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Homological polynomial coefficients

and the twist number of alternating surface links

DAVID A WILL

For D a reduced alternating surface link diagram, we bound the twist number of D

in terms of the coefficients of a polynomial invariant. To this end, we introduce a

generalization of the homological Kauffman bracket defined by Krushkal. Combined

with work of Futer, Kalfagianni and Purcell, this yields a bound for the hyperbolic

volume of a class of alternating surface links in terms of these coefficients.

57K10; 57K32

1 Introduction

Since its introduction, the Jones polynomial [8] has been of key interest in the ongoing

effort to find explicit relations between quantum invariants of a link and the geometry

or topology of the link complement. It is in this spirit that Dasbach and Lin [5] proved a

ªvolume-ish theoremº for alternating, prime, hyperbolic knots, which presents upper and

lower bounds for the volume of the knot complement in terms of certain coefficients of

the Jones polynomial of the knot. This result was obtained in two steps: first, the authors

bound the coefficients in terms of the twist number of the link diagram, and second,

work of Lackenby, Agol, and Thurston in [12] bounds the volume in terms of the twist

number. Futer, Kalfagianni, and Purcell [7] extended both steps to adequate links.

The latter of these steps was recently extended to alternating links in higher-genus

surfaces by Kalfagianni and Purcell in [9]. It is then natural to consider the first step in

the same setting. The difficulty, however, is that the classical Jones polynomial does

not capture sufficient information about the embedding of links in surfaces. In this

paper, we opt for a three-variable generalization of the homological polynomial defined

by Krushkal in [11].

Our polynomial, denoted by hDi†, is a Laurent polynomial in ZŒA˙1; Z; W � defined

by a state-sum. Here, A is the usual Kauffman polynomial variable, while Z and W

record homological information about the embedding of D on the surface. We will be
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interested in coefficients of terms having certain fixed degrees in the A variable, with

minimal degrees in the Z and W variables. The coefficients for the second largest and

second smallest degree terms in A are denoted by ˛0
.1/

and ˇ0
.1/

, while those for the

third largest and third smallest are denoted by ˛00
.0/

and ˇ00
.0/

, respectively. The main

purpose of the paper is to establish the following bound for these coefficients in terms

of the twist number, by generalizing the method in [7]. The precise definitions of the

polynomial and coefficients are given in Sections 2 and 3.

Theorem 1 Let † be a closed , orientable surface and let D be a reduced alternating

link diagram on † such that every twist region of D has at least three crossings. Let

? D ˛0
.1/

C ˇ0
.1/

� ˛00
.0/

� ˇ00
.0/

C 2. Then

(1) 1
3

tw.D/ C 1 � g.†/ � ? � 2 tw.D/:

Combined with the result in [9], this yields the following volume bound.

Corollary 2 Let † be a closed orientable surface of genus at least one , and let L be a

link that admits a twist-reduced weakly generalized cellularly embedded alternating

projection D onto † � f0g in Y D † � Œ�1; 1�. Then the interior of Y n L admits a

hyperbolic structure. If † is a torus , then we have

(2) 1
4
voct? � vol.Y n L/ < 30vtet?;

where vtet is the volume of a regular ideal tetrahedron , and voct is the volume of a

regular ideal octahedron.

If † has genus at least two , then we have

(3) 1
4
voct � .? � 6�.†// � vol.Y n L/ < 18voct � .? C g.†/ � 1/:

We should note that while this paper was in preparation, related results were indepen-

dently obtained for different choices of polynomials. Champanerkar and Kofman [3] use

the homological Kauffman bracket (see Definition 3), while Bavier and Kalfagianni [1]

define a polynomial hDi0 which agrees with the classical Kauffman bracket, but is

defined over states consisting only of contractible loops. In contrast to Theorem 1,

both of these results contain strict equalities between coefficients and the twist number,

rather than inequalities. There is, however, an associated cost. In [3] the authors must

use a homological version of the twist number, and in [1] the notion of ªreducedº is

stronger which eliminates many of the terms making up ? in (25). Although we achieve

only inequalities, our approach has the advantage of recovering the classical twist

number without requiring these further conditions.
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† is orientable, the difference in coefficients is inconsequential. To obtain invariance

under the first Reidemeister move, a homological version of the Jones polynomial may

be obtained by setting

(6) J H
† .t; Z/ D .�A/�3w.D/hDiH

†

ˇ

ˇ

ADt
�

1
4

;

where w.D/ is the writhe of D. Thus, we obtain a link invariant.

In [11], a homological version of the Tutte polynomial is defined for surface graphs,

and then the homological Kauffman bracket is obtained as a specialization of the graph

polynomial. More recently, in [6], Fendley and Krushkal define a more general version

of this graph polynomial for graphs on the torus. More specifically, for a graph with

homological rank equal to one, a third variable W is introduced, which counts the

number of components of the graph which are homologically essential. Inspired by this

generalization, we present a version of this polynomial for link diagrams and extend it

to higher-genus surfaces.

Definition 4 Define xc.S/ to be zero if r.S/ ¤ 1. If r.S/ D 1, then define xc.S/

to be one-half the number of homologically essential loops in S . The more general

homological Kauffman bracket which will be used throughout this paper is given by

(7) hDi† D
X

S2S

A˛.S/�ˇ.S/.�A2 � A�2/k.S/Zr.S/W xc.S/;

and we similarly write

(8) hD j Si† D A˛.S/�ˇ.S/.�A2 � A�2/k.S/Zr.S/W xc.S/

for the contribution of a state.

Example 5 As an example, consider the two-component link diagram D in the torus

depicted in Figure 3. For the all-A and all-B states, we can see that k.SA/ D k.SB/ D 1

and r.SA/ D r.SB/ D 0. For the two remaining intermediate states, which differ by

diagonal reflection, we have that k.S/ D 1 and r.S/ D 1 for both. Furthermore, each

intermediate state has exactly two homologically essential loops, so xc.S/ D 1. This

yields hDi† D �A4 � 2A2ZW � 2 � 2A�2ZW � A�4. Note that in this example,

the third largest and third smallest degree terms in A coincide.

The value of a trivial loop is unaffected by the addition of the W variable, so one can

verify that Lemmas 2.1±2.3 in [2] hold for this more general polynomial as well. From
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above, that

degA
maxhD j SAi† D c.D/ C 2vA;(11)

degA
minhD j SBi† D �c.D/ � 2vB:(12)

In fact, these degrees are precisely the maximal and minimal degrees in A of the

polynomial hDi†. The authors of [2] show this for hDiH
†

in their Proposition 2.8, by

proving that reduced alternating diagrams on surfaces are homologically adequate.

Definition 8 A diagram D is homologically A±adequate if, for any state S with

exactly one B±resolution, we have k.S/ � k.SA/. A diagram D is homologically

B±adequate if, for any state S with exactly one A±resolution, we have k.S/ � k.SB/.

A diagram D is called homologically adequate if it is both homologically A±adequate

and homologically B±adequate.

In [2, Lemma 2.6] it is shown that for homologically adequate diagrams, SA and SB

are the unique states which contribute maximal and minimal degree terms. This can be

restated in terms of coefficients as the following.

Proposition 9 [2, Lemma 2.6] Let D be a reduced alternating projection of a link L

onto a closed , orientable surface †. Then hDiH
†

has unique terms of maximal and

minimal degree in the variable A of the form

( � 1/vAAc.D/C2vA ;(13)

( � 1/vB A�c.D/�2vB :(14)

Clearly, the addition of the variable W does not affect the degrees in A or Z, so the

same holds for hDi†. This proposition directly corresponds to the classical results of

Kauffman [10], Thistlethwaite [15] and Murasugi [13], which led to a proof of the Tait

conjectures using the Jones polynomial.

In the classical planar case, Dasbach and Lin in [4] as well as Stoimenow in [14]

compute more coefficients. These coefficients have more complicated expressions in

terms of data coming from the graphs GA and GB . We will extend their work to links

in surfaces using the more general homological Kauffman bracket. First, we set some

terminology. Typically, the term ªloopº is used for an edge in a graph which is incident

to only one vertex. Since we will be using the word ªloopº to refer to the simple closed

curves in a state, we will instead call such an edge a self-edge. An edge which is

incident to two distinct vertices is called a simple edge.

Algebraic & Geometric Topology, Volume 22 (2022)
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Definition 10 Let e be a self-edge in either GA or GB . We may view e as a well-

defined element Œe� of H1.†/ up to a choice of orientation. We define an equivalence

relation �� on self-edges, where e1 �� e2 if Œe1� D ˙Œe2� and if they are adjacent,

meaning incident to the same vertex.

Similarly, let e1 and e2 be simple edges in either GA or GB which are incident to

the same pair of vertices. The edges e1 and e2 form a cycle in the graph, which may

also be viewed as an element of H1.†/ up to orientation. We define an equivalence

relation � on simple edges, where e1 � e2 if they form a nullhomologous cycle.

Let e�
A

and e�
B

denote the number of distinct equivalence classes of self-edges in GA

and GB , and let zeA and zeB be the number of distinct equivalence classes of simple

edges in GA and GB , respectively.

Proposition 11 Let D be a reduced alternating projection of a link L onto a closed ,

orientable surface †. Then the terms of hDi† having the second-highest degree in the

A variable are of the form

(15) .�1/vA .˛0
.1/W C ˛0

.2/W
2 C � � � C ˛0

.N /W
N / Z Ac.D/C2vA�2;

where

(16) ˛0
.1/ D e�

A;

and the terms having the second-lowest degree are of the form

(17) .�1/vB .ˇ0
.1/W C ˇ0

.2/W
2 C � � � C ˇ0

.M /W
M / Z A�c.D/�2vBC2;

where

(18) ˇ0
.1/ D e�

B

for some N; M � 1.

Proof We look first at states which contribute to the second-highest degree. Let S 2 S

be any state with at least one B±resolution. S contributes

(19) hD j Si† D Ac.D/�2ˇ.S/.�A2 � A�2/k.S/Zr.S/W xc.S/;

with

(20) degA
max.hD j Si†/ D c.D/ � 2ˇ.S/ C 2k.S/;

so we need only consider states such that k.S/ � ˇ.S/ is maximal.
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Suppose ˇ.S/ D n � 1 and let e1; : : : ; en be the edges of GA that correspond to

B±resolved crossings in S , ordered arbitrarily. Surgering along the edges one at a time

produces a sequence of states SA D S0; S1; : : : ; Sn D S . By homological adequacy,

k.S1/ � k.S0/, but for any other surgery, k.SiC1/ � k.Si/ C 1. In order for k.S/ to

be maximal, these must all be equalities, in which case k.S/ D vA C n � 1 and the

corresponding degree in the A variable will be c.D/ C 2vA � 2. We will see that such

states have homological rank one, thus proving (15).

We should note here, that in the binomial expansion of .�A2 � A�2/vA in hD j SAi†

all degrees of the variable A will be of the form c.D/ C 2vA � 4k for some k, so SA

will not contribute to these coefficients. We now turn our attention to ˛0
.1/

, so assume

further that xc.S/ D 1. Our goal is to understand to what types of surgeries the edges

e1; : : : ; en correspond. A surgery from Si to SiC1 is one of the following three types:

(a) A merge, where the total number of loops is reduced: in this case either k.SiC1/D

k.Si/ � 1 and r.SiC1/ D r.Si/, or k.SiC1/ D k.Si/ and r.SiC1/ D r.Si/ � 1.

(b) A split, where the total number of loops is increased: in this case either k.SiC1/D

k.Si/ C 1 and r.SiC1/ D r.Si/, or k.SiC1/ D k.Si/ and r.SiC1/ D r.Si/ C 1.

(c) A single cycle smoothing (defined in [2, Section 2]), where the total number of

loops remains the same: in this case k.SiC1/ D k.Si/ and r.SiC1/ D r.Si/.

The key difference between the surface case and the planar case in [4] and [14] is the

possibility that the kernel is preserved between states, as well as the potential for single

cycle smoothings. However, as the authors of [2] point out, single cycle smoothings

cannot occur for checkerboard colorable diagrams. Also, since every loop in SA D S0

is trivial, any merge would reduce the kernel. The only remaining possibility for the

first surgery is a split with k.S1/ D k.S0/ and r.S1/ D r.S0/ C 1 D 1. This means

that e1 is a self-edge for a loop l and that surgering l along e1 produces parallel loops

l1 and l2 in S1, which are both homologous to e1. Thus, xc.S1/ D 1. Note that if there

is no such sequence, ie if r.S/ D 0 for all states S adjacent to S0, then there are no

self-edges. Hence, ˛0
.1/

D e�
A

D 0 and we are done. Otherwise, each remaining surgery

in such a sequence must be a split, where k.SiC1/ D k.Si/ C 1, r.SiC1/ D r.Si/ and

xc.SiC1/ D xc.Si/.

Next, we will show by induction that the remaining edges are in the same equiva-

lence class as e1. Suppose that for all j � i , ej is adjacent to e1 and i�.H1.Sj // D

i�.H1.S1// D he1i � H1.†/. Let l 0 be the loop in Si corresponding to the vertex

incident to eiC1. There are two possibilities.
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Case 1 Suppose l 0 is nullhomologous. Since r.SiC1/ D r.Si/ D 1 and xc.SiC1/ D

xc.Si/, surgering l 0 along eiC1 must produce two homologically trivial loops, as opposed

to two parallel essential loops. Note that this would violate homological adequacy if

l 0 had been a loop originating in S0, since changing the order of edge surgeries so

that eiC1 is done first would increase the kernel. Thus, l 0 must have been created by a

previous surgery, so eiC1 must have been adjacent to ej for some j � i . Therefore,

i�.H1.SiC1// D he1i � H1.†/ and the inductive step holds.

Case 2 Suppose Œl 0� D Œe1�. Since xc.Si/ D xc.S1/ D 1, Si has two essential loops, one

of which is l 0. Thus, eiC1 must have been adjacent to ej for some j � i . Furthermore,

the other essential loop homologous to e1 is unaffected by the surgery. Since r.SiC1/ D

r.Si/ D 1, surgering l 0 along eiC1 must produce one nullhomologous loop and one

loop homologous to e1. This gives i�.H1.SiC1// D i�.H1.Si// D he1i and thus, the

inductive step holds.

Therefore, i�.H1.S// D he1i � H1.†/ and all the edges are adjacent to e1. Changing

the order of edge surgeries so that ei is done first will still yield the same state S ,

implying Œei � D Œe1� for all i . This means precisely that ei �� e1 for all i .

Let S be a state whose B±resolutions occur within a single equivalence class of self-

edges. Let eA
i be the i th of these classes, and let ki be the number of self-edges in that

class. The total contribution of these states is

e�

A
X

iD1

ki
X

jD1

�ki

j

�

Ac.D/�2j .�A2 � A�2/vACj�1ZW

D

e�

A
X

iD1

ki
X

jD1

�ki

j

�

Ac.D/�2j .�1/vACj�1.A2 C A�2/vACj�1ZW

D

e�

A
X

iD1

ki
X

jD1

�ki

j

�

Ac.D/�2j .�1/vACj�1.A2vAC2j�2 C lower-order terms/ZW

D

e�

A
X

iD1

ki
X

jD1

�ki

j

�

.�1/vACj�1Ac.D/C2vA�2ZW C lower-order terms

D

e�

A
X

iD1

.�1/vAAc.D/C2vA�2ZW C lower-order terms

D .�1/vAe�
AAc.D/C2vA�2ZW C lower-order terms;

proving (16). The second-to-last equality follows from the fact that
Pk

jD0.�1/j
�

k
j

�

D 0.
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Now suppose that S is a state with degmax.hD j Si†/ D c.D/C2vA�4. As in the previ-

ous proof, let e1; : : : ; en be a sequence of edges of GA, and SA D S0; S1; : : : ; Sn D S

the sequence of states obtained by surgering along each edge in order. As before, we

seek to determine which types of surgeries could have yielded S . By homological

adequacy, k.S1/ � k.S0/. There are two cases, depending on whether the first surgery

reduces the kernel or preserves the kernel.

Case 1 If k.S1/ D k.S0/ � 1, then e1 is a simple edge, whose surgery merges two

trivial loops l1 and l2 in S0 into a single trivial loop l 0. Then r.S1/ D 0. In order

for the remaining surgeries to yield the desired degree of A, they must all be splits

which increase the kernel. In particular, e2 must split a trivial loop in S1 into two

nullhomologous loops. By homological adequacy, this initial loop must be l 0 and

furthermore, in GA, e2 must have been a simple edge connecting the same two vertices

as e1. It follows that e1 and e2 must have formed a nullhomologous curve. This means

precisely that e1 � e2. By reordering the sequence of edges we see that ei � e1 for all

2 � i � n. The total contribution of states whose B±resolutions occur within a single

equivalence class of simple edges is

zeA
X

iD1

ki
X

jD1

�ki

j

�

Ac.D/�2j .�A2 � A�2/vACj�2

D .�1/vA�1zeAAc.D/C2vA�4 C lower-order terms;

where the equality follows from the same steps used in the proof of Proposition 11.

Case 2 If k.S1/ D k.S0/ then e1 was a self-edge as in the previous proposition, and

r.S1/ D 1. In order for the state S to contribute to the desired degree of A, there

must be a j with 1 < j � n such that k.Sj / D k.Sj�1/ and for all i ¤ 1; j we

have k.Si/ D k.Si�1/ C 1, while the homological rank is preserved. Note that the

j th surgery could either be a merge resulting in r.Sn/ D r.Sj / D 0 or a split resulting

in r.Sn/ D r.Sj / D 2. First, let us deal with the scenario that the j th surgery is a merge.

Case 2a We first claim that in such a scenario, all of the edges had to be adjacent

self-edges. Indeed, the proof of the previous proposition implies that ei for 1 � i < j are

all homologous and that H1.Si/ D he1i (but we cannot yet conclude they are adjacent).

However, since r.Sj / must be zero, surgery along ej must be a merge which reduces

the homological rank. This is only possible if Sj�1 contains exactly two essential loops

l1 and l2, making xc.Sj�1/ D 1. We saw that this can only happen if the ei are adjacent,
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which we denote by .e1; e2; e3/�. The total contribution of such states is

X

.e1;e2;e3/�

ke1
X

iD1

ke2
X

jD1

ke3
X

kD1

�ke1

i

��ke2

j

��ke3

k

�

Ac.D/�2.iCjCk/.�A2 � A�2/vACiCjCk�2

D .�1/vA�1��
AAc.D/C2vA�4 C lower-order terms.

Case 2b Lastly, we address the other scenario described at the beginning of case 2,

where the j th surgery is a split which increases the homological rank rather than the

kernel. The only possibility left is that ej is a self-edge which is neither transverse nor

homologous to e1. Once again, all other edges must belong to the equivalence class

of either e1 or ej . Letting e�
1

and e�
2

denote the two classes, the total contribution of

these states is

X

e�

1
¤e�

2
not transverse

ke1
X

iD1

ke2
X

jD1

�ke1

i

��ke2

j

�

Ac.D/�2.iCj/.�A2 � A�2/vACiCj�2Z2

D .�1/vA

��e�
A

2

�

� t
�
A

�

Ac.D/C2vA�4Z2 C lower-order terms.

Combining the contributions from SA, cases 1 and 2a, we get ˛00
.0/

D vA �zeAC t�
A

���
A

,

as claimed. Likewise, case 2b gives ˛00
.2/

D
�e�

A

2

�

� t�
A

. An analogous argument holds

for ˇ00
.0/

and ˇ00
.2/

.

4 Bounds on the twist number

The goal of this section is to prove Theorem 1. Let eA D e�
A

C zeA and eB D e�
B

C zeB .

We consider the quantity

(25) ? D ˛0
.1/ C ˇ0

.1/ � ˛00
.0/ � ˇ00

.0/ C 2

D eA C eB � vA � vB C 2 C ��
A C ��

B� t
�
A � t

�
B :

We now seek to bound ? in terms of the twist number of the diagram. We follow the

method used for the planar case in [7]. As transverse edge pairs (and by extension

self-triangles) do not arise in the planar case, we deal with these terms first.

Proposition 14 Suppose † has genus g. Then

(26) �2g � ��
A C ��

B� t
�
A � t

�
B � 0:
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by finding a spanning tree of G, or alternatively by cutting N along red edges until

a disk remains. In our case, it suffices to do the same with a spanning quasi-tree of G.

A quasi-tree is a ribbon graph with exactly one boundary component. We can obtain a

spanning quasi-tree by removing edges as long as they reduce the number of boundary

components of the graph, which corresponds to cutting N along dual red edges. Thus,

it suffices to cut N along j@N j � 1 red edges.

Note that if G is a quasi-tree, then N cannot contain any short edges which are in the

same equivalence class, yet are dual to different red edges. Otherwise, these short edges

form a nullhomologous curve separating N, forcing there to be at least two boundary

components. Also note that there can be no self-edges which are homologous to a

boundary component of N, for the exact same reason. Recall that a cellularly embedded

diagram must be connected, so that all self-edges are short.

Thus, any classes we are left with correspond to a unique one of the remaining

tw.N / C 1 � j@N j red edges left in the country. Adding back in the self-edge classes

which were removed, we obtain the desired inequality.

The final step in [7] is to find a bound on the number of countries. A small but important

modification is needed here. In the planar case, the authors show that every component

of ˆ contains at least three vertices. As we will see, this does not hold in the surface

case, and this issue must be resolved in order to avoid canceling the term for the twist

number in the lower bound.

Proposition 17 Let D be a reduced alternating diagram on a closed , orientable

surface † such that every twist region of D has at least two crossings. Let eshort denote

the total number of equivalence classes of short edges in GA and GB . Then

(31) eshort � 1
3

tw.D/ C 1 � g.†/:

Proof Let � be a component of ˆ, which may be thought of as a simple closed curve

in †. Since D is reduced, � must contain at least two vertices, or else it would bound

a monogon region corresponding to a nugatory crossing. We call � ªbadº if it has

exactly two vertices and ªgoodº if it has at least three. Let jˆjbad denote the number of

bad curves and jˆjgood the number of good curves, and jˆj the total number of curves.

Suppose � is bad. Then because P is cellularly embedded, the two red edges incident

to the vertices of � must lie on opposite sides of �. Otherwise, � would bound a bigon
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Proposition 18 Let D be a reduced alternating diagram on a closed , orientable

surface † such that every twist region of D has at least three crossings. Then

(32) ? � 1
3

tw.D/ C 1 � g.†/:

Proof Like the authors in [7], we define vbigon as the total number of bigon vertices

in GA and GB . Bigon vertices are incident to exactly two edges and correspond to

the vertices in the long resolution of a twist region. We define vn±gon to be the total

number of n±gon vertices. We have already seen that eshort counts the total number of

equivalence classes of short-edges, which are edges coming from a short resolution.

Likewise, we define elong to be the total number of equivalence classes of edges coming

from a long resolution. We remark that an edge is long if and only if it is incident

to at least one bigon vertex. (When every twist region has at least three crossings,

no two long edges can be in the same equivalence class.) Every vertex and edge

across both state graphs falls into exactly one of these categories, so we can regroup

eA C eB � vA � vB D eshort C elong � vbigon � vn±gon.

The long resolution of a twist region with c crossings has exactly c � 1 bigon vertices

and c long edges. By summing over every twist region, we see that vbigon D c.D/�t.D/

and elong D c.D/. Recall that the n±gon vertices become provinces in P , and the twist

regions become red edges. Therefore, by summing over countries, we can compute

�.†/ D vn±gon � tw.D/. Putting this all together,

? D eA C eB � vA � vB C 2 C ��
A C ��

B� t
�
A � t

�
B

D eshort C elong � vbigon � vn±gon C 2 C ��
A C ��

B� t
�
A � t

�
B

D eshort C c.D/ � .c.D/ � tw.D// � vn±gon C 2 C ��
A C ��

B� t
�
A � t

�
B

D eshort � �.†/ C 2 C ��
A C ��

B� t
�
A � t

�
B

� eshort � �.†/ C 2 � 2g.†/ D eshort

� 1
3

tw.D/ C 1 � g.†/:

Combining (29) and (32), we obtain a proof of Theorem 1.

In [9], the authors bound the hyperbolic volume of the complement of a ªweakly gener-

alizedº alternating link in terms of the twist number. A weakly generalized alternating

link is a link in a compact, irreducible, orientable 3±manifold with a projection onto

a surface †, with some additional properties that guarantee the complement admits

a complete hyperbolic structure. They also require the diagram to be twist-reduced.

See [9] for the specific definitions of these terms.
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Theorem 19 [9, Theorem 1.4] Let † be a closed orientable surface of genus at least

one , and let L be a link that admits a twist-reduced weakly generalized cellularly

embedded alternating projection D onto † � f0g in Y D † � Œ�1; 1�. Then the interior

of Y n L admits a hyperbolic structure. If † is a torus , then we have

(33) 1
2
voct � tw.D/ � vol.Y n L/ < 10vtet � tw.D/;

where vtet is the volume of a regular ideal tetrahedron , and voct is the volume of a

regular ideal octahedron.

If † has genus at least two ,

(34) 1
2
voct � .tw.D/ � 3�.†// � vol.Y n L/ < 6voct � tw.D/:

Direct substitution of (1) into these volume bounds yields Corollary 2.
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