metric G/ to construct a linear operator

Ly =Y 658 k. (2.4)
K

It is straightforward to show that (2.4) is always self adjoint with respect to Gy;. That is
to say, if we define

(@, ) =) ajCGrsBs (2.5)
1J
where * denotes complex conjugation, and if we write (L3); = L{8,, we have

(Ley, B8) = (e, L) for all ag, 5. (2.6)

We now assume that I]_g can be diagonalized; i.e., that it’s eigenvectors span the space
of all Q1. Since Gy is not positive definite, this does not follow from the self-adjointness
property (2.6). Instead, it is a property that must be checked for some particular choice
of action S and metric G;;. We will find below that this property does indeed hold in the
systems we study for the linearized Einstein-Hilbert action and the DeWitt_; metric.?

The indefinite signature of Gy also allows the eigenvalues A of I]_g to be complex.?
In particular, following the standard argument one finds that for eigenvectors v, vo with
eigenvalues A1, As we have

)\T(Ul,vz) = (|]_’L)1,’L)2) = (Ul, ”_UQ) = )\2(@1,02). (27)

This requires
(v1,v2) =0 for A; # AJ. (2.8)

In particular, taking v; = ve requires \; = A2 to be real when (vi,v1) # 0, but allows
complex eigenvalues for eigenvectors with norm zero. Note that since the inner product
is non-degenerate, for diagonalizable I]_IJ any complex eigenvalues must in fact appear in
complex-conjugate pairs A, A*.

31t should be noted that generic finite-dimensional matrices can in fact be diagonalized in the above sense.
This follows from the fact that generic n-dimensional matrices A have n distinct roots of the characteristic
equation det(A — A1) = 0 and that each distinct root yields a linearly independent eigenvector. As a
result, this property is non-trivial only at special points in the parameter space where otherwise-distinct
eigenvalues become degenerate.

*As a simple example, consider the action 5 = 1(@Y)% +2(Q")(Q%) + 2(Q%)? and the line element
ds®> = 61,Q'Q7 = (R")* +3(Q")(Q%) + 1(Q*)°. It is a simple exercise to show that the eigenvalues of (2.4)

are \ = % + if, which are indeed complex.




In our case this last property is also manifest from the fact that both G;; and é IJ
are real so that [Lg is also real. Thus if }_; |]_ng = \v!, then complex-conjugating this
result yields 3, L% (v/)* = M (v!)*. In particular, complex eigenvalues require complex
eigenvectors v,v* from which we can form the real linear combinations Re(v) = “5*~ and
Im(v) = Ug;’*

When the eigenvalues of I]_:’] are non-degenerate, our Wick rotation will be defined to

act in a simple way on the associated eigenspaces. It is convenient to state this definition
by noting that any eigenvalue A can be associated with an eigenvector v that satisfies the
normalization condition

(v,0") =1=(v*,v). (2.9)

Indeed, given an arbitrary eigenvector V we may define a = +/(V*,V)) so that the
rescaled eigenvector v = a1V satisfies (2.9). Here we use the fact that combining the
non-degeneracy of the spectrum with the non-degeneracy of the inner product requires «
to be non-zero.

When X is real, v* corresponds to the same eigenvalue, so non-degeneracy of the
spectrum and Hermiticity of the inner product requires v* to be v times a phase. The
condition (2.9) then also requires (v,v) = 1. This sign is not a convention, but a statement
of whether the given eigenmode has positive or negative norm.

The convention (2.9) gives a certain preferred status to the real and imaginary parts
Re(v), Im(v). In particular, for A # A\* one finds the following inner products:

(Re(v), Re(v)) = % (2.108)
(n(0), In(0)) =~ (2.10b)
(Re(v),Im(v)) = 0. (2.10¢)

Note that more generally one finds (Re(v), Im(v)) = £Im(v*,v). Up to a choice of overall

scale we thus see that requiring orthogonality of Re(v), Im(v) is equivalent to imposing

(v,v*) = £1, and choosing the positive sign imposes the convention that Re(v) is the

positive-norm member of the pair Re(v), Im(v) while Im(v) is the negative norm member.
In this context we define W} by the following properties:

1. W} leaves invariant any eigenvector with real eigenvalue A and positive norm (v, v).

2. Any eigenvector with real eigenvalue A and negative norm (v, v) is an eigenvector of
W} with eigenvalue 1.

3. For complex eigenvalues A (with A # A*), the corresponding Re(v) left invariant by
W1 while Im(v) is an eigenvector of W1 with eigenvalue i.

From (2.10) it is manifest that (2.3) is then positive-definite as desired. But of course the
above proposal is far from unique in this regard. In particular, as noted in the introduction,
from our present perpective the proposal is as ad hoc as the Wick rotation of the conformal
factor proposed in [11]. As a reminder of this, we will refer to the above proposal and to
the further refinements below as a ‘rule of thumb.



Let us ignore for the moment any issues associated with gauge invariance of the grav-
itational action, returning to such issues in section 2.2 below. Non-degeneracy of the
spectrum of ”—5 is then generic, and it remains to define W} only at those special points
in parameter space where eigenvalues become degenerate. In such cases we simply define
Wf by requiring our Wick rotation to be a continuous function of the parameters. We
hypothesize that this is always possible, and we will in section 3.3 below that this property
holds for the particular problem studied here.

With this prescription it is clear that positivity of (2.2) is determined by the spectrum
of I]_g. In particular, since the eigenmodes v; of I]_§ span the space, we may write any
R’ as a linear combination of such modes. Due to (2.8), it will be useful to divide the
full set of eigenvalues v; into the real eigenvalues A, with eigenvectors V, (chosen to have
all components real), the eigenvalues A4 with positive imaginary parts with eigenvectors
va, and the complex-conjugate eigenvalues A\’ with eigenvectors v%. We may then write
Rl =3, VI + 3 ,(CAvY + CA*0l) with real ¢® and use (2.4), (2.8), and the definition
of W} to find the final Wick-rotated result

S=3 " Na(c)? +2) (Re Aa)|CH2 (2.11)
a A

Since the ¢ are real, it is clear from (2.11) that a given mode is stable when it satisfies
Re A > 0, with marginal stability for Re A = 0 and strict instability for Re A < 0. We
will investigate this definition of stability for gravity in a box in section 3, where we also
discuss the relationship to the Ricci-flow prescription of [14].

2.2 Further issues and a comment on numerics

Our discussion above was cleanly presented in terms of an action § that was a quadratic
function of independent and unconstrained field variables Q. However, the form in which
gravitational systems are typically presented is not quite so clean. One issue is that,
because spacetime is continuous, a good gravitational variational principle will generally
require certain boundary conditions that constrain what would otherwise be independent
values of the Q. At first glance this is a minor issue that should affect only our choice
of notation. We use the somewhat awkward notation QI to denote a naive set of field
variables on which boundary conditions have not yet been imposed, and we reserve Q!
for the remaining independent variables after the constraints defined by such boundary
conditions have been solved. Since we study linearized theories, the boundary conditions
are also linear and explicit such solutions are always possible.

However, due to the need to impose boundary conditions, and in order to develop a
practical formalism that can be applied to very general situations, when it comes time
to study our system numerically we will find it prudent to depart somewhat from the
traditional approach of [12-14, 29-34]. That approach would use the continuum action to
construct a continuum differential operator L, after which the boundary conditions could be
used to define an appropriate discretization of this operator. However, this discretization
is not unique, and may not interact cleanly with the discretization of other structures such
as the metric C.



For this reason, we instead choose to first discretize the fields @ that solve the boundary
conditions, the action 5, and the chosen metric G. Using the discretized S, G to define L
via (2.4) then guarantees that the properties described in section 2.1 hold exactly, or at
least up to the numerical accuracy with which the resulting algebraic equations have been
solved. While this is a minor issue for the current paper, we have found it to be extremely
useful in studying the more general boundary conditions that we considered in [35]. This
is the comment on our numerical approach advertised in the title of this subsection.

A second issue is that gravitational systems have a gauge symmetry, so that different
Q! are generally not physically independent. While such physical independence was not
strictly required in our treatment above, its lack means that — even after discretization —
general physical parameters might not lead to non-degeracy of the spectrum of L. Indeed,
gauge invariance means that there are modes &/ which we may use to shift any Q without
changing the value of the action; i.e., the action is the same for all Q! + ¢!, independent
of the value of €. For gravity we may take ¢ real, so that for real Q! we may differentiate
the above result with respect to € to find (Q, L&) = 0 for all Q. And since the inner product
is non-degenerate, this would require each pure gauge mode ¢! to be a zero-eigenvalue
eigenvector of L, leading to a highly degenerate spectrum.

While this is rightly considered a mere technical issue, it is one that we will wish to
avoid. As usual, one can do so by fixing a gauge. The de Donder gauge V%hgp — %Vbh =0
is a common choice. At the conceptual level we will also make this choice, though with
certain technical modifications as discussed below.

As reviewed in appendix A, the time-component of the de Donder gauge condition
is straightforward to implement in our context. Indeed, doing so corresponds merely to
setting a certain component of the metric to zero. But the radial component will also be
non-trivial in our context. While it can also be solved, inserting the solution into the action
leads to a higher-derivative action that is more complicated to study.

We thus avoid imposing this last condition explicitly (except at the cavity wall where it
use it as an additional boundary condition). Instead, we will call the quadratic gravitational
action [ (with no check ()), and we will define a new action

v

Q) =1(Q) +>_KrQ'Q’. (2.12)
1J

to be used in our numerics by adding an additional quadratic term };;K; JQIQ7 that
explicitly breaks gauge invariance but which has no effect on modes that satisfy the de
Donder condition. That is to say, we require > ;; K;Q = 0 when Q satisfies the de
Donder condition. In our gravitational problem, it is the operator L defined by the modified
action (2.12) that turns out to be usual Lichnerowicz operator in the bulk.

While one could in principle use any gauge condition in the above way, the de Donder
gauge has a particularly elegant property for this purpose. To explain this properly, let us
use V to denote the space of all pure-gauge modes. Then as also reviewed in appendix A,
as defined by the DeWitt_; inner product, in our context the orthogonal complement V-
of V consists precisely of perturbations satisfying the de Donder gauge. To see the utility
of this property, recall that following the strategy outlined in section 2.1 means that we



study eigenvalues of a self-adjoint operator L. And since the action of this operator on
any de Donder gauge mode is the same as that defined by gauge-fixing the theory, this L
must have eigenmodes that satisfy the de Donder gauge and which in fact span V. The
above orthogonality then means that any eigenmode will either lie in V+ or in V; i.e.,
the eigenmodes will sort themselves cleanly into “physical” de Donder gauge modes and
pure-gauge modes.

In particular, recall that (as reviewed in appendix A) any mode can be uniquely de-
composed into a pure-gauge mode and a mode that satisfies the de Donder gauge. Since the
addition of a pure-gauge mode leaves the original S invariant, if this action has a negative
mode then it must in fact have a negative mode that satisfies the de Donder gauge.” But
since the two actions agree on such modes, this would also provide a negative mode for the
modified action S. It follows that establishing positivity of S will also establish positivity
of the original action 5 under physical perturbations.

With these details in hand, we are now ready to analyze our gravitational system.

3 Fluctuations about the d = 4,5 Euclidean Schwarzschild(-AdS) black
hole in a reflecting cavity

We now turn to the details of mode stability for Euclidean Schwarzschild-AdS black holes
in reflecting cavities. We introduce notation and conventions for the metric and for time-
independent spherical perturbations in section 3.1 and provide brief comments on numerical
methods in section 3.2. Results regarding eigenvalues and eigenvectors are then presented
in section 3.3.

3.1 Linearized modes

Euclidean AdS-Schwarzschld black hole solutions in a spherical cavity are just those parts
of the usual Euclidean Schwarzschild-AdS spacetimes that lie within the cavity walls. We
will work in Schwarzschild coordinates, where the Euclidean Schwarzschild-AdS line ele-

ment reads

dr?

f(r)

with dQ2 the metric on a unit radius round n—sphere, with

r2 rao\4=3 [ 12
fo) =1 () (5 * 1) | 2

and where ¢ is the AdS length scale, related to the cosmological constant A via

ds? = f(r)dr? + +r2dQ3 ,, (3.1)

(d—1)(d—-2)

A= —
202

(3.3)

5The same is true of zero modes, though one should understand that Killing fields of the background give
rise to trivial zero modes for which the metric perturbation h,, vanishes identically. Since the isometries
of Euclidean AdS-Schwarzschild form a compact group, such zero modes cannot destabilize our canonical
ensemble.



The black hole event horizon is located at r = r4, where f(r) vanishes linearly. We
take 7 to be a periodic coordinate with 7 ~ 7 + f3,, and to avoid a conical singularity at
r = r4, we must have

4 _ 4027y (3.4)

ST T @ aE @

This fixes 1 as a function of 5,. Note that 5, is not the physical inverse temperature as
measured at the cavity wall, as such walls have not yet been introduced. But in any case
we will find it more convenient to describe results in terms of 71 below.

The detailed thermodynamics of such solutions in a cavity of radius rg are described in
appendix B. As usual, for a given box size there are both ‘large’ and ‘small’ branches of the
space of black hole solutions, with the large/small black holes being thermodynamically
stable/unstable and with the boundary between the two branches given by (B.11). The
calculations are standard, and we will use (B.11) below.

Since the background metric is spherically symmetric, we can take advantage of its
SO(d — 1) symmetry group and expand perturbations in terms of spherical harmonics.
These harmonics come in three classes: scalar-derived gravitational perturbations, vector-
derived gravitational perturbations and tensor-derived gravitational perturbations, with all
of these being mutually orthogonal with respect to any DeWitt inner product. Furthermore,
we expect modes with non-zero angular momentum to have larger values of Re A, so we
will study in detail only perturbations with zero angular momentum.

For zero angular momentum the vector-derived and tensor-derived modes are pure
gauge and thus leave the action invariant. When the cavity walls taken to infinity, adding
angular momentum is known to increase the eigenvalues of the Lichnerowicz operator [36].
Assuming that this result continues to hold in the presence of a finite-radius spherical wall,
all vector- and tensor-derived modes will necessarily have positive Euclidean action after
applying the Wick rotation of section 2.1. We reserve a careful check of this assumption
for future work.

We are thus left with scalar perturbations. Scalar perturbations depend on a single
quantum number £g > 0 and, as described above, modes with /g = 0 will have the smallest
Re A eigenvalue A\. We will therefore focus on such modes.

Recalling that we restrict discussion to time-independent geometries, these g = 0
perturbations have exactly the same symmetries as the background geometry. Furthermore,
as reviewed in appendix A, imposing the 7-component of the de Donder gauge condition sets
the r7 component of the perturbation to zero everywhere. As a result, our perturbations
take the form

35" = alr)F(r)Ar + 5% () 0% . (35)

The action (1.1a) is readily evaluated on such perturbations. However, as described
in section 2.2 we in fact wish to modify this action by adding a term that breaks gauge
invariance. In particular, a standard argument shows that using the DeWitt_; metric the
space V' described in section 2.2 is just the space of perturbations that satisfy the de
Donder gauge. As a result, we may take the additional K term in (2.12) to be given by

~10 -



(h, E) with hep = —2@(61@”?%) so that the modified action is just

JoXl
S@ = (h,ALh)

_ d 5ab cd
_ 327@/ A% \/8 hapy G “H(A L) ea (3.6)

evaluated on the perturbed line element (3.5). The results may be written

Q49 d—2 d (. 4247
_ q P = -2 q .
647G / arr { =2 g (fr dr) v q]’ 3.7

where Q4 o is the volume of the metric on a unit radius round (d — 2)—sphere, ¢ =
{a(r),b(r), c(r)}, the operation - denotes the standard Cartesian inner product in Euclidean
space defined by the Kronecker delta metric 6T 7 and P and V are symmetric matrices
with the following independent components

P11:P22:—1, Plgzl, P13:P23:d—2, and P33:(d—4)(d—2). (38)

and
R EL TG ff(()) )
R CEL VL N ST
Vi = oI (@-HE916) @020 Ly g
Vo= M) (@210 ff(()) _
O Gl N Gl TG G NG U (MR VP
Vg = 202 Ad=5A=220() Al =220 59)

Note in particular that neither P nor V are positive definite. This is to be expected, since
we know that pure trace deformations (in the infinite cavity limit) will have a negative
contribution to the Fuclidean action.

In the infinite cavity limit, the trace modes and the traceless-tranverse modes decouple.
For this reason, we can then Wick rotate the trace modes freely. However, in the presence
of a cavity they couple. Let us see this more explicitly. We begin by separating the trace
and trace-free parts of the metric by writing

azg—z}—(d—z)e, (3.10a)
b:B+§, (3.10b)
c:é+§, (3.10¢)

so that h = p.
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However, in the canonical ensemble, perturbations must preserve the induced metric
on the cavity walls (located at r = ry). This amounts to imposing

a(ro) = c(rg) =0, (3.11)

p(ro) = —dé(ro) and p(ro) = %6(7«0). (3.12)

Furthermore, at least with the symmetries imposed above, the part of this boundary con-
dition that fixed the proper length of the Euclidean time circle at the value of r where the
sphere has radius rg is invariant under all diffeomorphisms, and is thus unaffected by the
pure gauge modes.® Yet it is clear from (3.12) that the effect of any pure trace mode on the
boundary conditions can be compensated by turning on a non-trace mode with appropriate
&(ro), b(rg) proportional to p(rg), and with real proportionality constants.

As a result, when p, é,l; all take real values, there are allowed perturbations of p with
p(ro) # 0. But if we were to Wick rotate the contour of integration for p so that p(rg) is
imaginary while keeping the TT modes real, the (real) boundary conditions (3.12) would
require p(rg) and the corresponding boundary values of the T'T modes to vanish separately.”
This would amount to imposing at least one extra boundary condition which, in particular,
has no analogue in any real-time version of the system. Such a condition would be highly
suspect, and strongly motivates us to explore other proposals for defining the contour of
integration such as that proposed in section 2.

One can make the issue more concrete by choosing a gauge. Let us consider in partic-
ular the de Donder gauge condition
Vih

Vbt =0 = Vot - Y

0. (3.13)

This gives a first order differential equation that involves 13, % , ¢ and p’ which can be readily
solved for ¢é:

A 2 rf 2 Jro fr,
= - — . .14
MYy Kd—2+f)b+d—2b 2dp} (3:14)

The boundary conditions then become
A d—1

b(rg) = Tp(ro) (3.15a)

/ 2d p(ro) [ 1 Tof’(To)]
——b —d 2 =0. 3.15b
Pro) = g5t (r) ro Lo T d=2 f(ro) (3.15b)

For p,B real, these define two boundary conditions as desired. But for p imaginary and b
real, (3.15) can be satisfied only if the real and imaginary parts vanish separately, effectively
imposing four boundary conditions, which is two more than one would find in any Lorentz-
signature analogue of the problem.

5This is the key difference between finite ro and removing the cavity by taking 79 = co. As is well known,
with asymptotically AdS boundary conditions the conformal rescaling of the boundary metric induced by
any pure-trace mode can be compensated by a diffeomorphism.

"While b and ¢ can both be affected by pure-gauge modes, as described above there must be a gauge-
invariant combination. This combination is necessarily real due to the underlying reality of the physical
system.
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3.2 A small interlude on numerical methods

A standard approach to minimizing the action eq. (3.7) is to use an operator approach.
In such an approach, one does not work directly with the action, but instead studies the

auxiliary problem
(ALh)ea = A hea, (3.16)

with h chosen to satisfy the de Donder gauge. One then discretizes A 1 on a numerical grid
and studies the resulting eigenvalues.

As advertised in section 2.2, we will proceed differently here by discretizing the ac-
tion (3.7) directly and then using the result to define a discretized Lichnerowicz operator.
Again, this allows us to easily incorporate complicated boundary conditions. We will find
this to be particularly useful when we study the microcanonical ensemble [35]. We have
checked that our action-based approach reproduces known results from the operator ap-
proach (including all that were reported in [14]).

Numerically, it is useful to work with a compact coordinate y € [0, 1] defined as

"+
r= , (3.17)
T
- (-5
so that the horizon is located at y = 0 and the cavity walls at y = 1. It is in these
coordinates that we introduce a grid with N + 1 discrete points. In this work, we will use

spectral collocation methods on Gauss-Lobatto collocation points defined in terms of the
coordinate 4. For the case at hand these are simply defined as

1 .
yi—z[l—i-cos(g)] with ¢=0,...,N. (3.18)

Let g(y) be a function, whose derivative we want to compute on the grid {y;}. Let Dg be
our approximation to the derivative of g on the grid points {y;}. It turns out that Dg can
be computed via matrix multiplication Dg = D - g, with g; = g(y;). Explicit expressions for
the components of D can be found for instance in [37]. Integration also is implemented by
a similar linear operator, which can be taken to be given by the formulae in [38].

Using this approach, one can write a discretization of the action in the form

BN+
SPx8= Y Q57 (3.19)
I,7=1

for some DN’lfIVJ, where the factor of 3 in 3(N + 1) is a result of the fact that we take

Q = {a,b,c} with o, b and ¢ being respectively discretized versions of a, b and c.

As in section 2.2, the tilde on fINQ indicates that we have not yet imposed boundary
conditions. At the cavity walls we demand a(1) = ¢(1) = 0, since we want the period of the
time circle to remain unchanged, as well as the size of the S¢2 sphere. At the horizon, we
demand regularity, which in y coordinates amounts to a(0) = b(0), a’(0) = ¥ (0) = ¢/(0) = 0.

8We also solved this problem with second order finite differences, and the results are identical, though
one has to use a larger number of points to recover the same accuracy, as expected.
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It might appear that we are missing a boundary condition for b at the cavity wall y = 1.
However, this may be resolved by imposing the de Donder gauge condition at this one
point. Doing so turns out to yield a Robin boundary condition

rof’ (o)
f (ro)

We now discretize these boundary conditions using the scheme described above. For

B(1) —d/(1) — (d—2)d(1) +2 ( - 1) [2(d _o)+

b(1) =0. (3.20)
T+

instance, the Neumann boundary condition for a will appear as Dy41 - @ = 0. We then
use the boundary conditions to reduce eq. (3.19) to a function of the degrees of freedom
that remain unconstrained after imposing the boundary conditions. In particular, we set
on+1 = by, solve Dy41-0 =0, Dy41-b =0 and Dy41-¢c = 0 with respect to ay, byt
and cyy1, respectively. At the cavity, we solve with respect to o1, by and ¢;. Once these
conditions are imposed, the sum in (3.19) may be rewritten so that it sums only over the
remaining unconstrained components Q:

. 3N—4
= > Q'S,Q. (3.21)
I,J=1
with Q = {ag,...,on_1,b2,...,byx,c2,...,cn}. Because the boundary conditions are

homogeneous linear relations, the action § remains a homogeneous quadratic function of
the Q.

As described in section 2, we must now choose a metric Gy in order to use (2.4) define
the linear operator []_5. As advertised in the introduction, in the continuum we choose the
DeWitt_1 metric for which

1

2
B = (o) = o5

dda:\/§ hab G hea, (3.22)
where the factor of (327G)~1 in front is chosen to agree with the conventions of [14]. We
now discretize (3.22) by following the same procedure used to discretize the action. The

result is of the form
3N—4

Ihl*~ " Q'61,Q7, (3.23)
I,J=1
where by construction both S ;; and G;; are symmetric in 1, J.
Finally, we wish to solve for eigenvectors of the L defined by (2.4). However, we
comment that this is equivalent to the so-called generalized eigenvalue problem

L-Q=AC-Q, (3.24)

where [Eg =Y 6'ES 1y and @§ =Y, /%Gy in terms of the Kronecker delta §/% and the
metric Gry. Note in particular, since the operators [ﬂ, G are both self-adjoint with respect
to the positive definite metric d7;. The point of writing (3.24) is that this formulation of
our problem is found in many standard libraries of numerical methods.
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Figure 1. The dimensionless lowest lying mode A= )\7"3_ as a function of yg and y; for d =4
(left panel) and d = 5 (right panel). The black line in each of the plots corresponds to the locus in
moduli space where X = 0 and it coincides precisely with eq. (B.11). To aid visualisation we also
plot the plane A =0 in red.

3.3 Results

Our ﬁndings are summarised in figure 1, where we plot the dimensionless lowest lying
A=A r? as a function of yo = ro/ry and y; = r+/£ for d = 4 (left panel) and d =5 (rlght
panel). In all cases, the mode with smallest Re X has real X. We also plot the plane X=0
in red, so that it is apparent when the mode becomes positive. The solid black curve in
each of the plots is given by eq. (B.11) and it precisely matches the locus where A changes
sign. In the limit where yo becomes large we recover the results of [12, 13, 30, 39-41]. To
our knowledge this work is the first to report the lowest lying mode in AdS at finite yp.

We now come to the issue of the norm of the mode under G. Any metric perturbation
can be decomposed as a sum of a traceless component Eab and a pure trace part ¢:

ha = hab + dgab¢ (325)

The metric G is such that Eab and g, h are orthogonal to each other. That is to say
hapG® g = 0. (3.26)

This, in turn, implies that the norm defined in (2.9) may be written in the form

1 - . =
7 = vy ([ vl it = [ afav/Go?) = R~ ol (3270)

327G

where we have defined

1

2_
IFIZ = 55—

ddz\/§ hap K% >0 (3.27b)

and
1 d-2

2 =

dz\/§ ¢* > 0. (3.27¢)
M
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Figure 2. 7, defined in (3.28), as a function of yo and y for d = 4 (left panel) and d = 5 (right

panel). From the positivity of 1 we conclude that the norm of the lowest lying mode is positive
definite, and as such no Wick rotation is necessary.

It thus follows that positivity of ||h]|? is equivalent to positivity of

S
Il

(3.28)

In figure 2 we plot 1 as a function of yy and y for d = 4 (left panel) and d = 5 (right
panel). We see that the norm is positive definite everywhere, so that, according to our rule,
we should not Wick rotate. n also reveals another expected result, namely, the fact that
the trace mode decouples from the traceless-transverse part of the metric. This is seen in
figure 2, where we see 1 approaching unity when the cavity is removed, i.e. yg — +o00.

Having established that the Schwarzschild AdS black hole is unstable whenever the
lowest lying mode is negative, we turn to the issue of the details of the spectrum.

For simplicity, we start by studying the case with y; = 0, i.e. the case with a vanishing
cosmological constant, and we restrict to excited modes (i.e., we leave aside the lowest-lying
mode that we have already studied). In figure 3 we plot the eigenvalues corresponding to
the first twenty excited modes as a function of yg. The colour coding is as follows: green
triangles are non-gauge modes with complex eigenvalues; blue diamonds are non-gauge
modes with negative norm under G; red squares are non-gauge modes with positive norm
under G and the black disks are pure gauge modes. Modes are classified as gauge vs. non-
gauge by comparing the modified action S to the original action S, with vanishing of
the latter (to numerical precision) indicating a gauge-mode while for non-gauge modes the
values agree. As a consistency check, we also verify that the non-gauge modes are precisely
those that satisfy the De Donder gauge condition as expected.

In the left column of figure 3 we plot the real part of the eigenvalues, and on the right
column we plot the absolute value of the imaginary part of the complex eigenvalues using
a logarithmic scale. The top row has d = 4, while the bottom row has d = 5.
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Figure 3. The real part (left column) and the absolute value of the imaginary part (right column)
of the excited modes as a function of yy and y; = 0. The top row has d = 4, while the bottom
row has d = 5. The colour coding is as follows: green triangles are non-gauge modes with complex
eigenvalues; blue diamonds are non-gauge modes with negative norm under G: red squares are non-
gauge modes with positive norm under G and the black disks are pure gauge modes. The plot on
the right panel is presented in a logarithmic scale, and each green triangle has a two-fold degeneracy
since complex modes come in conjugate pairs.

The first and most important thing we note is that all excited modes have Re ) > 0,
thus establishing stability with respect to all excited modes for all yo, y+. Again, we remind
the reader that this sets aside the lowest-lying mode studied earlier.

The second observation is simply that complex modes exist, in the sense that some
eigenvalues have non-zero imaginary parts. In fact, because they must come in complex
conjugate pairs, the spectrum exhibits bubbles at the edges of which non-gauge modes with
positive and negative norms merge together to form a complex mode (which, as described
in section 2, always have zero norm). Each green triangle (which denotes data associated
with a complex eigenvalue) has a two-fold degeneracy because complex mode appear in
conjugate pairs.

We now further address the issue of completeness of the spectrum. We first note that
in generic regions of parameter space our numerics yield exactly 3/N —4 distinct eigenvalues
(here we are counting A and \* as distinct eigenvalues when A is complex). This is precisely
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the dimension of the space of all independent unconstrained perturbations Q. As explained
in section 2.1, this is sufficient to show that we can construct 3/N—4 orthogonal eigenvectors,
thus showing that L is digonalizable and that the eigenvectors of L span the full space of

perturbations in generic regions of parameter space.

However, one might wonder what happens at the special values of yg,y+ where the
eigenvalues become degenerate, i.e. where a bubbles first forms or where it disappears.
For simplicity, we will restrict detailed discussion to the case with vanishing cosmological
constant, but we find similar results when A # 0. Since the pure gauge modes never become
complex, they are absent from this discussion. Let us denote by region I, the range of yq
where modes are all real. In this region we have negative-norm modes and positive-norm
modes. Let denote by region /1 the range of 3o where complex modes exist. The question is
then what happens to these modes as we cross from region I into region /1 and vice-versa.
We find that, with our normalisation for the complex modes, the limit of the negative-norm
eiegenmode from region I agrees to numerical precision with the limit of the imaginary
part of the eigenmode from region II, while the limit of the positive-norm eigenmode in
region I agrees with the limit of the real part of the complex eigenmode from region I1.
Furthermore, the limits of the positive- and negative-norm eigenmodes from region I are
linearly independent. This means that, as previously advertised, the eigenmodes continue
to span the space of all modes even when the eigenvalues become degenerate at the edges
of the bubbles. Furthermore, the continuity between these modes in passing from region I
to region 11 ensures that our Wick rotation is well defined throughout the entire parameter
space, including the critical points when the spectrum becomes degenerate.

As a typical example, let us investigate the region of moduli space near yg ~ yp, =
6.0285 with y. = 0. This corresponds to the region in the top row, right column, of
figure 3 where the first bubble on the left forms. We use fi to denote the positive-norm and
negative-norm eigenfunctions, respectively, associated with the perturbed metric function
a for yo < yp. Additionally, let us define fr (fr) to be the real (imaginary) part of the
complex eigenfunction associated with the perturbed metric function a for yg = yp. In
figure 4 we plot on the left panel fi (blue disks) and fr (orange squares), while on the
right panel we plot f_ (red diamonds) and f; (purple triangles). We see that

lim fr = lim fgp and lim f_ = lim f7 (3.29)

Yo=Yy, Yo—Yy, Yo=Yy, Yo—Yy,

as claimed in the preceding paragraph.

Let us now return to describing general features of the spectrum, this time with a
non-zero cosmological constant. Perhaps surprisingly, we find that complex eigenvalues
exist for all values of y,, and in particular even if the black hole is very large compared
to the AdS scale. However, as we describe below, at large y;+ a given excitation becomes
complex only in a very narrow window of yq.

It is computationally challenging to monitor what happens to all the bubbles we found
with y+ = 0 as we increase y, so we instead focus on the bubble in d =4 and d = 5 that
starts at the smallest value of yy and follow its dependence on y;. This is the bubble
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Figure 4. Left panel: two eigenfunctions are plotted as a function of y. The blue disks rep-

resent fy, defined as the limit of the positive-norm eigenfunction from region I, and the orange
squares represent fg, defined as the limit of the real part of the complex eigenfunction (using our
normalisation) from region II. Right panel: two eigenfunctions are plotted as a function of y. The
red diamonds represent f_, defined as the limit of the negative-norm eigenfunction from region I,
and the purple triangles represent f;, defined as the limit of the imaginary part of the complex

eigenfunction (using our normalisation) from region II. Region I is defined as yo < yp = 6.0285,
while region I7 is defined as yg 2 yp-

associated with the first pair of positive/negative norm excitations. In figure 5 we plot
the imaginary part (left column) and real part (right column) of the eigenvalues for the
first excited mode in the region where X\ is complex. The top row has d = 4, while the
bottom row has d = 5. The green horizontal plane on the left column lies at X =0 and
is included for illustration purposes only. The mode with Im\ > 0 is represented in red,
while for ImXA < 0 we represent the mode in blue. From this figure it is clear that the
width (measured in terms of ) of the bubble becomes shrinks as we increase y..

From the behaviour as we increase y., it might appear that the bubble will disappear
altogether at some threshold value of y;. However, we find that this is not the case.
Instead, it appears that for any finite value of y; we can find a small bubbles where the
given modes becomes complex, though the width of the bubbles becomes incredibly small.
In figure 6 we plot the real part of (left panel) for d = 4, as a function of yg € (1.1, 20)
and y4 = 2 using the same colour coding as in figure 3. Examining the left panel it appears
that complex modes do not exist. However, if we zoom in on the region where positive
and negative modes appear to cross we see that complex bubbles do exist (right panel)

in an incredibly narrow region of yg. We have confirmed this picture for values of y, as
large as 100.

It would be interesting to explore these structures further in the future. One may

expect that more complicated black holes, and in particular those associated with additional
free parameters, lead to even more intricate structures.
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Figure 5. The imaginary part (left column) and the imaginary part (right column) of the first
excited mode in a region of yp and y; where the mode is complex. The top row has d = 4, while
the bottom row has d = 5. The green horizontal plane on the left column sits at A =0 and is just
there for illustration purposes. The mode with ImX > 0 is represented in red, while for Im\ < 0
we represent the mode in blue.

4 Discussion & conclusions

The main point of our work above was to generalize the proposal of Gibbons, Hawk-
ing, and Perry for the contour of integration in the path integral describing fluctuations
about a saddle in Euclidean quantum gravity. This was motivated by consideration of
Euclidean gravity in a reflecting cavity, where boundary conditions couple the pure-trace
and transverse-traceless (TT) modes, preventing us from Wick-rotating one the former
without also Wick-rotating the latter. However, by making use of the DeWitt_; metric,
the quadratic action can still be said to define a linear operator .. When this operator can
be diagonalized, its eigenmodes can be used to specify an integration contour that reduces
to the Gibbons-Hawking-Perry proposal in their context. The result is an eigenmode is
stable precisely when its eigenvalue A satisfies Re A > 0. We show numerically that L. can
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Figure 6. The real part (left panel) of the excited modes as a function of yy € (1.1,20) and y4 = 20.
In the right panel we plot the imaginary part of Xin a magnified description of the region where
the first excited non-gauge mode with negative norm crosses the first excited non-gauge mode with
positive norm. The colour coding is as follows: green triangles are non-gauge modes with complex
eigenvalues; blue diamonds are non-gauge modes with negative norm under G ; red squares are non-
gauge modes with positive norm under G and the black disks are pure gauge modes.

be diagonalized for cavity fluctuations about Euclidean Schwarzschild-AdS black holes, and
that our recipe reproduces the stability /instability of large/small black holes expected from
the black hole thermodynamics studied in appendix B. While the proposal thus satisfies an
important physical consistency requirement, it remains somewhat ad hoc. For that reason
we describe the proposal as a ‘rule of thumb’.

Because our L is just the Lichnerowicz operator (or a discretization thereof), the sta-
bility condition Re A > 0 is precisely the same as that proposed in [14] based on Ricci flow
(or a generalization thereof to include a cosmological constant). Indeed, while [14] did not
discuss the possibility of complex eigenvalues, when they exist the condition for stability
of their flow is again Re A > 0.

There are many future directions to explore. In particular, the conjectured generality
of our rule of thumb opens up a wide arena of related contexts for the community to
investigate. In addition to adding charge, and perhaps rotation, one is also free to consider
all manner of cavities (e.g., Schwarzschild black holes in rectangular or ellipsoidal boxes),
or perhaps infinite-volume AdS systems with complicated boundary conditions. It would
be interesting to check that L remains diagonalizable in all cases, and that our rule of
thumb continues to reproduce expectations from black hole thermodynamics.” It also
remains to check our assumption that angular momentum does indeed increase Re A and
thus that the vector- and tensor-derived modes are indeed stable, to investigate whether
such higher angular momentum modes become complex, and to similarly study modes

In a similar yet different direction, forthcoming work [35] will use the rule of thumb described here to
study saddle points for Euclidean path integrals describing the microcanonical ensemble for gravitational
systems.
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that break time-translation symmetry. Finally, one would also like to have a more general
abstract argument for such agreement along the lines of section 4.3 of [13], but somehow
showing that the negative mode discussed there is not affected by the Wick rotation defined
by our rule of thumb.

Perhaps more interesting is the question of whether choosing a different value of the
DeWitt parameter Apy # —1 continues to give physically viable results. A priori it would
appear that our procedure is well-defined for any Apyy, but since Apy affects the definition
of L it is natural to expect that the stability /instability of large/small black holes will be
reproduced for at most one value of Apy. However, this remains to be checked, and
it is worth noting that in the absence of a cavity wall the decoupling of trace and TT
perturabtions means that our rule of thumb would yield identical results for all Apyy .

Finally, while the results of our Euclidean analysis seem quite satisfactory, it remains
to find a first-principles derivation of our rule of thumb. We expect the Lorentz-signature
path integral to provide a useful starting point for such an analysis since, as an oscillatory
integral, it should be well-defined in a distributional sense without any Wick rotation.
Allowed deformations of the contour of integration for this path integral might then be
used to define the correct Euclidean prescription. We hope to at least partially address
this issue in future work.
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A Properties of the de Donder gauge
The gauge transformations of linearized gravity may be written in the form
hay = hay + Va&y + Vi (A1)

for any one-form &,. As usual we define gauge transformations to be such that the tangential
projection of £ into the cavity wall vanishes. In our case, we also fix the cavity wall to
be at the coordinate location r = rg. The remaining gauge transformations then have
& (ro) = 0, so that £* vanishes entirely at the cavity wall.

As a result, we refer to perturbations of the form h%;"® = V&, + Vi€, as pure gauge
modes whenever £%|,—,, = 0.

As in the main text, we restrict attention to transformations that preserve explicit
spherical symmetry and time-translation symmetry, so that £€% has only r and 7 components
and both are independent of 7. We denote the space of such pure gauge modes by V.

It will be useful to understand the space V- of perturbations that are orthogonal to
V in the DeWitt_; inner product. Using (1.1b) and (1.1c), the statement h,, € V* takes
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the form

0 = 327G (h, g5*"&°) = / A%z /4 (zhabvagb - hvaga)
M
— 2 [ 4G (Voha = 5Vh) € (A.2)
M

where we used the condition £€* = 0 to drop a potential boundary term. It follows that V-
contains precisely those modes that satisfy our boundary conditions and the de Donder

condition .
Vg — ivbh = 0. (A.3)
Let us consider in particular the 7 component of (A.3), which reads
d—2
Orhyr + Th” + (OpIn f)h,r = 0. (A4)

This is an ordinary differential equation for h,, which we can readily solve
Cy

frd=2’

where (' is a constant of integration. Regularity at the horizon, where f vanishes, thus

requires C1 = 0 and thus h,, = 0 for all ». This part of the de Donder condition is thus

simple to impose analytically.

hyr = (A.5)

Finally, we would like to show that every perturbation can be written as the sum of
a mode in V and a mode in V', and that in fact this decomposition is unique. The fact
that the DeWitt_; metric is not positive definite means that we cannot simply take this for
granted, as complications arise if the induced metric on V is degenerate. To show that this
is not the case, note that a degenerate induced metric on V would require the existence
of a Ea for which the pure-gauge mode hy, = vaé}, + nga is orthogonal to all modes in
V; i.e., for all &,, f using hqp, = vaéb + nga would satisfy (A.2). Thus hg, = Vagb + nga
satisfies the de Donder condition which yields

- IN ~
2
_o. A.
Vit 758 =0 (A.6)
But since £ vanishes at the cavity wall, (A.6) then requires

0= /M A’z /g {V@ + d2_A2£~a}

= [t Vg [(mEvia) - 25aE] . (A7)

For a Riemannian metric and for A < 0, the right-hand side is positive definite. If A < 0,
the second term demands EaEa = 0, and thus E = 0 for a Riemannian metric. If A = 0,
the equality can hold only if nga = 0; i.e., if §~b is covariantly constant. But this would
imply hap = 0, so the supposed perturbation is trivial. It follows that the DeWitt_; metric
induces a non-degenerate metric on V, and that V and V' intersect only on the zero
perturbation. It also follows that any allowed perturbation can be written uniquely as the
sum of a pure-gauge mode in V and a perturbation in V1. In particular, the projection
into V- defines a good gauge fixing of our perturbations.
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B Thermodynamics of Schwarzschild-AdS black holes in a spherical box

We begin with a brief review in section B.1 of the thermodynamics of Schwarzschild-AdS
black holes in infinite volume. The corresponding system inside a spherical box is then
analyzed in section B.2.

B.1 Review of the infinite volume case

We study the meric (3.1) with the conventions stated at the beginning of section 3 and
with a fixed boundary metric at the AdS conformal boundary. Recall that for small enough
real and positve values of 8, there are two corresponding values of r,

2 | 2r 21\? (d—3)(d—-1
Tsri)(ﬁ*):d—llﬁ*i\/(ﬁ*> _ Zg )]v (B.1)

associated respectively with the large and small Euclidean Schwarzschild-AdS black holes.

There is a maximum value of 8, which can be found by equating the argument of the
square root in eq. (B.1) to zero. This is the point at which the large and small branches of
the Euclidean Schwarzschild-AdS black hole solution coincide.

The entropy of the Fuclidean Schwarzschild-AdS black hole is given by

Qys ,rd—2
="t B.2
1Gy (B-2a)
where (2, is the area of a unit radius n—sphere, i.e.
n+1
P
0, = 1 (B.2b)

1 9
r(*)
where I'(2) is the Gamma function. From the entropy (B.2a) it is a straightforward exercise
to compute the specific heat C

aS . (d — 2)7TQd_2 Tiilfz

€= _5*37* S (d-1)r2—(d-3)2 Gg (B-2¢)

Local thermodynamic stability in the canonical ensemble then demands C' > 0, which

[d—3 . 2m

We also record the fact that the energy of the Euclidean Schwarzschild-AdS solution'? is

given by [42-44]
(d — 2)Qd_2?”fli__3 7“3_

translates to

T4 >

which can be shown to satisfy the first law of black hole mechanics

B,dE = ds. (B.5)

Here we ignore the Casimir energy present in odd spacetime dimensions.
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In order to study global thermodynamic stability, we now investigate the on-shell
Euclidean action of the Euclidean Schwarzschild-AdS solution. This quantity, in turn, is
proportional to the Helmoltz free energy,

7‘172961_2
G, [(d=3)P + (d=1)r2]

I=p,F=B,E—-S= (2 —r2), (B.6)
where we have used the fact that It follows that when r > £ the Euclidean Schwarszschild-
AdS solution has lower Euclidean action than thermal AdS and is thus the preferred
phase [45]. This corresponds to

Hp _ 2w
By < B :mf. (B.7)
and marks the onset of the so-called Hawking-Page transition.

Note in particular that 8* > U, so that when the Hawking page transition takes
place, the black hole is large and has positive specific heat. It is also not a coinci-
dence that 8* matches the maximum value of §, (at which the large and small Euclidean
Schwarzschild-AdS black holes coincide). In the flat space limit, when ¢ — +o00, the Eu-
clidean Schwarzschild black hole always has negative specific heat and the Hawking-Page
transition never occurs.

B.2 Inside a spherical box

We now analyze the same issues for Schwarzschild-AdS black holes inside a spherical re-
flecting cavity on which the induced metric is held fixed. We take the area-radius of the
cavity to be r = rg. As in flat space [46-50], the cavity has an effect on the thermodynamics
of the system. In particular, eq. (3.4) expressing the relation between S, and ry is now
affected by the red-shift of the cavity walls

f(ro)
()l

For each value of ., there are again two distinct black solutions, corresponding to

By =47

(B.8)

small and large black holes. We will refrain from present explicit expressions in terms of 7,
as For numerical purposes it is more useful for introduce a compact coordinate ¥, so that
y = 0 is the Euclidean horizon and y = 1 is the location of the cavity. In particular, we
define [14]

r:T—+T, sothatyzﬁr_hr, (B.9)
1*<*ﬁ)y Ty — T4
with y € (0,1). It is also useful to introduce dimensionless quantities
Yo = 0 and Yy = T—+, (B.10)
T4+ 14

so that we recover the vanishing cosmological constant case for y4 — 0.
We can now use these dimensionless quantities to investigate the boundary between
large and small black holes. This is also the boundary that we expect to divide regions
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of moduli space with positive and negative values of M. The expression marking this
boundary reads

. d—3 3d — 11 4 2y§ 3
y:(vo) = - + (B.11)
i {2(61 D 2(d-3+27")

- d—12 | d—3+ 250"

d-3 2 9 1/2
d—3 3d — 11 + 2y _ (d—3) ld—3+(d—1)y0_1]}
2(d—1) 2(d—3+2y§—1) '

Note that when yy — +oo we recover eq. (B.3). Furthermore, inside a cavity, even when
¢ — 400 (and thus y4 — 0), there are distinct large and small black hole branches which

1
d—1\a3

The above result has been also derived in [51], where a detailed analysis of the negative

merge when

mode of a Schwarzschild black hole inside a cavity has been performed across a number of
spacetime dimensions.

For d = 4, we recover the well known result y§ = 3/2 [48]. We shall see that our nu-
merical results in the canonical ensemble are in perfect agreement with the fact that the so-
lutions are thermodynamically stable iff y < y}. This is certainly not a surprise given the
by now very well established relation between the existence of negative modes with grand
canonical ensemble boundary conditions and local thermodynamic stability [13, 52, 53].
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