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Abstract

Environmentally relevant levels of pesticides may promote the emergence of stronger
streptomycin-resistant mutants in an Escherichia coli K-12 strain in the presence of sublethal
levels of streptomycin. However, it is not clear whether this synergistic effect exists in other
strains within and outside the Escherichia genus. Here, we investigated the long-term evolution
toward stronger antibiotic resistance under the pesticides and streptomycin coexposure in
bacterial strains of three different genera, including pathogenic E. coli strains O157:H7 and
0103:H2, one Pseudomonas strain, and one Staphylococcus strain. Consistently, the coexposure
induced significantly stronger streptomycin-resistant mutants in the two E. coli strains. However,
it did not promote any evolution toward stronger streptomycin resistance in the Pseudomonas
and Staphylococcus strains. Site-specific mutations of genes, such as rpsL(Lys88Arg), which
encode streptomycin target proteins were exclusively evolved in the coexposed E. coli strains
and conferred 80-fold increase in streptomycin resistance. These findings imply that a higher risk
of strong and inheritable streptomycin resistance of E. coli strains, including the pathogenic ones,

may exist in certain environments where pesticides and antibiotics cooccur.
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1. Introduction

Given the global threat to public health caused by antibiotic resistance (O’Neill, 2016),
successful combat against antibiotic resistance requires a holistic and multisectoral approach to
reduce the rate at which antibiotic-resistant bacteria evolve and spread in humans, animals, and
the environments (Vikesland et al., 2017). While exposure to antibiotics may select for antibiotic-
resistant bacteria, among the environmental compartments, other selective pressures that could
promote the microbial evolution to antibiotic resistance are not well determined. A comprehensive
understanding of selective pressures in the environment is essential to accurately assess the risks
associated with antibiotic resistance evolution, thus facilitating the identification of appropriate
mitigation strategies.

Some studies report that nonantibiotic selective pressures, such as heavy metals,
disinfectants, disinfection byproducts, certain pharmaceuticals, and herbicides, could induce
antibiotic resistance in Escherichia coli strains (a few to thousands mg/L, ppm) (Jin et al., 2018;
Kurenbach et al., 2015; Lietal., 2016; Li et al., 2019; Lu et al., 2018). Some nonantibiotic-induced
changes in antibiotic resistance were observed in other bacterial strains (Kurenbach et al., 2015;
Lv etal., 2014) or microbial communities (Kim et al., 2018). Furthermore, our recent study reveals
that the coexposure to a pesticide mixture at environmental levels and sublethal levels of
antibiotics (ampicillin or streptomycin) synergistically promoted the long-term antibiotic
resistance evolution in the Escherichia coli K-12 strains (Xing et al., 2021; Xing et al., 2020). The
coexposure to pesticides and streptomycin is of greater concern since the latter is not only applied
in clinics but also in agriculture to treat bacterial diseases (McKenna, 2019; Vidaver, 2002). Thus,

in the related environments where both antibiotics and pesticides are occurring, the synergistic



44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

effect in promoting antibiotic resistance might be overlooked, and the risks of antibiotic resistance
development could be underestimated.

Different bacteria, e.g., with/without pathogenesis and from different genera, may have
different responses to the exposed environments. Thus, identifying the influenced bacteria is very
important for the risk assessment of nonantibiotic contaminants as selective pressures. So far, it is
yet unclear whether the synergy of pesticides and antibiotics in the evolution of antibiotic
resistance would be the same for pathogenic E. coli strains, as well as bacterial strains from
different genera. To fill the knowledge gap, we conducted evolutionary experiments under the
coexposure conditions with environmental levels of pesticides and streptomycin (below minimal
inhibitory concentrations, MIC) in species from different genera, including two pathogenic E. coli
O157:H7 and O103:H2, one Pseudomonas species (P. putida), and one Staphylococcus species (S.
epidermidis) (Rasmussen and Casey, 2001). The change in antibiotic resistance levels of the
evolved populations was determined after 500 generations. We then identified genetic mutations
shared in the populations with stronger streptomycin resistance developed. We demonstrated
different resistance phenotypes of mutants carrying the commonly emerged genetic mutations

identified in the evolved populations.

2. Materials and methods
2.1 Bacterial strains, growth, selection conditions, and evolutionary experiments

The bacterial strains used in this study were purchased from ATCC: The Global
Bioresource Center, including an E. coli O157:H7 strain (ATCC No. 43888), an E. coli O103:H2
strain (which was kindly received from Dr. Abasiofiok Mark Ibekwe from the Salinity Laboratory

of USDA in Riverside), one P. putida strain (ATCC No. 12633), and one S. epidermidis strain
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(ATCC No. 14990). The sbmA knockout E. coli strain (JW ID: JW0368) and its parent strain
(BW25113) were obtained from Horizon Discovery Company. The growth media for all the
bacterial strains was Luria-Bertani (LB) broth, and liquid cultures were aerated by shaking. First,
the stock cells for each strain were revived, and then a single colony was picked up from the
streaked LB agar plates of the revived culture, which was regarded as the ancestor strain. All
ancestor strains (i.e., E. coli O157:H7, E. coli O103:H2, P. putida, and S. epidermidis) were
susceptible to streptomycin with the initial MIC of 7, 8, 4, 8 mg/L, respectively, which were used
for the following evolutionary experiments.

The selection conditions included exposures to streptomycin (Strep) alone or a mixture of
23 pesticides, which were frequently detected in aquatic environments (Supplementary Table S1)
(Xing et al., 2021; Xing et al., 2020), as well as the coexposure to Strep and pesticides. The
pesticides included eight herbicides (e.g., phenylureas and chlorotriazines), seven insecticides (i.e.,
carbaryl, carbofuran, diazinon, fipronil, imidacloprid, chlorpyrifos, and metaldehyde), six
fungicides (e.g., benzimidazoles and triazole fungicides), one biocide (i.e., irgarol), and one
commonly used insect repellent (i.e., DEET). The selection concentration of Strep was at sub-MIC
level (i.e., 1/5 MICo, MICo is the Strep MIC of the ancestor strain) [denoted (1/5,0)]. For each
pesticide, we selected a representative environmental concentration (EC) based on previous reports
(Supplementary Table S1) (0.1 —4.8 pg/L each and ~ 20 pg/L in total). We applied three pesticide
exposure levels, which were 1, 10, and 100 times of EC, corresponding to the occurrence levels of
pesticides at various environmental exposure scenarios [denoted (0,1), (0,10), (0,100),
respectively]. The coexposure conditions thus were combinations of 1/5 MICo and different

concentrations of pesticides [denoted (1/5,1), (1/5,10), (1/5,100), respectively]. Control
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experiments in the absence of selective pressures (Strep or pesticides) were also set up
(Supplementary Fig. S1).

Evolutionary experiments were performed as described previously (Xing et al., 2020).
Briefly, we serially transferred eight replicate lineages for 500 generations in 200 uL. LB liquid
media under one exposure condition in a 96-well plate. Multiple exposure conditions were
included on the same plate. The pesticide mixture was prepared in methanol, added to the wells,
and evaporated prior to adding LB media and the Strep stock solution (freshly made in MilliQ
water). The cell cultures were incubated at 30 °C in a 150-rpm shaker in the dark for 24 hours,
diluted 500 folds, and inoculated into fresh LB media containing the same selective chemicals.
Each transfer resulted in log2(500) = ~ 9 generations, and the evolutionary experiments lasted for
56 days. The experimental setup and workflow were also depicted in Supplementary Fig. S1. The
cultures after every 100 generations were preserved by adding 100 puL of 50% glycerol and stored
at —80 °C.

2.2 MIC test of evolved populations

Every 100 generations, the evolved populations were subject to MIC tests, which determine
phenotypic resistance levels of the populations. The cell culture was diluted with 0.9% NaCl
solution to an ODsoo of 0.1, which was regarded as the “standard solution”. Then 0.5 uL of the
standard solution was added into fresh LB medium containing Strep with a series of concentrations.
In the growth control, 0.5 pL of the standard solution was added to fresh LB medium plus 5 pL of
nanopore water instead of the antibiotic solution. The negative control was the same as growth
control but without the inoculum. Cell cultures were incubated at 30 °C for 20 hours, and then the
ODeoo was measured. The MIC was determined as the concentration that completely inhibited cell

growth based on the ODsoo measurement. We then performed the Student’s t-test to analyze the
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significance of MIC differences between the coexposure conditions and single exposure (p-value
< 0.05, N = 8, unpaired, two-tailed, unequal variances).
2.3 DNA extraction and whole-population sequencing

To identify the antibiotic resistance mechanisms in the evolved populations of E. coli
O157:H7 and E. coli O103:H2 from different exposure conditions, after 500 generations, we
sequenced selected populations under different exposure conditions, which have developed
increased levels of antibiotic resistance. The evolved populations without chemical exposure were
also sequenced to identify genetic adaptations to the growth conditions. Each evolved population
was cultivated overnight in LB medium, and cell pellets were collected by centrifugation. Genomic
DNA (gDNA) was extracted using the DNeasy Blood and Tissue Kit (Qiagen), and the gDNA
concentrations were determined on a Qubit 4 Fluorometer (Thermo Fisher Scientific, Wilmington,
DE). The gDNA was then subjected to 150-bp paired-end sequencing on the Illumina NextSeq
platform, which was carried out by Microbial Genome Sequencing Center. The mutant alleles were
called out by the workflow described previously (Xing et al., 2021; Xing et al., 2020). A dynamic
sequence trimming was done by SolexaQA software (Cox et al., 2010) with a minimum quality
score of 30 and a minimum sequence length of 50 bp. All samples were aligned against the E. coli
O157:H7 ATCC 43888 genome and E. coli O103:H2 genome available at NCBI GenBank
(NZ_CP041623.1 and AP010958.1) using the Bowtie 2 toolkit (Langmead and Salzberg, 2012).
SAMtools was used to format and reformat the intermediate-alignment files (Li et al., 2009). SNPs
and INDELs were identified and annotated with software BCFtools (Li, 2011) and SnpEff
(Cingolani et al., 2012). Among these, the valid mutant alleles were further filtered based on the
criteria: (1) causing amino-acid-sequence change, (ii) not found in the ancestor Go and the evolved

populations without selective pressures at generation 500, (iii) > 20-read coverage, and (iv) > 5%
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(1/20) mutant allele frequency at the mutation positions, indicating the specific genotype in the
populations with larger than 5% presence.
2.4 Isolation of resistant mutants, SNP genotyping assays, and whole-genome sequencing

To determine the correlation between rpsL mutations at different amino acid positions and
their phenotypic resistance levels, we isolated resistant mutants from the evolved populations of
E. coli O157:H7. The cell culture was spread on selective LB agar plates with 1x MICo Strep and
incubated overnight. The resistant clones were picked up, and three of them were confirmed to be
rpsL-mutation-positive via the SNP genotyping assays. The SNP genotyping assays we applied in
this study were Custom TagMan SNP Genotyping Assays (Thermo Fisher Scientific). Two assays
were designed specifically targeting the rpsL (Leu49GIn) mutation and the rpsL (Lys88Arg)
mutation. The assays were performed in 96-well plates on a real-time PCR instrument QuantStudio
3 (Thermo Fisher Scientific) according to the manufacturer’s instructions and recommended
thermal cycling conditions. The “Genotyping” application in Thermo Fisher Cloud was used to
analyze the mutant genotype. Eight 7psL mutants were subjected to whole-genome sequencing to
obtain a comprehensive list of mutations in the 7psL mutants. The SNP calling procedures were
the same as the analysis of whole-population sequencing data described above, except that the

mutation frequency cutoff was set to 50%.

3. Results and discussion
3.1 Synergistic effects of pesticides and streptomycin on the selection of antibiotic resistance in
bacterial populations of different genera

For E. coli O157:H7 (Fig. 1A), all of the three coexposure levels stimulated strong

resistance development (> 40-fold increase in MIC). It is much stronger than the resistance
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developed in populations exposed to Strep alone (mild to moderate resistance, i.e., 4 — 10 folds
increase in MIC; p-value = 0.04, 0.01, and 2x10~ between the coexposure and the Strep-only
exposure, for 1, 10, and 100EC, respectively according to the Student’s t-test). As the added
pesticide concentrations increased from 1EC to 100EC, more replicate lineages (i.e., from 4/8 to
6/8) have evolved the high-level resistance (Fig. 1A). The exposure to pesticides alone did not
significantly increase the Strep MIC of the evolved E. coli O157:H7 populations. We observed a
similar trend in E. coli O103:H2 (Fig. 1B). The coexposure led to strong antibiotic resistance (i.e.,
20 — 50 folds, 2 to 3 out of 8 replicate lineages), albeit with no statistical significance according to
the Student’s t-test. In comparison, the exposure to Strep alone was not able to increase Strep
resistance by more than 5 folds. The synergistic effect of Strep and pesticides on Strep resistance
development in E. coli O157:H7 and E. coli O103:H2 is consistent with what has been observed
in another E. coli strain (K-12) with the same exposure levels (Xing et al., 2021). It suggests that
the impact of Strep and pesticide coexposure on the selection of stronger Strep resistance may
occur in a broader spectrum of E. coli strains. Differently, for P. putida and S. epidermidis, no
synergistic effect of Strep and pesticide coexposure was observed. For P. putida, the Strep-only
exposure caused the emergence of mild Strep resistance (4 — 6-fold increase in MIC) (Fig. 1C).
However, the additional exposure to pesticides did not select for stronger Strep resistance than the
exposure to Strep alone. None of the exposure conditions showed an impact on Strep resistance in
the S. epidermidis populations after 500 generations, which remained similar to the original level
(Fig. 1D). These results suggest that the synergistic effect of Strep and pesticides on antibiotic

resistance development is likely to be specific to certain bacteria, such as E. coli.
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Fig. 1. Population MICs of E. coli O157:H7 (A), E. coli O103:H2 (B), P. putida (C), S. epidermidis
(D) under exposures to Strep alone, pesticides alone, and Strep+pesticides after 500-generation
evolution (L1-L8: the eight replicate lineages; The MICs of the E. coli O157:H7, E. coli O103:H2,

P. putida, and S. epidermidis ancestor strains are 7, 8, 4, and 8 mg/L, respectively).

We further examined the Strep resistance trajectories of the evolved E. coli O157:H7
populations during 500 generations. Most of the replicate lineages from the sub-MIC Strep
selection alone have gradually evolved with increased resistance but did not develop strong
resistance (< 10 folds) after 500 generations (Fig. 2A). In contrast, four populations from (1/5,1)
condition exhibited > 40-fold increase in resistance (Fig. 2B). The strong resistance was acquired
at generation 500. Compared to 1EC, 10EC and higher could accelerate the emergence of stronger

10
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Strep resistance. Moreover, as the pesticide concentration increased, more lineages acquired
stronger Strep resistance (> 10-fold increase) after 500 generations (4, 5, and 8 for 1EC, 10EC,
and 100EC, respectively) (Fig. 2C&D). It indicates a dose-effect of pesticides as the co-stressor

on synergistically inducing and accelerating the evolution toward stronger resistance.
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Fig. 2. Trajectories of population MICs of E. coli O157:H7 exposed to Strep alone (A) and
pesticides and Strep coexposure [B: (1/5,1); C: (1/5,10); D: (1/5,100)] over 500 generations (Note:

lineages with substantial increase in Strep resistance were labeled next to the trajectory line).
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3.2 Site-specific target-modification mutations in rpsL caused the high streptomycin resistance in
coexposed E. coli populations

We identified mutations in the evolved populations of E. coli O157:H7 and E. coli
0O103:H2 at generation 500 from the coexposure and Strep-only exposure to compare the genetic
basis of the developed Strep resistance. The resistance mechanisms of evolved E. coli O157:H7
and O103:H2 populations from the coexposure condition were mainly associated with mutations
of genes involved in (i) target modification, (ii) DNA replication and transcription, (iii) stress
response, (iv) substrate uptake, (v) fimbriae, flagella, and motility, (vi) phage (i.e.,
FNZ21 RS17055 gene function), and (vii) metabolism (Figure 3). Among them, similar mutations
in genes involved in stress response, substrate uptake, motility, phage, and metabolism were also
detected in the evolved populations exposed to Strep alone (Figure 3).

The high-level Strep resistance in the coexposed populations was likely caused by the
distinct mutations, which were not induced by Strep exposure alone. In E. coli O157:H7, the
distinct mutations were mainly 7psL mutations (i.e., Lys88Arg, Lys88Thr, and Lys88GlIn) (Fig.
3A). Gene rpsL encodes the Strep-target ribosomal S12 protein. Consistently, single-amino-acid-
substitution mutations at position 88 (Lys88Arg and Lys88GlIn) have also been reported to cause
strong Strep resistance in multiple strains (Fukuda et al., 1999; Hosokawa et al., 2002; Oz et al.,
2014; Westhoff et al., 2017). Other distinct mutations that developed under the coexposure and
likely contributed to strong resistance were those in genes related to cell motility (e.g., fliM, mot
genes) and phage proteins (i.e., FNZ21 RS20200) (Fig. 3A). Similarly, in E. coli O103:H2, distinct
mutations in rpsL (i.e., Lys43Asn, Lys43Arg, Arg86Ser) were exclusively induced in the
coexposed populations that showed a substantial increase in Srep resistance (Fig. 3B). The same

rpsL mutation (Arg86Ser) was also identified in the highly resistant E. coli K-12 populations

12
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exposed to the same pesticide co-stressors (Xing et al., 2021). In addition, mutations in mutator
genes (i.e., mutT and mutL) were also identified in some of the coexposed E. coli O103:H2 (Fig.
3B), likely causing mutator phenotypes. The mutator phenotypes are known to create superior
genetic backgrounds for selecting antibiotic resistance mutations (Chopra et al., 2003) or directly
lead to high-level resistance (Couce et al., 2015). It can also explain the higher number of genetic
mutations identified in the coexposed O103:H2 populations with mutT or mutL mutations than the

0103:H2 without those mutations (Fig. 3B).
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isolated from select lineages of E. coli O157:H7 under different exposure conditions [i.e., (1/5,0),

(1/5,1), (1/5,10), and (1/5,100)].

Although target-modification mutations in gene rpsL were also identified in two evolved
populations exposed to Strep alone (Fig. 3), they failed to cause strong Strep resistance. This led
to the hypothesis that the target-modification mutations at different amino acid positions may lead
to different levels of Strep resistance. To examine this, we isolated Strep-resistant mutants, which
carry rpsL mutations at different amino acid positions, from different Strep-only and coexposed E.
coli O157:H7 populations. While the rpsL (Leu49GIn) mutants from both (1/5, 0) and (1/5, 1)
exposures only showed a 5 — 9-fold increase in Strep resistance compared to the ancestor strain,
all the isolated rpsL (Leu88Arg) mutants from all coexposures, including the one mutant carrying
only this rpsL mutation (Supplementary Table S3), exhibited a 70 — 80-fold increase (Fig. 4). One
should note that the rpsL (Leu49GIn) mutants also carried mutations in 2 — 3 other genes, including
cpxA and sbmA that are involved in stress response and substrate transport and may also contribute

to resistance (Fig. 3, Supplementary Table S3). A combination of small-effect resistance mutations

15



253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

could lead to higher resistance (Wistrand-Yuen et al., 2018). Thus, rpsL (Leu49GIn) mutation
alone would not lead to an increase in Strep resistance higher than what had been achieved in the
rpsL (Leu49GIn) mutants with other genetic mutations. It indicates that #psL mutations conferring
strong Strep resistance are site-specific, and one confirmed amino acid position in rpsL was 88.
Similarly, since rpsL mutations at amino acid positions 86 and 43 were dominant in some
coexposed E. coli O103:H2 populations that showed strong Strep resistance (Fig. 3B), those two
positions could also be specific rpsL mutation sites causing the strong resistance. Due to the
cooccurrence of other genetic mutations, the exact role of the two mutation sites of 7psL needs to

be further examined.

3.3 Commonly induced Strep resistance genetic mutations by the pesticide co-stressors in different
E. coli strains

The effect of pesticide exposure on the development of Strep resistance has been observed
in different E. coli strains, including the two pathogenic strains in this study and two K-12
derivatives (C3000 and ATCC 10798) in our previous studies (Xing et al., 2021; Xing et al., 2020).
Thus, we compared the genetic mutations induced in those strains and identified the commonly
shared ones that could indicate different Strep resistance levels (Fig. 5). The target-modification
mutations, substrate-transport-related, and stress-response-related off-target mutations are the
three types commonly developed in all investigated strains. Besides the above-demonstrated site-
specific target-modification mutations in rpsL (i.e., Leu88Arg, Arg86Ser, and Lys43Arg),
mutations in another Strep-target protein-encoding gene, rsmG, were also shared among the strains.
This gene encodes a methyltransferase involved in the methylation of the 16S rRNA. The loss of

RsmG@G activity could loosen the binding of Strep to the 30S subunit, leading to Strep resistance.
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The isolated loss-of-function rsmG mutants of E. coli ATCC 10798 caused a 8 — 20-fold increase
in Strep resistance (Xing et al., 2021).

Mutations in gene sbmA were highly shared off-target mutations, which were also induced
by the Strep exposure alone. They emerged before 300 generations under the coexposure (Xing et
al., 2021) and corresponded to a mild increase (3 — 10-fold) in Strep resistance. Mutations in gene
sbmA included stop-gained mutations, frameshift mutations, and missense mutations (Fig. 3,
Supplementary Table S2), which likely caused the loss of function or structural change of SbmA,
an antimicrobial peptide transporter. A sbmA-knockout mutant of E. coli BW25113 exhibited a 4-
fold increase in Strep resistance compared to the parent strain (Table S4), similar to our
observations in the other E. coli with sbmA mutations. The resistance mechanism caused by sbmA
mutations is still unclear, but mutations in this gene have also been identified in the previously
reported bacteria resistant to aminoglycosides (Hoeksema et al., 2019; Jahn et al., 2017; Lazar et

al., 2014).
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Fig. 5. Summary of identified mutations conferring streptomycin resistance in different E. coli
strains exposed to pesticides (i.e., E. coli K-12 C3000) or coexposed to streptomycin and pesticides

[i.e., E. coli K-12 (ATCC. 10798), E. coli O157:H7, and E. coli O103:H2].

Various stress-response-related genes were mutated in the four E. coli strains, and cpxA4
mutations were found in the two pathogenic strains. The CpxA and CpxR system, which senses
and responds to periplasmic stress, has been implicated in antibiotic resistance (Batchelor et al.,
2005; Mahoney Tara and Silhavy Thomas, 2013). The c¢px4 mutations have been previously
identified from clinical samples and laboratory evolutionary experiments, which caused the

resistance to beta-lactams and aminoglycosides (Masi et al., 2020; Sun et al., 2009; Suzuki et al.,
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2014). The cpxA mutations identified in this study were at different amino acid positions and likely

conferred the same resistance spectrum but at a different level.

3.4 Environmental implications

The synergistic effect of pesticides and streptomycin in promoting the evolution toward
stronger antibiotic resistance does not occur to all bacterial genera. Similar synergistic effects of
environmental-level pesticides and low-level antibiotics in stimulating the emergence of stronger
resistant mutants were observed in four E. coli strains, including the O157:H7 strain and the
0103:H2 strain in this study and two others, E. coli K-12 C3000 (Xing et al., 2020) and E. coli K-
12 ATCC. 10798 (Xing et al., 2021) (Fig. 4). Thus, the synergistic effect is likely specific to some
bacteria, such as E. coli, which may survive and even grow in various open environments including
soil and water (van Elsas et al., 2011). Moreover, E. coli O157:H7 and O103:H2 strains are of
greater clinical relevance and have been recognized as important causes of diarrheal illness
outbreaks (Galland et al., 2001; Luna-Gierke et al., 2014; Maal-Bared et al., 2013; Meng et al.,
1998; Niiesch-Inderbinen et al., 2018; Solomakos et al., 2009), of which the resistant phenotypes
are of greater concern. The increased resistance of these E. coli strains developed during the
pesticides and streptomycin coexposure suggests even higher risks to public health if pathogenic
E. coli were present in environments where pesticides and antibiotics could cooccur. Those
environments include agricultural fields, surface water bodies receiving agricultural runoffs, and
municipal wastewater treatment plants. Future studies using molecular biology and omics
(genomic, transcriptomic, proteomic, and metabolomic) tools are needed to comprehensively
examine the antibiotic resistance mechanisms of environmentally isolated E. coli strains,

particularly the pathogenic ones.
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Additionally, we demonstrated that site-specific target-modification mutations in rpsL
were exclusively induced by the coexposure conditions and caused a substantial increase in Strep
resistance. Furthermore, the specific strong-resistance mutation sites in 7psL we identified in E.
coli strains, e.g., amino acid positions 43 and 88, also conferred strong Strep resistance in other
genera (Fukuda et al., 1999; Hosokawa et al., 2002). The commonly occurring genetic mutations
conferring antibiotic resistance could be signature genetic markers to evaluate antibiotic resistance
levels. In complement with the detection of antibiotic resistance genes, which does not necessarily
result in phenotypic resistance, the detection of site-specific mutations could be developed in the

future for antibiotic resistance surveillance in various environments.

4. Conclusion

This study assessed the synergistic effects of the pesticide mixture and antibiotics on
antibiotic resistance development in bacterial strains from different genera. The same effect of
pesticides and Strep coexposure was observed in two pathogenic E. coli strains, but not P. putida
and S. epidermidis. The development of stronger antibiotic resistance in pathogenic E. coli strains
poses even higher risks to public health. Target-modification mutations (i.e., 7psL mutations) at
specific sites exclusively emerged in several coexposed E. coli strains and caused high-level
phenotypic resistance. Other off-target mutations commonly induced in coexposed E. coli
populations were also identified. Those genetic mutations conferring antibiotic resistance could
serve as additional biomarkers for a more accurate risk assessment of antibiotic resistance in the

environment.
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The supplementary material includes Figure S1 and Table S1 — S4.
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