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1 Introduction

It was suggested long ago that large-N gauge theories might admit a description in terms
of strings, beginning with ’t Hooft’s topological expansion of Feynman diagrams [1]. This
idea is realised concretely by the AdS/CFT correspondence [2–4], with the surprising twist
that the strings live in a higher dimensional spacetime with dynamical gravity. By studying
the spectrum of states of a single string in AdS, we learn about the corresponding spectrum
of single-trace operators in the dual CFT. Furthermore, at large spin J � 1 these strings
become long in units of their tension, so that they can be described classically [5]. Thus,
we can learn about the spectrum of strongly-coupled gauge theories from the classical
dynamics of spinning strings.

Of particular interest is the leading Regge trajectory, given by the single-trace operator
of lowest conformal dimension ∆ for each angular momentum J . The corresponding closed
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Figure 1. A constant time slice of a folded classical string spinning around its center (the black dot)
in AdS3, with the black circle denoting the conformal boundary of AdS. Although we have drawn
the two segments of the string separated for demonstrative reasons, they in fact coincide. The string
spins like a rigid rod, with both ends spinning at the speed of light, moving along null geodesics.

string state of lowest energy E (equal to ∆ in AdS units) for given J is a folded string that
rotates rigidly like a spinning rod, as sketched in figure 1. For small J , this configuration
has energy E ∝

√
TJ for string tension T , giving the famous linear Regge trajectories in

the J-E2 plane which are characteristic of strings in flat spacetime. At larger J (of order
`2T for AdS length `), the spinning string lengthens enough to become sensitive to the
curved geometry of AdS, modifying the spectrum. The linear Regge trajectories cross over
to a logarithmically growing anomalous dimension ∆ − J ∼ 2`2T log J for J � `2T [5], a
behaviour also seen in perturbative gauge theory [6, 7].

In this paper, we observe that this is not the end of the story for strings in AdS3 (times
any compact internal space) and their dual two-dimensional CFTs. The reason is that
gravitational backreaction becomes important for sufficiently large J . This phenomenon
does not occur in higher dimensions simply because gravity decays at long distance, so
the gravitational field sourced by a string does not increase as the string becomes longer.
But in AdS3, any source with total energy of order G−1

N (however diffuse it may be) has
an order one effect on the metric even at infinite distance. With this motivation, we will
study classical solutions of a spinning Nambu-Goto string coupled to Einstein gravity with
negative cosmological constant Λ = − 1

`2 . This system is governed (classically) by a single
dimensionless parameter λ defined by

λ = 8π`GNT (1.1)

where T is the string tension, alternatively expressed in terms of Regge slope or string
length as T = 1

2πα′ = 1
2π`2s

. We can think of λ as the strength of gravitational coupling
to a string with length of the same order as the AdS curvature scale `. With this simple
theory, we will describe an ansatz for a folded closed spinning string and construct the one-
parameter set of solutions for each λ within this ansatz. The spectrum of these solutions
— the curve in the h-h̄ plane described by their energy ∆ = h+ h̄ and angular momentum
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Figure 2. The string spectrum for various values of λ. We plot the relation between the conformal
dimensions h = ∆+J and h̄ = ∆−J for the corresponding boundary states. BTZ black holes cover
the region where h and h̄ are both larger than c

24 . For each λ, we have a one-parameter family
of solutions running from zero energy and angular momentum to finite maximal values, where the
string solution merges with an extremal black hole at h̄ = c

24 .

J = h− h̄ — delineates the leading Regge trajectory of lightest single-trace operators dual
to such string states. These results are illustrated in figure 2.

In the case λ � 1 (which is perhaps most important for top-down models, see sec-
tion 5.1), the regime of logarithmic anomalous dimensions mentioned above remains intact,
but ultimately crosses over to a new behaviour. At first this is simply because the naive
spinning strings are not Virasoro primary states (which classically correspond to spacetime-
independent boundary energy-momentum tensor), but for larger spin still the strings source
a large change in the geometry. For λ of order unity, the logarthmic regime is absent, with
back-reaction taking over before it is reached while the string size is of order the AdS length.

The most intriguing result is that these string solutions do not exist for arbitrarily
large angular momentum. Instead, the family of solutions terminates at a maximal value
of the angular momentum Jmax, where the spinning string smoothly becomes an extremal
rotating BTZ black hole. As J approaches Jmax the geometry develops a long AdS2 throat
(as is familiar from extremal black holes), while the string which sources the geometry
recedes deeper within that throat. This phenomenon is reminiscent of the black hole/string
transition [8–12], a suggested correspondence between states of black holes and of single
strings, though it differs in details from previous examples. Notably, in this case the
proposed transition is to a black hole with large area (of order λ−1 in AdS units for the
most interesting case λ� 1), giving a large Bekenstein-Hawking entropy and more control
over the solutions due to the classical limit. These string solutions provide great potential
for more detailed study as an example of the black hole/string transition ideas.

There is a large literature on string solutions in AdS, much of it using integrability
methods to construct a variety of string solutions of which the folded spinning string is
the simplest, and relating to dual integrable spin chains: a small selection is [13–18].
Some (such as [19, 20]) make use of a special feature of AdS3 which is absent in higher
dimensions, namely a symmetric NS-NS B-field background, though we do not consider this
here (see section 5.3 for discussion). Perhaps the most similar previous work [21, 22] studied
back-reacted solutions for circular strings (with rotational symmetry), carrying angular
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momentum only from internal excitations. Despite this large literature, the observation
that folded strings in AdS3 must always source significant back-reaction for large J is novel.

The paper is organised as follows. The main work is developed in section 2, where
we construct the string solutions of interest. We discuss the relevant equations of motion,
describe the ansatz for folded spinning strings, provide solutions in terms of integrals, and
finally give closed-form expressions for the energy and angular momentum of the solutions.
In section 3, we analyse the spectrum in various limits of interest, as well as giving the exact
spectrum in the case λ = 1 which happens to enjoy technical simplifications. In section 4
we give some details of the geometry and string solution as it approaches an extremal black
hole. Finally, we discuss open questions, generalisations and speculations in section 5.

2 Spinning classical strings solutions in AdS3 gravity

2.1 Strings coupled to gravity

Our aim is to construct classical solutions of Einstein gravity in three dimensions with
negative cosmological constant, sourced by a spinning string. Away from the string source,
the spacetime satisfies the vacuum Einstein equations,

Rµν = −2gµν , (2.1)

where we have chosen units to set the AdS length ` to unity. In three dimensions, the
Ricci tensor entirely determines the curvature, so the geometry is locally isometric to AdS.
This greatly simplifies our analysis, because our solutions consist simply of a region of AdS
bounded by the string worldsheet, with appropriate identifications.

The gravitational equations are sourced by the string, giving us a stress tensor lo-
calised on the worldsheet. The string dynamics is governed by the Nambu-Goto action
(proportional to the area of the string worldsheet):

SNG = −T
∫
dτdσ

√
− deth, (2.2)

where τ , σ are coordinates on the worldsheet and h is the induced metric. The constant
of proportionality is the string tension T = 1

2πα′ .
Since the worldsheet is a timelike hypersurface in three dimensions, Einstein’s equations

at the worldsheet are equivalent to the Israel junction conditions [23] which relate the
metric on either side of the worldsheet. First, the metric is continuous across the string,
so the induced metric hab of the string is the same determined from either side. Secondly,
the metric has a discontinuous derivative at the string specified by a discontinuity of the
extrinsic curvature of the worldsheet. For the Nambu-Goto string, this discontinuity is
proportional to the induced metric:

K+
ab +K−ab = λhab, (2.3)

where
λ = 8πGNT (2.4)
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is a constant determining the strength of coupling between the string and gravity. Here, K±ab
are the extrinsic curvature as determined from the metric on either side of the worldsheet.
We define K±ab with respect to an outward-pointing normal in both directions, which is why
we have a sum of the two terms.

This gives us a complete set of equations of motion for the string coupled to gravity:
the equations of motion from varying the string embedding are not independent. We can
understand this by noting that varying the location of the string is equivalent to a variation
of the metric by a diffeomorphism, while holding the coordinate location of the string fixed.

As a result, the general solution of strings coupled to AdS3 gravity is given by a locally
AdS3 spacetime, obeying the junction conditions at the location of the worldsheet.

2.2 Folded spinning string ansatz

We will consider a particularly simple class of solutions, namely folded spinning strings
invariant under a one-parameter continuous symmetry. We expect these solutions to cor-
respond to the leading Regge trajectory of the string, that is the state of lowest energy
for given angular momentum. This means that we have two coincident segments of string
running between two points at which the string is folded back on itself; see figure 1. This
is equivalent to a spinning open string with massless endpoints (with twice the tension),
so our solutions describe that case equally well.

The solutions we consider have a single continuous symmetry, a time translation along
with a rotation at angular velocity ω. We may write the corresponding Killing vector (which
is tangent to the worldsheet) as κ = ∂t+ω∂φ, where φ is an angular coordinate with period
2π. We choose coordinates (τ, σ) on the string such that κ = ∂τ on the worldsheet, and by
imposing a conformal gauge so that the induced metric is given by

h = Ω(σ)2(−dτ2 + dσ2) (2.5)

for some positive function Ω(σ). This fixes our choice of (τ, σ) uniquely up to constant
shifts; in particular, we may not separately specify the period of σ.

In addition to the continuous symmetry, we have two Z2 symmetries. First is a rotation
by π, acting as φ 7→ φ+π. We choose coordinates so that the ‘centre’ of the spinning string,
which is invariant under this rotation, lies at σ = 0 (on one part of the folded string). The
folded points of the string then lie at σ = ±σ0 for some σ0 > 0, so that σ is periodic
with period 4σ0. The folds of the string σ = ±σ0 will move at the speed of light, so the
conformal factor vanishes there: Ω(σ0) = 0. The rotation symmetry acts on the worldsheet
as (τ, σ) 7→ (τ, σ + 2σ0)

Our second Z2 symmetry is a simultaneous reflection in space and time. In particular,
this fixes the τ = 0 slice of the string while exchanging the two sides of the worldsheet.
This symmetry relates the extrinsic curvatures K± on either side of the string, as

K+
ττ = K−ττ , K+

σσ = K−σσ, K+
τσ = −K−στ . (2.6)

With this, junction conditions (2.3) can be written in terms of the extrinsic curvature on
just one side of the string,

Kττ = −λΩ2, Kσσ = λΩ2, (2.7)
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while the off-diagonal curvature Kτσ is unconstrained. Note that we have an additional
factor of two in the junction conditions, since we have two coincident strands of string.

Next we choose coordinates for AdS3 and specify the string embedding. Outside the
string, we can write the most general locally AdS3 metric in Fefferman-Graham coordinates,
defined for us with the conformal boundary located at z → ∞ (comparing to some other
common conventions, z is the inverse of the radial Fefferman-Graham coordinate or the
square of its inverse). This metric is

ds2 = 1
4εLdu

2 + 1
4εRdv

2 −
(
z + εLεR

16z

)
dudv + dz2

4z2 , (2.8)

where u, v become lightcone coordinates on the boundary z →∞:

u = t+ φ, v = t− φ, (u, v) ∼ (u+ 2π, v − 2π), (2.9)

where the identification of coordinates comes from the 2π periodicity of the angle φ. While
these coordinates are convenient for calculations, the metric perhaps looks more familiar if
we substitute z for a radial coordinate r defined by r2 = 1

z (z + εL
4 )(z + εR

4 ) (the coefficient
of dφ2), giving

ds2 = −f(r)dt2 + dr2

f(r) + r2
(
dφ− εR − εL

4r2 dt

)2
,

where f(r) = r2 − εR + εL
2 + (εR − εL)2

16r2 .

(2.10)

The coefficients εL, εR appearing in the metric are proportional to the left- and right-
moving energies,

EL = εL
16GN

, ER = εR
16GN

(2.11)

with E = ER + EL giving the energy and J = ER − EL the angular momentum of the
solution. In particular, the global AdS3 vacuum corresponds to εL = εR = −1, with
negative Casimir energy Evac = − 1

8GN . With these solutions and boundary metric ds2 =
−dudv = −dt2 + dφ2, the stress tensor is independent of t and φ.

This constant stress tensor corresponds to considering Virasoro primary states of the
string: the stress tensor Fourier modes in u and v are the Virasoro generators Ln, L̄n, and in
a primary state their expectation values vanish except for the constant modes n = 0. Since
a classical state has small fluctuations, constant expectation value suffices to guarantee
that the state has EL and ER close to that of a Virasoro primary. See section 5.2 of [24]
for a similar discussion in the context of two-particle states.

More general states can be constructed from the same metric by performing a conformal
transformation (separate diffeomorphisms on u and v coordinates, followed by a Weyl
transormation to a flat metric in the new coordinates), corresponding to a particular class
of ‘coherent’ Virasoro descendants of the original state.

We may also express these parameters in terms of standard CFT variables, using the
Brown-Hennaux relation c ∼ 3

2GN [25]. The states we construct correspond to Virasoro
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primary operators of conformal dimension ∆ and spin J , with

h = c

24(εR + 1), h̄ = c

24(εL + 1),

where ∆ = h+ h̄, J = h− h̄ .
(2.12)

In these coordinates, the symmetry of our solution acts as a translation in the u and
v coordinates:

κ = (ω + 1)∂u − (ω − 1)∂v . (2.13)

With this, we can write the string embedding in terms of unknown functions u0, v0, z0
depending on σ only, specifying the string at τ = 0:

u(τ, σ) = u0(σ) + (ω + 1)τ, v(τ, σ) = v0(σ)− (ω − 1)τ, z(τ, σ) = z0(σ). (2.14)

With this ansatz, we can outline our general strategy for constructing solutions:

• Impose conformal gauge (2.5). This fixes u′0(σ) and v′0(σ) in terms of z0(σ).

• Compute the extrinsic curvature of the string embedding in terms of the parameters
ω, εL, εR and the unknown function z0(σ).

• Use the first equation of (2.7) (relating the ττ components of extrinsic curvature and
induced metric on the worldsheet) to solve for z0(σ) in terms of λ, ω, εL, εR. When
this is imposed, the second equation (σσ component) turns out to be automatically
satisfied.

• Using this solution for z0, impose the correct periodicity for u0, v0 from (2.9) to fix
εL, εR in terms of λ, ω.

For given string tension parameter λ, we will thus construct a one-parameter family of solu-
tions, corresponding to the leading single-trace Regge trajectory of Virasoro primary states.

Before describing the detailed implementation of this strategy, we briefly comment
on the interpretation of the metric (2.8) outside the string as a quotient of AdS3. The
isometry algebra of AdS3 is sl(2,R)L ⊕ sl(2,R)R, with elements given by pairs (ξL, ξR) of
elements of sl(2,R). Our metric outside the string is a quotient by the group generated
by a single finite isometry (gL, gR) = (exp ξL, exp ξR). We have chosen coordinates such
that the commuting symmetries ξL and ξR both act as translations of coordinates u, v
respectively. The parameters εL,R are then determined by the conjugacy classes of ξL,R
in sl(2,R). In particular, the sign of ε depends on whether the corresponding ξ is in an
elliptic (ε < 0), parabolic (ε = 0), or hyperbolic (ε > 0) conjugacy class. The familiar BTZ
solution corresponds to cases εL > 0 and εR > 0; extremal rotating BTZ is given by εL = 0
and εR > 0 (or vice-versa).

Finally before constructing our solutions, we note that if εL < 0 then ∂φ becomes
timelike in the region z < −1

4εL. This means that the string cannot lie entirely in that
region, since otherwise a circle of constant t, z (with z large enough to stay outside the
string) would be a closed timelike curve.
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2.3 The string solutions

The conformal factor for the induced metric on the string (2.5) can be read off simply from
the ττ component, or equivalently the norm of the Killing field κ (since κ = ∂τ on the
worldsheet):

Ω2 = (ω2 − 1)(zL − z0)(z0 − zR)
z0

, (2.15)

where we have defined parameters giving the zeroes of Ω by

zL = −1
4
ω + 1
ω − 1εL, zR = −1

4
ω − 1
ω + 1εR . (2.16)

The outermost points of the string where it folds follow a null trajectory, so are located at
one of these zeroes, which without loss of generality we may choose to be zL. For physical
spinning string solutions, this will be the larger root (so zL > zR). We will always have
ω > 1 so that Ω > 0. In particular, since zL > 0, we will always have εL < 0. Note also
that zL > −1

4εL, so there are no closed timelike curves of constant z.
These solutions all have positive angular momentum, J > 0: oppositely-spinning solu-

tions with J < 0 and ω < −1 are obtained by instead choosing the folds to be at z = zR.
Next, by fixing the remaining components of the induced metric to conformal gauge,

we find

u′0 = (ω + 1)z
2
0 − 2zRz0 + zLzR

z2
0 − zLzR

√
1− 1

4Ω2
(z′0)2

z2
0

, (2.17)

v′0 = (ω − 1)z
2
0 − 2zLz0 + zLzR

z2
0 − zLzR

√
1− 1

4Ω2
(z′0)2

z2
0

, (2.18)

where ′ denotes derivative with respect to σ throughout.
Using this, we can now compute the extrinsic curvature in terms of z0(σ). The impor-

tant component for us (and the simplest to compute) is

Kττ = (ω2 − 1)z
2
0 − zLzR
z0

√
1− 1

4Ω2
(z′0)2

z2
0

. (2.19)

Equating this with λΩ2 as in (2.7), we find

(z′0)2 = 4(ω2 − 1)z0(zL − z0)(z0 − zR)
[
1−

(
λ

(zL − z0)(z0 − zR)
z2

0 − zLzR

)2]
. (2.20)

Solving this sepearable ODE gives us the function z0(σ), and then (2.17), (2.18) give u0(σ),
v0(σ) as integrals to determine the string embedding. The centre of the string σ = 0 lies
at the value of z where the contents of the square brackets vanishes, so z′0(0) = 0.

The additional equation Kσσ = λΩ2 carries no further information: it is automatically
satisfied as long as (2.17), (2.18) and (2.20) hold.
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2.4 The string energy and angular momentum

Substituting (2.20) in (2.17) and (2.18) we find the following:

u′0 = λ(ω + 1)(z2
0 − 2zRz0 + zLzR)(zL − z0)(z0 − zR)

(z2
0 − zLzR)2 (2.21)

v′0 = λ(ω − 1)(z2
0 − 2zLz0 + zLzR)(zL − z0)(z0 − zR)

(z2
0 − zLzR)2 . (2.22)

We have one final condition to impose, namely the correct periodicity for the coor-
dinates. This means that u0 and −v0 increase by 2π on going round the string, so they
increase by π

2 between the centre and a fold. We can impose this by integrating the ex-
pressions for u′0, v′0:

∫ σ0
0 u′0(σ)dσ = −

∫ σ0
0 v′0(σ)dσ = π

2 .
At first this looks like it will give rise to a complicated implicit equation relating the

four paramaters zL, zR, ω and λ on which the solutions depend. In fact, it is rather simpler
than it seems, since there are only really two parameters on which the solutions depend
nontrivially, namely λ and the ratio between zL and zR, which we define as

α2 = zR
zL

=
(
ω − 1
ω + 1

)2 εR
εL
. (2.23)

We have α2 < 1 (since zL > zR), but note that α2 may be negative, so α can be pure imag-
inary. The other parameters only provide simple proportionality constants. We will find
explicit expressions for εL,R which depend only on λ, α (a one-parameter family of solutions
for a given string tension), and using this one may recover the value of ω from (2.23).

This can be understood from the metric (2.8) we started with. We can freely rescale
εL, εR by positive factors by absorbing them into a rescaling of the coordinates u, v, z.
Using this freedom, one may set the metric to some fiducial choice which does not depend
on any free parameters (only discretely on the signs of εL,R), at the expense of changing
the periodicity of u, v by factors of

√
|εL,R|. In this rescaled metric, the string solutions

explicitly depend only on λ and α (which determines the solution’s symmetry), and we ulti-
mately recover εL,R from reading off the necessary scaling of u, v to impose the appropriate
periodicity.

The simplest expressions for εL,R are obtained by passing to a new radial coordinate
x on the string proportional to the conformal factor,

x = 1√
zL(ω2 − 1)

Ω =
√

(zL − z0)(z0 − zR)
zLz0

, (2.24)

where equation (2.15) is used. In terms of this new coordinate, the equation (2.20) for the
string embedding x(σ) becomes

(x′)2 = zL(ω2 − 1)q(x), (2.25)

where q is the quartic

q(x) = (1− λ2)x4 − 2(1 + α2)x2 + (1− α2)2 . (2.26)
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From this, one can solve for x(σ) in terms of elliptic functions. Moreover, the expres-
sions (2.17), (2.18) become simpler in terms of this coordinate:

u′0 = λ
ω + 1

2

[
(1 + α)3

(1 + α)2 − x2 + (1− α)3

(1− α)2 − x2 − 2
]
, (2.27)

v′0 = λ
ω − 1

2α

[
(1 + α)3

(1 + α)2 − x2 −
(1− α)3

(1− α)2 − x2 − 2α
]
. (2.28)

With this, we can impose periodicity of u, v as the integrals
π

2 =
∫ x0

0

u′0
x′
dx, −π2 =

∫ x0

0

v′0
x′
dx , (2.29)

with limits x = 0 corresponding to a fold of the string (σ = σ0), and x = x0 given by
the smallest positive root of q corresponding to the centre. For λ < 1, requiring existence
of such a root means that α2 cannot be too negative.1 From this, we obtain integral
expressions for εL,R:

√
−εL = λ

2
π

∫ x0

0

dx√
q(x)

[
(1 + α)3

(1 + α)2 − x2 + (1− α)3

(1− α)2 − x2 − 2
]
, (2.30)

√
−εR = −λ 2

π

∫ x0

0

dx√
q(x)

[
(1 + α)3

(1 + α)2 − x2 −
(1− α)3

(1− α)2 − x2 − 2α
]
. (2.31)

Note that for zR < 0, α will be pure imaginary. In that case, the first two terms in the
integrand of (2.30) add up to the real part of (1+α)3

(1+α)2−x2 so we get a real result and εL < 0;
in (2.31) they give i times the imaginary part of (1+α)3

(1+α)2−x2 so the integral is imaginary and
εR > 0.

These integrals can be evaluated as
√
−εL =λ

2
π

[
x0

1−αΠ
((

x0
1+α

)2 ∣∣m)+ x0
1+α

Π
((

x0
1−α

)2 ∣∣m)− 2x0
1−α2K(m)

]
(2.32)

√
−εR =−λ 2

π

[
x0

1−αΠ
((

x0
1+α

)2 ∣∣m)− x0
1+α

Π
((

x0
1−α

)2 ∣∣m)− 2αx0
1−α2K(m)

]
(2.33)

where K and Π are complete elliptic integrals of the first and third kind2 respectively, and

m = x4
0

1− λ2

(1− α2)2 < 1 (2.34)

is a ratio of roots of q (so that q(x) = m−1(1− λ2)(x2
0 − x2)(x2

0 −mx2)).
By replacing these complete elliptic integrals with incomplete elliptic integrals as a

function of x
x0
, one can determine the embedding of the string giving u0, v0 as a function

of x.
Note that consistency of this solution requires that the expressions in (2.30) or (2.32)

give a positive value for
√
−εL (a negative value would demand a periodic identification of

time rather than space).

1Explicitly, x2
0 = −1−α2+

√
λ2α4+(4−2λ2)α2+λ2

λ2−1 , reality requiring α2 >
−2+λ2+2

√
1−λ2

λ2 when λ < 1.
2These are defined by K(m) =

∫ 1
0

dt√
(1−t2)(1−mt2)

and Π(n|m) =
∫ 1

0
dt

(1−nt2)
√

(1−t2)(1−mt2)
.

– 10 –



J
H
E
P
0
7
(
2
0
2
2
)
0
7
5

3 The string spectrum

The solutions we have obtained and the expressions for εL,R determining their spectrum
are a little too complicated for their properties to be manifest. In this section we explore
various limits and special cases to illustrate various interesting features.

3.1 Flat space limit

We first study the limit where the string is small compared to the AdS scale, to check that
we recover the physics of strings in flat space (backreaction is unimportant in this regime).
This is the limit α→ 1 with λ held fixed.

The parameters appearing in (2.32), (2.33) scale as

x0 = (1− α)− λ2

8 (1− α)3 +O((1− α)4), m = 1− λ2

4 (1− α)2 +O((1− α)3). (3.1)

From this, we need only make use of the limiting behaviour of the elliptic functions in
various limits.

For the first terms in (2.32), (2.33), we use the series expansion at small n,m,

Π(n|m) ∼ π

2

(
1 + m

4 + n

2 + · · ·
)

(n,m→ 0), (3.2)

to find
x0

1− αΠ
((

x0
1 + α

)2 ∣∣m) ∼ π

2 + 3π
32 (1− λ2)(1− α)2 + · · · . (3.3)

For the second terms, we instead require

Π(n|m) ∼ π

2
√

1− n

(
1 + m

2 +O(m2)
)

+O(m,
√

1− n) (n→ 1, m→ 0), (3.4)

which gives
x0

1 + α
Π
((

x0
1− α

)2 ∣∣m) ∼ π

2λ +O((1− α)3). (3.5)

The last terms are simple to expand using K(m) = π
2 + π

8m+O(m2).
Putting this together, we find

√
−εL ∼ 1− λ

2 (1− α)− λ

8 (1− α)2 + · · · (3.6)
√
−εR ∼ 1− λ

2 (1− α)− 3λ
8 (1− α)2 + · · · . (3.7)

Using (2.23), we can re-express α in terms of the angular velocity ω of the string,

ω ∼ 2
1− α + λ

2 − 1 +O(1− α), (3.8)

to write

εL ∼ −1 + 2λ
ω
− λ

ω2 + · · · (3.9)

εR ∼ −1 + 2λ
ω

+ λ

ω2 + · · · . (3.10)
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Finally, translating into energy above the vacuum and angular momentum, this becomes

E − Evac ∼
2π
ω
T, J ∼ π

ω2T, (3.11)

which is precisely the expected result for a spinning string in flat spacetime without back-
reaction.

3.2 Probe limit (λ � 1)

Next, we look at the limit of small string tension, holding fixed the size or angular momen-
tum of the string in AdS units. This is the limit in which we expect to recover the results
of [5] for strings in a fixed AdS background. In terms of our parameters, for this limit we
take λ→ 0 at fixed α.

In this limit, the string energy will be given by the ground state energy plus a linear
correction, so we will have εL,R = −1 + O(λ). Using (2.23), the angular momentum will
become ω = 1+α

1−α + O(λ). We write our expansion in terms of this physical parameter. In
this limit, x0 and m approach the values x0 ∼ 2

1+ω , m ∼ ω−2.
For the first term in the expressions for εL,R, we use the identity Π(m|m) = 1

1−mE(m)
to find

x0
1− αΠ

((
x0

1 + α

)2 ∣∣m)→ ω2

ω2 − 1E
(
ω−2

)
. (3.12)

The second term is slightly more subtle, requiring the n→ 1 expansion

Π(n|m) ∼ π

2
√

(1− n)(1−m)
+K(m)− 1

1−mE(m) +O(
√

1− n), (n→ 1) (3.13)

with 1− n = 1− ( x0
1−α)2 ∼ λ2

ω2−1 . This gives

x0
1 + α

Π
((

x0
1− α

)2 ∣∣m) ∼ π

2λ + 1
ω
K
(
ω−2

)
− ω

ω2 − 1E
(
ω−2

)
+O(λ2). (3.14)

Ultimately, we find

√
−εL ∼ 1 + λ

2
π

(
ω

ω + 1E
(
ω−2

)
−K

(
ω−2

))
+ · · · (3.15)

√
−εR ∼ 1− λ 2

π

(
ω

ω − 1E
(
ω−2

)
−K

(
ω−2

))
+ · · · , (3.16)

which we can write in terms of energy and angular momentum as

E − Evac ∼ 4T ω

ω2 − 1E
(
ω−2

)
(3.17)

J ∼ 4T
(

ω2

ω2 − 1E
(
ω−2

)
−K

(
ω−2

))
. (3.18)

These are the same results as found in [5], though the methods and integrals we evaluated
to get there are entirely different.
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In particular, we can now take an additional limit ω → 1, with ω− 1 = 2η � 1. From
this, we find

∆ ∼ T

η
+ T log η−1, J ∼ T

η
− T log η−1, (3.19)

giving the famous logarithmic anomalous dimension ∆ − J ∼ 2T log J . But now this is
valid only for λ� η � 1, in the regime T � J � 1

GN
. For sufficiently large spin, we will

enter a new regime where gravitational backreaction is important, discussed in section 3.4.

3.3 A simple case: λ = 1

From the results of the previous section, it appears that there is a special value of the string
tension, λ = 1, at which the equations simplify. Specifically, the coefficient of the quartic
term in q(x) (defined in (2.26)) vanishes, so that it becomes a quadratic and the ratio of
the roots m becomes zero. One might expect that this would give rise to some qualitative
special feature in the string’s behaviour at this value, and perhaps a transition between
different regimes for λ < 1 and λ > 1, but this appears not to be the case. Nonetheless, it
happens that the analysis greatly simplifies for this value of the string tension, so this case
offers a simple illustration of the qualitative behaviour of the string spectrum at order one
values of λ.

Since the parameter m of the elliptic functions vanishes in this case, we note their
values

Π(n|0) = π

2
√

(1− n)
, K(0) = π

2 . (3.20)

Once again we use the angular velocity ω to parameterise the solutions, and the other
quantities are given as

α2 = ω2 − 2ω − 1
(1 + ω)2 , x0 = 1

ω
+ 1

1 + ω
. (3.21)

From this we obtain

√
−εL = ω − 1

ω
,

√
−εR =

√
ω2 − 2ω − 1

ω
. (3.22)

Re-expressing this in terms of the energy and angular momentum of the string we have

E = 1
8GN

( 2
ω
− 1

)
, J = 1

8GNω2 . (3.23)

Remarkably, these are exactly the same as the flat spacetime results (3.11)!
However, there is one key difference from the unbackreacted flat spacetime string. In

this case, the solution applies only for ω > 1, with extrapolation to ω < 1 yielding unphysi-
cal solutions with closed timelike curves. The family of spinning string solutions terminates
at maximal values of energy and angular momentum Emax = Jmax = 1

8GN , corresponding to
h = c

8 , h̄ = c
24 . The relation E = J > 0 (equivalently h̄ = c

24 , h >
c

24) corresponds to the en-
ergy and angular momentum of an extremal rotating BTZ black hole, and since E is of order

1
GN

the corresponding horizon size is of order the AdS length. And indeed, as we take ω →
1, the solution approaches such a black hole, as we will discuss in more detail in section 4.
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The special case λ = 1 also admits a closed form solution in terms of elementary
functions. In particular, for the radial profile using the x coordinate introduced in (2.24)
we have the simple result

x(σ) =
( 1
ω

+ 1
1 + ω

)
cos((ω − 1)σ). (3.24)

3.4 Light strings with backreaction

Next, we discuss strings with small tension λ � 1, but large angular momentum so that
the gravitational backreaction becomes important.

For the most interesting regime, it turns out that we must tune the parameter α so that
the quartic polynomial q in (2.26) is very close to becoming degenerate (with coincident
roots), so α2 approaches its minimal value identified in footnote 1. This means that the
ratio of its roots m is very close to one. It is convenient to use µ = 1−m as an expansion
parameter. We must choose how to scale µ in relation to λ as both become very small: we
will take µ� λ� 1. In terms of α, we take

α2 = λ2 − 2 + 2
√

1− λ2

λ2 + µ2

16 +O(µ2λ4) ∼ −λ
2

4 , (3.25)

and the smaller root of q is given by

x2
0 = 2

1− λ2 +
√

1− λ2
− µ

2 +O(µλ2). (3.26)

From this, the parameters appearing in the elliptic Π functions are(
x0

1± α

)2
= 1∓ iλ+O(λ2) +O(µ). (3.27)

We therefore require the expansion

Π(n|m) ∼ 1
2(1− n) log

(4(1− n)
1−m

)
, 1−m� |1− n| � 1, (3.28)

where log is defined with a branch cut along the negative real axis. From this we find

x0
1∓ αΠ

((
x0

1± α

)2 ∣∣m) ∼ π

4λ + 1
4 log 1

µ
∓ i

2λ log
(4λ
µ

)
+O(1), (3.29)

and (also using the expansion K(m) ∼ 1
2 log

(
16

1−m

)
), we obtain

√
−εL ∼ 1− λ

π
log 1

µ
,

√
−εR ∼

2i
π

log
(4λ
µ

)
, for µ� λ� 1. (3.30)

We can focus in particular on the interesting regime with twist h̄ of order c (εL of order
unity), which occurs when µ is exponentially small in λ−1. Writing

µ ∼ exp
(
−2π ζ

λ

)
(3.31)
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with ζ of order one, we have

εL ∼ −(1− 2ζ)2, εR ∼
(4ζ
λ

)2
, (3.32)

or in terms of left- and right-moving conformal dimensions

h ∼ 2c
3
ζ2

λ2 , h̄ ∼ c

6ζ(1− ζ)
(

0 < ζ <
1
2

)
. (3.33)

The restriction ζ < 1
2 is required so that

√
−εL > 0 as noted at the end of section 2. The

angular velocity of the spinning string is given by

ω − 1 ∼ 1− 2ζ
4ζ λ2 . (3.34)

Now, since this describes a spinning string solution only for 0 < ζ < 1
2 , we find that

there is a maximal angular momentum J for these solutions,

Jmax ∼
c

6πλ2 ∼
1

256π3`2G3
NT

2 , (3.35)

approached in the limit ζ → 1
2 . In that limit, the angular velocity ω approaches unity (from

above), and the solution approaches the extremal rotating BTZ black hole. The geometry
and the string solution in this interesting limit will be discussed in more detail in section 4.

Note that the limit discussed here (taking 1−m� λ� 1) does not have overlapping
validity with the probe limit discussed in section 3.2 (with m of order one). To interpolate
between these, one must consider an additional regime where we take µ = 1−m to be of
order λ. In that regime εR will be of order unity (spin of order c),

√
−εL = 1− 2

πλ log λ−1 +
O(λ), and ω − 1 is of order λ. This interpolating regime is technically tricky and not of
particular interest, so we do not pursue the details here.

3.5 The extremal limit for generic λ

Finally, we make some comments on the approach to the extremal limit for values of λ of
order unity. It turns out that there are two qualitatively different possibilities.

The first possibility occurs for sufficiently small λ < λc ≈ 1.53, and is illustrated by
the simple case λ = 1 described in section 3.3, and also by the λ � 1 case in section 3.4.
We have a physically sensible solution for α2 > α2

extr, where α2
extr < 0 is a critical value

corresponding to the extremal solution εL = 0. For λ = 1 we have α2
extr = −1

2 and for
λ� 1 we have α2

extr ∼ −λ2

4 . When α2 < α2
extr, the expression (2.32) for

√
−εL evaluates to

a negative value, which gives an unphysical solution as noted at the end of section 2. This
critical value is otherwise generic, in particular corresponding to a simple zero of

√
−εL.

This means that εL and hence c
24 − h̄ vanishes quadratically as a function of h at the

extremal point. In other words, the Regge trajectories plotted in figure 2 are tangent to
the black hole threshold line h̄ = c

24 . Also, using (2.23) the same logic tells us that ω → 1
with (ω − 1)2 ∝ εL. The fact that αextr is not at any particularly special value also means
that there is not a simple general expression for the corresponding value of the spin Jmax.
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The situation for sufficiently large λ > λc is different. In that case, all α2 < 1 corre-
spond to physically sensible string solutions (since (2.32) gives a positive value for

√
−εL),

and the extremal limit εL → 0 corresponds to taking α2 → −∞. We can see the transition
to this behaviour by expanding (2.32) at α→ i∞, finding

√
−εL ∼

4(λ− 1)E
(
−λ+1
λ−1

)
− 4λK

(
−λ+1
λ−1

)
πλ
√
λ− 1|α|

(α→ i∞). (3.36)

The coefficient of |α|−1 in this expression is negative for 1 < λ < λc and positive for λ > λc:
its zero defines λc. Since

√
−εL > 0 for α = 0, by continuiuty

√
−εL must vanish for some

α2
extr < 0 if λ < λc (the first case described above). But for λ > λc there need not be such

a zero, and indeed there is not: αextr → i∞ as λ → λc. So, in this case α → i∞ is the
extremal limit of the spinning string.

From (2.33) we can determine how h behaves in this limit. We have

√
εR ∼

4λ
π
√
λ− 1

(
K

(
−λ+ 1
λ− 1

)
−Π

(
− 1
λ− 1 | −

λ+ 1
λ− 1

))
+O(α−2). (3.37)

The constant term here tells us the extremal value of h or J . The fact that the second term
scales as α−2 tells us that as the solution approaches extremality, hextr − h is linear in εL
or in c

24 − h̄. As a consequence, the Regge trajectories for λ > λc plotted in figure 2 are not
tangent to the line h̄ = c

24 , but instead meet it with a positive gradient. From (2.23) we
can also read off how the angular momentum ω behaves in the limit: we find it approaches
a value ωextr > 1 which depends on λ, unlike for λ < λc in which case we always have
ω → 1 in the extremal limit.

4 The approach to an extremal black hole

A notable feature of the spectra discussed in sections 3.3 and 3.4 was that the angular
momentum and energy of the string could not become arbitrarily large. Instead, our
families of spinning string solutions terminated at a finite energy and angular momentum
with εL = 0, h̄ = c

24 , or E = J . Suggestively, this corresponds precisely to the relation
between E and J for an extremal rotating BTZ black hole [26]. In this section we look
at the geometry and string solution in this limit, confirming that the there is indeed a
transition to such a black hole.

4.1 The near-extremal AdS2 region

Before considering the string solutions, we first examine the geometry in the ‘near-extremal’
limit εR � |εL|, concentrating on the case εL < 0 relevant for our spinning strings. For
generic values of r of order εR, which corresponds to z ∼ r2 − 1

4εR of order εR, the met-
ric (2.10) approaches that of the extremal rotating BTZ black hole:

ds2 ∼ −
(
r − εR

4r

)2
dt2 + dr2

(r − εR
4r )2 + r2

(
dφ− εR

4r2dt

)2
. (4.1)
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From the double pole in the dr2 term we can see that the geometry develops a ‘throat’
region as r approaches

√
εR
2 , receding to parametrically large proper distance in the limit.

We see the more interesting part of the geometry by zooming in on this region, writing

r =
√
εR
2 +

√
|εL|
2 ρ (4.2)

and keeping ρ fixed in the limit |εL|εR
→ 0. In terms of the original z coordinate, this region

corresponds to z of order
√
|εL|εR, with

ρ ∼ 16z2 − |εL|εR
8z
√
|εL|εR

. (4.3)

The scaled metric becomes3

ds2 ∼ 1
4

(
−4|εL|(ρ2 + 1)dt2 + dρ2

ρ2 + 1

)
+ εR

4

dφ− dt+ 2ρ
√
|εL|
εR

dt

2

. (4.4)

We recognise the first term as the metric of AdS2 (with two-dimensional AdS length `
2),

while the second term gives a spatial circle of constant radius
√
εR
2 fibred over the AdS2

base. This region recedes far from the rest of the geometry: a point with a finite value of ρ
is at a parametrically large proper distance (roughly 1

4 log( εR|εL|)) from a point with generic
r of order √εR.

Such an AdS2 geometry is familiar from the near-horizon of near-extremal black holes.
In that case (corresponding to εL > 0), we obtain a slightly different metric with a horizon
of finite (but low) temperature (see section 4 of [27], for example). Here there is no horizon
to cut off our geometry, which instead terminates at the string worldsheet.

4.2 Near-extremal strings

We now examine the location of the string within the near-extremal geometry described
above. We focus on determining the innermost and outermost radius of the worldsheet,
since this determines whether the string recedes into the long AdS2 throat as it approaches
its maximal angular momentum. We examine the small tension λ � 1 regime and the
simple λ = 1 example, before commenting on the generic case.

Near-extremal strings with λ � 1. First, consider λ � 1 strings in the regime
discussed in section 3.4, for which εL is of order unity (so 0 < h̄ < c

24 of order c), and
εR is large (of order λ−2). To determine the location of the string, we can go back to
equations (2.20), (2.21) and (2.22) for z′0(σ), u′0(σ) and v′0(σ) respectively, and simplify in
the relevant limit. Using the results in section 3.4, the parameters zL,R scale as

zL ∼ 2ζ(1− 2ζ)λ−2, zR ∼ −
1
2ζ(1− 2ζ) ∼ −1

4λ
2zL. (4.5)

3To get this, we should treat dt as order |εL|−1/2 (accounting for the gravitational redshift in the throat),
and dφ−dt as order unity (as appropriate for corotating observers). This gives a limiting metric that solves
the three-dimensional Einstein equations.
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In particular, zL determines the z coordinate of the fold of the string, which is also the
outermost point (largest r) of the string. In terms of the coordinates (4.1) this is at
r2 ∼ 2ζ

λ2 ∼ 1
2ζ
εR
4 : since 0 < ζ < 1

2 this is not in the AdS2 region where r2 ∼ εR
4 , except after

taking an additional limit with ζ close to 1
2 , when we approach the extremal black hole.

In the AdS2 region where ρ is of order unity, we have z of order λ−1 given by z ∼
ζ(1−2ζ)

λ (ρ+
√

1 + ρ2). The string equations of motion in this region become

ρ′ ∼ 2(1− 2ζ)ρ, u′0 ∼
2ρ

1 + ρ2 , v′0 ∼ −λ
1− 2ζ

2ζ
1

1 + ρ2 . (4.6)

It is simple to obtain a solution for ρ, u0, v0 from these, but for us the main point is to
determine the deepest point of the string where ρ′ = 0. This occurs in this AdS2 region
at ρ ≈ 0. Note that the first equation (for ρ′) above is valid for ρ of order unity, but not
close to the turning point when ρ become sufficiently small.4 In particular, u0 and v0 both
change by an order one amount in that region.

We see that in the extremal limit ζ → 1
2 , the outermost point of the string recedes into

an AdS2 throat: while we may have ρ � 1, the ratio between r and the extremal radius√
εR
2 approaches unity so the AdS2 metric (4.4) nonetheless applies. The innermost point

of the worldsheet resides parametrically deeper still into that throat.

Near-extremal strings with λ = 1. From section 3.3, we can see that the string
solution simplifies significantly when we take λ = 1. Here we analyze the near-extremal
behaviour, for which ω → 1 and

εL ∼ −(ω − 1)2, εR ∼ 2− 4(ω − 1). (4.7)

The extremal angular momentum is Jmax = 1
8GN , which means that the horizon radius is

of order the AdS scale.
Here, we have an exact solution (3.24) for the radial string profile, with

x(σ) ∼ 3
2 cos((ω − 1)σ) (4.8)

in the ω → 1 limit. This coordinate has a simple translation to the AdS2 radial coordinate
ρ in this limit, namely

ρ ∼ 1− 2x2

2
√

2
. (4.9)

In particular, values of x of order unity correspond to ρ also of order unity, so the string
resides entirely within the AdS2 region, with − 7

4
√

2 . ρ . 1
2
√

2 .
We can also comment on the solutions for u0, v0 in this example. Expanding the

equations of motion to leading order at ω → 1, we find

u′0 ∼
(5−

√
2ρ)

2(1 + ρ2) − 2, v′0 ∼ (ω − 1)
(

(2 + 5
√

2ρ)
4(1 + ρ2) − 1

)
. (4.10)

4In terms of the x coordinate, which scales as 1 − x ∼ λ
2 ρ, for small ρ it becomes important to resolve

the nearly-degenerate roots of the quartic q(x) defined in (2.26).

– 18 –



J
H
E
P
0
7
(
2
0
2
2
)
0
7
5

Figure 3. A sketch of the spatial geometry of a t = 0 slice in the near-extremal AdS2 region
containing the string. The angular direction around the cylinder corresponds to the periodic φ
coordinate, and the direction along the cylinder to the radial ρ coordinate. Going to the right
(increasing ρ) moves away from the AdS2 region, where the radius of the circle increases: this
change of radius becomes important only for ρ � 1, but has been exaggerated in the figure for
illustrative purposes. The geometry is terminated at the left end by the string (marked in red), and
the two sides of the string lying on either side of the cusp are identified. Note that this identification
does not occur within this slice, identifying points with different values of t.

From the exact radial solution, σ varies through the large range 0 ≤ σ ≤ σ0 = π
2(ω−1) , so

since u0, v0 must vary over a range of size π
2 we might expect their derivatives to be of

order ω−1. This is true for v0, which is a monotonic function decreasing from v0(0) = 0 to
v0(σ0) = −π

2 . But u′0 is of order unity, and u0 decreases to a large value of order (ω− 1)−1

before increasing back to π
2 (to see this order one value requires the next order in the

expansion). This might seem strange, but in fact is a result of the fact that the τ = 0 slice
of our string is highly boosted. To get a better picture of the string we can instead look at
its intersection with the t = 0 slice, which occurs when τ = −1

2(u0(σ) + v0(σ)). This gives

φ(σ) = −ω + 1
2 v0(σ)− ω − 1

2 u0(σ)

=⇒ φ′ ∼ (ω − 1)
(

2− 7 + 4
√

2ρ
4 (ρ2 + 1)

)
for λ = 1, ω → 1.

(4.11)

From this we see that φ′ is of order ω − 1, and always the same sign. In particular, the
string winds once around the spatial φ circle and does not self intersect.

We have sketched the t = 0 slice of the AdS2 region of the geometry containing the
string in figure 3.

Near-extremal strings for generic λ. We finally comment on the location of the
outermost point of the string for generic values of λ, using the discussion of section 3.5.
Once again, there are two qualitatively different cases depending on whether λ is smaller
or larger than λc.

For λ < λc, in the extremal limit we have ω → 1 and εL ∝ −(ω − 1)2, so the z-
coordinate of the fold of the string scales as zL ∝ ω−1. Since z2

L ∝ −εL as both go to zero,
this outermost point of the string corresponds to a finite value of ρ which depends on λ:
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specifically, ρfold = 1−|αextr|2
2|αextr| . For small λ we have |αextr| � 1 so ρfold � 1, with the string

extending close to the boundary of the AdS2 region consistent with our above analysis. As
λ increases, the string retreats further into the AdS2 region.

As λ → λc, we have αextr → i∞ so ρfold → −∞, the string retreating far deeper even
than the AdS2 region identified above. And indeed, for λ > λc, z2

L goes to zero faster than
εL, which means outer point of the string is much deeper than even the finite ρ AdS2 region.

4.3 A string to black hole transition?

It has been suggested before that the states of a single highly excited string may be continu-
ously connected to the internal states of a black hole [8–12], a conjecture dubbed the ‘black
hole/string transition’. The fact that our back-reacted spinning string solutions approach
the geometry of an extremal BTZ black hole suggests that folded strings in AdS3 may be
a novel example of this phenomenon. It is particularly interesting since the resulting black
hole has a large horizon area, of order the AdS scale for λ of order unity and larger still for
small λ. We have studied only classical solutions of the gravitating string, but when the
solution is sufficiently close to the extremal limit we expect quantum effects to become im-
portant. Such effects are now well-understood for the low-temperature limit of BTZ black
holes approaching the extremal limit from energies above the threshold (rather than below
as for the strings). For energies of order GN above the threshold a perturbative gravita-
tional mode describing fluctuations of the long AdS2 throat becomes strongly coupled [27],
but nonetheless remains under good control since it is described by the solvable Schwarzian
theory [28–30], similarly to near-extremal black holes in higher dimensions. For exponen-
tially small temperatures (when there are only order one available microstates) fluctuations
of topology become important [31, 32] and the gravitational description remains a mystery;
stringy physics may play an significant role here. We expect a similar Schwarzian mode to
become important for the near-extremal spinning string, as well as quantum fluctuations of
the string. Perhaps by including such effects it is possible to interpolate between classical
spinning strings and classical BTZ black holes through a near-extremal quantum regime.

5 Discussion

5.1 Spinning strings in top-down models

We studied the simplest possible ‘bottom-up’ model of a Nambu-Goto string coupled to
Einstein gravity. How can we embed this physics in complete top-down string theory
constructions?

We’ll take the first steps towards this by examining the parameters in the paradigmatic
example of strings in AdS3, the D1-D5 system. This arises from the near-horizon description
of Q1 D1-branes and Q5 D5-branes wrapped on a four-manifold M4 (either T 4 or K3) in
type IIB string theory. The resulting geometry is AdS3 × S3 ×M4, with the radius of S3

equal to the AdS length `. The AdS scale and three-dimensional Newton’s constant GN
are given by [33]

`2 = g6
√
Q1Q5`s, GN = g2

6`
4
s

4`3 , (5.1)
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where g6 is the string coupling in six dimensions (after compactifying onM4). This means
that our parameter λ determining the strength with which fundamental string couples to
gravity scales as

λ ∝ g6√
c

(5.2)

For weakly coupled strings (g6 � 1) and large-radius AdS in Planck units (c ∝ Q1Q5 � 1),
we have λ � 1, so our analysis of that case is most relevant for this top-down model. In
particular, the maximal angular momentum where the string merges with black holes for
this case would be at Jmax of order g−2

6 .
Importantly, in this D1-D5 example there is no background NS-NS B-field, which would

be important to include since it couples directly to the fundamental string. See section 5.3
for comments on the inclusion of NS-NS flux. For a similar reason, our results do not
apply to the D-string since the D1-D5 background is supported by RR two-form flux, which
couples to the D1 in the same way that the NS field coupled to the fundamental string.

As mentioned above, the geometry for the D1-D5 system is not simply AdS3, but
includes a compact manifold S3 ×M4 (and the size of the S3 is always the same as the
AdS scale). Since our results do not make reference to this internal space, they apply
when the string does not have significant momentum in the compact directions, and when
back-reaction does not significantly alter the internal geometry. In particular this applies
in the sector of zero R-charge, for which the wavefunction of the string is independent of
the compact directions. It would be interesting to generalise to find back-reacted solutions
for strings which are localised and carry momentum in the internal directions.

5.2 The CFT2 dual of spinning strings

Perhaps the most obvious question is whether we can understand the states dual to spinning
strings in a holographic dual conformal field theory. Two complementary approaches to
this question spring to mind: one might attempt to identify these states in a generic theory
with minimal assumptions following a bootstrap philosophy, or alternatively to compute
their spectrum in a specific top-down holographic model.

Bootstrap. This work was originally motivated by results using analytic bootstrap meth-
ods to constrain the spectrum of irrational two dimensional CFTs. These results give a
gravitational characterisation of the large spin states of generic theories, but show no sign
of strings. What role (if any) do string states play in this context, and how might they be
identified and constrained by the bootstrap?

Specifically, consistency demands [24, 34, 35] that a generic5 irrational CFT2 contains
states corresponding to both multi-particle states in AdS and to BTZ black holes. These
exist in a large spin limit of fixed h̄ and h → ∞, shown by bootstrapping four-point
functions, in which states with the spectrum suggested by their AdS analogues must appear
as intermediate states to satisfy crossing symmetry. The two-particle states are CFT2

5More precisely, the results in question apply for a unitary theory with c > 1 and a Virasoro twist gap:
the conformal dimensions h of Virasoro primary states except the vacuum have a positive lower bound.
This is roughly the requirement that the theory has no conserved currents besides Virasoro descendants of
the vacuum (though technically slightly stronger).
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versions of double-twist operators in higher dimensions [36, 37], with the novelty in d = 2
that their spectrum is modified (in a universal manner controlled by the central charge
c only) by gravitational interactions. Black holes do not appear in the analogous higher
dimensional bootstrap, but for CFT2 are necessary for modular invariance [38, 39] as well
as four-point crossing. Corrections to this spectrum away from the large spin limit also
have gravitational descriptions in generic theories. This includes anomalous dimensions of
two-particle states due to interactions from the four-point function bootstrap [24], as well as
quantum corrections to the BTZ black hole threshold by combining the existence of multi-
twists with modular invariance [40]. Finally, theories with weakly coupled local holographic
duals are precisely those for which the corrections to these bootstrap results are small, which
means that they can remain true for generic kinematics and not only at large spin.

Since the CFT2 bootstrap has proven so powerful at recovering the spectrum of AdS3
gravity, it is natural to ask why string states have not yet appeared from this perspective,
and whether their spectrum can be similarly determined or constrained. Our results indi-
cate that they are unlikely to be visible from the conventional large-spin (lightcone) boot-
strap, since the strings have a maximal J before merging with the BTZ spectrum, which
explains why they were not apparent in the previous work reviewed above. Nonetheless,
perhaps a combination of ideas from large c and large J analyses will give access to these
states. To this end, it may be helpful to understand whether the spinning strings can ever
be the dominant intermediate states in a correlation function corresponding to high-energy
bulk scattering of particles, and if so in what kinematic regime.

In top-down constructions. A complementary approach to the above is to study the
spectrum in a specific realisation of AdS3 gravity with a known CFT dual. For example,
in the D1-D5 system the dual CFT can be described as a deformation of a free symmetric
orbifold theory (and likewise the recently proposed theories in [41]). The free orbifold point
corresponds to λ = 0, where our leading Regge trajectory of string states becomes a tower
of higher spin single-trace conserved currents (with h̄ = 0). From this we expect that no
string back-reaction effect remains at strictly zero coupling. But under deformation away
from this point these current acquire anomalous dimensions, which we hope to relate to the
classical string spectrum including back-reaction. A conformal perturbation theory analysis
is indicative of the expected logarithmic spin dependence from the GKP strings [42]; our
results indicate that this will break down at sufficiently large spin (when J is of order the
inverse square of the coupling).

Since the interesting regime of large spin involves gravitational back-reaction, there is a
sense in which the string states of interest are multi-particle states of many gravitons (along
with the string itself). This intuition suggests that from the CFT, we will have significant
mixing between multi-trace operators consisting of the long string states dressed with many
stress tensors. If this is correct, taking the mixing into account may make the problem
significantly more technically challenging.
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5.3 Background B-field

Besides the importance of gravitational back-reaction, there is another well-known way
in which AdS3 is special: it can support a background NS-NS B-field which respects the
symmetries. This is a two-form potential with gauge-invariant three-form field strength
H = dB; a nonzero value can respect the symmetries of AdS3 since we can choose H to
be proportional to the volume form. It couples to the string by a term

∫
B in the action

(integrating the pullback of B on the worldsheet). For this reason, our results need to
be modified in a background with this field turned on. Previous results (without back-
reaction) include [19, 20].

To gain some intuition, it is helpful to use Stokes’ theorem to write the coupling of B
to the string as the integral of H over a three-dimensional region bounded by the string
worldsheet. This action becomes proportional to the (signed) volume contained within the
string, which we can think of as providing a ‘pressure’ force supporting a bubble bounded
by the worldsheet, while the usual Nambu-Goto action is analogous to a surface tension for
this bubble. From this it is clear that our folded strings will no longer be classical solutions:
the pressure force will cause them to ‘puff up’, separating the two strands of folded string.
This means that the method we used to find solutions does not straightforwardly carry
over to a case when this field is nonzero. On the other hand, in this case there are simpler
static solutions with rotational symmetry — circular strings held in equilibrium by the
balance of ‘surface tension’ and ‘pressure’ forces — and it may be interesting to analyse
these including back-reaction.

We note that there is a special value of NS-NS flux in AdS3. Since the area contained
in a large circle in the hyperbolic plane is proportional to its perimeter, the forces on a
string as it approaches the AdS conformal boundary can be balanced by tuning the B-field
strength. This is the ‘pure NS point’, an example of which is the S-dual of the D1-D5
system above (for which the D1s become fundamental strings, and D5s become NS5s),
with the geometry supported by NS-NS flux only instead of R-R flux only. In this case,
the worldsheet theory becomes an SL(2,R) WZW model, which makes construction of
classical solutions much simpler [43–45]. Perhaps some of this simplicity will remain once
back-reaction is taken into account.

5.4 Excitations

The spinning strings we constructed correspond to the ground state of the string for given
angular momentum. It is clearly of interest to study more general classical solutions, or
perhaps the quantum theory of excitations on top of our solutions. Our methods relied
heavily on the symmetry of the spinning string, which will be broken by more general
states, so a new idea is required. For quantization of the GKP string, see [46, 47].

It is of particular interest to count the excited states of the string in the near-extremal
limit as a probe of the black hole/string transition. Perhaps the entropy of string states
smoothly crosses over through the transition to the Bekenstein-Hawking entropy of near-
extremal rotating black holes?
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