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Abstract. Given a link in the thickened annulus, its annular Khovanov homology carries
an action of the Lie algebra sl2, which is natural with respect to annular link cobordisms.
We consider the problem of lifting this action to the stable homotopy refinement of the
annular homology. As part of this program, the actions of the standard generators of sl2 are
lifted to maps of spectra. In particular, it follows that the sl2 action on homology commutes
with the action of the Steenrod algebra. The main new technical ingredients developed in
this paper, which may be of independent interest, concern certain types of cancellations in
the cube of resolutions and the resulting more intricate structure of the moduli spaces in
the framed flow category.
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1. Introduction

The structure of link homology theories is closely related to the representation theory of
Lie algebras, and to categorification of quantum groups. This paper initiates the study of
lifting these relations to the level of stable homotopy types. In the process of doing so, we
provide the first example (to our knowledge) of constructing a stable homotopy refinement
via framed flow categories of a homological invariant involving signs and cancellations.
We work in the setting of the sl2 homology theory KhA(L) for links L in the thickened

annulus, sometimes referred to as sutured annular Khovanov homology. Following construc-
tions in [APS04, BN05, Rob13], this triply graded theory may be obtained from the usual
Khovanov chain complex [Kho00] of a link diagram D by taking the annular degree zero part

of the differential. It was shown in [BPW19] that given a tangle T , the homology KhA(T̂ )
of its annular closure may also be obtained as the Hochschild homology of the complex of
bimodules over the Chen-Khovanov algebra [CK14] associated to T .

Motivated in part by results of Auroux, Grigsby and Wehrli [AGW15] and by the work
of Lauda [Lau10] on categorified sl2, Grigsby, Licata and Wehrli showed [GLW18] that the
annular Khovanov homology KhA(L) carries an action of sl2. Analogous actions of sln on
annular Khovanov-Rozansky homology were defined in [QR18]. In fact, the sl2 action is
constructed on the chain complex level, and it is natural with respect to annular link cobor-
disms. Here a trivial simple closed curve in the annulus is assigned the trivial representation
of sl2, and essential curves are assigned the fundamental representation or its dual; [GLW18]
extended the action to KhA(L) for any annular link L and showed that the action is a link
invariant; see Section 2.4 for a detailed discussion.

Our results concern the stable homotopy refinement of Khovanov homology, introduced
by Lipshitz and Sarkar [LS14a]. This construction, building on the work of Cohen, Jones
and Segal [CJS95], associates to a diagram of an oriented link a framed flow category. The
resulting suspension spectrum is a stable homotopy invariant of the link L; its cohomology is
isomorphic to the Khovanov homology of L. An alternative, more combinatorial construction
using the Burnside category was given by Lawson, Lipshitz and Sarkar in [LLS20b]. The sta-
ble homotopy refinement XA(L) of an annular link L may be constructed using an analogous
method, cf. [AKW21, Section 4.3]. Alternatively, lifting the homology isomorphism with
the Hochschild homology of Chen-Khovanov bimodules, XA(L) may be defined as the topo-
logical Hochschild homology of the tangle invariants introduced by Lawson-Lipshitz-Sarkar
in [LLS20a].

These new links invariants valued in spectra can be studied using tools of stable homotopy
theory. For example, they admit an action of the Steenrod algebra, and they are known to
be stronger invariants than the underlying link homology, cf. [See12]. It is an interesting
question what features of link homology admit a lift to the level of spectra. We address this
question, giving a new structure on the annular Khovanov spectrum and thus providing a
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new invariant of annular links and cobordisms. To this end, our main result is the following.
Let J denote one of the standard generators E,F,H of sl2 (see Section 2.4).

Theorem 1.1. Given an annular diagram D of a link L in the thickened annulus, there
exists a map of spectra J : XA(D) → XA(D), whose induced map J ∗ on cohomology is equal
to the action of J on KhA(L). The homotopy class of J is an invariant of the link L.

As a consequence, we have the following statement about the sl2 action on annular Kho-
vanov homology.

Corollary 1.2. The action of sl2 on the annular homology KhA(L) of a link L commutes
with the Steenrod cohomology operations.

We carry out the construction in the setting of framed flow categories, recalled in Section
3.1. (An analogous construction likely can be done using a suitably defined “framed Burnside
category”; compare the discussion in [LS18, Section 2.5].) The overall strategy is to define
a stable homotopy refinement of the cone of the chain map J , see Section 3.2.
An important problem that immediately presents itself is the existence of cancellations.

That is, within the cube-shaped chain complex Cone(J), there exist pairs of consecutive
edges so that a single generator is sent to a pair of generators, which then cancel by the
second edge differential. This does not happen in the usual Khovanov chain complex, since
the coefficients of the differential with respect to the canonical generators are either 0 or 1.
There are signs but still no cancellations in the setting of odd Khovanov homology, whose
stable homotopy refinement was given in [SSS20].

A specific example of cancellations in Cone(J) is discussed in Section 4. Its manifestation
in the context of framed flow categories is the presence of a pair of oppositely framed points,
which cobound a framed interval in the 1-dimensional moduli space. In general this leads
to moduli spaces of dimensions 2 and higher with non-trivial topology, see Sections 4, 8 and
Figure 19.

The construction of the Khovanov homotopy type [LS14a] and other recent results in
this setting involved framed flow categories whose n-dimensional moduli spaces are trivial
covers of permutohedra, so topologically they are (disjoint unions of) n-dimensional balls.
In general, if one attempts to build a framed flow category and the moduli spaces have
non-trivial topology in some dimension, the existence of higher-dimensional moduli spaces
is not assured. Indeed, there are highly restrictive compatibility conditions on how the
moduli spaces of various dimensions fit together in a framed flow category (see Section 3.1),
and there are choices involved in their construction. The union of moduli spaces up to a
dimension n − 1 are required to form the boundary of the moduli spaces of dimension n,
forming manifolds with corners. Thus extending the construction to dimension n amounts to
finding a collection of null-cobordisms, a problem which a priori might not have a solution.
A key point in our definition of a framed flow category for Cone(J) in the proof of The-

orem 1.1 is that the moduli spaces may be constructed as (trivial covers of) codimension-1
submanifolds of some canonical spaces. The bulk of the paper, Sections 5 - 7, deals with
setting up the base cases: 0- and 1-dimensional moduli spaces. The inductive step, using
the Pontryagin-Thom construction and propagating the codimension-1 condition, is given in
Section 8.

Another important feature in our work, as compared to prior constructions, is the necessity
of performing a global combinatorial analysis of configurations of curves and surgery arcs
in a link diagram. Recall that the structure of the 1-dimensional moduli spaces used in
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the construction of the Khovanov homotopy type is analyzed by hand only for 2- and 3-
dimensional faces of the Khovanov cube [LS14a, Sections 5.4,5.5]. These analyses are local
in the sense that no more than three surgery arcs need to be considered. The triviality of the
permutohedral covers then ensures that all higher dimensional moduli spaces can be built.
In contrast, the more intricate structure of moduli spaces in our setting requires a detailed
analysis of configurations of an arbitrary number of surgery arcs; see Section 7.

The construction of the map J in Theorem 1.1 is stated as Corollary 5.9; the main
technical result underlying its definition is Theorem 5.8. The invariance of the homotopy
class of J with respect to various choices made in the construction, as well as invariance
under Reidemeister moves, is established in Section 9.

Recall that the sl2 action on the annular complex is natural with respect to link cobordisms.
The following theorem refers to maps on spectra defined in [LS14b] for link cobordisms which
are presented as a sequence of Morse moves and Reidemeister moves; see Section 9.2 for
further details.

Theorem 1.3. The map J constructed in Theorem 1.1 is natural with respect to link cobor-
disms presented as sequences of Morse moves and Reidemeister moves.

Recently functoriality up to a sign of Khovanov homology was lifted to the level of spectra
for links in R3 in [LLS21]. Specifically, given an oriented link cobordism Σ, [LLS21, Theorem
1] established that the induced homotopy class of maps of Khovanov spectra is well defined
up to sign with respect to isotopy of Σ. Here “up to sign” means taking smash product with
an automorphism (−1) : S −→ S of the sphere spectrum; see the discussion in [LLS21] for
further details. If the functoriality is established for annular links as well, the reference to
a presentation as a sequence of elementary cobordisms in the statement of Theorem 1.3 can
be omitted.

The results of this paper concern the action of generators of sl2. Lifting the sl2 relations
can be interpreted as follows. If a space X is a high enough suspension, X = ΣnX ′ for some
space X ′ and n ≥ 2, then homotopy classes of maps [X, Y ] for any Y form an abelian group.
Taking Y = X, composition of maps makes [X,X] a ring, and one can then consider the
usual commutator bracket of f and g given by fg − gf , endowing [X,X] with a Lie algebra
structure. In our setting, this means that the endomorphisms of the spectrum XA(L) form
a Lie algebra. A homotopical lift of the sl2 relations would amount to showing that the
relations (12) hold in [XA(L),XA(L)], thus establishing that the map sl2 → [XA(L),XA(L)]
given by J 7→ J is a Lie algebra homomorphism. Lifting these relations would involve
the types of cancellations that we address in this paper, but also additional ideas related
to compositions and linear combinations of endomorphisms of XA(L), which is outside the
scope of our present work. We hope to address it in a future paper.
Another interesting problem concerns quantum annular homology KhAq

(L). This theory
was defined by Beliakova, Putyra and Wehrli in [BPW19]. Extending the work of [GLW18],
they showed that KhAq

(L) admits an action of Uq(sl2). Our earlier work [AKW21] defined
a stable homotopy refinement of quantum annular homology, which takes the form of a
Z/rZ-equivariant spectrum X r

Aq
(L), where r ≥ 2. Conjecture 1.4 in [AKW21] states that

the action of Uq(sl2) on KhAq
(L) can be lifted to an action on X r

Aq
(L). The methods of the

present paper do not immediately extend to the setting of X r
Aq
(L) which was constructed

using an equivariant version of the Burnside category. Nevertheless, our results are consistent
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This is the Frobenius algebra underlying sl2 link homology [Kho00]. Define the quantum
grading qdeg on A by setting

(1) qdeg(X) = −1 qdeg(1) = 1.

Let Z− gmod denote the category of Z-graded abelian groups and graded maps (of any
degree) between them. The Frobenius algebra A defines a (1+1)-dimensional TQFT, which
descends to a functor

(2) FKh : BN → Z− gmod .

We will refer to FKh as the Khovanov TQFT. The construction is reviewed below.
On an object C which is a collection of n disjoint circles in the plane, FKh(C ) = A⊗n,

generated by elements of the form

(3) y = y1 ⊗ · · · ⊗ yn ∈ A⊗n

where each yi ∈ {1, X}; this corresponds to a label of each circle in C by 1 or X. We refer
to such generators as Khovanov generators.
Morphisms in BN are generated by so-called elementary cobordisms which contain only

a single non-degenerate critical point with respect to the height function R2 × I → I.
Index 0 (cup) and 2 (cap) elementary cobordisms are assigned the unit and co-unit maps
of A respectively; index 1 (saddle) elementary cobordisms are assigned multiplication or
comultiplication maps according to whether the cobordism merged two circles into one, or
split one circle into two. The presence of a dot on a cobordism corresponds to multiplication
by X ∈ A.

Now let D be a planar diagram for an oriented link L ⊂ S3. We recall the construction of
the formal Bar-Natan chain complex [[D]] from [BN05]. First form the cube of resolutions.
Label the crossings of the diagram by 1, . . . , n. Each crossing may be resolved in one of two
ways, called the 0-smoothing and 1-smoothing, as in (4).

(4)
0 1

For each u = (u1, . . . , un) ∈ {0, 1}n, perform the ui-smoothing at the i-th crossing. This
results in a collection of disjoint simple closed curves in the plane, which we denote Du.
Identifying {0, 1}n with the vertices of an n-dimensional cube, we decorate each vertex u by
its corresponding smoothing Du.
Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vertices which differ only in the i-th entry,

where ui = 0 and vi = 1. The diagrams Du and Dv are identical outside of a small disk
around the i-th crossing. There is a cobordism from Du to Dv, which is the obvious saddle
near the i-th crossing and the identity (product cobordism) elsewhere. We will call this
the saddle cobordism from Du to Dv, and denote it by du,v. Decorate each edge of the n-
dimensional cube by the corresponding saddle cobordism. The result is a commutative cube
in the category BN . There is an assignment su,v ∈ {0, 1} for each edge so that multiplying
the edge map du,v by (−1)su,v results in an anti-commutative cube (see [BN05, Section 2.7],
also [LS14a, Definition 4.5]).
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Let C ⊂ A be a collection of n trivial and m essential circles. Viewing A as a subspace of
R2, apply the Khovanov TQFT FKh from Section 2.1,

FKh(C ) = A⊗n ⊗ A⊗m.

Introduce a second grading, called the annular grading and denoted adeg, on FKh(C ) as
follows. Every tensor factor corresponding to a trivial circle is concentrated in annular degree
zero. For a factor A associated to an essential circle, introduce the notation

v− = X, v+ = 1

to denote a basis for this copy of A, and define adeg by setting

adeg(v−) = −1 adeg(v+) = 1.

The underlying abelian group of FA(C ) is defined to be FKh(C ), with the bigrading given
by (qdeg, adeg). To define FA on a cobordism S ⊂ A× I, first view S as a surface in R2 × I
and consider the map FKh(S) assigned to S by the Khovanov TQFT. It was observed in
[Rob13, Section 2] that FKh(S) is of the form

(5) FKh(S) = FKh(S)0 + FKh(S)−

where FKh(S)0 preserves adeg and FKh(S)− lowers adeg. Set

FA(S) := FKh(S)0

to be the part of FKh(S) that preserves adeg. It follows from (5) that FA is functorial with
respect to composition of cobordisms, and it clearly factors through the relations in Figure
1. We will refer to FA as the annular TQFT. Note that if S carries d dots, then FA(S) is a
map of (qdeg, adeg) bidegree

(χ(S)− 2d, 0).

We distinguish the bigraded modules assigned to trivial and essential circles by writing

V = FA(C)

if C is an essential circle, with basis written as {v−, v+}. The notation A is reserved for the
module assigned to a trivial circle, with basis {1, X}. Then if C ⊂ A consists of n trivial
and m essential circles, the module assigned to C by FA is written as

FA(C ) = A⊗n ⊗ V ⊗m.

Cobordisms between trivial circles are assigned the same map by FKh and FA. We record
here the maps assigned to the four elementary saddle cobordisms involving at least one
essential circle, shown in Figure 3, using the V notation.

V ⊗ A
(I)
−→ V

v− ⊗ 1 7→ v−

v+ ⊗ 1 7→ v+

v− ⊗X 7→ 0

v+ ⊗X 7→ 0

(6)

V ⊗ V
(II)
−−→ A

v− ⊗ v− 7→ 0

v+ ⊗ v− 7→ X

v− ⊗ v+ 7→ X

v+ ⊗ v+ 7→ 0

(7)
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0 1

(a) Future (0-smoothing) and past (1-
smoothing) arcs.

a

(b) Surgery along a future arc a gives a new
arc diagram with the dual to a drawn as a
past arc.

Figure 4

(a)

×

(b)

Figure 5. A rectangular arc diagram and its annular closure

In what follows, we will depict annular arc diagrams by drawing planar tangles in the
rectangle, with the understanding that the annular arc diagram is obtained by connecting
the left endpoints to the right. Thus horizontal intervals are segments of distinct essential
circles. See Figure 5 for an example. We will omit the dashed platforms in the future.

An arc diagram is connected if it is connected as a subspace of the plane. Similarly, we
will refer to the connected components of arc diagrams. Note that, since surgery along
an arc preserves connectedness, there is a natural correspondence between the connected
components of Du and the connected components of Dv for any two vertices u, v ∈ {0, 1}n.
Now let u = (0, · · · , 0) be the starting vertex of the cube, and suppose we have a partition

of Du into disjoint closed (not necessarily connected) components

Du = C1 ⊔ · · · ⊔ Ck.

In a similar fashion, this partition determines such a partition of the arc diagram Dv at every
vertex v ∈ {0, 1}n. Abusing notation slightly, we will use the same notation for these closed
components at every vertex:

Dv = C1 ⊔ · · · ⊔ Ck.

Then for any Khovanov generator x ∈ FKh(Dv), we will write

(11) x = x|C1
⊗ · · · ⊗ x|Ck

∈ FKh(Dv)

where x|Ci
denotes the restriction of the labels in x to the circles in Ci ⊂ Dv. Note that this

is again a slight abuse of notation, since the use of the symbol ⊗ in Equation (11) is, strictly
speaking, incompatible with the use of the same symbol in Equation (3), but this should not
cause any confusion in our arguments.
In many places throughout the paper, we will be concerned with certain sub-cubes within

the large cube {0, 1}n. A k-dimensional sub-cube, denoted u ≤k v, is determined by a pair
of vertices u, v such that ui ≤ vi for all i, with precisely k coordinates i where ui = 0 and
vi = 1. When focusing on such a sub-cube, we will draw the arc diagram Du by including
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×
41

2
3

(a) The arc diagram at the starting vertex
(0, 0, 0, 0)

×

(b) An arc diagram for the sub-cube
(1, 0, 0, 0) ≤2 (1, 0, 1, 1)

Figure 6

only the k future arcs corresponding to these k coordinates, and likewise for any intermediate
vertices u ≤ w ≤ v within the sub-cube. See Figure 6 for an example.

2.4. Action of sl2 on annular Khovanov homology. It is shown in [GLW18] that the
annular TQFT FA can be viewed as taking values in the category gRep(sl2) of graded sl2
representations. We first recall some basic definitions. Let sl2 be the Z-span of the 2 × 2
matrices

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

The usual commutator bracket,

[x, y] = xy − yx,

makes sl2 into a Lie algebra, with the bracket given on generators by

(12) [E,F ] = H, [H,E] = 2E, [H,F ] = −2F.

Remark 2.3. The Lie algebra sl2 in [GLW18] is defined over C. For the purpose of this paper
we continue working over Z, since all desired results already hold integrally.

Recall that if M is an sl2-module, then its linear dual

M∗ = HomZ(M,Z)

is again an sl2-module via

(xf)(m) := −f(xm)

for x ∈ sl2, f ∈ M∗, and m ∈ M . Likewise, if N is another sl2-module, then the tensor
product M ⊗Z N inherits an sl2 action by setting

x(m⊗ n) := xm⊗ n+m⊗ xn

for x ∈ sl2, m ∈M , and n ∈ N .
Let V1 = Z⊕ Z denote the fundamental representation of sl2 with standard basis vectors

denoted v0 = (0, 1),v1 = (1, 0), and let V ∗
1 denote its dual, with dual basis vectors v∗

0,v
∗
1 ∈

V ∗
1 . The action of sl2 on V1 and V ∗

1 is summarized in (13).
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Ev0 = v1 Fv0 = 0 Hv0 = −v0

Ev1 = 0 Fv1 = v0 Hv1 = v1

Ev∗
0 = 0 Fv∗

0 = −v
∗
1 Hv

∗
0 = v

∗
0

Ev∗
1 = −v

∗
0 Fv∗

1 = 0 Hv
∗
1 = −v

∗
1

(13)

Let C ⊂ A be a collection of n trivial and m essential circles. There is a natural ordering
on the essential circles, starting from the innermost circle (closest to the puncture ×). Make

FA(C ) = A⊗n ⊗ V ⊗m

into an sl2-module as follows. Every factor A corresponding to a trivial circle is assigned the
trivial (zero) two-dimensional representation of sl2. For a factor V corresponding to the i-th
essential circle in C , identify V with V1 if i is odd via the Z-linear isomorphism (14) and
with V ∗

1 if i is even via (15).

V1 → V, v0 7→ v−, v1 7→ v+,(14)

V ∗
1 → V, v∗

0 7→ v+, v
∗
1 7→ v−.(15)

Thus trivial circles are always assigned the trivial two-dimensional representation, and es-
sential circles are assigned V1 and V

∗
1 in an alternating manner, with the convention that the

innermost essential circle is assigned V1.

Example 2.4. The action of E and F on two essential circles is recorded below.

E(v− ⊗ v−) = v+ ⊗ v− − v− ⊗ v+ E(v+ ⊗ v−) = −v+ ⊗ v+

E(v− ⊗ v+) = v+ ⊗ v+ E(v+ ⊗ v+) = 0

F (v− ⊗ v−) = 0 F (v+ ⊗ v−) = v− ⊗ v−

F (v− ⊗ v+) = −v− ⊗ v− F (v+ ⊗ v+) = v− ⊗ v+ − v+ ⊗ v−

Remark 2.5. The sl2 representations V1 and V ∗
1 are isomorphic via

v0 7→ −v
∗
1, v1 7→ v

∗
0.

However, the map V1 → V ∗
1 obtained by composing (14) with the inverse of (15) is not

sl2-linear; indeed, the identifications (14) and (15) equip V with two actions of sl2 which
differ by a sign.

By [GLW18, Lemma 4], maps assigned to cobordisms in A× I commute with the action
of sl2. Therefore the annular TQFT FA is upgraded to a functor

FA : BN (A) → gRep(sl2)

landing in the category of Z-graded sl2 representations. The annular grading corresponds
to the weight space decomposition, and the quantum grading corresponds to the external
grading. It follows that sl2 acts on the annular chain complex (10) and its homology.
Let C ⊂ A be a collection of n trivial and m essential circles. We will always assume that

the essential circles are ordered from innermost to outermost, so that the i-th tensor factor
of V in

FA(C ) = A⊗n ⊗ V ⊗m
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corresponds to the i-th essential circle. Any standard generator in V ⊗m can be written as
vs1 ⊗ · · · ⊗ vsm , with each si ∈ {±}. Thus any standard generator x ∈ FA(C ) is of the form

(16) x = y ⊗ vs1 ⊗ · · · ⊗ vsm

where y ∈ A⊗n is a standard generator for the trivial circles in C .
By construction, sl2 weights correspond to the annular grading, so that for a standard

generator x ∈ FA(C ), H acts as multiplication by adeg(x),

(17) Hx = adeg(x)x.

Although the formula (17) is straightforward, we can refine it by writing

(18) Hx =
m∑

i=1

siy ⊗ vs1 ⊗ · · · ⊗ vsm

using the notation (16). The action of E and F can similarly be written as

Ex =
m∑

i=1

y ⊗ vs1 ⊗ · · · ⊗ Evsi ⊗ · · · ⊗ vsm ,

Fx =
m∑

i=1

y ⊗ vs1 ⊗ · · · ⊗ Fvsi ⊗ · · · ⊗ vsm .

(19)

In the formulas (19), Evsi and Fvsi are given by

Evsi =

{
(−1)i+1v+ if si = −

0 if si = +
Fvsi =

{
(−1)i+1v− if si = +

0 if si = −

Letting C denote the i-th essential circle in C , will say that E acts on C to mean that we
apply E on the i-th factor of V in FA(C ),

x 7→ y ⊗ vs1 ⊗ · · · ⊗ Evsi ⊗ · · · ⊗ vsm ,

and likewise for F . If J denotes one of E, F , or H, we will also say the J map to mean the
endomorphism of the module assigned to a collection of circles

J : FA(C ) → FA(C ), x 7→ Jx,

or on the annular chain complex

J : CKhA(D) → CKhA(D),

which is built out of the J map on each smoothing.
The following is a combination of [GLW18, Lemma 2] and [GLW18, Lemma 5].

Lemma 2.6. Let D be an annular link diagram. For each smoothing Du, let Θu : FA(Du) →
FA(Du) be the involution given by v± 7→ v∓ on essential circles and the identity map on the
trivial circles. The maps Θu assemble into an isomorphism

Θ: CKhA(D)
∼
−→ CKhA(D)
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of chain complexes of abelian groups, which fits into the commutative diagram

CKhA(D) CKhA(D)

CKhA(D) CKhA(D).

E

Θ

F

Θ

Therefore the action of F is related to E simply by F = ΘEΘ. Moreover, Θ sends
generators to generators bijectively, so in our combinatorial analysis we can focus on one of
E or F . Note however that Θ does not preserve (qdeg, adeg)-bidegree. A modified quantum
grading is used in [GLW18], there denoted as j′. In our notation, j′ = qdeg− adeg.

3. Khovanov spectra

3.1. Using framed flow categories to construct Khovanov spectra. There is a gen-
eral method due to Cohen-Jones-Segal [CJS95] for constructing a spectrum X with cellular
cochain complex C∗(X ) isomorphic to a given cochain complex C∗. The essential idea is
to build a cell complex whose cells correspond to the generators of C∗ and whose attaching
maps correspond to the differential of C∗. Of course, the various compositions of attaching
maps must be homotopically coherent in order for this to make sense. The data needed to
guarantee this coherence is organized in a framed flow category, which we will review here.
Most of this material is based upon the corresponding material in [LS14a, LLS20b] where the
authors successfully constructed such a category (and thus a spectrum) lifting the Khovanov
chain complex of a link in S3.

Definition 3.1. ([LS14a, Definition 3.12]) A flow category F is a category consisting of the
following data.

• A finite set of objects, also denoted F, together with an indexing map h : F → Z. In
analogy with Morse theory, an object x ∈ F is thought of as a critical point of index
h(x) for some Morse function.

• For each x ̸= y ∈ F, a morphism space (usually called a moduli space) M(y, x) which
is a (h(y)− h(x)− 1)-dimensional manifold with corners (see [LS14a, Section 3.1]));
negative dimensional manifolds are all empty. In analogy with Morse theory, M(y, x)
is often thought of as the moduli space of flow lines from y down to x. Furthermore,
the codimension-m boundary ∂[m]M(y, x) of any such moduli space can be identified
with the disjoint union

∂[m]M(y, x) ∼=
∐

(z1,··· ,zm)∈Fm

M(y, zm)×M(zm, zm−1)× · · · ×M(z1, x).

In analogy with Morse theory, ∂[m]M(y, x) is thought of as the m-times broken flow
lines from y down to x.

Remark 3.2. In [LS14a, LLS20b], the authors use a notion of an ⟨n⟩-manifold, which is a
manifold with corners X whose boundary ∂X is decomposed in a particular manner into n
pieces, ∂X = ∂1X ∪ · · · ∪ ∂nX. We use square brackets in ∂[m]X to denote the codimension
m boundary of a manifold with corners in order to distinguish from the earlier notation.

Definition 3.3. ([LS14a, Definition 3.20]) A framed flow category is a flow category F

whose moduli spaces come equipped with framed neat embeddings into cornered Euclidean
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space (see [LLS20b, Definition 3.7]) in a manner consistent with the boundary identifications
indicated in Definition 3.1.

Definition 3.4. A framed flow category F determines a cochain complex Tot∗(F), called the
totalization complex of F, defined as follows.

• The generators of Tot∗(F) are in bijection with the objects of F.
• For any x ∈ F, h(x) gives the homological degree of the corresponding generator
x ∈ Tot∗(F).

• For any x ∈ Tot∗(F), we have

dx =
∑

{y∈F|h(y)=h(x)+1}

|M(y, x)|y

where |M(y, x)| is the signed count of the framed points comprising the 0-dimensional
manifold M(y, x).

In analogy with Morse theory, Tot∗(F) can be viewed as the Morse cochain complex as-
sociated to the corresponding Morse function. Then we say F refines a complex C∗ if
Tot∗(F) ∼= C∗.

Remark 3.5. Note that the totalization notation in [LLS20b] is assigned to Burnside functors,
while the term associated cochain complex is used in [LS14a] to describe the complex we are
calling the totalization in Definition 3.4

Theorem 3.6. ([LS14a, Lemmas 3.24 – 3.26]) A framed flow category F gives rise to a
cell complex |F| whose cellular cochain complex is isomorphic to Tot∗(F) up to an overall
homological shift. The stable homotopy type of |F| is an invariant of the given framed flow
category F.

The definitions above are considered in much greater detail in [LS14a, LLS20b], together
with the process by which one can build the cell complex |F|. In short, each object x ∈ F

corresponds to a cell of dimension h(x)+k for some fixed offset k. The boundary of such a cell
is made up of cornered Euclidean spaces, and the framed embeddings of the moduli spaces
into such cornered Euclidean spaces provide homotopically coherent attaching instructions.

We will not need to delve into any greater detail here, because (following [LS14a, LLS20b])
our framed flow category will actually be built upon an already existing one.

Definition 3.7. For any fixed n, the cube flow category of dimension n is FQ whose objects
are the vertices u of an n-dimensional cube, viewed as elements of {0, 1}n, and whose non-
empty moduli spaces MQ(v, u) are permutohedra. The grading h : F → Z is given by
h(u) =

∑
i ui. For more precise details, see [LS14a, Definition 4.1] where FQ is also described

via a specific Morse function on Rn, or [LLS20b, Section 3.4] for a combinatorial description.

Remark 3.8. In [LS14a], the notation C is used for flow categories. We choose to use F in
order to reserve C for collections of circles in a diagram.

Proposition 3.9. ([LS14a, Section 4], [LLS20b, Section 3.6]) The cube flow category FQ is a
framed flow category. In particular, its moduli spaces can be neatly embedded (with framing)
into cornered Euclidean spaces in a coherent fashion.

The proof of Proposition 3.9 does involve a choice of sign assignment for the edges of
the cube which correspond to a choice of signs making a cube-shaped chain complex anti-
commute so that d2 = 0 (see [LS14a, Proposition 4.12]). However, different choices of sign
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assignments give rise to stably equivalent spectra, in a lift of the corresponding argument
for chain complexes [LS14a, Proposition 6.1].

In this framework, [LS14a] show how to refine the Khovanov chain complex of a link
L ⊂ S3 with diagram D into a flow category FKh(D) that “trivially covers” FQ in the
following sense.

Definition 3.10. ([LLS20b, Definition 3.21]) A cubical flow category is a flow category F

which comes equipped with a graded functor f : F → FQ to some fixed cube category such
that for all x, y ∈ F, the map MF(y, x) → MQ(f(y), f(x)) is a trivial covering map.

Proposition 3.11. Any cubical flow category F can be upgraded to a framed flow category.

Proof. The covering maps MF → MQ can be composed with the embeddings of MQ into
cornered Euclidean space, and all of the framings are then inherited. These framings also
provide a consistent manner in which to separate the components of the trivial covers.
In [LLS20b] such embeddings are called cubical neat embeddings ; see Section 3.6 in that
reference for more details. □

Remark 3.12. Alternatively, one may follow the arguments in Sections 3.1 and 3.2 of [LS14a]
to upgrade a cubical flow category into a framed flow category. Our compositions of covering
maps and embeddings give rise to neat immersions with coherent framings in the language
employed in that reference, which can be perturbed to give neat embeddings. See also Section
3.4.1 in that reference.

Theorem 3.13. ([LS14a, LLS20b]) Given a link L ⊂ S3 with diagram D, there is a cubical
flow category FKh(D) which refines the Khovanov complex CKh∗(D). The resulting suspen-
sion spectrum XKh(D) = Σ∞|FKh(D)| is an invariant of the link L up to stable homotopy
equivalence, allowing the notation XKh(L) for the spectrum.

One crucial feature of the Khovanov chain complex used in the proof of Theorem 3.13 is
that, before sign assignment, all signs in the differential are positive. Thus the commutation
of any square face in the Khovanov cube corresponds to a bijection of 0-dimensional moduli
spaces coming from the edges of the square. Such bijections correspond to trivial covers of the
1-dimensional permutohedron (which is an interval), allowing FKh to satisfy the requirements
of Definition 3.10 for the 1-dimensional moduli spaces. In our situation however, this feature
will not be present.

Remark 3.14. It should be noted that the odd Khovanov differential used to define the odd
Khovanov complex CKh∗o(D) in [ORS13] does include signs within the cube before the sign
assignment. In [SSS20], the authors used the language of signed correspondences in a suitable
Burnside category to resolve this issue. In terms of our language here, FKho could be thought
of as a “signed” cubical flow category, where the various covering maps carry signs which
indicate the need to reverse framing on certain components of the given cover. Despite this
need for signs, it is shown in [SSS20] that the square faces in the odd Khovanov cube still
correspond to (signed) bijections, which give (signed) trivial covers of intervals as needed.

The rest of the arguments in [LS14a, LLS20b] used to construct FKh are less immedi-
ately relevant, so we simply summarize. The moduli spaces are built inductively. The
1-dimensional moduli spaces in FKh corresponding to square faces involve a choice of bijec-
tion between the compositions of 0-dimensional moduli spaces coming from the two ways to
traverse the edges in a square. For all but one case, these two compositions are either both
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empty or both consist of one point, so the bijection is determined. The remaining nontrivial
case is known as the ladybug configuration [LS14a, Figure 5.1], where the two 0-dimensional
moduli spaces each have two points. In this situation, the choice is the ladybug matching
([LS14a, Section 5.4]). The 2-dimensional MKh are then bounded by some cover of ∂[1]MQ

(a hexagon, topologically a circle S1). The hexagon relation ([LS14a, Section 5.5]) is the
check that this cover is indeed the trivial cover, so that the 2-dimensional MKh can be cho-
sen to be a trivial cover of MQ. The higher dimensional ∂MQ are all topologically spheres
of higher dimension, and so have only trivial covers, allowing the construction of all higher
dimensional MKh from here.
If we instead let L ⊂ A × I be an annular link with diagram D, then the methods in

[LS14a, LLS20b] extend in a straightforward way to build a stable homotopy refinement
of annular Khovanov homology. A formulation using the language of Burnside functors is
given in [AKW21, Section 4.3]. The correspondence between Burnside functors and cubical
flow categories [LLS20b, Section 4.3] yields a flow category FA(D) refining CKhA(D). The
associated suspension spectrum

(20) XA(D) = Σ∞|FA(D)|

is an invariant of L up to stable homotopy equivalence. An alternative construction can be
found in [LLS20a].

Remark 3.15. In [LS14a], there is a global choice between two types of ladybug matchings, the
so-called left pair and right pair. By [LS14a, Proposition 6.5], the two spectra associated to
these choices are stably equivalent. To the authors’ knowledge, it is not known if the annular
spectrum is independent of the choice of ladybug matching; in particular the argument in
[LS14a, Proposition 6.5] does not hold for links in A × I. For the remainder of this paper
we fix one of the two choices.

3.2. Constructing a map between Khovanov spectra. Given an annular link diagram
D, each of the generators E,F , and H ∈ sl2 yield chain maps CKhA(D) → CKhA(D). The
goal of this paper is to lift these endomorphisms to maps of spectra. This section discusses
our general strategy for lifting maps of cochain complexes to maps of spectra.

Definition 3.16. Let F be a flow category with grading h : F → Z. The suspension of
F, denoted ΣF, is the flow category whose underlying category is identical to F but whose
grading Σh is shifted up by one,

Σh(x) = h(x) + 1.

It is straightforward to verify that if F is a framed flow category, then ΣF inherits a natural
framing, and moreover there is a homeomorphism

|ΣF| ∼= Σ|F|.

Consider a map A∗ f
−→ B∗ of cochain complexes, where A∗ and B∗ are refined by framed

flow categories F(A) and F(B) respectively. In order to lift f to a map of cell complexes

|F(B)|
F
−→ |F(A)| satisfying F ∗ = f on cohomology (up to a shift), the strategy is to refine

the complex Cone f into a framed flow category F(Cone f). The key point is that, by
construction, F(Cone f) will contain complementary downward and upward closed subcate-
gories ([LS14a, Section 3.4]) corresponding to F(A) and ΣF(B) respectively. The downward
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closed subcategory yields a subcomplex |F(A)| ⊂ |F(Cone f)| whose quotient complex is
canonically identified with |ΣF(B)| = Σ|F(B)|. The Puppe sequence yields

|F(A)| ↪→ |F(Cone f)| ↠ |F(Cone f)|/|F(A)| = Σ|F(B)|
⋆
−→ Σ|F(A)| → · · ·

where ⋆ is the Puppe map. After shifting degrees, the Puppe map is the desired F .
Now we note that, if A∗ = B∗ = CKh∗(D) for a link diagram D having n crossings

and f is assembled from maps FA(Du) → FA(Du) on each smoothing, then the complex
Cone f takes the shape of an (n+1)-dimensional cube Q. If in addition the map f contains
no signs, then one can seek to build a cubical flow category FKh(Cone f) covering FQ as
before. Assuming this can be done, the resulting Puppe map F induces a map of spectra

X (D)
Σ∞F
−−−→ X (D) which lifts f as desired. All of this is illustrated by the exact triangle for

a crossing ([LS14a, Theorem 2]) which is also used in [LS14b, Section 3.3] to define the map
induced by a saddle cobordism between links.
In our situation, D is an annular link and f is one of E,F , or H. Moreover, as illustrated

in Section 4, these maps contain signs leading to cancellations, which prevents F(Cone f)
from being made into a cubical flow category. Nevertheless, we will refine Cone f and lift
E,F , and H by using the above procedure.

Remark 3.17. All of the constructions thus far can be converted into the language of functors
from cube categories to Burnside categories. This is the framework introduced in [LLS20b]
to investigate disjoint unions and connect sums of links, and it provides a convenient combi-
natorial approach to constructing stable homotopy types, as in [SSS20] for the odd Khovanov
spectrum. In this language, chain maps are lifted as natural transformations of Burnside
functors. In a previous paper on annular Khovanov spectra [AKW21], we used (an equivari-
ant version of) this approach to refine the quantum annular Khovanov homology constructed
in [BPW19] and the action coming from the generators K,K−1 ∈ Uq(sl2) on quantum annu-
lar Khovanov homology. However, as we shall see, this viewpoint is not sufficient to refine
the action of the remaining generators of Uq(sl2). See [AKW21, Section 8] for a related
discussion.

4. New features: cancellations and topology of moduli spaces

This section considers a particular example to illustrate new complexities that appear in
the analysis of the sl2 action. These features motivate the introduction of new techniques in
follow-up sections.

Consider the 2-crossing annular knot diagram and the associated surgery arc diagram (see
Section 2.3) in Figure 7. The cube of resolutions for this link diagram (to be more precise,
a square since there are two crossings) is given in Figure 8; the coordinate directions are
labeled in accordance with the numbering of the surgery arcs in Figure 7b.

The cube-shaped chain complex Cone(E) is shown in Figure 9. This cube consists of two
copies (pictured horizontally) of the cube of resolutions from Figure 8; the action of E takes
place along the vertical axis. Each diagram in the cube is endowed with past/future arcs as
in Definition 2.2.
Consider a particular generator, 1⊗ v−, at the upper left vertex of the cube. We use the

computations from Section 2.4 to arrive at the following diagram which summarizes the cube
edge maps (we suppress the tensor product notation for the v factors, for brevity).
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(a) An annular link diagram
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Figure 8. The cube of resolutions for the link in Figure 7a
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Figure 9. The cube-shaped complex associated to E
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A crucial feature in this example is cancellation. It is not seen in the result of the algebraic
calculation in the cubical diagram above, and we will explain it now in more detail. The
generator 1 ⊗ v− is sent by the edge map labeled 2 to v+v−v− + v−v+v−. The value of the
E map on these two summands is given as follows:

(22) E(v+v−v−) = v+v−v+ − v+v+v−

(23) E(v−v+v−) = v−v+v+ + v+v+v−

Considering the composition E ◦ 2, the terms −v+v+v−, v+v+v− in equations (22), (23)
cancel; this is an instance of cancellation that is the root of the complexity of this problem
as we explain next.

E21 E12 1E2 12E 21E 2E1 E21

Figure 10

A relevant part of the moduli spaces is illustrated in Figure 10. The vertical dashed lines
are labeled by compositions of edges of length three in the cube, and the corresponding
1-morphisms are indicated by thickened dots. For example, the effect of the edge path E21
on the generator 1⊗ v− is

1⊗ v−
1

7−→ v−
2

7−→ X ⊗ v−
E

7−→ X ⊗ v+

The resulting single flow line is represented by a dot above the label E21 in Figure 10. There
is a single flow line associated to the edge path E12 as well, since the summand v+v−v− is
sent to zero by the edge map labeled 1. The interesting case in this example is the edge path
1E2: there are three flow lines

1⊗ v− 7−→ v+v−v− 7−→ v+v−v+ 7−→ X ⊗ v+

1⊗ v− 7−→ v+v−v− 7−→ −v+v+v− 7−→ −X ⊗ v+

1⊗ v− 7−→ v−v+v− 7−→ v+v+v− 7−→ X ⊗ v+

represented by the three dots above the label 1E2. (Note that v−v+v+ is sent to zero by the
map 1, so this term does not contribute a flow line.) The rest of the edge paths give rise to
a single flow line.

The vertical strips between dashed lines in Figure 10 represent 2-morphisms, or in other
words 1-dimensional moduli spaces corresponding to square faces in the cube Cone(E).
Restricting to the square face in the back of the cube (21), the flow line

v−v+v− 7−→ X ⊗ v− 7−→ X ⊗ v+

along the edge path E1 corresponds to the flow line

v−v+v− 7−→ v+v+v− 7−→ X ⊗ v+
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along 1E. This explains the matching of the flow lines in the 2-morphism E12 − 1E2, i.e.
the interval that goes across that vertical strip in Figure 10.
On the other hand, v+v−v− is sent to zero by the map 1, and thus it does not contribute to

a flow line along E1. The same generator v+v−v− is sent by the map E to a pair of generators
in equation (22) which then cancel under the map 1. Thus the 2-morphism E12−1E2 has to
“match” the empty set at E12 to two canceling flow lines at 1E2. It is natural to represent
this pair of flow lines by oppositely framed points in the interval labeled by 1E2, and to
connected them by a framed “turnback” in the strip E12− 1E2.

A similar analysis along the square face on the left of the cube forces the matching of the
flow lines under the 2-morphism 1E2−12E, creating the “cubic” shape of the 1-dimensional
moduli space indicated in Figure 10.

This example shows that bijections across square faces, used in [LS14a] in the setting of
Khovanov homology, are insufficient in the presence of cancellations. On the other hand,
2-dimensional faces of the cube force the matching of flow lines associated to edge paths by
framed 1-dimensional moduli spaces. As indicated in the introduction, in general building
higher-dimensional moduli spaces is a rather non-trivial problem. Our solution in this paper
is based on representing the moduli spaces as codimension-1 submanifolds, as illustrated in
Figure 10. A subtlety in this approach is that such a codimension-1 position of the flow lines
(0-dimensional moduli spaces) in the interval has to be prescribed for all edge paths in a given
cube-shaped chain complex Cone(E). Indeed, these flow lines for the edge paths of arbitrary
lengths are a part of the inductive construction of higher-dimensional moduli spaces, based
on Definition 3.1. Moreover, given any two generators at two arbitrary vertices u, v in the
cube, the positions in the interval for all edge paths connecting u, v in the cube have to be
consistent, in the sense that they can be connected by the prescribed framed 1-dimensional
moduli spaces in codimension-1 without intersections. The analysis that enables a solution
to this problem is the content of Sections 5 - 7.

The construction of higher-dimensional moduli spaces in Section 8 proceeds by induction.
For example, in the basic case considered above, the 2-dimensional moduli space has to be
constructed for the two chosen generators 1⊗ v−, X ⊗ v+ in the cube (21). Identifying the
leftmost and rightmost vertical intervals in Figure 10 gives a boundary condition for the
2-dimensional moduli space in a hexagon times an interval, see Figure 19. In general, the
higher-dimensional inductive step amounts to finding a null-cobordism in a permutohedron
times an interval I, as explained in Section 8.

5. Constructing the framed flow category: The set-up and the base case

We begin by fixing an n-crossing annular link diagram D, and we let J denote one of the
maps E, F , or H. As discussed in Section 3.2, the chain map J on the annular Khovanov
complex CKhA(D) gives rise to Cone J , a complex in the shape of an (n + 1)-dimensional
cube Q. Our goal is to build a framed flow category FJ(D) (we will often omit the diagram
D from the notation) that refines Cone J with the help of FQ, the framed flow category for
the cube Q.

5.1. Definitions and the overall strategy. To begin with we set some notation and basic
definitions. The vertices of the cube Q will use labels u, v, w, with

u = (u′, i) ∈ {0, 1}n × {0, 1}.
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Here we are viewing the first n coordinates u′ as indicating where in CKhA(D) the corre-
sponding vertex lies, while the last coordinate i indicates whether we are in the domain or
range of the J map.

Definition 5.1. Given a vertex u = (u′, i) ∈ Q, the resolution diagram Du is the resolution
of our link diagram D at the vertex u′ in the CKhA(D). We further define ΓKh(u) to be the
set of Khovanov generators for Du; see Equation (3).

Definition 5.2. An m-dimensional sub-cube is a choice of two vertices

u ≤m v

such that u and v match in all but m indices where u has entry zero and v has entry one. A
1-dimensional sub-cube is also called an edge. We say that a sub-cube u ≤m v involves J if
u = (u′, 0) and v = (v′, 1) (so that some edges corresponding to the J-map are included).

Definition 5.3. For any sub-cube u ≤m v, the cube moduli space MQ(v, u) is by definition
the (m−1)-dimensional permutohedron (see Definition 3.7). This is a manifold with corners
(for example, if m = 3 this is a hexagon) that is topologically equivalent to Dm−1, whose
codimension i boundary (for all i = 1, . . . ,m − 1) is identified with i-fold “composition”
moduli spaces

∂[i]MQ(v, u) ∼=
∐

MQ(v, wi)× · · ·MQ(w1, u),

where the disjoint union is taken over all sequences of vertices u ≤ w1 ≤ · · · ≤ wi ≤ v. For
more details, see [LS14a, Definition 4.1] and [LLS20b, Section 3.4].

Remark 5.4. Note the reversal of direction. For vertices u and v with u ≤1 v, there is an
edge from u to v in the cube of resolutions. However, moduli spaces are directed from v to
u.

As described in Section 3.1, the original construction [LS14a] used trivial coverings of the
moduli spaces in the cube flow category (see Definition 3.10). The example of Section 4
shows that this framework alone is insufficient for building our desired FJ . Instead, we will
need to keep track of signs of the J map with the help of framings. First we give ourselves
an extra dimension to allow for meaningful framings to occur.

Definition 5.5. For any sub-cube u ≤m v, the cube ambient space E(v, u) is defined de-
pending on whether or not the J map was involved in u ≤m v.

(24) E(v, u) :=

{
MQ(v, u) if J is not involved

MQ(v, u)× (0, 1) if J is involved

In either case, E(v, u) is a manifold with corners whose boundary structure is determined
by that of MQ(v, u). In our figures throughout the paper, we will draw the (0, 1)-direction
horizontally.

Next we introduce the types of maps that we will be using in place of the trivial covering
maps utilized in [LS14a] via Definition 3.10.

Definition 5.6. A thick embedding is a framed map f = e ◦ t where t is a trivial covering
and e is an embedding. We will denote thick embeddings with the symbol ↪−↪→. If t is the
trivial identity cover (i.e. the identity map), we call f a thin embedding and denote with the
usual symbol ↪→. Thus a thin embedding is just a framed embedding.
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Remark 5.7. Note that according to the definition, different sheets in a thick embedding may
have different framings. In codimension 1, such framings are either identical or are reversed.
As we show later in the paper, the former case occurs for J = E,F and the latter case occurs
for J = H.

With all of this notation in place, we can state our main construction as a theorem.

Theorem 5.8. Fix an n-crossing annular link diagram D and an sl2 generator J = E,F, or
H giving rise to a chain map on annular Khovanov complexes with mapping cone Cone J .
Let Q denote the (n + 1)-dimensional cube, with corresponding framed flow category FQ.
Then there exists a flow category FJ = FJ(D) together with a “thick embedding functor”
f : FJ → FQ satisfying the following properties.

(1) The objects of FJ are in bijection with the Khovanov generators throughout the com-
plex Cone J :

Ob(FJ) :=
∐

u∈Q

ΓKh(u),

with grading given by homological degree in Cone J , and graded functor f : Ob(FJ) →
Ob(FQ) being the obvious covering map of sets

f(x) = u ⇔ x ∈ ΓKh(u).

(2) For any generators x ∈ ΓKh(u), y ∈ ΓKh(v) such that u ̸≤ v, the moduli space
MJ(y, x) is the empty set.

(3) Given a sub-cube u ≤m v and a pair of generators x ∈ ΓKh(u), y ∈ ΓKh(v), the moduli
space MJ(y, x) is an (m− 1)-dimensional manifold with corners, whose codimension
i boundary is identified with i-fold compositions

∂[i]MJ(y, x) ∼=
∐

MJ(y, zi)× · · · ×MJ(z1, x)

where the disjoint union is taken over all tuples of generators (z1, . . . , zi) ∈ ΓKh(w1)×
· · ·×ΓKh(wi) for sequences of vertices u ≤ w1 ≤ · · · ≤ wi ≤ v in the sub-cube u ≤m v.

(4) Each moduli space MJ(y, x) of item (3) comes equipped with a thick embedding

f : MJ(y, x) ↪−↪→ E(v, u)

such that, for any tuple (z1, . . . , zi) ∈ ΓKh(w1)× · · · × ΓKh(wi) giving rise to a com-
ponent of ∂[i]MJ(y, x), the following diagram of thick embeddings (using the product
framing as necessary) commutes

(25)

MJ(y, x)

∂[i]MJ(y, x)

MJ(y, zi)× · · · ×MJ(z1, x)

E(v, u)

∂[i]E(v, u)

E(v, wi)× · · · × E(w1, u)

f

f × · · · × f

(5) In the case m = 1, the 0-dimensional moduli spaces correspond to the components of
the differential in Cone J .
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Item (3) ensures that the moduli space boundaries of FJ are arranged in the same way
as those of FQ, while item (4) ensures that this arrangement is respected by the thick
embeddings as well. Meanwhile item (5) refers to the edges of the cube, where the moduli
spaces are all thickly embedded points in either D0 or D0 × (0, 1) corresponding to either
the annular Khovanov differential in CKhA(D) or the J map, respectively.

Recall the annular Khovanov spectrum XA(D) from Equation (20) and the surrounding
discussion.

Corollary 5.9. The flow category FJ(D) defined above can be upgraded to a framed flow
category which refines the complex Cone J , giving rise to a map of spectra J : XA(D) →
XA(D) whose induced map J ∗ on cohomology is equal to the action of J .

Proof. The cube flow category FQ is a framed flow category, so each MQ(v, u) comes
equipped with a framed neat embedding MQ(v, u) ↪→ EQ(v, u) where EQ(v, u) denotes a
suitable cornered Euclidean space (see [LLS20b, Section 3.6]). As in Definition 5.5, we set

(26) E(v, u) :=

{
EQ(v, u) if J is not involved

EQ(v, u)× R if J is involved

We then have embeddings E(v, u) ↪→ E(v, u), where (0, 1) embeds into R in the standard
way when J is involved. We then compose with our thick embeddings provided by Item (4)
to give

MJ(y, x) ↪−↪→ E(v, u) ↪→ E(v, u).

Just as in Proposition 3.11 for the cubical flow categories of [LLS20b], the framing inherited
by this composition provides us with a consistent way to separate the various components of
each trivial cover, giving us framed neat embeddings MJ(y, x) ↪→ E(v, u) which respect the
necessary boundary conditions as required (note that crossing with R in Equation (26) does
not affect the cornered structure of EQ(v, u)). Item (5) then ensures our resulting framed
flow category FJ(D) has refined Cone J . This gives rise to the desired map as described in
Section 3.2. □

The rest of this section together with Sections 6, 7, and 8 are devoted to proving Theorem
5.8. Items (3) and (4) of the theorem are the most crucial aspects of the construction,
and the various thickly embedded moduli spaces will be built inductively. If the sub-cube
u ≤m v does not involve the J map, then it corresponds to a sub-cube in the cube of
resolutions of D. In this case the thick embedding f : MJ(y, x) ↪−↪→ E(v, u) = MQ(v, u) will
be a trivial cover built exactly as in [LS14a] (based on the annular differential rather than
the traditional Khovanov differential). If u ≤m v involves the J map, then MJ(y, x) will
be thickly embedded as a codimension 1 submanifold of E(v, u). We handle the base case
below.

5.2. 0-dimensional moduli spaces for edges. Fix u ≤1 v, x ∈ ΓKh(u), and y ∈ ΓKh(v).
We begin by defining the 0-dimensional moduli space MJ(y, x).
Suppose first that u ≤1 v is not the J edge. Then it corresponds to an edge u→ v in the

cube of resolutions of D. Let

ψu,v : FA(Du) → FA(Dv)
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denote the map assigned to the saddle cobordism Du → Dv, and write

ψu,v(x) =
∑

z∈ΓKh(v)

kzz

where each kz ∈ {0, 1}. Say that y appears in ψu,v(x) if the above coefficient ky is nonzero.
If y appears in ψu,v(x), then MJ(y, x) is defined to consist of a single element, which we
denote

x→ y.

If y does not appear in ψu,v(x), set MJ(y, x) = ∅.
Now suppose that u ≤1 v is the J map. Let s denote the number of essential circles in

Du = Dv. We distinguish two cases. First, if J is one of E or F , again write

Jx =
∑

z∈ΓKh(v)

ℓzz

where now each ℓz ∈ {−1, 0, 1}, and say that y appears in Jx if ℓy ̸= 0. If y appears in Jx,
then it is obtained from x by the action of J on an essential circle in Du. Let 1 ≤ i ≤ s
denote the position of this essential circle, and define MJ(y, x) to consist of a single element,
which we denote

x
i
−→ y.

If y does not appear in Jx, then set MJ(y, x) = ∅.
Finally, if J = H, set MH(y, x) = ∅ unless the labels (v±, 1, X) on each circle in x and y

match, in which case MH(y, x) contains a point for every essential circle in Du = Dv. These
s points in MH(y, x) will be denoted

x
i
−→ y

for 1 ≤ i ≤ s.
We now describe the thick embeddings, which again depend on the type of edge u ≤1 v.

If u ≤1 v is not the J map, then E(v, u) is a point, so the map is unique.
Suppose now that u ≤1 v corresponds to the J map. Let s denote the number of essential

circles in Du = Dv. Recall that E(v, u) = MQ(v, u) × (0, 1) ∼= (0, 1). We define our thick

embedding MJ(y, x) ↪−
f
↪−→ E(v, u) by setting1

(27) f(x
i
−→ y) :=

i

s+ 1
∈ (0, 1),

with framing determined as follows. If J is either E or F , then the framing is given by the
sign of (−1)i+1. If J = H, then the framing is ±1 if x (and thus y) is labeled by v± on the
i-th essential circle in Du.
Note that all of these are actually thin embeddings when the sub-cube is 1-dimensional.

It follows from the construction of the spaces and thin embeddings that item (5) of Theorem
5.8 is clearly satisfied.

Remark 5.10. Recall from (17) that Hx = adeg(x)y, where the circle labels in y match those
in x. It may seem natural to define the 0-dimensional moduli space MH(y, x) to contain
| adeg(x)| points, and define the thick embedding to be constant, with framing given by the

1The important data here is the ordering of points in the interval; a specific formula is given just to fix
the convention.
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sign of adeg(x). In the above definition of MH(y, x) we are motivated by the refined formula
(18) in which H acts on each essential circle.

Example 5.11. We illustrate the 0-dimensional moduli spaces for an edge corresponding to
various J maps when Du = Dv consists of two essential circles. The thin horizontal segment
is the interval E(v, u) ∼= (0, 1), the dot • is the image of MJ(y, x), and the arrows indicate
the framing.

Moduli spaces ME(y, x) are depicted below.

v− ⊗ v−
1
−→ v+ ⊗ v− v− ⊗ v−

2
−→ v− ⊗ v+ v− ⊗ v+

1
−→ v+ ⊗ v+ v+ ⊗ v−

2
−→ v+ ⊗ v+

For J = F the situation is similar; see also Lemma 2.6 and the discussion surrounding it.
Moduli spaces MH(y, x) are shown below. There are four generators of FA(Du), hence

four nonempty moduli spaces, each containing two elements of the form x
i
−→ y for i = 1, 2.

The numbers above the dots • in the following diagram indicate the image of the point

x
i
−→ y.

1 2

v− ⊗ v−
1
−→ v− ⊗ v−

v− ⊗ v−
2
−→ v− ⊗ v−

1 2

v− ⊗ v+
1
−→ v− ⊗ v+

v− ⊗ v+
2
−→ v− ⊗ v+

1 2

v+ ⊗ v−
1
−→ v+ ⊗ v−

v+ ⊗ v−
2
−→ v+ ⊗ v−

1 2

v+ ⊗ v+
1
−→ v+ ⊗ v+

v+ ⊗ v+
2
−→ v+ ⊗ v+

The moduli spaces for pairs (x, y) which are not depicted above are all empty.

6. Constructing the 1-dimensional moduli spaces for square faces

We now define the 1-dimensional moduli spaces and their thick embeddings, with an eye
towards the inductive step in Section 8. Although the combinatorial analysis in this section
can be simplified by the more general considerations in Section 7, we present a “hands-on”
approach to illustrate the notions in Section 5.1.

Fix u ≤2 v, x ∈ ΓKh(u), and y ∈ ΓKh(v). The moduli space MJ(y, x) will be a disjoint
union of closed intervals, so we need to specify which points in ∂MJ(y, x) bound an interval in
MJ(y, x). Item (3) of Theorem 5.8 requires that these boundary points come from products
corresponding to composition along the edges of the sub-cube. Letting w1, w2 denote the
two vertices with u ≤1 w1, w2 ≤1 v, we introduce the notations

∂w1
MJ(y, x) :=

∐

z∈ΓKh(w1)

MJ(y, z)×MJ(z, x),

∂w2
MJ(y, x) :=

∐

z∈ΓKh(w2)

MJ(y, z)×MJ(z, x)
(28)

for these two composition moduli spaces - one for the edge-path passing through w1, and
the other for the edge-path passing through w2. Thus we have

∂MJ(y, x) = ∂w1
MJ(y, x)

∐
∂w2

MJ(y, x).
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We write elements of each ∂wi
MJ(y, x) as

(29) (x→ z → y) := (z → y, x→ z) ∈ MJ(y, z)×MJ(z, x)

for various z ∈ ΓKh(wi). If one of the edges of u ≤m v corresponds to the J map, we decorate
the corresponding arrow in (x→ z → y) according to which essential circle was acted upon
as in Section 5.2. Each composition moduli space comes equipped with a thick product
embedding

(30) ∂wi
MJ(y, x) ↪−↪→ E(v, wi)× E(wi, u) ∼=

{
D0 if J is not involved

(0, 1) if J is involved

induced by the definitions in Section 5.2. Our goal now is to construct a moduli space with
thick embedding

MJ(y, x) ↪−↪→ E(v, u) ∼=

{
D1 if J is not involved

D1 × (0, 1) if J is involved

which ‘fills’ the thick embeddings (30) in the sense that Equation (25) is satisfied. Naturally,
we split into cases depending on whether or not J was involved.

6.1. Square faces involving only the annular Khovanov differential. A sub-cube
u ≤2 v that does not involve the J edge corresponds to a square face in the cube of resolutions
ofD, and in this case we proceed exactly as in [LS14a]. From (28) and the analysis in [LS14a],
we see that

|∂w1
MJ(y, x)| = |∂w2

MJ(y, x)| =: N ∈ {0, 1, 2}

where the number of points N depends on the combinatorics of the square face Du → Dv.
Following [LS14a], we define

MJ(y, x) :=
∐

S

MQ(v, u)

where S is a set of N elements. If N ≤ 1, then there is no ambiguity in the above definition.
If N = 2, then the ladybug matching [LS14a, Section 5.5] is used to determine the pairing of
the two pairs of boundary points in ∂MJ(x, y). To define the thick embedding, recall that

E(v, u) = MQ(v, u)

in this case, so we let

MJ(y, x) ↪−
∐

id
↪−−→ E(v, u)

be a disjoint union of the identity map. In particular, the above thick embedding is a
trivial cover requiring no framing data, and this is exactly how the cubical flow category
FKh is constructed in [LS14a] (the framing data in [LS14a] is entirely inherited by the neat
embedding of the cube moduli spaces MQ(v, u) ↪→ EQ(v, u); see Section 3.1 and Definition
5.5 there).
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×

(a)

×

(b)

×

(c)

×

(d)

Figure 11. Connected arc diagrams where the number of essential circles is un-
changed

×

v− 1

×

v+ 1

×

v−

×

v+

E E

S

S

(a)

∂w1
M

∂w2
M

M

(b)

Figure 12. The relevant generators in the sub-cube of resolutions for the case of
Figure 11c, together with the corresponding moduli space embedded and framed
into D1 × (0, 1).

6.2. Square faces involving E or F . Now we suppose that the sub-cube u ≤2 v involves
the J = E map; the case involving J = F is nearly identical (see Lemma 2.6). Without loss
of generality, let the edges u→ w1 and w2 → v be saddle maps S, while u→ w2 and w1 → v
are the E map. In particular, we have equality of resolutions Du = Dw2

, Dw1
= Dv, and the

saddles Du → Dw1
and Dw2

→ Dv are identical.

Du Dw1

Dw2
Dv

E

S

E

S

We focus first on connected arc diagrams Du, and we begin by considering those for which
the saddle S does not change the number of essential circles. There are four of these, as
shown in Figure 11.

For Figures 11a and 11b, the E map is the zero map, and all of the moduli spaces are
empty.

In the case of Figure 11c, we see that all of the moduli spaces are empty unless x = 1⊗ v−
and y = v+, in which case we have single point composition moduli spaces

∂w1
ME(y, x) = {(1⊗ v− → v−

1
−→ v+)},

∂w2
ME(y, x) = {(1⊗ v−

1
−→ 1⊗ v+ → v+)}

as illustrated in Figure 12a.
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×

(a)

×

(b)

Figure 13. Connected arc diagrams where the number of essential circles is
changed.

Figure 11d is dual to Figure 11c, so the analysis is similar. We have empty moduli spaces
unless x = v− and y = X ⊗ v+, in which case we have

∂w1
ME(y, x) = {(v− → X ⊗ v−

1
−→ X ⊗ v+)},

∂w2
ME(y, x) = {(v−

1
−→ v+ → X ⊗ v+)}

In all of these cases where S does not change the number of essential circles, we see that
there is a bijection of one-point composition moduli spaces that commutes with the thin
embeddings

(31)

∂w1
ME(y, x)

∂w2
ME(y, x)

E(v, w1)× E(w1, u)

E(v, w2)× E(w2, u)

(0, 1)∼=

∼=
∼=

.

This commuting bijection allows us to define ME(y, x) as a single closed interval D1 which
is thinly embedded as an identity

ME(y, x) := D1 id×{p1}
↪−−−−→ D1 × (0, 1) = E(v, u)

with the constant framing. See Figure 12b for a depiction of the case where S is the saddle
in Figure 11c.

Next, we consider the case where S changes the number of essential circles. For this there
are two possible connected arc diagrams, illustrated in Figure 13.

In Figure 13a, we see that all moduli spaces are empty unless x = 1 and y = v+ ⊗ v+,
in which case we have ∂w1

ME(y, x) containing two points while ∂w2
ME(y, x) is empty (see

Figure 14a).

∂w1
ME(y, x) = {(1 → v− ⊗ v+

1
−→ v+ ⊗ v+), (1 → v+ ⊗ v−

2
−→ v+ ⊗ v+)},

∂w2
ME(y, x) = ∅.

Following the embedding instructions from Section 5.2, we see that our two points in
∂w1

ME(y, x) are embedded in E(v, w1)× E(w1, u) ∼= (0, 1) with framing shown below.

p1 p2
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×

0

× ×

× ×

+

+

v− ⊗ v+ v+ ⊗ v−1

v+ ⊗ v+ −v+ ⊗ v+

S

S

E
E E

(a)

p1 p2

∂w1
M

∂w2
M = ∅

M

(b)

Figure 14. The relevant generators in the sub-cube of resolutions for the case of
Figure 13a, together with the corresponding moduli space embedded and framed
into E(v, u) ∼= D1 × (0, 1).

We then define ME(y, x) in this setting to be a single interval which is thinly embedded
into E(v, u) ∼= D1 × (0, 1) as a framed turnback as indicated in Figure 14b.

The last connected case is dual to the previous one, where the moduli spaces are empty
unless x = v−⊗ v− and y = X, and the roles of ∂w1

ME(y, x) and ∂w2
ME(y, x) are reversed.

The details here are left to the reader.
Finally, we consider the situation when the diagram Du is disconnected. We let C ⊂

Du denote the connected component of the saddle arc S within Du, while C ′ denotes the
complement of C . As in Section 2.3, these components determine connected components in
the resolutions at every vertex, which we also denote by C and C ′. Recall from Section 2.3
the notion of restriction of generators. This allows us to write generators as x = x|C ⊗ x|C ′

and y = y|C ⊗ y|C ′ , and we use this breakdown to aid in our analysis.

Lemma 6.1. Suppose some ∂wi
ME(y, x) is nonempty. Then precisely one of the two fol-

lowing statements are true.

(1) adeg(y|C ) = adeg(x|C )+2 and adeg(y|C ′) = adeg(x|C ′). This corresponds to E acting
on an essential circle in C .

(2) adeg(y|C ) = adeg(x|C ) and adeg(y|C ′) = adeg(x|C ′)+2. This corresponds to E acting
on an essential circle in C ′.

When J = F , the value 2 above is replaced by −2.

Proof. Saddle maps preserve annular degree, but the E map increases annular degree by
two. Similarly, the F map decreases annular degree by two. □

If ∂w1
ME(y, x) = ∂w2

ME(y, x) = ∅, we define ME(y, x) := ∅ as well. Otherwise, we use
Lemma 6.1 to consider the two cases.

In the case (1) where E was acting upon the component C containing S, we must have
the labels of y|C ′ matching the labels of x|C ′ , in which case these components are irrelevant
for the analysis of the moduli spaces and we may define

ME(y, x) := ME(y|C , x|C )

as defined and embedded earlier. This case is illustrated for a specific example in Figure
15b.
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Meanwhile, in the case (2) where E was acting on some essential circle in C ′ disconnected
from the saddle S, we see that the generator at w1 must be y|C ⊗x|C ′ while the generator at
w2 must be the ‘opposite’ x|C ⊗ y|C ′ . This allows us to show that the maps S and E (and
their corresponding edge moduli spaces) commute in the following sense:

(32)

∂w1
ME(y, x) = ME(y|C ⊗ y|C ′ , y|C ⊗ x|C ′)×ME(y|C ⊗ x|C ′ , x|C ⊗ x|C ′)

∼= ME(y|C ′ , x|C ′)×ME(y|C , x|C )
∼= ME(y|C , x|C )×ME(y|C ′ , x|C ′)
∼= ME(y|C ⊗ y|C ′ , x|C ⊗ y|C ′)×ME(x|C ⊗ y|C ′ , x|C ⊗ x|C ′)

= ∂w2
ME(y, x).

The framed embedding data for such moduli spaces is determined by which circle is being
acted on by E, and this is maintained throughout all of the equivalences above. Therefore
we again have a (one point) bijection ∂w1

ME(y, x) ∼= ∂w2
ME(y, x) that commutes with the

thin embeddings as in Equation (31), allowing us to once again define ME(y, x) as

ME(y, x) := D1 I×{p1}
↪−−−−→ D1 × (0, 1) = E(v, u).

This case is illustrated for a specific example in Figure 15c.

6.3. Square faces involving H. Finally, we turn to the case where J = H. As before, we
distinguish between two cases.

Suppose first that the saddle S does not change the number of essential circles in Du. Let
s denote the number of essential circles in Du (equivalently, in any of Du, Dw1

, Dw2
, or Dv).

If s = 0, then ∂w1
MH(y, x) = ∂w2

MH(y, x) = ∅, and we define MH(y, x) = ∅. Otherwise,
there are unique generators in z ∈ ΓKh(w1) and z

′ ∈ ΓKh(w2) such that

∂w1
MH(y, x) = MH(y, z)×MH(z, x)

∂w2
MH(y, x) = MH(y, z

′)×MH(z
′, x).

In fact, z = y and z′ = x as generators of Du = Dw2
and Dv = Dw1

, respectively. The edge
moduli spaces ∂w1

MH(y, x) and ∂w2
MH(y, x) each have s elements, thinly embedded in (0, 1)

in order according to Equation (27). From the formulas (6) and (8), we see that the essential
circles in Du = Dw2

and Dv = Dw1
have the same labels in x = z′ and y = z, respectively,

so the i-th point in ∂w1
MH(y, x) has the same framing as the i-th point in ∂w2

MH(y, x).
Thus we have a bijection of s-point composition moduli spaces that commutes with the thin
embeddings precisely as in Equation (31). We therefore define MH(y, x) to be a disjoint
union of s intervals, embedded in E(v, u) as a framed identity cobordism from ∂w1

MH(y, x)
to ∂w2

MH(y, x) connecting the i-th point of ∂w1
MH(y, x) to the i-th point of ∂w2

MH(y, x).
Suppose now that S changes the number of circles. Suppose that Dv = Dw1

has s cir-
cles and Du = Dw2

has s + 2, so that S is the Type II saddle from Figure 3b. If both
∂w1

MH(y, x) = ∂w2
MH(y, x) = ∅, then define MH(y, x) = ∅. Otherwise, there are gener-

ators z ∈ ΓKh(w1), z
′ ∈ ΓKh(w2) such that

∂w1
MH(y, x) = MH(y, z)×MH(z, x)

∂w2
MH(y, x) = MH(y, z

′)×MH(z
′, x).

The edge moduli spacesMH(z, x) andMH(y, z
′) each have one element, whileMH(y, z) and

MH(z
′, x) have s and s+ 2 elements, respectively, corresponding to the number of essential
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×

×

× ×

× × × ×

+

+ + +

v−+− v+−−1⊗ v−

1⊗ v+ v−++ v++− v+−+ −v++−

S

S

S

1 3 1 3 2

(a) The generators and differentials within the sub-cube u ≤2 v. The numbers on maps indicate which
essential circle is being acted on by E. Certain tensor products are written with subscripts to avoid clutter.

p1 p2

∂w1
ME(y, x)

∂w2
ME(y, x) = ∅

ME(y, x)

(b) The moduli space for x = 1 ⊗ v
−

and
y = v+⊗ v+⊗ v

−
, embedded and framed in

E(v, u).

∂w1
ME(y, x)

∂w2
ME(y, x)

ME(y, x)

(c) The moduli space for x = 1 ⊗ v
−

and
either y = v

−
⊗v+⊗v+ or y = v+⊗v

−
⊗v+,

embedded and framed in E(v, u).

Figure 15. Some examples of ME(y, x) ↪→ E(v, u) ∼= D1 × (0, 1) for a sub-cube
u ≤2 v involving E for a disconnected arc diagram. For the fixed x = 1 ⊗ v−,
different values of y correspond to different cases of Lemma 6.1.

circles in Dw1
and Dw2

. Note that the two essential circles merged by S are consecutive in
Dw2

, and their labels in z′ are different. Define MH(y, x) to consist of s+1 intervals, with s
of them thinly embedded in E(v, u) matching the s points in MH(y, z) with the s points in
MH(z

′, x) that correspond to essential circles not participating in the saddle. The remaining
interval in MH(y, x) is thinly embedded as a turnback with boundary the two remaining
unmatched points in ∂w2

MH(y, x) corresponding to the essential circles created by S. See
Figure 16 for an example. Finally, the case when S increases the number of essential circles
by two is dual to the above discussion.

7. Path moduli spaces

This section contains a detailed combinatorial analysis that will be crucial for complet-
ing our inductive construction in Section 8. For an m-dimensional sub-cube u ≤m v and
generators x ∈ ΓKh(u), y ∈ ΓKh(v), Item (3) of Theorem 5.8 states that the codimension
m − 1 boundary of MJ(y, x) is built out of products of the moduli spaces associated to a
sequence of edges from u to v. Such a sequence of edges is a path from u to v, and each
edge moduli space, along with its thick embedding, was defined in Section 5.2. We analyze



TOWARDS AN sl2 ACTION ON THE ANNULAR KHOVANOV SPECTRUM 33

× ×

× × × ×+ +

v− ⊗ v+ ⊗ v− X ⊗ v−

−v− ⊗ v+ ⊗ v− v− ⊗ v+ ⊗ v− −v− ⊗ v+ ⊗ v− −X ⊗ v−

S

S

1 2 3

(a) The generators and differentials within the sub-cube
u ≤2 v.

1 2 3

∂w1
M

∂w2
M

(b) The moduli space MH(y, x)
embedded and framed in E(v, u).

Figure 16. An example of MH(y, x) ↪→ E(v, u) ∼= D1×(0, 1) for a sub-cube u ≤2 v

involving an H edge and a saddle S which decreases the number of essential circles
by two. The two merged circles must be consecutive, allowing a framed turnback to
‘cancel’ the corresponding points in ∂w2

MH(y, x).

these path moduli spaces and their thick embeddings, obtained as the product of the thick
embeddings for each edge moduli space. While each edge moduli space is thinly embedded,
taking the disjoint union over intermediate generators as in Theorem 5.8 (3) may produce a
thick embedding.

We focus on connected arc diagrams in this section. The key results are Proposition
7.10 and Proposition 7.17. In Proposition 7.10 we show that for J = E,F all path moduli
spaces involving J are in fact thinly embedded. For J = H, path moduli spaces are thinly
embedded except for one type of arc diagram, for which an explicit description is provided,
see Proposition 7.17. The outline is as follows. In Section 7.1 we introduce path moduli
spaces, their thick embeddings, and present a helpful lemma which bounds the number of
points in some path moduli spaces. Section 7.2 establishes two key lemmas. First, Lemma
7.7 allows us to assume that a path has the special property that the arc diagram just
before the J edge (the so-called J-resolution) consists entirely of essential circles. Second,
in Lemma 7.8 we give restrictions on the type of arc configurations that may appear in such
a diagram.

To establish thinness we focus on the J-resolution arc diagram. While the two cases
J = E,F and J = H require different arguments, the overall strategy is the following.
Connectivity and the formulas (7) and (9) imply that picking an essential circle for J to act
on and a label v± on that circle determines labels on all the other circles. Lemma 7.3 ensures
thinness “before and after” the J edge. With further analysis, depending on J = E,F or
J = H, we arrive at our desired results. Note that connectivity of the arc diagram is critical:
disconnected arc diagrams may yield non-thinly embedded path moduli spaces. See also the
discussion at the beginning of Section 8.2.

7.1. Basic definitions and lemmas.

Definition 7.1. A path P through a sub-cube u ≤m v is a sequence of edges, denoted as

P = (u→ w1 → · · · → wm−1 → v).
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Fixing generators x ∈ ΓKh(u), y ∈ ΓKh(v), any such path determines a path moduli space

∂PMJ(y, x) :=
∐

MJ(y, zm−1)×MJ(zm−1, zm−2)× · · · ×MJ(z1, x),

where the disjoint union is taken over all sequences (z1, . . . , zm−1) with zi ∈ ΓKh(wi) for each
1 ≤ i ≤ m− 1. As in Section 6, points in ∂PMJ(y, x) will be denoted as

(x→ z1 → · · · → zm−1 → y) ∈ ∂PMJ(y, x),

with a label on an arrow corresponding to the J-edge indicating which essential circle is
being acted on by J if necessary (see Equation (35) for an example of such a label).

Recall from Definition 3.1 that we use the notation ∂[i]M to indicate the codimension-i
portion of the boundary of a moduli space. In order to satisfy the demands of Theorem 5.8,
we define

(33) ∂[m−1]MJ(y, x) ∼=
∐

paths P

∂PMJ(y, x)

where the disjoint union is taken over paths P from u to v; to make the notation less
cumbersome we omit reference to u, v.
Furthermore, every ∂PMJ(y, x) inherits a thick embedding

(34) ∂PMJ(y, x) ↪−
φP

↪−→ E(P ) := E(v, wm−1)× · · · × E(w1, u)

via the disjoint union of products of the thin embeddings

MJ(zm−i, zm−i−1) ↪→ E(wm−i, wm−i−1)

defined in Section 5.2. If the sub-cube u ≤m v does not involve J , then E(P ) is a point and
the thick embedding is constant. Otherwise, J is involved and there is a natural identification
E(P ) ∼= (0, 1). Then the thick embedding (34) sends a point

(35) (x→ z1 → · · · → zi
j
−→ zi+1 → · · · → zm−1 → y) ∈ ∂PMJ(y, x),

to the fixed j-th point in (0, 1) with framing determined by the sign (−1)j+1 if J = E,F and
otherwise given by the label of the j-th circle in zi if J = H, as described in Section 5.2.
We may also consider sub-paths of a path P . If wk is any vertex along a path

P = (u→ w1 → · · · → wk → · · · → v),

we may define P≤wk
:= (u → · · · → wk) and P≥wk

:= (wk → · · · → v). This then allows us
to split the path moduli space as a product

∂PMJ(y, x) =
∐

z∈ΓKh(wk)

∂P≥wk
MJ(y, z)× ∂P≤wk

MJ(z, x)

embedded as a product with the product framing.

Definition 7.2. For a fixed path P through a sub-cube u ≤m v that involves J , we single
out the vertices along P directly before and after the J map has been applied:

• e0 = e0(P ) denotes the source vertex of the J edge in P , and
• e1 = e1(P ) denotes the target vertex of the J edge in P .

The arc diagram De := De0 = De1 being acted on by J will be referred to as the J-
resolution of P .2

2To relate this notation to equation (35), e0 = wi, e1 = wi+1.
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Note that the J-resolution of a path P depends on the path, although we do not include
P in the notation to avoid clutter.

Now if u ≤m v does not involve the J map, then any path P from u to v represents a
path in the cube of resolutions of D. For each such path there is an associated cobordism
S : Du → Dv.

Lemma 7.3. Let P be a path from u to v which does not involve the J map, and let
S : Du → Dv denote its corresponding surface cobordism. Let g denote the maximal genus
among all components of S.

(1) If g = 0, then for every x ∈ ΓKh(u) and y ∈ ΓKh(v), the moduli space ∂PMJ(y, x)
contains at most one element.

(2) If g ≥ 1 and one of Du or Dv consists only of essential circles, then FA(S) = 0.
In particular in this case, for every x ∈ ΓKh(u) and y ∈ ΓKh(v), the moduli space
∂PMJ(y, x) is empty.

Proof. For (1), first view S as a cobordism in R2 × I using the inclusion A × I ↪→ R2 × I.
Since FA is the adeg-preserving part of FKh, the cardinality of ∂PMJ(y, x) is bounded above
by the coefficient of y in FKh(S)(x). Represent the generators x and y using (dotted) cup
cobordisms, denoted Σx and Σy respectively. Let Σ∗

y denote the dual cap cobordism to Σy,
so that the closed surface

Σ∗
y ◦ Σy

evaluates to 1 under FKh. The coefficient of y in FKh(S)(x) is then the value of FKh on the
closed surface

S ′ := Σ∗
y ◦ S ◦ Σx.

Since S has genus zero, every component of S ′ is a (possibly dotted) sphere. Then FKh(S
′) ≤

1, which completes the proof of statement (1).
We now address (2). Let S ⊂ S be a component of positive genus. It suffices to show

FA(S) = 0. By neck-cutting, Figure 1b, we can write S as a sum

S1 + · · ·+ Sk,

where each component of each Si is either an annulus with essential boundary or a disk,
possibly carrying dots. We may assume that each component carries at most one dot. Since
one of Du or Dv consists entirely of essential circles, each Si contains an annulus. We will
show that each Si has a dotted annulus, which implies FA(S) = 0 since X acts by zero on
essential circles, see formula (6).

Fix 1 ≤ i ≤ k. Recall that the Bar-Natan relations are homogeneous, so deg(S) = deg(Si).
Let n denote the number of (possibly dotted) disks in Si. If none of the annuli in Si are
dotted, then

deg(Si) ≥ −n.

On other other hand, considering the connected surface S,

deg(S) = χ(S) < −n,

since g(S) ≥ 1 and the number of boundary components of S is strictly greater than n.
Therefore Si contains a dotted annulus, which completes the proof. □
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7.2. Equivalent path moduli spaces and a non-emptiness condition. In this section
we analyze the manner in which two paths P, P ′ can give rise to equivalent path moduli
spaces ∂PMJ(y, x) ∼= ∂P ′MJ(y, x). This analysis will allow us to choose certain preferred
paths through our sub-cubes. It will also give rise to an important non-emptiness condition
on path moduli spaces.

Definition 7.4. Let P and P ′ be two paths in a sub-cube u ≤m v. Write

P = (u = w0 → w1 → · · · → wm = v)

P ′ = (u = w′
0 → w′

1 → · · · → w′
m = v) .

We say that P and P ′ are related by a square face if for some 1 ≤ j ≤ m − 1, we have
wj ̸= w′

j while wi = w′
i for all indices i ̸= j. We say the square face involves J if one of the

edges in the 2-dimensional sub-cube wj−1 ≤2 wj+1 is the J map. In this case, two of the
opposite edges are J , and the remaining two opposite edges are a saddle.

Lemma 7.5. Let P and P ′ be two paths in a sub-cube u ≤m v that are related by a square
face wj−1 ≤2 wj+1 as above, and let x ∈ ΓKh(u), y ∈ ΓKh(v). If either

(1) the square face does not involve the J map, or
(2) the square face involves the J map, and the number of essential circles in the resolu-

tions appearing in wj−1 ≤2 wj+1 is the same,

then there is a bijection
∂PMJ(y, x) ∼= ∂P ′MJ(y, x)

such that the diagram (36) commutes.

(36)

∂PMJ(y, x)

∂P ′MJ(y, x)

E(P )

E(P ′)

∼= ∼=

Proof. The desired bijection is assembled from the bijections in Section 6 on the factors of
∂PMJ(y, x) and ∂P ′MJ(y, x) involving the square face and the identity on all other factors.
Commutativity of the diagram is immediate for item (1), since E(P ) = D0 = E(P ′) in this
case. For item (2) it follows from commutativity of the diagram (31) and the discussion
below Lemma 6.1. □

In the case that the number of essential circles in the J-resolution has changed, we instead
see turnbacks as in Figure 14b, but this fact does not concern us at the moment.

Corollary 7.6. Let P and P ′ be paths from u to v such that the J-resolution of P and P ′

are at the same vertex, e0(P ) = e0(P
′). Then there is a bijection

∂PMJ(y, x) ∼= ∂P ′MJ(y, x)

such that the diagram (36) commutes.

Proof. The paths P and P ′ can be related by a sequence of square faces that do not involve
the J map. The claim follows from Lemma 7.5. □

Now we consider how the various bijections of Lemma 7.5 can be used to replace a given
path through a sub-cube with one that is easier to analyze.
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Lemma 7.7. Consider a path P through the sub-cube u ≤m v, specifying a J-resolution arc
diagram De, and fix generators x ∈ ΓKh(u), y ∈ ΓKh(v). Then there exists a path P ′ through
u ≤m v, with J-resolution De′, satisfying the following properties.

• Each connected component of De′ contains the same number of essential circles as
the corresponding component of De.

• Any connected component of De′ which contains at least one essential circle also
contains no trivial circles.

• There is a bijection ∂PMJ(y, x) ∼= ∂P ′MJ(y, x) such that the diagram (36) commutes.

Proof. We work one connected component C of De at a time. If C contains only essential
circles or only trivial circles, then we are done. Otherwise, C must contain a trivial circle
that is joined by an arc (either past or future) to an essential circle. This arc specifies a
square face in the sub-cube u ≤m v, and the swap across this square face yields a path P ′′ in
which the corresponding component C ′′ in the J-resolution of P ′′ contains one fewer trivial
circle and the same number of essential circles as C . By Lemma 7.5 (2), the moduli spaces
for P and P ′′ are in bijection with diagram (36) commuting. We continue this process until
there are no trivial circles left in any of the connected components with essential circles. □

Lemma 7.7 ensures that it is enough to understand ∂PMJ(y, x) for paths P having the
J-resolution De consisting of only essential circles, possibly together with a disconnected
component consisting of trivial circles. However, in the following sections, we will focus
largely on connected arc diagrams; the disconnected cases will follow from the connected
ones in a manner very similar to the arguments of Section 6.2.

We end this section with an important consequence of Corollary 7.6. Recall from Section
2.3 that a sub-cube u ≤m v gives rise to its own arc diagrams at each vertex including only
those arcs that correspond to saddle maps within the sub-cube. Note further that, for any
path P , the arc diagrams De0 and De1 directly before and after the J map are the same.
The following lemma provides an important restriction on the types of arc diagrams that
can appear for non-empty path moduli spaces.

Lemma 7.8. Let P be a path through u ≤m v and let w be a vertex in P . Suppose that
any of the configurations in Figure 17, as well as their vertical and horizontal reflections,
appear for some pair of arcs in the arc diagram Dw. Then ∂PMJ(y, x) = ∅ for every
x ∈ ΓKh(u), y ∈ ΓKh(v).

Proof. Surgery arcs can be performed in any order by Corollary 7.6. We assume that the
depicted pair of arcs correspond to consecutive edges in P . Direct calculations verify that
they all yield the zero map. □

7.3. The E and F maps for connected arc diagrams. In this section we analyze the
path moduli spaces ∂PMJ(y, x) for connected arc diagrams when J = E,F and show that the
thick embeddings (34) in such cases are in fact thin. (We will see in Section 8.2 how genuinely
thick embeddings appear when the arc diagrams are disconnected.) The analysis is stated
only for the E map, but the F map is nearly identical, see Lemma 2.6; in particular all results
here hold with F and E interchanged, though the proofs may need slight modifications.

Fix an annular link diagram D with n-crossings, so that together with the E map we have
an (n + 1)-dimensional cube Q. We also fix a sub-cube u ≤m v. For the remainder of this
section, we assume that the sub-cube u ≤m v contains the E edge and that the arc diagram
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(a) (b) (c)

(d) (e) (f)

Figure 17. Forbidden configurations; only the two relevant arcs are pictured, but
there could be an arbitrary number of additional past and future arcs anywhere
within such a diagram.

Du is connected. Our first lemma rules out a very specific arrangement of arcs for such a
diagram.

Lemma 7.9. Suppose the arc diagram Du is connected. Let P be a path through u ≤m v
such that the E-resolution De contains only essential circles. If the configuration shown in
(37) appears for some pair of arcs in the arc diagram De0, where the two horizontal intervals
are segments of distinct essential circles, then ∂PME(y, x) = ∅ for every x ∈ ΓKh(u), y ∈
ΓKh(v).

(37)

Proof. We consider two cases. If there are no other essential circles in De, then by Corollary
7.6 we may assume that the past arc occurs directly before the E map, and the future arc
occurs directly after. It is straightforward to verify that the configuration results in empty
moduli spaces. If there are other essential circles, then since the arc diagram De is connected,
at least one of the two depicted circles must be connected to a third circle. Then one of Figure
17c or Figure 17f appears in the arc diagram, so we are done by earlier considerations. □

We now present the main technical result of this section which concerns the thinness of
path moduli spaces for connected arc diagrams.

Proposition 7.10. Suppose P is a path through a sub-cube u ≤m v having connected arc
diagram Du. Then for any fixed generators x ∈ ΓKh(u), y ∈ ΓKh(v), the thick embedding φP

from (34) is in fact a thin embedding

∂PME(y, x)
φP

↪−→ (0, 1) ∼= E(v, u).

Proof. If the path moduli space ∂PME(y, x) is empty, then the statement is trivially true.
Otherwise, by Lemma 7.7, we can assume that our E-resolution consists entirely of essential
circles. We fix two points z, z′ ∈ ∂PME(y, x) and seek out to prove that, if φP (z) = φP (z

′),
then in fact we must have had z = z′.
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We write z, z′ as

z = (x→ z1 → · · · → zi
j
−→ zi+1 → · · · → zm−1 → y)

z′ = (x→ z′1 → · · · → z′i
j′

−→ z′i+1 → · · · → z′m−1 → y),

where zi, z
′
i ∈ ΓKh(e0) are the generators that E acts on. Then by definition of φP , we must

have j = j′. Letting C denote the j-th essential circle in De, this implies that the label on C
must be v− in zi and v+ in zi+1. Based on the assumption that the arc diagram is connected
and using Lemmas 7.8, 7.9, one observes that the curves are connected by past/future arcs
in an alternating manner as illustrated in the following figure (also see Figure (38)). The
labels discussed above then determine the labels on the circles adjacent to C as shown below.

C v− ⇒ v−

v−

v+

By propagating this argument we see that the labels on all essential circles in De are deter-
mined by j, and thus for j = j′ we must have zi = z′i and zi+1 = z′i+1 as well.
From this we can conclude that both z and z′ belong to the same composition moduli

space

z, z′ ∈ ∂P≥e
ME(y, zi+1)×ME(zi+1, zi)× ∂P≤e

ME(zi, x).

Then since De contains only essential circles, Lemma 7.3 ensures that both ∂P≤e
ME(zi, x)

and ∂P≥e
ME(y, zi+1) are at most single point moduli spaces, while ME(zi+1, zi) is an edge

moduli space and so contains at most a single point as indicated in Section 5.2. Thus we
have z = z′ as desired, and the embedding φP must in fact be thin. □

Although Proposition 7.10 suffices to continue our construction, we can actually prove a
stronger statement about our path moduli spaces which makes them easier to understand in
concrete examples. We begin with a special case.

Lemma 7.11. Suppose P is a path through a sub-cube u ≤m v with (connected) E-resolution
arc diagram De consisting entirely of s essential circles, with precisely one arc connecting
each consecutive pair. Fix x ∈ ΓKh(u), y ∈ ΓKh(v) such that the moduli space ∂PME(y, x)
is nonempty. Then for each 1 ≤ j ≤ s, there is at least one point of the form

(zj) := (x→ · · · → zi
j
−→ zi+1 → · · · → y) ∈ ∂PME(y, x).

Proof. Let S≤e : Du → De, S≥e : De → Dv denote the cobordisms obtained by composing
the saddle maps in P before the E map and after the E map, respectively.
Fixing 1 ≤ j ≤ s, we first note that the j-th essential circle in De must be labeled by v−

in zi. Using the argument in Proposition 7.10, there is a unique choice of generators zi, zi+1

satisfying this condition. To construct (zj), we will show that FA(S≥e)(zi+1) is a generator
of FA(Dv), which we denote y′. Then we show there exists a unique x′ ∈ ΓKh(u) such that zi
appears in FA(S≤e)(x

′). Finally we will show that x′ = x and y′ = y, completing the proof.
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By Lemma 7.8, Figures 17c and 17f, the arc diagram for De consists of s essential circles
connected by past and future arcs in an alternating manner,

(38)

...

...

Let us first show that zi+1 is not killed by applying the future arcs in De. Note that each
circle in De is incident to at most one future arc. Pick circles C1, C2 in De that are connected
by a future arc a. Surgery along a results in a trivial circle C ′, and by construction of zi+1

the labels on C1 and C2 are different. Therefore the map assigned to a is nonzero on zi+1,
and moreover C ′ is labeled by X in the image of zi+1. Repeating this for all future arcs, we
see that y′ := FA(S≥e)(zi+1) is a generator of Dv. Each trivial circle in Dv is labeled X in y′.
Essential circles in Dv are those with no future arc incident on them in De, and they have
the same label as in zi+1.
Let us now define x′ ∈ ΓKh(u) such that zi appears in FA(S≤e)(x

′). As before, each circle
in De is incident to at most one past arc. If a′ is a past surgery arc joining the essential circles
C ′

1 and C ′
2 in De, then undoing a′ we see a trivial circle T splitting into the two essential

circles C ′
1 ∪ C

′
2,

−→

a′

C ′
2

C ′
1

T

We must label T by the generator 1. By construction, C ′
1 and C ′

2 have opposite labels in
zi. The saddle map corresponding to a′ sends 1 ∈ FA(T ) to a sum of two generators in
FA(C

′
1 ∪ C ′

2), one of which matches the labels on C ′
1 ∪ C ′

2 in zi. Repeat this for all past
arcs in De to obtain the desired generator x′ ∈ ΓKh(u). Note that trivial circles in Du are
labeled by 1 in x′. Essential circles in Du correspond to essential circles in De with no past
arc incident on them, and they have the same label in x′ and zi.

It remains to show that x′ = x and y′ = y. By the above analysis, x′ and x are labeled 1
on all trivial circles in Du, and likewise y′ and y are labeled X on all trivial circles in Dv. We
will argue that labels on essential circles in Du and Dv are determined by the arc diagram
De.
Let r and t denote the number of essential circles in Du and Dv, respectively. Since the

arc diagram De is connected, Lemma 7.8, Figures 17c and 17f imply that all but the first
and last essential circles in De are connected to adjacent essential circles by both a past and
future arc. It follows that the pair (r, t) is one of (2, 0), (1, 1), or (0, 2), which can be read
off from the type of arcs incident on the first and last circle in De,
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...

(r, t) = (2, 0)

...

(r, t) = (1, 1)

...

(r, t) = (1, 1)

...

(r, t) = (0, 2)

Finally, note that if x′′ ∈ ΓKh(u), y
′′ ∈ ΓKh(v) such that ∂PME(y

′′, x′′) ̸= ∅, then
adeg(y′′) = adeg(x′′) + 2. For each of the three possibilities for (r, t), we see that the labels
on essential circles in Du and Dv are always uniquely determined whenever the moduli space
is nonempty. Therefore x = x′ and y = y′. □

With Lemma 7.11 in place, we can state and prove the following proposition which char-
acterizes all non-empty path moduli spaces in any sub-cube for a connected diagram which
involves the E map.

Proposition 7.12. Suppose P is a path through a sub-cube u ≤m v having connected arc
diagram Du, such that the E-resolution De of P contains s essential circles. Then for any
fixed generators x ∈ ΓKh(u), y ∈ ΓKh(v), if the path moduli space ∂PME(y, x) is non-empty,
then the thick embedding φP from (34) is a thin embedding mapping ∂PME(y, x) bijectively
onto { 1

s+1
, . . . , s

s+1
} ⊂ (0, 1).

Proof. Thinness of the embedding ∂PME(y, x)
φP

↪−→ (0, 1) was established in Proposition
7.10. By Lemma 7.7, we can assume that our E-resolution consists entirely of s essential
circles. It thus remains to show that each essential circle in De contributes at least one point
to ∂PME(y, x).
Fix 1 ≤ j ≤ s. By Corollary 7.6, the order in which the surgery arcs in the sub-cubes

u ≤ e0 and e1 ≤ v are performed is irrelevant, and we use this implicitly.
Pick future surgery arcs a1, . . . , af and past surgery arcs b1, . . . , bp in De, such that con-

secutive circles in De are connected by exactly one of the chosen arcs. We assume that
in the path P , the f edges directly after the E edge correspond to performing surgery on
a1, . . . , af , and the p edges directly before the E edge correspond to surgery on the dual arcs
to b1, . . . , bp. In other words, P is of the form

u→ · · · → u0
b1→ u1

b2→ · · ·
bp
→ e0

E
→ e1

a1→ v1
a2→ · · ·

af
→ vf → · · · → v.

Consider the sub-cube u0 ≤ vf and the path P 2 through this sub-cube, consisting of all
edges in P from u0 to vf . Let D

′
u0

denote the diagram obtained from Du0
by including only

arcs in P 2. The E-resolution of P 2 is connected by construction, so D′
u0

is connected as
well. Let P 1 and P 3 denote the sub-paths of P consisting of edges from u to u0 and vf to v,
respectively.

P 1

︷ ︸︸ ︷
u→ · · · → u0

b1→ u1
b2→ · · ·

bp
→ e0

E
→ e1

a1→ v1
a2→ · · ·

af
→

P 3

︷ ︸︸ ︷
vf︸ ︷︷ ︸

P 2

→ · · · → v

Since ∂PME(y, x) is nonempty, there exist generators x′ ∈ ΓKh(u0), y
′ ∈ ΓKh(vf ) such

that the moduli spaces

∂P 1ME(x
′, x), ∂P 2ME(y

′, x′), ∂P 3ME(y, y
′)
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are all nonempty. By Lemma 7.11 applied to D′
u0

and P 2, we can find z2 ∈ ∂P 2ME(y
′, x′)

of the form

z2 = (x′ → · · · → zi
j
−→ zi+1 → · · · → y′) ∈ ∂P 2ME(y

′, x′).

Then choosing any z1 ∈ ∂P 1ME(x
′, x) and z3 ∈ ∂P 3ME(y, y

′) gives rise to at least one
point in the composition moduli space

z = (z3, z2, z1) ∈ ∂P 3ME(y, y
′)× ∂P 2ME(y

′, x′)× ∂P 1ME(x
′, x) ⊂ ∂PME(y, x)

which φP maps to the j-th point in (0, 1) as desired.
□

7.4. The H map for connected arc diagrams. As in the previous section, we continue
to fix a sub-cube u ≤m v involving J = H such that the initial arc diagram Du is connected
(and hence all intermediate diagrams Dw for u ≤ w ≤ v are connected as well). The main
technical result is a characterization of the path moduli spaces in u ≤m v, Proposition 7.17.
We begin with several lemmas.

Lemma 7.13. Let P be a path through u ≤m v such that the H-resolution De consists
entirely of s essential circles. Fix generators x ∈ ΓKh(u), y ∈ ΓKh(v) such that ∂PMH(y, x)
is nonempty. If every pair of consecutive circles in De is joined by exactly one type of arc
(either past or future), then the thick embedding φP from (34) is in fact thin.

Proof. Let z, z′ ∈ ∂PMH(y, x) with

z = (x→ · · · → zi
j
−→ zi+1 → · · · → y),

z′ = (x→ · · · → z′i
j
−→ z′i+1 → · · · → y),

for some 1 ≤ j ≤ s. Let C denote the j-th circle in De. We will first show that zi = z′i (and
thus zi+1 = z′i+1 as well).
Choosing a label of v± on C uniquely determines the generator zi (and thus zi+1), as in

the proof of Proposition 7.10. Therefore, in order to have zi ̸= z′i, we must have the labels
on C in zi and z

′
i be opposites. It follows that zi is obtained from z′i by swapping the labels

on all circles in De, and likewise for zi+1 and z′i+1.
On the other hand, Lemma 7.8 (Figures 17c and 17f) implies that the circles in De are

connected by past and future arcs in an alternating manner as in (38), where there may be
more than one past or future arc between any two adjacent circles. Since the arc diagram
De is connected, all but the first and last essential circles in De are connected to adjacent
essential circles by both a past and future arc. Therefore at least one of Du or Dv has an
essential circle. Moreover, the labels on the essential circle(s) in x (resp. y) are the same as
the labels on the corresponding essential circle(s) in zi (resp. zi+1). Since x and y are fixed,
at least one of these prevents the circles in De from having opposite labels for either zi and
z′i, or zi+1 and z′i+1.

Thus we must have that zi = z′i and zi+1 = z′i+1, and the lemma follows by the same
argument as in the proof of Proposition 7.10.

□

Lemma 7.13 does not handle all cases where De consists of only essential circles. After
ruling out the forbidden configurations Figure 17c and Figure 17f from Lemma 7.8, it remains
to analyze the situation where De consists of exactly two essential circles with both a past
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and future arc connecting them, as in (37). The following lemma gives an explicit description
of such a path moduli space and its thick embedding.

Lemma 7.14. Let P be a path through u ≤m v such that the H-resolution De consists
entirely of two essential circles, with at least one past and one future arc connecting them. Fix
generators x ∈ ΓKh(u), y ∈ ΓKh(v) such that ∂PMH(y, x) is nonempty. Then ∂PMH(y, x)
consists of four points, and the thick embedding from (34) is a two-to-one map onto the
points

{
1
3
, 2
3

}
⊂ (0, 1) ∼= E(v, u). Moreover, any two points in ∂PMH(y, x) that map to the

same point in E(v, u) are oppositely framed.

Proof. Let ap and af denote the saddles corresponding to one past and one future surgery
arc in De, respectively. By Corollary 7.6, we may assume that ap and af are performed
directly before and after the H edge, respectively. Let P ′ denote the 3-edge sub-path of P
corresponding to ap, H, and af , and note that the diagrams at the start and end of this path
both consist of a single trivial circle. Let P≤p (resp. P≥f ) denote the sub-path consisting of
the edges before ap (resp. after af ).

It is a straightforward calculation to check that, in order for ∂P ′MH(zf , zp) to be non-
empty, the generator zp (resp. zf ) must consist of a label 1 (resp. X) on the trivial circle
at the start (resp. end) of the path P ′. In this unique case one further computes that
∂P ′MH(zf , zp) consists of four points thickly embedding into (0, 1) as in the statement of
the lemma.

Then for the full path moduli space we have

∂PMH(y, x) ∼= ∂P≥f
MH(y, zf )× ∂P ′MH(zf , zp)× ∂P≤p

MH(zp, x).

The cobordism corresponding to the path P≤p (resp. P≥f ) must have genus zero, otherwise
Lemma 7.3 would cause the path moduli space to be empty after composing with ap (resp.
af ) and connecting to De which consists of all essential circles. Thus both ∂P≤p

MH(zp, x)
and ∂P≥f

MH(y, zf ) consist of a single trivially embedded point and we are done.
□

Remark 7.15. The two past and future arcs in Lemma 7.14 form a ladybug configuration
([LS14a, Figure 5.1]). Lemma 7.9 disallows this configuration for J = E,F , and it is the
only case among connected arc diagrams for which the thick embedding (34) is not thin.
The configuration in Lemma 7.8, Figure 17a is also a ladybug, which is disallowed for all J .

The following important lemma concerns the planar topology of an arc diagram De as in
the hypothesis of Lemma 7.14.

Lemma 7.16. Let P be a path through u ≤m v such that the H-resolution De consists
entirely of two essential circles, with at least one past and one future arc connecting them.
Let x ∈ ΓKh(u), y ∈ ΓKh(v) be generators such that ∂PMH(y, x) is nonempty. Then there
exists a ray from the puncture × to the point at infinity which is disjoint from all the arcs
in De and which intersects the circles in De in exactly two points.

Proof. Let ap and af denote two past and future arcs, respectively, which join the two
essential circles in De. We assume that ap and af are adjacent, in the sense that they can
be connected by an interval whose interior is disjoint from the arc diagram De. We will
show that there exists such a ray passing between them, as in Figure 18a. Indeed, the only
possible obstruction to such a ray would be an arc, or a sequence of interlacing arcs, along
one of the essential circles with endpoints ‘outside’ of the arcs ap, af (see Figure 18b with
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ap af

(a) The desired ray

ap af

(b) One obstructing
arc

ap af

· · ·
· · ·

(c) An obstructing sequence of interlaced arcs

Figure 18

single arc case and Figure 18c for the interlacing arc case). By considering the forbidden
configurations of Figures 17a and 17d, we see that the arcs on one side of the essential circle
must be either all past or all future. In either case, we will arrive at another forbidden
configuration as in Figure 17b or Figure 17e. Thus no such arrangement may exist and our
ray can be drawn.

□

We are now ready for the main result in this section.

Proposition 7.17. Consider a sub-cube u ≤m v such that the arc diagram Du is connected,
and fix generators x ∈ ΓKh(u), y ∈ ΓKh(v). Then one of the following two holds.

(1) For any path P from u to v such that ∂PMH(y, x) ̸= ∅, the thick embedding from
(34) is in fact thin.

(2) For any path P from u to v such that ∂PMH(y, x) ̸= ∅, the moduli space ∂PMH(y, x)
consists of four points, and the thick embedding from (34) is a two-to-one map onto
the points

{
1
3
, 2
3

}
⊂ (0, 1) ∼= E(v, u). Moreover, any two points in ∂PMH(y, x) that

map to the same point in E(v, u) are oppositely framed.

Proof. If all paths yield empty moduli spaces then there is nothing to show. Take a path P
from u to v with ∂PMH(y, x) ̸= ∅. By Lemma 7.7, we may assume that the H-resolution
De of P consists entirely of essential circles. We proceed by considering two cases for this
fixed P .

Suppose first thatDe contains a pair of essential circles which are joined by both a past and
future arc. We will argue that case (2) of the lemma holds. By Lemma 7.8, Figures 17c and
17f, we know that De contains exactly two essential circles. It was shown in Lemma 7.14 that
the conclusion of case (2) holds for ∂PMH(y, x), so it remains to show that the same holds
for every path from u to v. To that end, let P ′ be another path from u to v with nonempty
moduli space, and denote its H-resolution by De′ . As usual, it suffices to assume that De′

contains only essential circles. The arc diagram De′ can be obtained from De by performing
a sequence of surgeries along the arcs in De. Then Lemma 7.16 and the assumption that
∂P ′MH(y, x) ̸= ∅ guarantees that De′ contains two essential circles. Moreover, the ray
constructed in the proof of Lemma 7.16, along with the forbidden configurations of Lemma
17, Figures 17a and 17d, imply that the two circles in De′ are joined by both a past and a
future arc. Thus (2) holds by Lemma 7.14.
Now suppose that every pair of consecutive circles in De are joined by exactly one type

(either past or future) of arc. The above argument guarantees that the H-resolution of every
path with nonempty moduli space also has the property that each pair of consecutive circles



TOWARDS AN sl2 ACTION ON THE ANNULAR KHOVANOV SPECTRUM 45

are joined by exactly one type of arc. Then we conclude that case (1) holds by Lemma
7.13. □

Proposition 7.17 suffices to continue our construction. However, as in Section 7.3, we can
completely describe the thickly embedded path moduli spaces for J = H. In Case (2) above,
the moduli spaces are already described completely. Meanwhile, for Case (1), we have the
following proposition; compare with Proposition 7.12.

Proposition 7.18. Let x ∈ ΓKh(u), y ∈ ΓKh(v) such that we are in Case (1) of Proposition
7.17. Then for any path P with ∂PMH(y, x) ̸= ∅, the thin embedding φP from (34) surjects
onto

{
1

s+1
, . . . , s

s+1

}
where s denotes the number of essential circles in De.

Proof. Pick an element

(x→ · · · → zi
j
−→ zi+1 → · · · → y) ∈ ∂PMH(y, x)

for some 1 ≤ j ≤ s. Since H does not change the labels on essential circles, there must be
an element of the form

(x→ · · · → zi
k
−→ zi+1 → · · · → y) ∈ ∂PMH(y, x)

for every 1 ≤ k ≤ s. □

8. Constructing the higher dimensional moduli spaces (the inductive step)

In order to complete the proof of Theorem 5.8, we induct on the dimension of the sub-cube
being considered. That is to say, we fix m > 2 and inductively assume that, for all sub-cubes
a ≤i b with i ≤ m − 1 and generators r ∈ ΓKh(a), s ∈ ΓKh(b), we have constructed moduli
spaces MJ(s, r) together with thick embeddings

MJ(s, r) ↪−↪→ E(b, a)

satisfying all relevant boundary conditions. For any a ≤i b that does not involve J , this
thick embedding is just

MJ(s, r) ∼=
∐

MQ(b, a) ↪−
∐

id
↪−−→ MQ(b, a) = E(b, a).

Meanwhile, for any a ≤i b that does involve J , the thick embedding is of codimension 1 due
to the extra factor of (0, 1) in the definition of E(b, a).
Now we fix an m-dimensional sub-cube u ≤m v and seek to build new moduli spaces

MJ(y, x) thickly embedding into E(v, u) for various x ∈ ΓKh(u), y ∈ ΓKh(v). In the case
that u ≤m v does not involve J , none of the sub-faces of u ≤m v involve J either and the
entire construction follows from [LS14a]. In this case, the “trivial cover” language of [LS14a]
gives a thickened identity embedding

MJ(y, x) ∼=
∐

MQ(v, u) ↪−
∐

id
↪−−→ MQ(v, u) = E(v, u)

and we are done. Otherwise, the sub-cube u ≤m v involves J and we split into cases.
In each case, the essential strategy is the same. The boundary of MJ(y, x) is made up

of pieces of various codimensional pieces ∂[i]MJ(y, x), each of which consists of products
of lower dimensional moduli spaces, which we inductively assume that we have already
constructed and thickly embedded into the relevant ambient spaces. When we assemble
these pieces together, we have a thick embedding of ∂MJ(y, x) into ∂E(v, u). Completing
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the inductive step is then equivalent to proving that this thick embedding can be ‘thickly
filled’ by a moduli space embedding MJ(y, x) ↪−↪→ E(v, u) that satisfies Equation (25).

8.1. Sub-cubes involving E or F with connected arc diagrams. In the case that
J = E (the case J = F is again dual to this case and left to the reader), we begin by
considering sub-cubes u ≤m v whose corresponding arc diagram Du is connected. We fix
generators x ∈ ΓKh(u), y ∈ ΓKh(v) and consider the codimension (m− 1) (i.e. dimension 0)
part of the boundary

∂[m−1]ME(y, x) =
∐

paths P

∂PME(y, x).

If all of these path moduli spaces are empty, then we define ME(y, x) := ∅. Otherwise,
Proposition 7.10 shows that any non-empty ∂PME(y, x) is thinly embedded into E(P ) ∼=
(0, 1).
Now consider ∂[m−2]ME(y, x), which Theorem 5.8 demands is of the form

∂[m−2]ME(y, x) =
⋃




∐

r∈ΓKh(a)
s∈ΓKh(b)

∂P bME(y, s)×ME(s, r)× ∂PaME(r, x)


 ,

where the outer union is taken over

• all square sub-faces a ≤2 b in the sub-cube u ≤m v, and
• all sub-paths P a from u to a and P b from b to v.

We will denote the parenthetical term by ∂P bPaME(y, x). Then our (inductively defined)
lower dimensional moduli space embeddings determine a thick product embedding

(39) ∂P bPaME(y, x) ↪−↪→ E(P b)× E(b, a)× E(P a) ∼= [0, 1]× (0, 1)

with boundary conditions based on the embeddings of the two path moduli spaces corre-
sponding to composing P a and P b with the two paths around the edges of the square face
a ≤2 b.

(40)

c

u · · · a b · · · v

c′P a
P b

The key point is that, because the path moduli spaces on either boundary of ∂P bPaME(y, x)
are thinly embedded for our connected Du, we can conclude that our composition moduli
space embeddings (39) are thin as well. Thus we see that all of ∂[m−2]ME(y, x) is thinly
embedded, and we move on to consider ∂[m−3]ME(y, x). This is again built from products
of lower dimensional moduli spaces that we inductively assume have been constructed and
thickly embedded in such a way that their boundaries are built out of parts of the thinly em-
bedded ∂[m−2]ME(y, x) - and thus ∂[m−3]ME(y, x) must actually have been thinly embedded
also.

This reasoning continues all the way until we consider the thinly embedded ∂[1]ME(y, x) =
∂ME(y, x). This is an (m− 2)-dimensional manifold with corners ∂ME(y, x) thinly embed-
ded into the (m−1)-dimensional ambient space boundary ∂E(v, u) ∼= Sm−2× (0, 1). We may
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view this as a codimension-1 framed embedding ∂ME(y, x) ↪→ Sm−1 that misses the poles.
Using the Pontryagin-Thom construction, this framed submanifold corresponds to a map
Sm−1 −→ S1. Since m > 2, the map is null-homotopic so it extends to a map Dm −→ S1.
Therefore ∂ME(y, x) ↪→ Sm−1 bounds a framed embedding of an (m− 1)-dimensional man-
ifold into the interior of Dm, which is equivalent to the interior of Dm−1 × (0, 1) ∼= E(v, u).
It is worth noting that this is the point in the proof that uses (and propagates) the crucial
codimension 1 inductive assumption. This is our construction of ME(y, x) for connected
Du. See Figure 19.

Figure 19. Examples of 2-dimensional ME(y, x) ↪−↪→ E(v, u) ∼= MQ(v, u)× (0, 1),
where MQ(v, u) is the 2-dimensional permutohedron (a hexagon, topologically D2).
The Pontryagin-Thom construction ensures that our framed embedded ∂ME(y, x)
(drawn in red) can be filled as shown, regardless of the presence of turnbacks (fram-
ing data is omitted to avoid clutter).

8.2. Sub-cubes involving E or F with disconnected arc diagrams. Next we consider
the situation when J = E and the diagram Du is disconnected. Unlike in Section 8.1, path
moduli spaces for sub-cubes with disconnected arc diagrams need not be thinly embedded.
For example, adding a disjoint, contractible ladybug configuration ([LS14a, Figure 5.1]) has
the effect of turning a nonempty thinly embedded path moduli space into one where the
thick embedding is not injective. We begin with a simple lemma generalizing Lemma 6.1
from the m = 2 construction.

Lemma 8.1. Suppose there is some path P for which ∂PME(y, x) ̸= ∅. Then there is a
single connected component C of the arc diagram Du such that

adeg(y|C ) = adeg(x|C ) + 2, adeg(y|C ′) = adeg(x|C ′),

where C ′ is the complement of C . We say that E is acting on the component C . When
J = F , the value 2 above is replaced by −2.

Proof. As in the proof of Lemma 6.1, saddles maps preserve annular degree, but the E map
increases annular degree by two. □

As before, we consider

ME(y, x) = ME(y|C ⊗ y|C ′ , x|C ⊗ x|C ′).

We let MC

E(y|C , x|C ) denote the moduli space that would be built for the diagram C for
generators x|C , y|C if C ′ were not present. We also include the E edge in the cube used
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to construct MC

E(y|C , x|C ), since E is acting on C . Because C is connected, we can build
MC

E(y|C , x|C ) using the techniques of Sections 5.2, 6.2, and 8.1. Furthermore, if C ′ contains
no saddles, then y|C ′ = x|C ′ and we can define

ME(y, x) ∼= MC

E(y|C , x|C )

as thickly embedded moduli spaces, and so we are done.
Therefore we may assume that C ′ contains at least one saddle. In this case we let

MC ′

(y|C ′ , x|C ′) denote the moduli space that would be built for the diagram C ′ for gen-
erators x|C ′ , y|C ′ if C were not present (not including the E edge, since E is not acting on
C ′). Note that, because E is not involved, we can build MC ′

(y|C ′ , x|C ′) as a trivial cover of
a suitable permutohedron using the techniques in [LS14a].

Now consider that, in the large sub-cube u ≤m v, there are many k-dimensional sub-faces
a ≤k b whose edges consist of all of the saddles in C ′. Indeed for any path P starting from
u which consists of edges coming only from saddles in C (or the E edge), the ending vertex
of P can be taken as the starting vertex a of such a sub-face.

Lemma 8.2. Let k > 0 denote the number of saddles in C ′ and let a ≤k b denote any
sub-face of the sub-cube u ≤m v consisting of only edges corresponding to these k saddles.
Then for any choice of generator z on C ⊂ Da, we have a commuting diagram

(41)

ME(z ⊗ (y|C ′), z ⊗ (x|C ′))

∐
MQ(b, a)

E(b, a)

MQ(b, a)

MC ′

(y|C ′ , x|C ′)

∼=
∼=

=

∐
id

Proof. Because the arbitrary generator z is kept constant throughout such a sub-cube a ≤k b,
the definitions make this clear. □

Implicit in Lemma 8.2 is the fact that the diagram (41) commutes for any portion of
the boundaries of the moduli spaces in question. Furthermore, this trivial cover remains
consistent across all choices of a ≤k b and z.
The idea now is to assign a label to each component of this trivial cover

MC ′

(y|C ′ , x|C ′) ↪−
∐

id
↪−−→ MQ(b, a).

Then because C is disjoint from C ′, any such label will be maintained across the entire
sub-cube u ≤m v and we are free to build the large moduli space ME(y, x) one label at a
time.

For each fixed label, we can regard MC ′

(y|C ′ , x|C ′) as a single copy of MQ(b, a) embedding
via the identity map. Thus in any product used to build a composition moduli space, any
factors coming from sub-faces in C ′ contribute only trivial identity embeddings. In this way
we are free to build ME(y, x) in the same manner as in the previous sections, constructing
the boundary one codimension at a time. At each stage of this process, products with the
trivial identity embeddings maintain thinness and we eventually arrive at a thinly embedded
∂ME(y, x) of codimension one which can be filled using the Pontryagin-Thom construction as
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before. Since this procedure is identical for each fixed label of component in MC ′

(y|C ′ , x|C ′),
we conclude that our eventual thick embedding

ME(y, x) ↪−↪→ E(v, u)

contains a covering map of the same order as the trivial cover MC ′

(y|C ′ , x|C ′) ↪−
∐

id
↪−−→ MQ(b, a)

and we are done.

8.3. Sub-cubes involving H with connected arc diagrams. In the case that J = H
and the sub-cube u ≤m v has corresponding arc diagram Du that is connected, Proposition
7.17 splits us into two further cases. In case (1) of the proposition, we again have that all of
our path moduli spaces are thin and the construction of MH(y, x) proceeds in precisely the
same manner as in Section 8.1 when J = E.

Therefore we focus on case (2) of Proposition 7.17, where for fixed x ∈ ΓKh(u), y ∈ ΓKh(y),
every non-empty path moduli space ∂PMH(y, x) consists of four points thickly embedded in
two-to-one fashion onto

{
1
3
, 2
3

}
⊂ (0, 1) ∼= E(v, u). The proposition also shows that the two

points embedded at any single i
3
are oppositely framed. Thus for any path P we can split

∂PMH(y, x) into two disjoint sets

∂PMH(y, x) = ∂+PMH(y, x) ⊔ ∂
−
PMH(y, x),

where each ∂±PMH(y, x) consists of two points, one embedded at 1
3
with framing ±1, and the

other embedded at 2
3
with framing ∓1. In particular, each ∂±PMH(y, x) is thinly embedded

into E(v, u).
The main idea then is to construct MH(y, x) in two ‘signed’ pieces, which we denote by

M±
H(y, x). Each of these is built and thinly embedded into E(v, u) precisely as in Section

8.1 starting from the thinly embedded

∂[m−1]M
±
H(y, x) :=

∐

paths P

∂±PMH(y, x),

and ending with a codimension one Pontryagin-Thom argument. Note that the computations
in Section 6.3 that are used to build ∂[m−2]MH(y, x) respect this decomposition into signed
pieces, since any turnback described there must connect two oppositely framed points at 1

3

and 2
3
. The processes for building M+

H(y, x) and M−
H(y, x) are thus identical except that all

framings are reversed, and we can combine them into a two-to-one thick embedding

MH(y, x) = M+
H(y, x) ⊔M−

H(y, x) ↪−↪→ E(v, u).

Remark 8.3. The process above can be compared to Section 8.2, where identical thin con-
structions could be done one label at a time leading to thickly embedded moduli spaces.
The difference here is that our labels + and − give rise to oppositely framed moduli spaces
throughout.

8.4. Sub-cubes involving H with disconnected arc diagrams. Finally we consider
sub-cubes u ≤m v involving the J = H edge, where the corresponding arc diagram Du is
disconnected. The construction in this case involves a mixture of the ideas in Sections 8.2
and 8.3, which we will refer to freely without reiterating any details. As always, we begin
by fixing x ∈ ΓKh(u) and y ∈ ΓKh(v) with some path P through u ≤m v having non-empty
∂PMH(y, x).

Suppose the arc diagram Du has k homologically essential connected components, which
we denote by C1, . . . ,Ck, ordered by their nesting in the annulus.
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The first idea is to build MH(y, x) one homologically essential connected component at a
time, in the spirit of Section 8.3. To this end, note that each path moduli space ∂PMH(y, x)
can be decomposed as

∂PMH(y, x) = ∂C1

P MH(y, x) ⊔ · · · ⊔ ∂Ck

P MH(y, x),

where each ∂Ci

P MH(y, x) consists of only the points corresponding to H acting on essential
circles in Ci. This decomposition is clearly respected throughout the entire cube, allowing
us to decompose our desired moduli space MH(y, x) as

MH(y, x) = MC1

H (y, x) ⊔ · · · ⊔MCk

H (y, x).

Then fixing a connected component Ci, we seek to build and thickly embed the space
MCi

H (y, x) starting from its codimension (m− 1) boundary

∂[m−1]M
Ci

H (y, x) :=
∐

paths P

∂Ci

P MH(y, x)

as usual.
In order to do this, we appeal to the arguments in Section 8.2 letting Ci take the role of

C as notated there. If the component Ci corresponds to case (1) of Proposition 7.17, then
this construction proceeds precisely as before and we produce a trivial cover according to
the usual Lipshitz-Sarkar construction for generators on C ′

i , the complement of Ci. If the
component Ci corresponds to case (2) of Proposition 7.17, then the procedures of Section
8.2 are done one signed label at a time, leading to a trivial cover with twice the order of the
covering coming from Lipshitz-Sarkar’s construction for generators on C ′

i .
In any case, each moduli space MCi

H (y, x) can be built and thickly embedded into a copy
of E(v, u) which we write as

MCi

H (y, x) ↪−↪→ E(v, u) ∼= MQ × (i− 1, i).

We then ‘stack’ all of these thick embeddings together as

MH(y, x) =
k∐

i=1

MCi

H (y, x) ↪−↪→
k∐

i=1

MQ × (i− 1, i) ↪→ MQ × (0, k) ∼= E(v, u)

to complete our construction. See Figure 20.

9. Invariance and naturality with respect to link cobordisms

In order to complete the proof of Theorem 1.1, we must show that our construction of the
map J : XA(D) → XA(D), or equivalently our spectrum XJ(D) lifting Cone(J), is invariant
under the choices involved. The majority of these choices are considered in [LS14a] where
invariance of the similarly constructed XKh(D) is shown, and the proofs there apply to our
construction in the same manner. However, in Section 8 we made an additional choice of
null-cobordism while appealing to the Pontryagin-Thom construction. We show below that
XJ(D) is invariant under this choice as well.
Finally, we will also show that J commutes, up to homotopy, with the maps on spectra

assigned to link cobordisms. Proposition 9.5 below will concern elementary link cobordisms,
including Reidemeister moves, and will thus conclude the proofs of both Theorem 1.1 and
Theorem 1.3.
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Figure 20. A possible embedding for MH(y, x) for a disconnected diagram. The
two components are constructed and embedded individually forH acting on different
connected components of the arc diagram Du. They are then horizontally ‘stacked’
together as shown.

9.1. Invariance under choices of cobordisms. The inductive step in the construction of
higher-dimensional moduli spaces (see Section 8) relied on choosing a codimension-1 framed
null-cobordism for the boundary. We will now show that different choices are in turn related
by a framed codimension-1 cobordism. (Even though we work with codimension-1 orientable
submanifolds where the framing can always be assumed to exist, we choose to explicitly
specify the framing since it is central to the construction in the context of framed flow
categories.)

Lemma 9.1. Suppose MJ(y, x),M
′
J(y, x) are two moduli spaces constructed as in Section

8 using some choices of null-cobordisms. Then there exists a codimension-1 cobordism, that
is a thick embedding

MJ(y, x) ↪−↪→ E(v, u)× [0, 1]

whose boundary image in E(v, u)×{0} (respectively E(v, u)×{1}) recovers the thick embedding
MJ(y, x) ↪−↪→ E(v, u) (respectively M′

J(y, x) ↪−↪→ E(v, u)).

Proof. The construction of MJ(y, x) is done inductively in parallel with that of the moduli
spaces. There is no choice involved in the construction of 0- and 1-dimensional moduli spaces,
so in these cases M is defined to be the product M × I. For the inductive step we focus
first on the case when J = E (or F ) for connected diagrams as in Section 8.1.

Recall that we begin with the (m−2)-manifold with corners ∂ME(y, x) (for m > 2) thinly
embedded into ∂E(v, u), viewed as Sm−1 minus the poles. Consider ∂ME(y, x) ⊂ Sm−1×{0},
∂M′

E(x, y) ⊂ Sm−1×{1}. Just as in the arguments of Section 8.1, the inductive assumption
of this lemma provides the existence of a manifold with corners (denote it ∂ME(x, y)) thinly
embedded as a framed cobordism for these boundaries in Sm−1× [0, 1]. Assembling this data:

ME(y, x) ∪ ∂ME(x, y) ∪M′
E(x, y),

we have a codimension-1 framed submanifold of ∂(Dm×I). The corresponding map ∂(Dm×
I) −→ S1 extends to Dm × I, giving a desired cobordism in E(v, u) × [0, 1] between
ME(y, x),M

′
E(x, y). Note that it extends the cobordism ∂ME(x, y) in ∂E(v, u) × [0, 1]

that was given by the inductive assumption.
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The extension to the other cases, where the embeddings are indeed thick, is done in direct
analogy to the constructions in Sections 8.2, 8.3, and 8.4, where all components of the trivial
cover can be considered one at a time. □

Next we will use Lemma 9.1 to show that stable homotopy types constructed using different
choices of moduli spaces are homotopy equivalent.

Proposition 9.2. Fix an annular link diagram D, and let XJ(D),X ′
J(D) denote two stable

homotopy types built via Theorem 5.8 using different choices of null-cobordisms to construct
the moduli spaces as described above. Then XJ(D) ≃ X ′

J(D).

Proof. We work in the setting of [LS14a, Section 3.3]. An analogue of Lemma 3.16 in
that reference applied to our construction in Lemma 9.1, together with the ability to ‘sep-
arate sheets of the cover’ as in the proof of Proposition 3.11, gives a collection of embed-
dings MJ(y, x) ⊂ Ed[gr(y) : gr(x)] × [0, 1] which extend the neat embeddings ιy,x, ι

′
y,x of

MJ(y, x),M
′
J(y, x) into Ed[gr(y) : gr(x)]× {0}, respectively ×{1}. Informally, this may be

thought of as a 1-parameter family of neat embeddings of flow categories, with singularities
at times corresponding to critical points of the cobordisms M.

Consider the construction of the cell complex corresponding to a framed flow category
[LS14a, Definition 3.24]. To each object y in the flow category, one associates a cell C(y).
To define the attaching map of C(y) to a lower dimensional cell C(x), one uses the neat
embedding of the moduli space M(y, x) to identify a subset Cx(y) ∼= M(y, x) × C(x) ⊂
∂C(y). The map is then defined on Cx(y) to be the projection to C(x), while sending all of
∂C(y)∖ ∪xCx(y) to the basepoint.

In our setting, the neat embedding of MJ(y, x) into Ed[gr(y) : gr(x)] × [0, 1] provides
an identification of MJ(y, x) × C(x) ⊂ (∂C(y)) × [0, 1], and the corresponding projection
MJ(y, x)× C(x) −→ C(x) gives the desired homotopy between attaching maps correspond-
ing to the neat embeddings of MJ(y, x) and M′

J(y, x). The constructions of the thickly
embedded MJ(y, x) in Lemma 9.1 give rise to homotopies of this sort which are coherent
across all attaching maps of all cells, showing that our resulting spectra XJ(D) and X ′

J(D)
are stably homotopy equivalent. □

9.2. Link cobordisms and Reidemeister invariance. Our goal in this section is to
show that the J map constructed in Corollary 5.9 commutes up to homotopy with the maps
assigned to link cobordisms in [LS14b, Section 3]. This will include the case of link isotopies,
indicating that J commutes with the stable equivalences assigned to Reidemeister moves in
[LS14a, Section 6]. We begin with some general notions about certain subcategories of flow
categories that are used to construct the desired maps.

Let F be a framed flow category. Recall from [LS14a, Definition 3.29] the notion of a
downwards (resp. upwards) closed subcategory Z ⊂ F, which is a certain full subcategory
whose geometric realization |Z| is naturally a subcomplex (resp. quotient complex) of |F|.
Note that any full subcategory is specified by its objects. Thus if Z ⊂ F is downward closed,
then it has a complementary upward closed subcategory Z ′ whose objects are Ob(F)\Ob(Z).
Moreover, upon geometric realization, |Z| is a subcomplex of |F| with quotient complex |Z ′|,
allowing us to write the cofibration sequence

(42) |Z| ↪→ |F| ↠ |Z ′|.

We will say a full subcategory Z ⊂ F is closed if it is either upwards or downwards closed.
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We now specialize to the situation at hand. Let D be an annular link diagram, and let
FJ(D) be the flow category refining Cone J (see Theorem 5.8). By definition, the objects of
FJ(D) consist of two copies of the objects of FA(D),

Ob(FJ(D)) = Ob(FA(D))0
∐

Ob(FA(D))1,

where we use the subscript 0 and 1 to indicate that some objects are before the J map
(subscript 0), and some are after (subscript 1). The gradings of objects in Ob(FA(D))1 are
shifted up by 1 from the gradings in Ob(FA(D))0.

Definition 9.3. For a full subcategory Z ⊂ FA(D), let Z denote the full subcategory of
FJ(D) whose objects are two copies of the objects of Z,

Ob(Z) = Ob(Z)0
∐

Ob(Z)1,

where Ob(Z)i ⊂ Ob(FA(D))i. We call Z the double of Z, and we let Z0,Z1 denote the two
full subcategories of Z ⊂ FJ(D) defined by

Ob(Zi) = Ob(Z)i.

As with FJ(D), we think of Z0 and Z1 as two parallel copies of Z within the double Z,
separated by the J edge direction. In this way, Z0 and Z1 are complementary downward and
upward closed subcategories of Z, so that upon geometric realization, there is an inclusion
and projection

|Z0| ↪→ |Z| ↠ |Z1|.

Combining this with the canonical3 identifications Z0 = Z,Z1 = ΣZ (the Σ(−) denotes a
grading shift as in Definition 3.16) allows us to write, for any full subcategory Z ⊂ FA(D),
the cofibration sequence

(43) |Z| ↪→ |Z| ↠ Σ|Z|.

Meanwhile, if Z ′ denotes the complementary full subcategory of Z in FA(D), then the

complement of the double is the double of the complement, Z
′
= Z ′. However, if Z is closed

in FA(D), then its double Z need not be closed in FJ(D), since the J map may take certain
generators corresponding to objects of Z into Z ′, or vice versa.

Lemma 9.4. Suppose that Z is a closed subcategory of FA(D) whose double Z is also a closed
subcategory of FJ(D). Then the cofibration sequences (42) for complementary pairs Z,Z ′

and Z,Z
′
commute with the cofibration sequences (43) for complementary copies within a

double, as illustrated below for the case that Z is downward closed.

(44)

|Z| |Z| Σ|Z|

|FA(D)| |FJ(D)| Σ|FA(D)|

|Z ′| |Z
′
| Σ|Z ′|

3The subcategories Z0,Z1 do not involve the J edge, so they are built in exactly the same way as Z.
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Proof. The inclusion maps, the quotient maps, and the canonical identifications involved are
all defined by identifying objects of the categories with cells in the geometric realizations, so
the definitions make the commutation clear. □

Note that, whenever we do have a closed subcategory Z ⊂ FA(D) whose double Z remains
closed in FJ(D) as in Lemma 9.4, each row in (44) gives rise to a ‘horizontal’ Puppe map
which can be identified as the J map restricted to the setting of its row. Similarly, each
column in (44) also gives rise to a ‘vertical’ Puppe map.

An annular link cobordism can be decomposed into a sequence of so-called elementary
cobordisms corresponding to either Morse moves or Reidemeister moves. To prove Theorem
1.3, it suffices to show that the map J commutes up to homotopy with all maps assigned to
such elementary cobordisms.

Proposition 9.5. Let ϕ : XA(D) → XA(D
′) be the map on annular Khovanov spectra

assigned to an elementary annular link cobordism from D′ to D as in [LS14b, Section 3].
Then the map J commutes with ϕ up to homotopy:

XA(D) XA(D)

XA(D
′) XA(D

′)

J

ϕ ϕ

J

In particular, if D,D′ are two diagrams for the same annular link, then the stable equivalence
XA(D) ∼= XA(D

′) commutes with J up to homotopy.

Proof. Each elementary cobordism map arises from identifying a closed subcategory Z in

the framed flow category FA(D̃) for a suitable diagram D̃, leading to a cofibration sequence
of the form (42) (or in the case of Reidemeister II and III, a finite sequence of such closed
subcategories). We claim that each such closed subcategory Z used in this way gives rise

to a closed double Z ⊂ FJ(D̃). Indeed the saddle map arises from a diagram D̃ having
a crossing at the place of the saddle, so that Z and its complement Z ′ correspond to 0-
and 1-resolutions of this crossing, which clearly remain closed upon doubling. Meanwhile,
all of the other elementary cobordisms (cups, caps, and Reidemeister moves) identify closed

subcategories Z by fixing labels on trivial circles in their corresponding D̃. Since the J map
does not affect the labels on trivial circles, any such closed subcategory remains closed upon
doubling.

Thus any closed subcategory Z used to define an elementary cobordism map ϕ gives
rise to a commuting diagram of cofibrations as in (44). In all such cases, the map being
built will be identified with one of the vertical maps in the first and/or last column (or
perhaps the corresponding ‘vertical’ Puppe map), while the J maps will be identified with
the ‘horizontal’ Puppe maps, and these two maps will commute due to the naturality of the
Puppe construction. □
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Hochschild homology, and the Ozsváth-Szabó spectral sequence. Trans. Amer. Math. Soc.,
367(10):7103–7131, 2015.

[AKW21] Rostislav Akhmechet, Vyacheslav Krushkal, and Michael Willis. Stable homotopy refinement of
quantum annular homology. Compos. Math., 157(4):710–769, 2021.



TOWARDS AN sl2 ACTION ON THE ANNULAR KHOVANOV SPECTRUM 55
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