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1 Introduction

In non-gravitational field theories, thermal partition functions Z(β) are naturally described
by Euclidean path integrals. And as pointed out long ago by Gibbons and Hawking [1],
there is a sense in which this remains true for gravitational theories as well. In particular,
such integrals can often be evaluated in the semiclassical approximation using saddle points
associated with Euclidean black holes.

Unfortunately, due to the conformal factor problem, the Euclidean gravitational action
is unbounded below. This prevents one from taking the integral over all real Euclidean
metrics as a definition of the problem to be studied. Many authors simply follow [2] and
choose to integrate over a contour for which the Euclidean metrics are not real. But while
this often gives physically satisfying results (see e.g. [3–14]), the choice of contour is an ad
hoc recipe that lacks a justification from first principles.

In contrast, various works [15–25] have argued that the fundamental definition should
instead be made in Lorentz signature, with the contour of integration taken to be defined
by real Lorentz-signature metrics. The idea is then that careful study might show the
extent to which the contour can be deformed into the complex plane to yield an equivalent
“Euclidean” path integral that comes equipped with a specific contour of integration. In the
semiclassical approximation, one could then check any given saddle against this contour to
determine the weight (if any) with which it contributes.
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A prime advantage of this suggestion is that is it not obviously ruled out. The Lorentzian
gravitational action S is purely real for smooth real Lorentz-signature metrics, so that eiS

is a pure phase. Thus the integrand of our path integral is naturally oscillatory rather than
diverging in absolute value.

While oscillatory integrals can be subtle, they often converge when treated as distribu-
tions. Perhaps the best-known example of this feature is the representation of the Dirac
delta-function as an integral over oscillatory exponentials,∫

dx eikx = 2πδ(k). (1.1)

It is thus natural to suppose that the Lorentz-signature gravitational path integral should
be understood in a similar manner.

The goal of this work is to argue that this approach can indeed be used to define the
familiar thermal partition functions Z(β) for gravitational systems. Furthermore, despite
the Lorentz signature starting point, we will provide evidence Euclidean-signature black
hole solutions with positive specific heat provide saddle points that contribute with non-zero
weight to the semiclassical approximation of our partition function. In particular, we will
take care to show that a codimension-2 subcontour of the original contour of integration
(defined by real Lorentz-signature metrics) can be deformed to access such saddles in a
useful way, and that the same is then true of the remaining two integrals.

To briefly explain our setup, let us recall that the gravitational partition function Z(β)
has historically been defined as a path integral over some class of metrics with Euclidean-
signature boundaries S1 × Y where the S1 has proper length1 β. But we will instead use a
natural definition of Z(β) as an integral over a one-parameter family of Lorentz-signature
path integrals ZL(T ),

Z(β) =
∫
dTfβ(T ) ZL(T ). (1.2)

In particular, using S to denote the Lorentz-signature gravitational action, ZL(T ) is the
integral of eiS over real Lorentz-signature metrics with boundaries S1 × Y for which T

is the proper time around the S1. Further details of such path integrals and the class of
metrics over which we integrate will be specified below.

Note that the analogous reformulation would be trivial for a stable non-gravitational
system. Suppose in particular that our system is defined in Lorentz signature on R× Y ,
where R is the time direction. If the Hamiltonian is bounded below, then for β > 0 we seek
an expression of the form

Tr e−βH =
∫
dTfβ(T ) Tr e−iHT . (1.3)

Now, for familiar systems with an infinite number of states the trace Tr e−iHT will typically
fail to converge for any given value of T . However, treating this object as a distribution in

1More generally, β is some rescaled version of the proper length where the rescaling might depend on the
location on the factor Y . But this generalization has no effect on the argument below, so we use the above
language for simplicity. The analysis is similarly insensitive to whether S1 × Y is an asymptotic boundary
or whether lies at finite distance as in the idealized description of a reflecting cavity wall.
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T and integrating against functions fβ(T ) gives∫
dTfβ(T ) Tr e−iHT = Tr f̃β(H), (1.4)

where f̃β(ω) =
∫
dTfβ(T ) e−iωT is just the appropriately-normalized Fourier transform of

fβ(T ). For suitable functions the operator f̃β(H) is in fact trace-class and the right-hand
side of (1.4) will be well-defined. Furthermore, since the spectrum of H is bounded below
by some ground-state energy E0, we may obtain the canonical partition function by taking
fβ(T ) to be the Fourier transform of some function e−βωgE0(ω) where gE0 = 1 for E ≥ E0
and g(ω)→ 0 sufficiently rapidly as ω → −∞ that the Fourier transform exists.

We will make the same choice of fβ(T ) studying the gravitational partition function
defined by (1.2). In that context, a key question will be what precise definition we choose
for the Lorentzian path integral that computes ZL(T ). After all, if the path integral is
supported on smooth real Lorentz-signature bulk spacetimes, then nowhere in that support
can the S1 factor be contracted to a point in the bulk while remaining timelike. This makes
it hard to imagine how such a path integral can give rise to saddles described by the familiar
Euclidean black holes (where the S1 orbits of the ‘Euclidean time’ Killing field do indeed
contract to a point), even after possible deformations of the contour in the complex plane.

This tension will be resolved by including Lorentz-signature spacetimes that have certain
codimension-2 singularities in the original contour of integration. We will define precisely
which singularities we allow in section 2 below by taking the space of such geometries to be
closed under certain cut-and-paste operations. As a result, it is natural to refer to them as
conical singularities.

The action S can then be defined on such geometries following [26–28]. Effectively, this
reduces to using a complexified version of the two-dimensional Gauss-Bonnet theorem. In
particular, as in [26–28], it turns out that such singularities give imaginary contributions to
the Lorentz-signature action S, so the path-integral integrand eiS is no longer just a phase.
In the n > 1 Renyi-entropy calculations of [28, 29] this effect suppressed contributions from
the most natural geometries in which the area A[γ] of the conical singularity γ was large.
In contrast, in the present context we will find that the analogous computation turns out
to enhance the contribution of geometries with large A[γ] by a factor of eA[γ]/4G. In our
thermodynamic context, this naturally corresponds to the fact that contributions to any
partition function from a macrostate with entropy S are accompanied by a factor of eS.

The astute reader will note that, after the inclusion of such conical singularities, the
integrand of our Lorentz-signature path integral is no longer a pure phase. As a result,
this inclusion has now destroyed the very property of the Lorentz-signature path integral
that was touted above as a way to avoid the conformal factor problem that plagues the
Euclidean formulation. In particular, if the magnitude of the integrand is eA[γ]/4G, then
integrating over the area A[γ] of the conical singularity would appear to give a divergent
result. The key result below is thus that this is not necessarily the correct conclusion.
Indeed, we will proceed by first holding fixed the area A[γ] and performing the rest of the
path integral. In this step, the integral is again strictly oscillatory and so can plausibly be
convergent in the sense of distributions. The output of this step is clearly an additional
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factor that also depends on A[γ]. We use the stationary phase approximation to argue that
this additional factor suppresses contributions from large A[γ] enough to render the A[γ]
integral convergent. This in itself should not be a surprise, as it directly related to the fact
that the partition function also contains a factor of e−βE , and that for a given class of black
hole the on-shell energy E is a function of A[γ] (and perhaps a few other variables). See
section 5 for brief comments both on going beyond the saddle-point approximation and on
performing the integrals in other orders.

We begin by specifying the details of our Lorentz-signature path integral in section 2
below. Here and in most of this work we restrict discussion to Einstein-Hilbert gravity with
cosmological constant Λ (which may be zero), minimally coupled to some set of matter
fields. Section 3 then briefly review some facts from the literature on saddle-point methods
and makes a small-but-useful observation. This sets the stage for a study the canonical
ensemble for gravity in section 4 using the gravitational analogue of (1.3). The main
argument is given in section 4.1, with certain details relegated to appendix A. As described
in subsection 4.2, for rotating and charged black holes the same argument applies in the
grand canonical ensemble with fixed temperature, angular velocity, and electric potential.
The small changes required to study other ensembles are described in section 4.3, and
sections 4.4 and 4.5 comment on extreme limits and higher derivative corrections. Section 5
concludes with a discussion of open issues and future directions.

2 What spacetimes contribute to the real Lorentz-signature gravitational
path integral?

Understanding the proper domain of integration for any path integral can be a deep and
subtle question. For the Wiener measure relevant to the quantum mechanics of harmonic
oscillators, the domain of integration is supported on histories that are continuous but not
differentiable (and more precisely on those that are Hölder continuous with index α < 1/2).
This case may be thought of as a field theory in 0 + 1 dimensions, and the support is
expected to become even more singular for higher dimensional theories. This is a direct
analogue of the well-known fact that UV divergences of perturbative QFT also grow in
strength with increasing spacetime dimension.

In general, one expects the support of the path integral measure to be determined by
the action. For gravity we must then consider the Einstein-Hilbert action which is not only
complicated, but also perturbatively non-renormalizable. A full and proper treatment of
singular geometries may thus depend on the details of the ultraviolet completion of the theory.

Here we will merely propose that this support may be taken to include spacetimes
with a certain class of codimension-2 singularities on which the Einstein-Hilbert action
is naturally regarded as being finite, and for which higher derivative corrections to this
action (which arise from e.g. including loop effects order-by-order in perturbation theory)
can plausibly be regarded as being small after appropriate renormalizations. The latter
point suggests that, despite first appearances, the inclusion of such singularities does not
introduce strong sensitivity to the ultraviolet completion of our theory.
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We refer to this class of singularities as Lorentz-signature conical defects, and we
describe them in more detail below. The discussion here is a slight generalization of that
of [28], which was in turn inspired by [26] and [27].

Euclidean signature conical singularities have been shown to satisfy an analogous list
of properties. In that case it is manifest that the Einstein-Hilbert action is finite, as the
Ricci scalar is a Dirac delta-function while the metric is continuous, so that the integral of
√
gR is well-defined. And despite the large curvature at the singularity, it was shown in [30]

that using conical singularities to compute higher-derivative corrections to gravitational
entropy nevertheless gave corrections that were perturbatively small. Furthermore, while
the conical singularity leads to divergences in the naive higher-derivative action, the work
of [31] showed that such divergences can be cancelled by counter-terms. This allows one
to define a finite action where all higher-derivative corrections near conical singularities
remain perturbatively small.

More recently, it was noticed in [28] that a related class of singularities for Lorentz-
signature metrics could be defined by starting with a collection of smooth Lorentz-signature
spacetimes and performing certain cut-and-paste operations; see also comments in [32, 33].
The idea was to follow [26] and [27] in using the complex version of the Gauss-Bonnet
theorem to define the Einstein-Hilbert action on such spacetimes, and to treat higher-
derivative corrections via a formal analytic continuation of the Euclidean power series
analysis performed in [31]. More will be said about this last step in [34]. However, in order
to focus on the Einstein-Hilbert case that is of primary interest, we will postpone further
comments on higher-derivative corrections to section 4.5, where we can explain in more
detail how they can be perturbatively incorporated into the main argument of section 4.

We will now present a slightl generalization of the Einstein-Hilbert analysis of [28]. In
doing so, let us suppose that we are given n smooth Lorentz-signature spacetimes Mi (for
i = 1, . . . n) and a smooth codimension-2 spacelike surface γ (without boundary) in M1.
We also suppose that this same γ can be smoothly embedded as a codimension-2 surface
into each of the other spacetimes Mi so that it has the same induced geometry in each Mi.
For each i, let ψi : γ1 → γi be a fixed metric-preserving diffeomorphism between γ1 = γ in
M1 and the copy γi of γ in Mi, where we choose ψ1 to be the identity. We note that these
ψi are unique up to symmetries of γ.

We wish to cut out pieces from each of the Mi, and we would like each piece to reach
γi. To do so, in each Mi we choose two smooth hypersurfaces with boundary. These
hypersurfaces will be called Σi±. We require the boundary ∂Σi± of each hypersurfaces to
be precisely γi, but we forbid ∂Σi+ from intersecting ∂Σi− in their interiors; see left panel
of figure 1. We suppose that the (singular) surface Σi = Σi+ ∪ Σi− divides Mi into two
pieces and pick one of them to call M̃i. We will have no further need of the other piece.

At this point, we require that the induced geometry on Σi+ agrees (cyclically) with
that on Σ(i+1)−. In particular, we require there to be diffeomorphisms χi : Σi+ → Σ(i+1)−
that preserve the induced metric and where the restriction of χi to γi is precisely ψi ◦ ψ−1

i+1.
We may then use the maps χi to paste the pieces M̃i together by identifying each Σi+ with
the succeeding Σ(i+1)−; see again figure 1.
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Figure 1. An example of our cut-and-paste construction, where we cut pieces M̃i from four smooth
spacetimes (left) and then paste them together cyclicly (right) to form a new spacetime which may
include a conical singularity. Each piece M̃i is bounded by two hypersurfaces ∂Σi± (colored curves)
with common boundary γi (red dots). The two surfaces ∂Σi± are not allowed to intersect away from
γi. The gluing is then done in a way that identifies all γi and which cyclicly identifies Σi+ with
Σ(i+1)−. In the figure, we have given Σi+ and Σ(i+1)− the same color to make the cut-and-paste
visually clear.

The resulting spacetime M̃ = ∪iM̃i is may be singular at the surfaces Σi±. Away from
the common image γ̃ of the γi, the issue is just a potential discontinuity in the extrinsic
curvature across each Σi±. This would lead to a delta-function in the Riemann tensor,
with the delta-function supported on Σi±. The situation at γ̃ is more subtle, but the
above conditions nevertheless imply that the metric on M̃ remains continuous at γ̃. In
particular, for any codimension there is a well-defined notion of surfaces in M̃ that intersect
γ̃ orthogonally. Below, we will sometimes refer to γ̃ below as the splitting surface for M̃.

If we were to smooth out the singularity of M̃ at the splitting surface γ̃ (perhaps using
a complex metric if necessary), then in the limit where the smoothing is removed we could
arrange for the curvatures to become large only in the planes Σ⊥p orthogonal to γ̃ at each point
p ∈ γ̃. As just noted, these Σ⊥p are well-defined despite the singularity at γ̃. We may thus
follow [26] and [27] in using the two-dimensional Gauss-Bonnet theorem to compute what
will amount to delta-functions at γ̃ for the associated components of the Riemann tensor.

Now, the Einstein-Hilbert action is the integral of
√
−gR. As explained in [28], the

end result is that
√
−gR will contain a Dirac delta-function on the codimension-2 surface γ̃.

To write this in a convenient form, let us choose a one-parameter family of neighborhoods
Uε ⊃ γ̃ with topology D × γ̃ where D is a disk. If the Uε shrink to γ̃ as ε → 0, we may
use the above-mentioned form of the Gauss-Bonnet theorem to write the Einstein-Hilbert
action in the form2

SEH = 1
16πGN

∫
M̃

√
−gR

:= lim
ε→0

(
1

16πGN

∫
M̃\Uε

√
−gR− 1

8πGN
P

∫
∂Uε

√
|h|K

)
+ i

(
N

4 − 1
)
A[γ̃]
4GN

. (2.1)

2Ref. [28] considered a Schwinger-Keldysh contour for which the path integral involves exp
(
i
∫
η
√
−gR

)
where η = ±1 changed sign at the splitting surface γ̃ due to γ̃ lying on a time-fold. Here we instead assume
that the sign η is always +1 near the splitting surface. The case η = −1 is just the complex conjugate. In
fact, by introducing appropriate time-folds, one can arrange for any path integral to have any of these 3
behaviors for η in the region near γ̃.
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Figure 2. In a smooth Lorentz-signature spacetime, every codimension-2 surface (red dot) is
approached by four orthogonal null congruences. These approach from future-left and past right
(both blue), and from future-right and past left (both green).

Again, the argument is that the only important contributions from Uε involve the planes
Σ⊥p orthogonal to γ̃, and that those contributions can be computed using the Gauss-Bonnet
theorem. However, integrating over γ̃ allows the result to be written in the form (2.1)
which displays the higher dimensional covariance. Thus in (2.1) the symbol K denotes the
usual codimension-1 traced extrinsic curvature of ∂Uε. This quantity will diverge when ∂Uε
becomes null and, indeed, the integrand

√
|h|K in the second term will typically have a pole

at such points when expressed as an integral over a coordinate λ that agrees locally with
the affine parameter along the null tangent to ∂Uε. The symbol P indicates that we should
take the principle part of the resulting integral over λ, so that the positive and negative
divergences cancel to leave a result that is finite (and real).

However, the form of the complex Gauss-Bonnet theorem stated in [28] requires using
an iε prescription for

√
|h|K that gives an additional non-zero imaginary contribution not

present in the principal part discussed above. Such imaginary parts can be computed
explicitly and yield the net result iN4

A[γ̃]
4GN . In (2.1), we have combined this with the

contribution −i A[γ̃]
4GN to the Gauss-Bonnet theorem that comes from fact that a disk has

Euler character 1 to obtain the final term in (2.1). simply written as a separate term in (2.1).
Here N is the number of non-intersecting null congruences that approach γ̃ orthogonally.
For example, any smooth Lorentz-signature spacetime has N = 4 for any γ̃, corresponding
to null congruences that approach from future-right, future-left, past-right, and past-left as
shown in figure 2. Thus in that case, when combined with the term −i A[γ̃]

4GN that comes from
fact that a disk has Euler character 1, we find N

4 −1 = 0 and the action is real. But in general
our cut-and-paste construction can give N 6= 4 at a general splitting surface γ̃ so that, even
for real Lorentz-signature metrics, there can be a net imaginary contribution to (2.1).

As described in [26–28], the above definition is a natural one in many ways. However,
since the metric on M̃ is real, the sign of the final (imaginary) term is the result of an external
input. It is made so as to suppress contributions in the path integral from those γ̃ with
large N, and thus to agree with results of standard Euclidean computations; see e.g. [28, 29].
We simply take this sign as a definition of our Lorentz-signature action and proceed.

The above construction is easy to generalize to allow any number nS of non-intersecting
splitting surfaces. We assume this generalization below. It would be natural to also allow
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splitting surfaces to intersect, and indeed to form branched networks. But we leave the
study of such intersections for future investigation.

3 Saddle-point methods in general dimension

Having defined the space of paths over which we will integrate, we will shortly wish to
analyze our Lorentz-signature path integral in the semiclassical approximation. Before doing
so, however, it is useful to first take a moment to note certain results from the literature on
saddle-point methods. We also make a small observation that will prove useful in our main
analysis in section 4 below.

The saddle-point approximation is familiar to every student of modern physics. And for
a single variable of integration, it is also familiar that the mere existence of a saddle-point
p does not guarantee its relevance to the semiclassical limit of the given integral. Indeed,
to be relevant it must be possible to deform the original contour of integration, without
passing through singularities, so that the deformed contour follows the steepest descent
contour through p, at least to a suitable extent.

Checking this condition can be complicated, and generally becomes even more so for
higher dimensional integrals (involving several variables of integration). Here we will be
interested in the infinite-dimensional limit that defines our path integral. Luckily, however,
there are theorems from either Morse theory or Picard-Lefshetz theory that greatly simplify
the analysis for the particular case to be studied below.

The relevant results are explained in [35–40] and summarized in [41], whose presentation
we will largely follow and to which we refer the reader for details. Here we suppose that we
are interested in an integral over some list of integration variables xi for i = 1, . . . , d, and
that each is integrated over the real line.3 Thus we integrate over the real contour ΓR in
the corresponding n-dimensional complex plane Cn and we regard our path integral as a
formal n→∞ limit.

The first important fact is that every stationary point p of the action is associated
with two other contours of interest called Jp and Kp, both of which again have the same
real dimension as Γ. They are defined so that the phase of our integrand is constant along
both contours. The first contour, Jp, is the descent contour which contains all points that
can be obtained by using the magnitude of the integrand to generate a gradient flow and
following this flow downward from p. Similarly, the second contour Kp is the ascent contour
which contains all points that can be obtained by using the magnitude of the integrand to
generate a gradient flow and following this flow upward from p. The relevant theorem then
states that, without changing the value of the integral, Γ can be deformed to a contour Γ̃
consisting of np copies of each Jp, where np is the intersection number of Kp and Γ. Thus a
given saddle p contributes precisely when np 6= 0.

3The reader may ask if the path integral over Lorentz-signature metrics is in fact of this form, as the
constraint on the signature means that the space of allowed metrics has a finite boundary. One may avoid this
issue by thinking of the path integral as integrating over vielbein fields, which are essentially a square-root
of the metric taken so as to ensure Lorentz signature always. But we will assume here that the semiclassical
limit is not sensitive to such subtleties.
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We will then make use of the following further observation. Suppose that the original
integral is oscillatory, in the sense that the magnitude of the integrand is constant along Γ.
Suppose also that the saddle p happens to lie on the original contour Γ. Then the ascent
contour Kp clearly intersects Γ, and must do so transversely since the magnitude of the
integrand is constant along Γ (and thus does not ascend along Γ). This then contributes a
local intersection number ±1 to np.

Furthermore, the fact that Kp ascends from p means that the magnitude of the integrand
at all points q 6= p on Kp is strictly greater than at p, and thus also greater than the
(constant) magnitude on Γ. As a result, Kp can have no other intersections with Γ. Thus
the only contribution to np comes from p itself, and we find np = ±1. In particular, in
this context we have established that the saddle at p makes a non-zero contribution in the
semiclassical limit.

This is the key observation to be used in section 4 below. In particular, for a fixed
number nS of conical singularities, the action of any spacetime can be computed using (2.1)
and adding appropriate (and necessarily real) matter terms. All terms in (2.1) are manifestly
real except for the final term, so it is only this final term that controls the magnitude of
our integrand and we find

|eiS | =
nS∑
i=1

e

(
1−Ni

4

)
A[γi]

4G , (3.1)

where we have allowed for nS distinct conical singularities γi. Note that (3.1) involves
the intrinsically discrete parameters Ni, which label the number of null congruences that
approach the conical singularity γi. Thus the contour of integration in fact consists of an
infinite number of distinct contours, one for each choice of nS and the Ni for i = 1, . . . , nS .
Furthermore, for given nS and Ni, the magnitude (3.1) depends only on the areas A[γi]. As
a result, if we define sub-contours ΓA1,...,AnS

with fixed values of nS and the corresponding
A[γi], then the magnitude of our integrand is necessarily constant along each ΓA1,...,AnS

.
Thus, as just argued above, any saddle lying on our real contour will, for appropriate nS ,
A[γi], contribute to the semi-classical approximation of the integral over ΓA1,...,AnS

with
weight nS = ±1. It will then remain only to analyze the remaining finite-dimensional set
of integrals over the A[γi] and any other finite set of continuous parameters that we may
choose to fix below, as well as to perform the sum over nS .

4 The canonical partition function as a Lorentz-signature path integral

As described in the introduction, the partition function of a stable non-gravitational system
may be represented as the Lorentz-signature path integral (1.3) by using an appropriate
weighting function fβ(T ). We will now investigate the analogous construction (1.2) in
gravitational systems and evaluate the result in the semiclassical limit. In doing so we will
see that, if the Lorentzian path integral is restricted to an integral over a codimension-2
subcontour, the semiclassical approximation is controlled by a singular generalization of
the standard Euclidean black hole saddles. Using this result to perform the final two
integrals then indicates the standard smooth Euclidean black hole saddles contribute with
non-zero weight to the final partition function when the corresponding black holes have
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positive specific heat. Our main argument is presented in section 4.1 below, after which
sections 4.2–4.5 provide additional comments on the grand canonical ensemble for rotating
and charged black holes, the microcanonical ensemble, extreme black holes, and higher
derivative corrections.

4.1 Main argument

For convenience, we restrict the discussion in this section to Einstein-Hilbert gravity with
cosmological constant and minimally coupled matter. However, we will comment on the
extension to theories with higher derivative corrections in section 4.5. We also find it
useful to restrict attention to contexts with timelike boundaries, which might be either an
asymptotically locally AdS boundary or a finite-distance boundary representing the walls
of an idealized reflecting cavity.4 But it is then trivial to obtain the asymptoically flat case
by setting the cosmological constant to zero and then taking a limit where a timelike cavity
wall recedes to infinity.

Let us now begin by defining the ZL(T ) that appear in (1.2). We take these to be given
by a one-parameter family of Lorentz-signature path integrals over spacetimes of the form
described in section 2 and with boundaries that are topologically Y × S1. For each path
integral, the boundary metric on Y × S1 is also fixed, though we will take this metric to
depend on T in a manner specified below. We require Y ×S1 to have a timelike Killing field ξ∂
with closed orbits that wrap the S1 factor at each point on Y . But since we have not required
the metric on Y × S1 to be a metric product, this ξ∂ need not be hypersurface orthogonal.

Let us fix conventions by choosing a particular such boundary metric to define ZL(T )
for T = 1 and normalizing ξ∂ so that the associated Killing time is periodic with period
T = 1; i.e., so that the Killing parameter runs over [0, 1] along any orbit of the Killing field.
Note that this boundary metric can be reconstructed by considering any closed hypersurface
Σ (say, diffeomorphic to Y ) and using the induced metric on Σ, together with the vector
field ξ∂ on Σ and the knowledge that the Killing time has period T = 1. We then take
ZL(T ) to be defined using a boundary metric with identical data on Σ but where the Killing
time has period T .

In the context of the AdS/CFT correspondence, such a path integral would indeed
compute Tr

(
eiHT

)
in the dual field theory. It is an interesting and deep issue whether

one can more generally prove that gravitational path integrals with periodic boundaries do
indeed represent traces over some Hilbert space; see e.g. comments in [49, 50].

We now wish to study the semiclassical limit of

Z(β) =
∫
dTfβ(T ) ZL(T ) (4.1)

for appropriate fβ(T ). As discussed in section 2, our Lorentz-signature path integrals
involve a sum over the number nS of codimension-2 conical singularities in the spacetime.

4It is an interesting question whether the full non-linear theory is physically sensible even at the classical
level with finite-distance Dirichlet boundary conditions; see [42–46] for discussions of mathematical issues
and [47] for discussion of more physical issues, though this setting has been the subject of much recent
exploration in the context of AdS/CFT [48] and references thereto.
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We will argue below that Euclidean black hole contributions come from the sector with
nS = 1. There will generally be semiclassical contributions from other sectors as well,
especially from the nS = 0 sector. As always, it is separate question to ascertain which
saddle actually dominates the partition function. For example, the classic Hawking-Page
transition [51] in asymptotically anti-de Sitter spacetimes is described by an exchange of
dominance between a black hole solution (which for us is nS = 1) and periodically identified
empty Euclidean AdS (which has nS = 0).

It is instructive to first discuss the rather trivial way in which periodic Euclidean AdS
emerges as an nS = 0 saddle for (4.1) with appropriate choices of the bulk action and
the boundary manifold Y × S1. In doing so, we will focus on showing that this saddle
contributes to the semiclassical approximation with non-zero weight. We begin by first using
the semiclassical approximation to evaluate the integrals that define ZL(T ). This means
that we seek solutions to the classical equations of motion which have Lorentz-signature
Y × S1 boundaries with period T . Let us suppose that the dynamics allows a stationary
empty AdS solution with boundary Y × R, such that translations along the stationary
Killing field act on the boundary by shifting R while leaving points on Y fixed. Then we
may clearly compactify this solution to match our Y × S1 boundary conditions with any
period T . Furthermore, these solutions are described by real Lorentz-signature metrics and
so lie on the original contour of integration. Finally, since the Lorentzian action is real for
nS = 0, the integrand of our path integral has constant magnitude |eiS | = 1 on the nS = 0
contour. It thus follows from the observation at the end of section 3 that any such saddle p
contributes to the semiclassical approximation for ZL(T ) with non-zero weight np = ±1.
Other periodic Lorentz-signature solutions (see e.g. [52]) will also contribute, though we
will not explore such effects here.5

Since empty AdS is stationary, the action is proportional to T . Calling the coefficient
−E, our saddle contributes e−iET to ZL(T ). Inserting this into (4.1) and integrating over
T gives the expected f̃β(E) := e−βE . While we defined fβ(T ) to allow us to perform the T
integral without computation, it is instructive to examine the details. In particular, let us
choose fβ(T ) = 1

2πi
eE0(−β+iT )

T+iβ . Then

∫
dTfβ(T )e−iET = 1

2πi

∫
dT

e−βE0e−i(E−E0)T

T + iβ
. (4.2)

But for E > E0 we may close the given (real) contour in the lower half of the complex T
plane so that Cauchy’s theorem reduces evaluation of the integral to computing the residue
at T = −iβ. As desired, the result is e−βE , but we also see that this comes entirely from
the region near T = −iβ. We may thus think of it as arising from the classical Euclidean
solution given by analytically continuing our periodic empty AdS to T = −iβ.

We would now like to give an analogous argument using black holes in the sector nS = 1,
where each spacetime contains a non-trivial codimension-2 conical singularity. However, this

5The analytic continuation of such solutions to Euclidean signature boundary conditions should also
contribute to standard Euclidean path integral analyses. It is interesting that this does not appear to
have been previously studied in the literature. But if there is an appropriate positive action theorem, the
associated saddles will in any case always be subleading compared with empty AdS space.
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sector cannot contain saddle points for ZL(T ). This is because, as discussed in section 2,
the presence of a non-trivial conical singularity requires a delta-function in the Ricci scalar.
But in Einstein-Hilbert gravity coupled to familiar matter fields such delta-functions are
forbidden by the equations of motion. And the same will remain true when higher derivative
corrections are included.

On the other hand, it turns out that we can find configurations that are saddles for
most of the integrals that define ZL(T ). In particular, one of the integrals that defines
ZL(T ) can be taken to be an integral over the area A[γ̃] of the conical singularity. Let us
first fix some arbitrary value of A[γ̃] and perform the remaining integrals that define ZL(T ),
after which we will later return to integrate over A[γ̃]. Since we have not yet integrated
over A[γ̃], saddles for these integrals need not satisfy one of the Einstein equations at γ̃. In
particular, based on analogous Euclidean-signature analyses in e.g. [53] and [31], we expect
that this allows the freedom to include an arbitrary conical singularity at γ̃ of the form
discussed in section 2. For a given value of A[γ̃], our task should then simply be to adjust
the strength of this conical singularity so that there is a saddle in which γ̃ has the desired
area. We will refer to these spacetimes as fixed-area saddles below to distinguish them from
geometries that satisfy the full Einstein equations everywhere. Rather than attempt to
rigorously characterize general Lorentz-signature fixed-area saddles in detail, we will simply
proceed to first construct candidate such saddles and to then show that they are indeed
stationary points of (2.1) under first-order variations that preserve A[γ̃].

The interesting observation is that fixed-area saddles of this sort do in fact generally
exist on what we call the original real Lorentz-signature nS = 1 contour. In particular, let
us begin by considering any stationary black hole exterior with a Killing horizon for which
the horizon-generating Killing field ξ both preserves a boundary of the form Y × R and
agrees there with ξ∂ . This condition will in particular constrain the angular velocity of the
black hole when Y admits rotational symmetries. And when coupled to a Maxwell field we
would also fix the electric or magnetic potential on the boundary. However, the boundary
metric does not constraint the Killing energy Eξ, so we can generally adjust this parameter
to obtain an exterior geometry MA in which the horizon area A agrees with area A[γ̃] we
wish to fix at our conical singularity γ̃. In the main discussion below, we will assume MA

to have a bifurcate Killing horizon (so that the surface gravity κ is non-zero), though we
will include brief comments on the extreme κ = 0 case in section 4.4. The singularity γ̃ will
appear shortly in the next step of our construction.

We take the exterior MA include the bifurcation surface, but not the future or past
horizons; see figure 3. Taking a quotient of this exterior by the diffeomorphism6 eξT then
yields a spacetime MA,T on which ξ continues to generate an isometry. However, the new
isometry on MA,T has U(1) orbits that contract to points at the image of the bifurcation
surface for the original black hole exterior MA. We will henceforth denote this image as γ̃
and, for convenience, we may sometimes continue to refer to it as a bifurcation surface for
MA,T even though γ̃ has no orthogonal null congruences in MA,T ; see again figure 3.

6This is the diffeomorphism that moves every point along its Killing orbit by a Killing parameter T .
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Figure 3. We take our black hole exterior MA to include the bifurcation surface γ (red dot), but
not the past horizon H− (dashed blue) or the future horizon H+ (dashed green). As a result, the
quotient by eξT may also be described by introducing two slices Σ± (each at a constant Killing time
±T/2), focussing on the region M̃A between them, and identifying Σ+ with Σi. This is a special
case of the cut-and-paste construction of section 2 using only a single spacetime M1 = MA. Note
that any geodesic that remains in the region M̃A and approaches the bifurcation surface must do so
in a spacelike manner. As a result, the quotient MA,T contains no null congruences that approach
the image of the bifurcation surface. This means that MA,T has N = 0 in the notation of section 2.
Recall also that the image of γ in MA,T will be called γ̃.

As also illustrated in figure 3, the quotient MA,T lies in the class of spacetimes described
in section 2, and thus it lies on the original real Lorentz-signature contour of integration for
nS = 1. So, if it does indeed define a fixed-area saddle, it will necessarily contribute to the
semiclassical evaluation of our fixed-area path integral as described at the end of section 3.

Now, by construction, MA,T solves the equations of motion away from γ̃. Furthermore,
most of the equations of motion will also hold at γ̃ by continuity. The one subtlety in this
argument is that, as described in section 2, the Riemann tensor of MA,T turns out to be
the sum of two terms. One term is identical to the Riemann tensor of the parent space M,
and this term is indeed continuous. The other term is a delta-function of some constant
(complex) amplitude supported on γ̃.

To some readers it will now be readily apparent that MA,T is indeed a fixed-area saddle.
This may be especially clear by analogy with the Euclidean discussion in e.g. [53]. However,
for those who are interested we provide the details of the Lorentz-signature argument for
MA,T in appendix A. This then establishes that MA,T contributes with non-zero weight to
the semiclassical evaluation of our fixed-area path integral.

As usual, and as forewarned above, the question of whether this contribution in fact
dominates the fixed-area path integral will generally require further investigation. In
particular, in many cases there will be several stationary black hole exteriors with boundary
Y × R and having the same A. They then give rise to a corresponding number of quotients
MA,T , of which at most one can domiante. This multiplicity is often associated with
the topology of the black hole horizon. Examples of this sort arise in AdSd × X for
compact X. For appropriate Y × S1, one saddle will dimensionally reduce to the usual
AdSd-Schwarzschild black hole, while other saddles will localize to various extents within the
X factor. We will not explore the associated phase structures here, though our arguments
below will ensure that the implications for the full partition function are the same as in
standard Euclidean analyses.
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Note, however, that the construction above does not generally yield families of solutions
with additional continuous parameters. In particular, when Y is a sphere, one might ask
what happens if one attempts to hold A constant while changing the angular momentum
J of the black hole. The answer is that this changes the angular velocity Ω of the black
hole as well, so that the horizon generating Killing field is now some χ = ∂t + Ω′∂φ with
Ω′ 6= Ω. But since we have not changed the metric on the boundary Y ×S1, the Killing field
along the boundary S1 factor remains ξ∂ = ∂t + Ω∂φ with the original value of Ω. So the
analogue of the above quotient construction would still continue to identify the new black
hole exterior under translations generated by ξ = ∂t + Ω∂φ in the bulk, which differs from χ

by (Ω− Ω′)∂φ. As a result, ξ will now map the bifurcation surface to itself in a non-trivial
way, and the quotient will no longer be of the form described in section 2 above.7

We now wish to evaluate the Lorentz-signature action on each MA,T , and to write
the result in a useful form. Here again we may refer to the results of section 2, since
MA,T is of the form studied there. Since N = 0, we may thus use (2.1) to write the full
Lorentz-signature action S of MA,T in the form

S = lim
ε→0

[
1

16πGN

∫
MA,T \Uε

√
−g (R+ 16πGNLmatter)−

1
8πGN

∫
∂Uε

√
|h|K

]

+
∫
∂MA,t

B− i A[γ̃]
4GN

. (4.3)

Here Lmatter is the matter Lagrange density (which we take to include any cosmological
constant term), and B describes whatever boundary terms are required at ∂MA,t. Note that
we have dropped the principal part symbol P that in (2.1) acted on the Gibbons-Hawking
term at ∂Uε. This is possible here since we can choose ∂Uε to be everywhere timelike so that
the integrand never diverges. Indeed, we can choose Uε to the be the region within some
geodesic distance ε of γ̃, in which case the integrand is invariant under all symmetries of
the black hole. In particular, for a Schwarzschild-(A)dS black hole in standard coordinates,
the quantity

√
|h|K is constant on Uε.

Recall now that we consider only minimally coupled matter fields so that the matter
action may be written entirely in terms of fields and their first derivatives. Such fields are
bounded near γ̃. Since the volume

∫
∂Uε

√
|h| of the interior boundary vanishes as ε→ 0,

this means that any corresponding matter boundary terms on ∂Uε vanish as ε→ 0. We are
thus free to add such terms to (4.3) as well. In particular, we may add the matter boundary
term that promotes

∫
Lmatter to a good variational principle for some class of boundary

conditions on ∂Uε. Doing so, and combining it with the first three terms in (4.3) defines an
action S(MA,T \ Uε) for a gravity-plus-matter system on some manifold X × S1 where ∂X
is homeomorphic to Y ∪ γ̃. In particular, the S1 factor does not degenerate anywhere in
this MA,T \ Uε. We can thus write this action in the Hamiltonian form

S(MA,T \ Uε) =
∫
S1

(
−H +

∫
X
pαq̇

α
)

(4.4)

7The astute reader may note that, since we have not required it to act orthogonally to the Y factor in any
sense, the boundary Killing field ξ∂ that acts along the S1 factor is generally not unique. For example, on
S3 × S1 one can add to any ξ∂ any integer multiple of a 2π rotation on the S3. This leads to an additional
discrete family of solutions for each A, T , analogous to those studied in Euclidean signature in e.g. [54, 55].
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in terms of appropriate coordinates qα on the space of fields at each spacetime point and
their conjugate momenta pα. Furthermore, since our action describes Einstein-Hilbert
gravity with minimally coupled matter, and since we have an explicit Gibbons-Hawking
term at ∂Uε, the Hamiltonian H can be written as an integral of constraints together with
boundary terms at ∂MA,T .

Let us now recall that H is the Hamiltonian that generates translations along ξ. This
means that the boundary term at ∂Uε includes a factor of ξ evaluated near the bifurcation
surface γ̃. But since ξ vanishes at γ̃, the limit ε → 0 of the gravitational Hamiltonian
boundary term at ∂Uε will vanish.8 We may thus drop it from our action and think of H
as simply being the sum of constraints and the usual boundary term at S1 × Y . It’s value
on ∂MA,T is thus just the usual conserved energy Eξ associated with the Killing field ξ for
the black hole exterior ∂MA that was mentioned at the beginning of this section.

To complete the computation of (4.4), we take q̇ = £ξq and note that this vanishes
due to the Killing symmetry of ∂MA,T . Thus (4.4) is simply −EξT and the contribution of
our black hole quotient saddles to ZL(T ) takes the form

ZL,BH(T ) =
∫
dA eiS(MA,T ) =

∫
dAeA/4Ge−iEξT , (4.5)

where we remind the reader that for a given family of black holes this Eξ is a function of
the horizon area A. To obtain the full partition function ZL(T ), we would also need to sum
over the possible families of black holes, and to include other contributions from sectors
with nS = 0 or nS ≥ 2.

Note that for a non-gravitational system with a Bekenstein-Hawking density of states
eA/4GdA, our (4.5) would yield Tr(eiHξT ), where Hξ is the operator with eigenvalues Eξ(A).
However, we noted already in the introduction that we did not expect ZL(T ) to define a
sensible function of T . This result can now be seen explicitly since in most contexts the area
A of a black hole is not bounded.9 Thus the integral in (4.5) fails to converge at large A.

Instead, we expected to obtain sensible results only after integrating over T in (4.1).
Let us therefore consider

ZL,BH(β) =
∫
dAdT fβ(T )eiS(MA,T ) =

∫
dAdT fβ(T )eA/4Ge−iEξT , (4.6)

with the understanding the we should perform the T integral before integrating over A.
As in our discussion of empty periodic AdS, this T integral clearly computes the Fourier
transform f̃β(Eξ) which, just below (1.4), we defined to be e−βEξ for E greater than some
E0. Here we simply choose E0 to be the ground state energy of our system, in the sense

8An important point here is that the component Πξξ = Πijξiξj of Brown-York stress tensor Πij at
∂Uε vanishes as fast as the norm ξiξi as ε → 0. Since Πij = 1

8πG (Kij −Khij), where hij is the induced
metric on ∂Uε, this is the one component of Πij in which the extrinsic curvature component Kξξ does not
appear. This Kξξ is large in the sense that Kξξ

ξiξi
diverges, so it represents a large extrinsic curvature in any

orthonormal frame. The appearance of this component in the trace (K) is what prevents us from dropping
the Gibbons-Hawking term in (4.3).

9An interesting exception is when one studies black holes inside a cavity on whose walls that boundary
metric has been fixed. In such cases, the area A of the black hole is typically bounded by the area of the
cavity wall.
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that it gives the infimum of the energy Eξ over all solutions with boundary conditions
Y × R as defined above.10 Thus Eξ ≥ E0 for all black hole exteriors MA.

As in the discussion of periodic empty AdS around (4.2), the result e−βE can be viewed
as arising entirely from the region the complex T -plane near T = −iβ. We may thus also
think of it as arising from the classical solution given by analytically continuing MA,T

to T = −iβ.
When ξ is hypersurface orthogonal this analytic continuation gives a spacetime that,

away from γ̃, is locally identical to the usual Euclidean black hole of area A. However, the
period of Euclidean time has been enforced by hand to agree with the external parameter
β, and thus need not agree with the preferred value 2π/κA determined by the surface
gravity κA of MA. As a result, we generally find a conical singularity at the corresponding
Euclidean horizon. This should be no surprise since, as discussed earlier, it is the integral
over A[γ̃] that in the semiclassical approximation would impose the requirement that there
should be no delta-function in the Ricci scalar at this horizon. This integral has not yet
been performed, but we will turn to it shortly.

Before doing so, however, we note that when ξ fails to be hypersurface orthogonal
the analytic continuation to T = −iβ instead yields metrics that are complex-valued.
This is familiar from, e.g., the naive analytic continuation of the Kerr solution (say, in
co-rotating coordinates). Indeed, even the metric on the boundary Y × S1 is generally
complex. Although complex metrics may be unfamiliar to some readers, they are arguably
the most natural way to study the thermodyanmics of rotating black holes [56, 57]. We will
discuss this further in section 4.2 below.

Our black hole contributions to the partition function may now be written

ZL,BH(β) =
∫ ∞

0
dA e−βEξeA/4G, (4.7)

where, again, Eξ is a function of A specified the particular family of black hole exteriors
MA used above. This is precisely the standard form for the canonical ensemble partition
function of a statistical mechanical system with density of states eA/4GdA. The usual
analysis then tells us that, for small G, our (4.7) may be approximated by a sum over local
minima of the free energy Fξ = Eξ − A/4βG, and that such local minima are precisely
those stationary points with positive ‘specific heat’ dEξ

dτ , where τ = τ(A) is an effective
temperature defined by τ = 4GdEξ

dA . This suggests that smooth Euclidean black hole
saddles (or complex generalizations thereof) with the specified angular velocity Ω and
inverse temperature 1

4G
dA
dEξ

= β contribute to the semiclassical approximation for Z(β)
with non-zero weight when the corresponding Lorentz-signature black hole has positive
specific heat (in the sense of having positive dEξ/dτ). We also see that there are no such
contributions from those with negative specific heat, which instead correspond to local
maxima of the free energy Fξ = Eξ −A/4βG.

Before concluding this section, we should again pause to note what we believe to be a
small technical caveat. What we actually did above was to show that smooth Euclidean black

10We restrict attention to systems where such an infimum exists. If it does not, one expects the canonical
ensemble to be ill-defined.
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holes with positive specific heat contribute to the fixed-area path integral, and that they also
define saddles that contribute to the integrals we performed over A and T . This, however, is
not quite the same as proving definitively that they contribute with non-zero weight to the
full partition function. The issue is related to the fact that we may, perhaps, have missed
equally important or more dominant contributions from saddles or constrained-saddles
that we did not identify above and that, when the final integral over constrained saddles is
extended to include such new contributions, it is possible that our positive specific heat
black holes no longer define local maxima of the integrand (say, in the analogue of (4.7)),
but may perhaps give only saddle points). It seems likely that this is related to the fact
that the criterion found above for a black hole to contribute depends only on its specific
heat while, on physical grounds, for e.g. charged and rotating black holes one expects the
criterion to depend on the full Hessian of the free energy with respect to all thermodynamic
potentials. More will be said about this in section 5 below.

4.2 The grand canonical ensemble for rotating and charged black holes

The above argument applies to all classes of black hole solutions, whether or not they have
electric charge, angular momentum, or more general conserved charges. However, it is
worth commenting further on the charged and/or rotating contexts. The comments below
are standard, in the sense that similar remarks have appeared in many past discussions of
black hole thermodynamics. But we include them here for completeness and clarity.

Let us first address the case of rotation. To this end, let us thus suppose that Y × S1

admits both a time-translation ∂t and a time-reflection symmetry that preserves the orbits
of ∂t. We also suppose that Y itself admits a Killing field ∂φ so that we may define an
angular velocity Ω by writing ξ = ∂t + Ω∂φ. In this case, the conserved charge Eξ associated
with ξ may be written in the form Eξ = E − ΩJ , where (due to the usual sign conventions)
E, J are the conserved charges associated with ∂t, ∂φ. Here we remind the reader that it is
sufficient in this discussion to discuss Killing fields of the boundary Y × S1 whether or not
they can be extended to bulk Killing fields for any particular solution.

Similarly, if the boundary conditions on Y × S1 fix a non-zero electric potential Φ,
then the charge Eξ defined by writing the action in canonical form contains an explicit
term −QΦ, where Q is the total electric charge. In this context it is thus natural to write
Eξ = E − ΩJ −QΦ so that our final result (4.7) becomes

ZBH(β,Ω,Φ) =
∫ ∞

0
dA e−β(E−ΩJ−QΦ)eA/4G, (4.8)

which takes the form of a standard grand canonical ensemble with fixed potentials Ω,Φ.
Now, as described above, each A in the integral (4.8) can be associated with the

analytic continuation of some MA,T to imaginary Killing times. Recall that the analytically-
continued metric is real when ξ is hypersurface orhtogonal, but more generally it is complex.
Similarly, for nonzero electric potential Φ the analytically-continued electromagnetic vector
potential will have imaginary components.

However, we can also typically also describe rotating or charged black holes using real
Euclidean metrics by making additional analytic continuations of Ω and Φ as in [58, 59].
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For this discussion we further assume the exterior solutions MA,T to be invariant under
(t, φ)→ (−t,−φ) as is the case for the (A)dS-Kerr-Newman family of solutions and its kin.
Here it is useful to in fact consider a different analytic continuation defined by keeping t
real but writing Ω = −iΩE and Φ = −iΦE and taking ΩE ,ΦE real. This yields a complex
metric that is invariant under the combined action of t→ −t and complex conjugation.

Since we now have ξ = ∂t + iΩE∂φ, we may also describe this symmetry as invariance
under simultaneously taking complex conjugates and changing the sign of the Killing
parameter η along the orbits of ξ. As a result, the further analytic continuation η → −iηE
for real ηE will yield a solution that is invariant under complex conjugation alone. Thus
this metric is real. It is also manifestly Euclidean to leading order near the bifurcation
surface (where the Lorentz-signature metric takes the universal Rindler-like form (A.2)).
As a result, the metric will be real and Euclidean everywhere so long as it is smooth and
invertible at every point. This is again the case, for example, for the familiar rotating and
charged black holes in asymptotically flat or asymptotically AdS spacetimes. Furthermore,
since the T used above is in fact the period of the Killing parameter η, this real metric is
just the continuation we need to set T = −iβ with real ΩE . To summarize then, while for
real Ω our T = −iβ spacetimes are generally complex, analytically continuing the angular
velocity to real ΩE yields what are often called the (real) rotating black hole solutions in
Euclidean signature.11

4.3 The microcanonical partition function

So far we have studied the canonical ensemble and its rotating and charged cousins. But
the main argument above is just as easily applied to the microcanonical partition function.
This is itself an interesting statement, as when one attempts to formulate the ensembles
directly in terms of Euclidean gravitational path integrals, the study of stability for the
associated microcanonical saddles in asymptotically AdS spacetimes turns out to be more
subtle than for the canonical partition function [60] (though they are more comparable
when studied inside a reflecting cavity of finite size [60, 61]).

In particular, the microcanonical ensemble can be described by choosing the weighting
function f̃(H) in (1.4) to be a Gaussian centered at some energy E0. In the limit of
vanishing width σE , this gives a delta-function so that Tr f̃(H) describes a microcanonical
partition function. Thus we choose

fE0(T ) = eiTE0 e
−T 2/2σ2

2π , (4.9)

where σ = σ−1
E and where we have replaced the previous subscript β with the E0 that is

more appropriate here.
Since we define it in terms of the same ZL(T ) used above, the first stages of the

computation of the microcanonical partition function

Z(E0) :=
∫
dTfE0(T ) ZL(T ), (4.10)

11It is interesting to ask if, instead of performing the analytic continuation ΩE = −iΩ, one could instead
obtain similar results by integrating Z(β,Ω) against an appropriate function of Ω,ΩE in analogy with (1.3).
However, it is not immediately clear how to arrange the desired construction so that all integrals converge.
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proceed precisely as in the canonical case to give (4.6). Again, the T integral simply
computes the Fourier transform of fE0 . For our Gaussian, the exact result is given by
stationary phase methods by solving

− T/σ2 + iE0 − iEξ = 0, (4.11)

or T = −i(Eξ − E0)σ2. Using this leaves us with∫ ∞
0

dAeA/4G
σ√
2π
e−(Eξ−E0)2σ2/2, (4.12)

where, as usual, Eξ should be viewed as a function of A determined by the particular family
MEξ of black hole solutions. As σ → ∞, this final integral is dominated by a saddle at
Eξ = E0 + ε with β(Eξ) = εσ2. Thus we find the integral to give eA(E0)/4G as σ → ∞,
which is the expected answer in the microcanonical ensemble with ξ-energy Eξ = E0.

Let us also briefly comment on the σ2 →∞ limit of the geometries that correspond to
the saddle point values Eξ∗, T ∗. From (4.11) we have T ∗ = −i(E∗ξ − E0)σ2. Furthermore,
thinking of (4.12) in terms of an integral over Eξ, the saddle for (4.12) will satisfy

d

dEξ

A

4G |E
∗
ξ

= (E∗ξ − E0)σ2. (4.13)

Now, the left-hand-side of (4.13) is precisely the quantity that thermodynamics with entropy
A/4G would call the inverse temperature β∗ at the saddle. In particular, β∗ is precisely the
period of imaginary time that removes the potential conical singularity at γ̃. Again, this is
because the semiclassical evaluation of the integral over A imposes the equation of motion
that comes from varying A[γ̃], which in particular sets to zero the coefficient of any horizon
delta-function in the Ricci scalar. Thus we find T ∗ = −iβ∗, and as σ →∞ (4.13) requires
E∗ξ → E0. In this sense our microcanonical partition function is described semiclassically
by precisely the usual (smooth) Euclidean black hole geometry with energy E0.

4.4 Extreme black holes

The analysis of section 4.1 considered only black holes with bifurcate Killing horizons. The
reader may then ask what one finds in the zero-temperature case β =∞, which one expects
to be described by extreme black holes. The horizons of such black holes are well-known
not to be bifurcate, but instead to have an ‘internal infinity’ at the past end of the future
horizon and at the future end of the past horizon. In the Euclidean context, the internal
infinity means that extreme black holes have a different topology than non-extreme black
holes, a feature which appears to lead to a surprising thermodynamic discontinuity [62],
but also to interesting discussion of how this may be cured by string theory [63].

In this context, it is interesting to note that our formulation of the canonical partition
function is well-defined only for finite β. In particular, for E0 ≥ 0 the integrand of (4.2)
simply vanishes at β =∞ due to the divergent denominator. Thus we naturally view zero
temperature as a limit, first evaluating Z(β) for finite β and then taking β →∞. In this
way our formalism avoids the above confusions and, by construction, obtains results that
are continuous at zero temperature.
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Of course, one can also study extreme black holes using the microcanonical ensemble.
At least as described in section 4.3, this again turns out to treat extremal black holes as
a limit of the non-extreme case. That is the case because using a Gaussian (or any other
smooth function) to restrict the allowed energies to a small window yields an integral over
area A as in (4.12), and this integral is not sensitive to the values of the integrand on sets
of measure zero.

Now, the reader may note that simply taking fE0(T ) ∝ e−iE0T would formally insert a
strict delta-function into (4.12). However, since there are no black holes below exremality,
in this case the delta-functions would have support only on the boundary of the region of
integration. In such cases the action of the delta-function is not well-defined, though again
one may take it to be defined by a limit taken from inside the region of integration. Doing
so again renders the extreme partition function identical to the limit obtained from the
non-extreme case.

4.5 Remarks on higher derivative corrections

The argument above relied on using the Einstein-Hilbert action in the form (2.1) to evaluate
contributions to the path integral from geometries with (Lorentzian) conical singularities.
Such singularities may be said to contribute delta-functions to the Riemann tensor. In this
sense they are regions of strong curvature, and the reader may ask whether this renders our
argument highly sensitive to UV corrections such as higher-derivative terms, which might
then contribute badly divergent powers of delta-functions.

It is thus interesting to note that by using technology from [31], the argument of
section 4.1 above can also be applied to gravitational theories with perturbative higher
derivative corrections. Furthermore, in this context, the associated corrections to the final
answers for any of our partition functions are indeed perturbatively small.

To understand this point, recall again that in Einstein-Hilbert gravity the area A of the
bifurcation surface is 4G times the entropy of the corresponding stationary black hole. With
higher derivative corrections, the notion corresponding to A

4G is the Wald entropy [64], which
we also call the geometric entropy12 σ. It is thus natural to proceed as above replacing
A
4G by σ.

We thus consider stationary black hole exteriors Mσ and their quotients Mσ,T . This is
precisely the same sort of quotient discussed above, so we obtain precisely the same sort
of Lorentzian conical singularities at the would-be bifurcation surface γ̃. We then wish to
argue that these define stationary points of an appropriate gravitational action in which σ
has been fixed as a boundary condition.

Now, [31] studied fixed-σ variational principles for Euclidean-signature metrics and
argued that their stationary points are locally identical to stationary points of original
higher-derivative gravity theory, except that there can be an arbitrary conical singularity on
the surface13 γ̃ that defines σ. In other words, the analytic continuations of our Mσ,T are
indeed stationary points. Furthermore, [31] showed that the net contribution of the conical

12Since we consider stationary spacetimes, the entropies of [30] agree precisely with the Wald entropy.
13This surface is also required to satisfy an analogue of an extremal surface condition, but that condition

is trivially satisfied by the singular surfaces in Mσ,T due to the Killing symmetry along ξ.
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singularity to the associated Euclidean action is precisely σ(m− 1), where 2πm is the total
angle subtended by a circle around the conical singularity (i.e., where 2π(m − 1) is the
familiar conical deficit angle). For later use we note that, even though it is associated with
the singularity, the contribution σm to the action is proportional to the period of Euclidean
time (since this is linear in m), but that the remaining −σ is not. All other terms in the
action describing the region away from the conical singularity are manifestly proportional
to the period β of Euclidean time.

As noted in [28], one may formally analytically-continue the imaginary time results
of [31] to real time. This continuation will be further discussed in [34]. After performing
this continuation, one can apply the results directly to the Lorentzian quotients Mσ,T . In
doing so, we find as in the Einstein-Hilbert case that the real part of m vanishes, so that
the imaginary part of the Lorentzian action (or the real part of the Euclidean action) is
just −σ. We may thus write

eiS(Mσ,T ) = eσe−iEξT , (4.14)

where Eξ is the coefficient of the part of the action that is linear in T . Hamilton-Jacobi
theory of course guarantees that this Eξ can still be interpreted as the Killing energy of
the higher-derivative theory associated with the boundary Killing field ξ∂ . As a result, the
argument with higher derivative corrections is isomorphic to that given for Einstein-Hilbert
gravity but with A

4G replaced by σ. And since the difference σ − A
4G is perturbatively small,

the effect of the higher derivative terms on the final partition functions is perturbatively
small as well.

It might seem that this is the final story since, as phrased above, this argument seems
quite satisfying. However, there is an important caveat which indicates that more work is
needed for a full understanding of such higher derivative corrections. The point is that the
above argument was based on taking the Euclidean (i.e., imaginary time) analysis of [31]
and performing an analytic continuation to real time. For the stationary metrics that give
the constrained saddles above, this continuation gives a real metric (at least after possible
appropriate further analytic continuations analogous to ΩE → iΩ, which is the inverse of the
continuation discussed above for rotating black holes). Our Mσ,T are thus clearly stationary
points with respect variations within the class of analytically continued metrics. But since
the general such metric is complex, it is not immediately clear how this variational principle
is related to our goal of taking real Lorentz-signature metrics as the defining contour for
the gravitational path integral. One would thus like to show corresponding results for a
variational principle defined on a class of manifestly real spacetimes like the ones defined via
cut-and-paste in section 2. This will in fact be done in [34] at first order in the imaginary
part of the parameter m mentioned above.

Now, the imaginary part of m measures the amount of Lorentz boost associated with
parallel transport around the conical singularity. In a real Lorentz-signature spacetime this
is not generally infinitesimal, so the extension to finite Im m is important. Although this
extension is not yet in hand for general metrics, as noted above the analytic extension of
stationary Euclidean metrics (i.e., those with a U(1) symmetry) gives real Lorentz-signature
metrics. This means that the analytic continuation of [31] does give a good variational
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principle within the class of real Lorentz-signature spacetimes with a U(1) symmetry
generated by some timelike ξ, regardless of the value of m.

One thus needs only to extend this definition to an appropriate class of real Lorentz-
signature spacetimes that break this symmetry. But the results will be independent of the
details of this extension since, under a variation with momentum k around the U(1), the
variation of any diffeomorphism-invariant action about a U(1)-symmetric Lorentz-signature
configuration must vanish by symmetry when k 6= 0; i.e., any failure of the configuration
to be stationary must be due to variations that preserve the U(1) symmetry and thus lie
within the class for which we can use analytic continuations of the results of [31]. We take
this as strong evidence that an appropriate higher-derivative action exists even when the
imaginary part of m is not infinitesimal, and that the results will be as stated above.

5 Discussion

The goal of our work above was to argue that gravitational path integrals may be defined
by integrating over real Lorentz-signature metrics, so long as one allows a certain class
of codimension-2 singularities. In particular, we argued that this approach can avoid the
conformal factor problem of Euclidean gravity. This idea is in the spirit of earlier suggestions
in [15–25], though our codimension-2 singularities are not discussed in these works. A key
point in this argument is that the Lorentz-signature path integral is typically oscillatory,
and that oscillatory integrals often converge when interpreted as distributions.

However, the above-mentioned singularities create a subtlety. These singularities are
Lorentz-signature analogues of Euclidean conical singularities, which are well-known to give
delta-function contributions to the Lorentz-signature Einstein-Hilbert Lagrangian

√
−gR,

so that the contributions to the Einstein-Hilbert action is proportional to the areas A[γ̃]
of the singular surfaces γ̃. The subtlety is that, as noted previously in [26–28], for some
real metrics the coefficient of proportionality can be imaginary or, more generally, it can be
complex. The A[γ̃] thus define directions within our real Lorentz-signature contour along
which the integrand eiS does not oscillate, but instead grows or decays exponentially.

While this may appear to reintroduce an analogue of the Euclidean conformal factor
problem, we suggested that it can be controlled by taking the integrals over the areas
A[γ̃] to be performed last, after all of the oscillatory integrals have been performed. We
then illustrated this approach in the context of gravitational partition functions for various
ensembles, where we showed that performing the oscillatory integrals first does indeed lead
to an additional factor that controls the potentially-dangerous exponential growth and in
fact causes the integrals over A[γ̃] to converge.

In particular, we described how both canonical and microcanonical partition functions
for gravitational systems can be formulated in terms of such Lorentz-signature path integrals.
The same is also true of the grand canonical ensemble defined by fixing an angular velocity
Ω and/or an electric potential Φ. By performing the relevant integrals in the correct order,
we showed that the usual Euclidean black holes with positive specific heat — or their
complex rotating generalizations — provide saddle points p that contribute with non-zero
weight np to the semiclassical limit of the path integral over a codimension-2 subcontour
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of the original contour of integration, and that the same is then true of the remaining
two integrals. As noted at the end of section 4.1, this is not quite the same as showing
definitively that such saddles contribute to the final partition functions, but we nevertheless
take it to provide strong evidence that our Lorentzian formulation yields the expected
results in the semiclassical limit.

In studying these partition functions, we have largely relied on the semiclassical
approximation. As is often the case, we have proceeded by identifying interesting classes of
saddles and studying their contributions. In fact, we found it useful to first perform a certain
collection of integrals while holding other integration variables constant. In that sense, we
made substantial use of constrained saddles. This is reminiscent of the Euclidean work of [14,
65], and it would be interesting to understand this connection in more detail; see also [66, 67].

As emphasized in the main text, we have taken care to use Morse theory results to show
that our constrained saddles contribute with non-zero weight to the semiclassical limits
of the path integral defined over a sub-contour of codimension-2, after which we analyzed
the remaining two integrals that define the full partition functions. However, this does not
necessarily imply either that our constrained saddles are the most dominant, or that other
yet-to-be identified constrained saddles make no important contributions.

It is thus important to further expand this analysis in several directions. Within the
context of thermodynamics the reader may note that, for a grand canonical ensemble with
fixed β,Ω,Φ, our criterion for a black hole solution to contribute is that it should have
positive specific heat. But on physical grounds we would expect contributions only from
black holes that are thermodynamically stable, which is a condition that restricts all three
eigenvalues of the Hessian for the free energy, and is thus more restrictive than merely
requiring positive specific heat. This suggests that there are further fixed-area saddles that
should be included in (4.7) and (4.8). On physical grounds, one might expect these to be
quotients of additional black hole exteriors, which in the uncharged context would mean that
we should include exteriors for which ξ∂ is not the boundary limit of the horizon-generating
Killing field. In other words, it would be physically natural to include black holes whose
angular velocity Ω does not match that naturally given by the metric on S1 × Y . Doing so
would alter the structure of the singularity that appears after taking the quotient by eξT , so
that there is no longer a well-defined orthogonal plane at each point of γ̃. We might call the
result helical singularity, or perhaps a rotating conical singularity. It would thus be very
interesting to further investigate the Einstein-Hilbert action in the context of such helical
singularities, and to understand their role in the gravitational path integral more generally.

Of course, it would be even more interesting to understand if our analysis can be extended
to the full non-perturbative gravitational path integral. While in higher dimensions the
path integral may fail to be well-defined at the non-perturbative level, there has been great
success [68] in studying the non-perturbative Euclidean path integral in Jackiw-Teitelboim
gravity [69, 70]. It would thus be natural to attempt a similar non-perturbative study of the
Lorentzian Jackiw-Teitelboim path integral, both in the thermodynamic context described
here and more generally.

A perhaps less ambitious goal is to use a semiclassical approach like the one described
here, but to investigate other classes of path integrals. Examples of particular physical
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interest include path integrals that compute gravitational Renyi entropies, for which the
saddles of interest are replica wormholes. Forthcoming work [71] will study such Lorentzian
path integrals in JT gravity, finding a structure very similar to that described here and
arguing that the real-time replica wormholes of [28, 29] contribute to the semiclassical
approximation with non-zero weight. One can also generalize the procedure to consider path
integrals that compute states instead of numbers, for example cutting open the construction
described here to give a Lorentzian path integral construction of the thermofield-double state.

The important role played by singular spacetimes in our analysis makes it important
to fully understand the impact of potential higher-derivative corrections or other issues
associated with any UV completion of the low-energy gravitational dynamics. The arguments
presented in section 4.5 suggest that, despite the appearance of high curvatures, the effect
of such corrections on our partition functions can remain perturbatively small. However, as
also discussed in section 4.5, further work will be required to develop a full framework in
which this can be shown to be the case.

Returning now to the context of thermodynamics, recall that we found contributions
from the usual saddles that are familiar from Euclidean analyses. In this sense, we may say
that we have derived the Euclidean path integral results from a Lorentzian starting point.
However, there remains an important gap in this circle of ideas. In particular, due to the
conformal factor problem, a well-defined “Euclidean” path integral must in fact integrate
over some non-trivial contour in the complex plane. Euclidean approaches thus begin by
simply positing such a contour (as in [2], or more generally as in [61]), which provides
an ad hoc element in such arguments. Closing the circle of ideas completely would thus
require using the Lorentzian path integral to directly derive such contour prescriptions
for the Euclidean path integral in a general setting, rather than simply verifying their
predictions in particular cases. Doing so would provide a full resolution to the conformal
factor problem, perhaps with important implications for cosmology [23–25, 72–74]. It would
also be interesting to understand how such a derivation relates to the non-perturbative
Wick rotation described in [21].
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A The spacetimes MT,Eξ
are fixed-area saddles

This appendix verifies that the MT,Eξ of section 4 are indeed fixed-area saddles. To do so,
we write the Einstein-Hilbert action in the form (2.1). For variations with δA[γ̃] = 0 we may
ignore the final term in (2.1) and focus on the first two terms. We should also include any
cosmological term or terms describing minimally-coupled matter. But these will depend on
at most first derivatives of the fields. As a result, while these may be discontinuous at any
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sewing surfaces Σi±, they contain no delta-functions and can yield no special contributions
near γ̃. We may thus also write the matter and cosmological terms as limits as ε → 0
of integrals over the region outside Uε, so that we have formulated our entire variational
problem in terms of the ε→ 0 limit of a system with a codimension-1 boundary ∂Uε.

This is a familiar setting for the computations of variations. Let us use Sε to denote
the collection of the above terms evaluated at some finite ε. Since the equations of motion
are satisfied at each point in the domain of integration, a general variation gives [75]

δSε =
∫
∂Uε

√
|h|Πijδhij +

∫
∂Uε

√
|h|πIδφI , (A.1)

where i, j are coordinates on ∂Uε, hij is the induced metric on this surface, Πij =
1

8πG
(
Kij −Khij

)
is the Brown-York boundary stress tensor, and πI are the analogous

objects for the matter fields.
The notation suggests that we have chosen to write the matter terms with boundary

terms at ∂Uε appropriate to Dirichlet boundary conditions for the matter fields. Other
choices are also possible. Because the fields in these terms contain at most first derivatives,
such fields can be bounded uniformly in ε. As a result, the fact that the volume

∫
∂Uε

√
|h|

vanishes at small ε means that any matter boundary terms vanish as ε → 0. Thus all
possible choices of boundary terms are equivalent as ε → 0. Indeed, the same argument
shows that we may ignore the matter terms in (A.1) in this limit.

We are thus left with the Brown-York term. This term can be evaluated using the
universal asymptotic form of the metric near a smooth bifurcate Killing horizon,

ds2 ≈ −κ2x2dη2 + dx2 + qαβdy
αdyβ , (A.2)

expressed in terms of the line element qαβdyαdyβ on the bifurcation surface, the Killing
parameter η along the orbits of ξ, the corresponding surface gravity κ, and the geodesic
proper distance x from the bifurcation surface. Writing the asymptotic metric in the
form (A.2) also makes use of the fact that the horizon-generating Killing field ξ becomes
asymptotically hypersurface-orthogonal near the bifurcation surface to take η constant on
such surfaces. Taking ∂Uε to be the surface x = ε one finds

Kijdx
idxj ≈ −κ2xdη2 and Πijδh

ij√q ≈ 1
x

1
8πGqαβδq

αβ√q = 1
x

1
4πGδ

√
q. (A.3)

Inserting this into (A.1) and using
√
|h| ≈ κx√q from (A.2) gives

δSε ≈
κT

2π
1

4G

∫
γ̃
δ
√
q = κT

2π
1

4GδA[γ̃]. (A.4)

As a result, so long as δA[γ̃] = 0, we do indeed find δSε → 0 as ε→ 0. This establishes that
MT is a fixed-area saddle as claimed in the main text.
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