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DAvID A WILL

For D areduced alternating surface link diagram, we bound the twist number of D
in terms of the coefficients of a polynomial invariant. To this end, we introduce a
generalization of the homological Kauffman bracket defined by Krushkal. Combined
with work of Futer, Kalfagianni and Purcell, this yields a bound for the hyperbolic
volume of a class of alternating surface links in terms of these coefficients.

57K10; 57K32

1 Introduction

Since its introduction, the Jones polynomial [8] has been of key interest in the ongoing
effort to find explicit relations between quantum invariants of a link and the geometry
or topology of the link complement. It is in this spirit that Dasbach and Lin [5] proved a
“volume-ish theorem” for alternating, prime, hyperbolic knots, which presents upper and
lower bounds for the volume of the knot complement in terms of certain coefficients of
the Jones polynomial of the knot. This result was obtained in two steps: first, the authors
bound the coefficients in terms of the twist number of the link diagram, and second,
work of Lackenby, Agol, and Thurston in [12] bounds the volume in terms of the twist
number. Futer, Kalfagianni, and Purcell [7] extended both steps to adequate links.

The latter of these steps was recently extended to alternating links in higher-genus
surfaces by Kalfagianni and Purcell in [9]. It is then natural to consider the first step in
the same setting. The difficulty, however, is that the classical Jones polynomial does
not capture sufficient information about the embedding of links in surfaces. In this
paper, we opt for a three-variable generalization of the homological polynomial defined
by Krushkal in [11].

Our polynomial, denoted by (D)y, is a Laurent polynomial in Z[AT!, Z, W] defined
by a state-sum. Here, A is the usual Kauffman polynomial variable, while Z and W
record homological information about the embedding of D on the surface. We will be
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interested in coefficients of terms having certain fixed degrees in the A variable, with
minimal degrees in the Z and W variables. The coefficients for the second largest and
second smallest degree terms in 4 are denoted by 0‘21) and /321)’ while those for the
third largest and third smallest are denoted by 0‘2/0) and /‘}(0), respectively. The main
purpose of the paper is to establish the following bound for these coefficients in terms
of the twist number, by generalizing the method in [7]. The precise definitions of the
polynomial and coefficients are given in Sections 2 and 3.

Theorem 1 Let X be a closed, orientable surface and let D be a reduced alternating
link diagram on ¥ such that every twist region of D has at least three crossings. Let
* = O‘El) + 521) _“2/0) - ,BE'O) + 2. Then

(1) 1tw(D) +1—g(2) < » < 2tw(D).
Combined with the result in [9], this yields the following volume bound.

Corollary 2 Let X be a closed orientable surface of genus at least one, and let L be a
link that admits a twist-reduced weakly generalized cellularly embedded alternating
projection D onto ¥ x {0} in Y = X x [—1, 1]. Then the interior of Y \ L admits a
hyperbolic structure. If ¥ is a torus, then we have

2 ek < VOl(Y \ L) < 30v;ec#,

where vy is the volume of a regular ideal tetrahedron, and v is the volume of a
regular ideal octahedron.

If ¥ has genus at least two, then we have
3) FVoct - (x —6X(2)) < vol(Y \ L) < 18vget - (* + g(Z) — 1).

We should note that while this paper was in preparation, related results were indepen-
dently obtained for different choices of polynomials. Champanerkar and Kofman [3] use
the homological Kauffman bracket (see Definition 3), while Bavier and Kalfagianni [1]
define a polynomial (D)o which agrees with the classical Kauffman bracket, but is
defined over states consisting only of contractible loops. In contrast to Theorem 1,
both of these results contain strict equalities between coefficients and the twist number,
rather than inequalities. There is, however, an associated cost. In [3] the authors must
use a homological version of the twist number, and in [1] the notion of “reduced” is
stronger which eliminates many of the terms making up * in (25). Although we achieve
only inequalities, our approach has the advantage of recovering the classical twist
number without requiring these further conditions.
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1.1 Organization of the paper

In Section 2 we give some basic definitions and construct the more general homological
polynomial referred to in the introduction. In Section 3 we define the state graphs G 4
and G p and use them to compute certain coefficients of the aforementioned polynomial.
Lastly, Section 4 contains proofs of Theorem 1 and Corollary 2 obtained by finding
bounds on these coefficients in terms of the twist number of a diagram.

Acknowledgements The author would like to thank Slava Krushkal for many helpful
discussions and Ilya Kofman for useful feedback. The author would also like to thank
the referee for comments which helped improve the paper. This work was partially
supported by NSF grants DMS-1839968 and DMS-2105467.

2 Definitions

Throughout this paper, we will let £ be a closed, orientable surface. We will implicitly
view ¥ as X x {0} C ¥ x[—1, 1], but since this paper deals primarily with link diagrams,
these results will hold for ¥ in any compact, orientable, irreducible 3—manifold. For a
link L C ¥x[—1, 1], alink diagram D for L on X is the image of L under the projection,
which we may view as a 4—valent graph I" on %. The vertices of I" correspond to double
points of the projection, and these are then equipped with crossing information. There
are two possible ways to resolve each crossing. Resolving a crossing means replacing
D with a new diagram having one fewer crossing which differs from D only in a
neighborhood of that crossing. We call these the A—resolution and the B—resolution,
referring to Figure 1. As we resolve crossings, we may draw an arc connecting the
strands of the new diagram. These are commonly called “surgery arcs”, as performing
surgery along such an arc provides a convenient way to switch between the 4 and B
resolutions of a crossing.

If all crossings are resolved, then all that remains of D is a collection S of disjoint
simple closed curves on X. We call S a state, and denote the set of all states by S.
Note that |S| = 2P), where ¢(D) is the number of crossings of D.

AN
AN

Figure 1: A crossing, an A-resolution, and a B—resolution.

B
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Figure 2: A nugatory crossing.

We will be considering only link diagrams which are alternating and reduced. A link
diagram on a surface is reduced if it is cellularly embedded and if it contains no
nugatory crossings. By cellularly embedded, we mean that the complementary regions
of the graph I' are disks. And a crossing is nugatory if there exists a separating curve
in ¥ that intersects D only at that crossing, as in Figure 2.

The polynomial we will be studying is a generalization of the homological Kauffman
bracket, defined by Krushkal in [11]. Let i : S — X be the inclusion map. “Homological”
refers to the use of the induced map i : H;(S) — H;(X), which provides additional
information about the embedding of each state. Throughout this paper, we use Z
coefficients unless otherwise indicated.

Definition3 [11] Leta(S) and 8(S) respectively denote the number of A-resolutions
and B-resolutions used to obtain the state S. The homological Kauffman bracket is a
Laurent polynomial (D)g € Z[A*!, Z] defined by the state-sum

4) (D) = Z AXS=BES) (L g2 g=2)k(S) 77 (S)
Ses

where
k(S) =dim(ker{ix: H;(S) —> H{(2)}).

r(S) = dim(im{ix: H;(S) = H{(2)}).

Here k(S) is called the kernel of the state, while r(.S) is called the homological rank
of the state. We write

(5) (D | S)Ig — AOl(S)—,B(S)(_AZ _A—Z)k(S)Zr(S)
for the contribution of the state S to (D)g .

In [2, Lemmas 2.1-2.3], Boden and Karimi give a proof for the invariance of (D)g
under the second and third Reidemeister moves. Note that the authors use Z, coefficients

in their definition of (D)g . Since states consist of disjointly embedded circles, and
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Y is orientable, the difference in coefficients is inconsequential. To obtain invariance
under the first Reidemeister move, a homological version of the Jones polynomial may
be obtained by setting

©) JE (. 2) =T OUDE| Ly

where w (D) is the writhe of D. Thus, we obtain a link invariant.

In [11], a homological version of the Tutte polynomial is defined for surface graphs,
and then the homological Kauffman bracket is obtained as a specialization of the graph
polynomial. More recently, in [6], Fendley and Krushkal define a more general version
of this graph polynomial for graphs on the torus. More specifically, for a graph with
homological rank equal to one, a third variable W is introduced, which counts the
number of components of the graph which are homologically essential. Inspired by this
generalization, we present a version of this polynomial for link diagrams and extend it
to higher-genus surfaces.

Definition 4 Define ¢(S) to be zero if r(S) # 1. If r(S) = 1, then define ¢(S)
to be one-half the number of homologically essential loops in S. The more general
homological Kauffman bracket which will be used throughout this paper is given by

@) (D)s = Z Aa(S)—ﬂ(S)(_Az _A—2)k(S)Zr(S) Wees),
Ses

and we similarly write
8) (D] S)y = Aa(S)—ﬂ(S)(_A2 _ A—Z)k(S)Zr(S) wees)

for the contribution of a state.

Example 5 As an example, consider the two-component link diagram D in the torus
depicted in Figure 3. For the all- A and all- B states, we can see that kK (S4) =k(Sp) =1
and r(S4) = r(Sp) = 0. For the two remaining intermediate states, which differ by
diagonal reflection, we have that £(S) = 1 and r(S) = 1 for both. Furthermore, each
intermediate state has exactly two homologically essential loops, so ¢(S) = 1. This
yields (D)y = —A* —2A42ZW —2—24"2ZW — A~*. Note that in this example,
the third largest and third smallest degree terms in A coincide.

The value of a trivial loop is unaffected by the addition of the W variable, so one can
verify that Lemmas 2.1-2.3 in [2] hold for this more general polynomial as well. From
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S4 S Sp

Figure 3: Top: a link diagram in the torus. Bottom: the all-A state S4, one
of two intermediate states, and the all- B state Spg.

here, one can define a link invariant by making the same substitution and renormalization
as in (6). This does not affect the coefficients, however, so (D)x will suffice for our
purposes. In [2, Proposition 1.7], the authors prove that any checkerboard colorable
link L has [L]=0in H{(Z x[—1, 1]; Z;). Under the projection, L is Z,-homologous
to the sum of all loops in any fixed state S. Thus, [S]=0in H;(X;Z,) as well. As a
result, if r(S) = 1, then there must be an even number of essential loops in .S, so we
conclude that (D)x € Z[A*!, Z, W] for checkerboard colorable diagrams.

In particular, since alternating, cellularly embedded link diagrams are checkerboard
colorable by [2], we will also have (D)x € Z[A*!, Z, W] for the class of links
considered by this paper. After having expressed certain coefficients of ( D)y in terms
of the state graphs, we will form a connection between the coefficients and the twist
number of D.

Definition 6 Let D be a reduced link diagram on a surface ¥. By definition, the
complementary regions of D are n—gons with n > 2. A twist region is a connected
sequence of bigons arranged crossing-to-crossing of maximal length, as in Figure 4. A
single crossing which is adjacent to no bigon regions is also considered to be a twist
region. The twist number tw(D) denotes the number of twist regions of D.

KA AKXK

Figure 4: A twist region.
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Figure 5: Arcs on opposite sides of / contradict the fact that D is alternating.

3 Computation of coefficients

We first discuss a few properties of reduced alternating diagrams which result in some
nice structure on X. Let S4 denote the all-A state, and let Sp denote the all-B state,
each obtained by selecting only that type of resolution. If D is alternating, and / is
any loop in either S4 or Sp, then all surgery arcs attached to / must lie on the same
side of / as seen in Figure 5. For S € S, let A(S) denote the collection of surgery
arcs for S. Consider U = S U A(S). Observe that we can recover the underlying
4—valent graph I' by contracting each arc of U to a point. This contraction induces
a homeomorphism between the complementary regions of U and the complementary
regions of I'. Therefore, if D is cellularly embedded, the complementary regions of U
must be disks. As a result, the side of / containing no edges must be one of these disk
regions. In other words, every loop of S4 and Sp is contractible. Therefore, we can
use the states S4 and Sp to define the following graphs on X.

Definition 7 The all-A state graph G4 is a graph embedded on ¥ whose vertices
correspond to the loops of S4 and whose edges correspond to the surgery arcs seen in
Figure 1. The all-B state graph G p is defined similarly for Sp.

Let vy and vp denote the number of vertices in G4 and G p (alternatively, the number
of loops in S4 and Sp), respectively. Since all the loops in S4 and Sp are contractible,
they are homologically trivial. This shows that the states S4 and Sp contribute

©) (D|Sa)g = AP (—A2 — 47",

(10) (D| Sp)x = AP (A2 — A28,

to (D). For a polynomial p € Z[AT!, Z, W], we write degl‘gax(p) and degr‘gin(p) for
the maximal and minimal degrees of p in the variable A, respectively. Note from the
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above, that
(11) degd (D | Sy)s = c(D) +2vy4.
(12) deg (D | Sp)s = —c(D) —2vp.

In fact, these degrees are precisely the maximal and minimal degrees in A of the
polynomial (D)y. The authors of [2] show this for (D)g in their Proposition 2.8, by
proving that reduced alternating diagrams on surfaces are homologically adequate.

Definition 8 A diagram D is homologically A-adequate if, for any state S with
exactly one B-resolution, we have k(S) < k(S4). A diagram D is homologically
B-adequate if, for any state S with exactly one A-resolution, we have k(S) < k(Sp).
A diagram D is called homologically adequate if it is both homologically A—adequate
and homologically B—adequate.

In [2, Lemma 2.6] it is shown that for homologically adequate diagrams, S4 and Sp
are the unique states which contribute maximal and minimal degree terms. This can be
restated in terms of coefficients as the following.

Proposition 9 [2, Lemma 2.6] Let D be a reduced alternating projection of a link L
onto a closed, orientable surface . Then (D)g has unique terms of maximal and
minimal degree in the variable A of the form

(13) (_I)UAAC(D)-FZUA’
(14) (—1)vBAg=cD)=2v5,

Clearly, the addition of the variable W does not affect the degrees in 4 or Z, so the
same holds for (D)y. This proposition directly corresponds to the classical results of
Kauffman [10], Thistlethwaite [15] and Murasugi [13], which led to a proof of the Tait
conjectures using the Jones polynomial.

In the classical planar case, Dasbach and Lin in [4] as well as Stoimenow in [14]
compute more coefficients. These coefficients have more complicated expressions in
terms of data coming from the graphs G4 and G g. We will extend their work to links
in surfaces using the more general homological Kauffman bracket. First, we set some
terminology. Typically, the term “loop” is used for an edge in a graph which is incident
to only one vertex. Since we will be using the word “loop” to refer to the simple closed
curves in a state, we will instead call such an edge a self-edge. An edge which is
incident to two distinct vertices is called a simple edge.

Algebraic & Geometric Topology, Volume 22 (2022)
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Definition 10 Let e be a self-edge in either G4 or Gg. We may view e as a well-
defined element [e] of H;(X) up to a choice of orientation. We define an equivalence
relation ~* on self-edges, where e; ~* e, if [e;] = *[e,] and if they are adjacent,
meaning incident to the same vertex.

Similarly, let e; and e; be simple edges in either G4 or Gp which are incident to
the same pair of vertices. The edges e; and e, form a cycle in the graph, which may
also be viewed as an element of H;(X) up to orientation. We define an equivalence
relation ~ on simple edges, where e; ~ e; if they form a nullhomologous cycle.

Let e} and e} denote the number of distinct equivalence classes of self-edges in G4
and Gp, and let €4 and ep be the number of distinct equivalence classes of simple
edges in G4 and Gp, respectively.

Proposition 11 Let D be a reduced alternating projection of a link L onto a closed,
orientable surface ¥. Then the terms of { D)y, having the second-highest degree in the
A variable are of the form

(15) (—1)v‘4 (azl)W + aéz)Wz 4+t O‘EN) WN) 7 Ac(D)+2vA—2’
where

and the terms having the second-lowest degree are of the form

a7 (—1)vB (ﬂEI)W 4+ ﬁzz) w2 4.t 'BEM) WM) 7 A_C(D)_ZUB'H,
where

(18) By =eh

for some N, M > 1.

Proof We look first at states which contribute to the second-highest degree. Let S € S
be any state with at least one B-resolution. .S contributes

(19) (D | S)E — AC(D)—Zﬂ(S)(_AZ —A_Z)k(S)Zr(S)WE(S),
with
(20) deg (D] S)x) = c(D)—2B(S) + 2k(S),

so we need only consider states such that £(S) — B(S) is maximal.
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Suppose B(S) = n > 1 and let ey, ..., e, be the edges of G4 that correspond to
B-resolved crossings in S, ordered arbitrarily. Surgering along the edges one at a time
produces a sequence of states Sy = Sp, S1,..., S5, = S. By homological adequacy,
k(S1) < k(Sp), but for any other surgery, k(S;+1) < k(S;) + 1. In order for k(S to
be maximal, these must all be equalities, in which case k(S) = vg + n — 1 and the
corresponding degree in the A variable will be c¢(D) + 2v4 — 2. We will see that such
states have homological rank one, thus proving (15).

We should note here, that in the binomial expansion of (—A% — A72)%4 in (D | S4)x
all degrees of the variable A will be of the form ¢(D) + 2v4 — 4k for some k, so S4
will not contribute to these coefficients. We now turn our attention to 0‘21)’ SO assume
further that ¢(S) = 1. Our goal is to understand to what types of surgeries the edges
e1,...,ey correspond. A surgery from S; to S;4 1 is one of the following three types:

(a) A merge, where the total number of loops is reduced: in this case either k(S;+1) =
k(Si)—1and r(Si+1) = r(Si), or k(Si+1) = k(Si) and r (Si+1) = r(Si) — 1.

(b) A split, where the total number of loops is increased: in this case either k(S; 1) =
k(Si)+ 1 and r(S;i+1) = r(Si), or k(Si+1) = k(Si) and r(S;+1) =r(Si) + 1.

(c) A single cycle smoothing (defined in [2, Section 2]), where the total number of
loops remains the same: in this case k(S;+1) = k(S;) and r(S;+1) = r(S;).

The key difference between the surface case and the planar case in [4] and [14] is the
possibility that the kernel is preserved between states, as well as the potential for single
cycle smoothings. However, as the authors of [2] point out, single cycle smoothings
cannot occur for checkerboard colorable diagrams. Also, since every loop in S4 = Sy
is trivial, any merge would reduce the kernel. The only remaining possibility for the
first surgery is a split with k(S1) = k(Sp) and r(S1) = r(Sp) + 1 = 1. This means
that e; is a self-edge for a loop / and that surgering / along e; produces parallel loops
/1 and /, in Sy, which are both homologous to e;. Thus, ¢(S;) = 1. Note that if there
is no such sequence, ie if r(S) = 0 for all states S adjacent to Sy, then there are no
self-edges. Hence, 0‘21) = ¢} = 0 and we are done. Otherwise, each remaining surgery
in such a sequence must be a split, where k(S;+1) = k(S;) + 1, r(Si+1) = r(S;) and
c(Si+1) = c(Sh).

Next, we will show by induction that the remaining edges are in the same equiva-
lence class as e;. Suppose that for all j < i, e; is adjacent to ey and ix(H;(S})) =
i«(H1(S1)) = (e1) C H{(X). Let [’ be the loop in S; corresponding to the vertex
incident to e; 1. There are two possibilities.
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Case 1 Suppose /!’ is nullhomologous. Since r(S;4+1) = r(S;) =1 and ¢(S;+1) =
c(S;), surgering /" along e; 1 ; must produce two homologically trivial loops, as opposed
to two parallel essential loops. Note that this would violate homological adequacy if
!’ had been a loop originating in Sy, since changing the order of edge surgeries so
that e; 1 is done first would increase the kernel. Thus, /’ must have been created by a
previous surgery, so ¢; 41 must have been adjacent to e; for some j <i. Therefore,
ix«(H{(S;+1)) = (e1) C H{(X) and the inductive step holds.

Case 2 Suppose [/'] = [e1]. Since ¢(S;) = ¢(S1) = 1, S; has two essential loops, one
of which is /". Thus, e;4; must have been adjacent to e; for some j <i. Furthermore,
the other essential loop homologous to e is unaffected by the surgery. Since 7 (S;4+1) =
r(S;) = 1, surgering /’ along e;4+; must produce one nullhomologous loop and one
loop homologous to e1. This gives i«(H;(S;+1)) = ix(H1(S;)) = {(e1) and thus, the
inductive step holds.

Therefore, i« (H;(S)) = (e1) C H;(X) and all the edges are adjacent to e;. Changing
the order of edge surgeries so that ¢; is done first will still yield the same state S,
implying [e;] = [e;] for all i. This means precisely that e; ~* e for all i.

Let S be a state whose B-resolutions occur within a single equivalence class of self-
edges. Let elf“ be the i of these classes, and let k; be the number of self-edges in that
class. The total contribution of these states is

ey ki

Z Z(/jz )Ac(D)—Zj (—A2 = A~2ypati= Zyy

i=1j=1
/ ey ki

=ZZ(kf)Ac(D)—zj(_l)vAJrj—l(Az+A—2)vA+j—1ZW
oo
ey ki ki . . .

=2 Z( jl )AC(D)_zj (—1)vat/ 14244272 4 Jower-order terms) Z W
i=1j=1
ey ki ki

- Z Z( jl )(_I)UA+j_1 ACPIF20a=2 77 4 Jower-order terms
i=1j=1
e

= Z(_I)UA API+2v4=2 7y 4 Jower-order terms
i=1

= (—=1)™ e;AC(DszA_zZW + lower-order terms,

proving (16). The second-to-last equality follows from the fact that Zf:o (-1)/ ('Jc ) =0.
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G4

S S

Figure 6: Left: surgering along self-edges in the same equivalence class.
Right: surgering along merely homologous self-edges.

An analogous argument holds for states whose A-resolutions lie in the same equivalence
class of self edges and the coefficient ;321).

In the calculation above, note that in order for ¢(S) to equal one, the self-edges in S
must be adjacent. In general, ¢(.S') counts the number of vertices which house edges
that are homologous, but not equivalent under ~*. This is illustrated in Figure 6. The
numbers N and M in the statement of the proposition are the maximum numbers of
these vertices, taken over the set of all homology classes of self-edges. m|

Since it is possible for a diagram to have no self-edges, we cannot establish a meaningful
lower bound for any combination of 0‘21) and B El)' It is then necessary to look at more
coefficients.

Definition 12 Let e and e, be adjacent self-edges in either G 4 or G g whose homology
classes have intersection number int([e;], [e2]) = 1. We call the unordered double
(e1, e2) a transverse pair of self-edges.

If (e, ey) is a transverse pair, it is possible that there exists a third self-edge e3 such that
[e3] = £[e1] £ [ez]- In this case, we call the unordered triple (e, e, e3) a self-triangle.

The equivalence relation ~* on self-edges also induces equivalence relations on trans-
verse pairs and self-triangles. Let rh:’; and rh; denote the number of equivalence classes
of transverse pairs of self-edges, and let 7§ and rj denote the number of equivalence
classes of self-triangles in G4 and G p, respectively. See Figure 7 for an example of a
transverse pair and a self-triangle.
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G4 G4

D @

Figure 7: A transverse pair, left, and a self-triangle, right.

Proposition 13 Let D be a reduced alternating projection of a link L onto a closed,
orientable surface ¥.. Then the terms of ( D)y having the third-highest degree in the
variable A are of the form

1) (=1)" () + afyy Z7) AP T2,
where
%

(22) oy =va—Ca+ iy —t5 and ol =(F)- M,
and the terms having the third-lowest degree in the variable A are of the form
(23) (_l)vB (ﬁé/o) + IB(Z)ZZ)A_C(D)_ZUB—H‘,
where

~ ey
(24) Bioy =vs—2p+ My —cp and By =(P)-hjp.

Note that these coefficients contain elements of both second and third coefficients from
the planar case in [4; 14]. The reason for this is the possibility for the kernel to be
preserved at the first surgery, whereas in the planar case the number of loops can only
decrease at the first surgery. For the first surgery, only self-edges preserve the kernel,
which is why the terms for self-triangles and pairs of self-edges appear here, while
corresponding terms for simple edges do not.

Proof By (20), the third-highest possible degree of (D)y in the variable A4 is c¢(D) +
2v4 — 4. Notice that this time, S4 will make a contribution. We get
(D] Sa)y = AP (A2 — A7)
= (=1)"1 A°P) (higher-order terms + v4 A2*4~* + lower-order terms)
= higher-order terms + (—1)*4v, AP +2v4=4 | Jower-order terms.

On the other hand, states of the form described in the previous proposition will not
contribute anything (the degrees of A4 in the binomial expansion are of the wrong form:
c(D) +2vy — 2 — 4k for some k).
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Now suppose that S is a state with deg,,,,((D | S)x) = c(D)+2v4—4. As in the previ-
ous proof, let e, ..., e, be a sequence of edges of G4, and S4 = So, S1,..., S, =S
the sequence of states obtained by surgering along each edge in order. As before, we
seek to determine which types of surgeries could have yielded S. By homological
adequacy, k(S1) < k(So). There are two cases, depending on whether the first surgery
reduces the kernel or preserves the kernel.

Case 1 If k(S7) = k(So) — 1, then e, is a simple edge, whose surgery merges two
trivial loops /; and /, in Sy into a single trivial loop /’. Then r(S7) = 0. In order
for the remaining surgeries to yield the desired degree of A4, they must all be splits
which increase the kernel. In particular, e; must split a trivial loop in 57 into two
nullhomologous loops. By homological adequacy, this initial loop must be [’ and
furthermore, in G 4, e, must have been a simple edge connecting the same two vertices
as eq. It follows that e; and e, must have formed a nullhomologous curve. This means
precisely that e; ~ e;. By reordering the sequence of edges we see that e; ~ e; for all
2 <i < n. The total contribution of states whose B-resolutions occur within a single
equivalence class of simple edges is

eq ki ki
Z Z( jl )Ac(D)—Zj (—A2 _A—z)vA+j—2
i=1j=1
= (=1)?171g,4¢P)+2v4=4 4 1ower-order terms,

where the equality follows from the same steps used in the proof of Proposition 11.

Case 2 If k(S1) = k(Sp) then e; was a self-edge as in the previous proposition, and
r(S1) = 1. In order for the state S to contribute to the desired degree of A4, there
must be a j with 1 < j < n such that k(Sj) = k(Sj_;) and for all i # 1, j we
have k(S;) = k(S;—1) + 1, while the homological rank is preserved. Note that the
7" surgery could either be a merge resulting in r(S,) = r(Sj) = 0 or a split resulting
inr(Sy) =r(S;) = 2. First, let us deal with the scenario that the j % surgery is a merge.

Case 2a We first claim that in such a scenario, all of the edges had to be adjacent
self-edges. Indeed, the proof of the previous proposition implies that ¢; for 1 <i < j are
all homologous and that H; (S;) = (e1) (but we cannot yet conclude they are adjacent).
However, since 7 (S;) must be zero, surgery along ¢; must be a merge which reduces
the homological rank. This is only possible if S;_; contains exactly two essential loops
[1 and I, making ¢(S;j_1) = 1. We saw that this can only happen if the e; are adjacent,
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Figure 8: A state in case 2a.

and therefore belong to the same equivalence class for 1 <i < j. Surgery along ¢;
merges /1 and /, into a single nullhomologous loop /', so ¢j must have been adjacent to
e; for some i < j. At this point, all loops in S; are nullhomologous, so the remaining
surgeries must split off more nullhomologous loops. By a similar homological adequacy
argument as in the proof of the previous proposition, e; for j <i < n also must be
adjacent to the previous edges.

Now that we know all edges in such a state must be incident to a single vertex v in G,
it will suffice to look at a local neighborhood of the loop / in S4 corresponding to v.
Without loss of generality, assume that j = 2. As seen in Figure 8, e splits / into
two arcs y; and y,, which correspond to the loops /; and /,. Since surgery along e,
merges /1 and [, it must connect y; and y, outside of the disk region bounded by /.
(This can only happen if g(X) > 0.) In this way, we see that ¢; and e, are transverse.

Now, let us address the edges e;, 2 < i < n, whose surgeries increase the kernel. As
seen in Figure 9, e and e, divide / into four arcs yy, k = I II, I, IV. The loop I’ € S,
is a boundary component of a regular neighborhood of / U e; U e;, which may be
viewed as the union of corresponding arcs y,i and two parallel copies of each of the
edges e; and e;. Consider e;. By homological adequacy, the endpoints of e3 must lie
in different arcs. This leaves us with two possibilities.

Case 2a(i) Suppose that e3 connects two adjacent arcs. Since k(S3) = k(S,) + 1,
surgery along e splits off a nullhomologous loop from /’. In other words, e3 along with
an arc in [/’ forms a nullhomologous loop, independent of the choice of arc. As seen in
Figure 9, this arc may be taken to be one of the edges ¢;, i = 1, 2. Thus, e3 ~* ¢;. If all
remaining ¢;, 3 <i =< n, behave this way, then S is a state whose B-resolutions appear
within a single equivalence class of the transverse pair (e;, e;), which we denote by
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Figure 9: Bottom left, a state in case 2a(i). Bottom right, a state in case 2a(ii).

(e1,e2)*. The total contribution of such states is

ke, kes

Z Z Z(kle )(kgz)Ac(D)—z(iJrj)(_Az _ ATypatiti=2
l J

(e1,e2)* i=1j=1
= (—=1)* %} A¢P)+2va=4 4 1ower-order terms,

where k., and k., denote the number of edges in the equivalence classes of e; and e,
respectively.

Case 2a(ii) Suppose that e3 connects two opposite arcs. This time, the arc in [’ is a
combination of ¢ and e,. This means precisely [e3] = £[e;] £ [e2] € H1(X). Thus
(e1, ez, e3) is a self-triangle. Note that if such an e; exists, no edge can connect the
other pair of opposite Y, in /. Otherwise, if there did exist such an edge e’, consider
the intersection number int(e’, e3) = int(e’, e1) + int(e’, e3). Since G 4 is embedded
in X, we would have int(e’, e;) = int(e’, e;) = int(e’, e1) +int(e’, e;) = £1, which
is impossible. Therefore, for 3 < i < n, e; falls under case 2a(i) or 2a(ii) and as
such belongs to the equivalence class of either e, e; or e3. Then § is a state whose
B-resolutions appear within a single equivalence class of the self-triangle (eq, 3, €3),
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which we denote by (eq, e3, e3)*. The total contribution of such states is

ke, key kes
Z ZZ Z( el)( )(klz3)Ac(D)—2(i+j+k)(_A2_A—z)vA—i-H-j-i-k—z
(e1,e2,e3)*i=1j=1k

= (=141 rjAC(D)+2”A_4 + lower-order terms.

Case 2b Lastly, we address the other scenario described at the beginning of case 2,
where the j™ surgery is a split which increases the homological rank rather than the
kernel. The only possibility left is that e; is a self-edge which is neither transverse nor
homologous to e¢;. Once again, all other edges must belong to the equivalence class
of either ey or e;. Letting ] and ¢ denote the two classes, the total contribution of
these states is

ke, ke
Z ii( el)( ez)Ac(D) 2(1+])( 42 —2)vA+i+j—2zz
7&32 i=1j=1

not transverse

= (—1)" << ) rh*)Ac(D)Jrz”A 4 7? 4 lower-order terms.

Combining the contributions from S, cases 1 and 2a, we get ozz’ 0) = VA~ eq+ MY -3,
as claimed. Likewise, case 2b gives oz(z) = ( ) rh* An analogous argument holds

for ,3(0) and /3(2). m|

4 Bounds on the twist number

The goal of this section is to prove Theorem 1. Let e4 = e;'i +¢4 and eg = ez +ep.
We consider the quantity

(25) * =y + By~ ~ B +
=eA+eB—vA—vB+2+rA+f§—mj —hy.

We now seek to bound * in terms of the twist number of the diagram. We follow the
method used for the planar case in [7]. As transverse edge pairs (and by extension
self-triangles) do not arise in the planar case, we deal with these terms first.

Proposition 14 Suppose ¥ has genus g. Then

(26) —2g <tj+tp— My —Mmp <0.
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Figure 10: The result of surgering along a self-triangle. The red and blue
loops bound separate punctured surfaces.

Proof The second inequality is immediate from the fact that every self-triangle consists
of three self-edges which are all pairwise transverse. Furthermore, no pair can be part
of any other self-triangle since the third self-edge is already determined by the pair.

For the first inequality, we will show that 7§ + 75 < g. Suppose without loss of
generality that G 4 contains a self-triangle class (eq, 5, e3)™ at a vertex corresponding
to the loop /. Figure 10 shows the result of surgering / along e;, ¢, and e3 to obtain
the state S, where e/, e/, and e; are the surgery arcs dual to these edges. In place of
the self-triangle, there is a region R which is a punctured torus. Note that ¥ \ R then
consists of two punctured surfaces with total genus g — 1. Iterating this argument, we
immediately see that G 4 can have at most g self-triangle classes.

More is true, however. Notice that e], ¢}, and e} are the only surgery arcs joining these
punctured surfaces. Thus, when we complete the remaining surgeries to obtain Sp, the
arcs e,
also be the case for the other edges making up (e, €5, €3)*. Therefore, the remaining

e, and eg become identified with simple edges of Gp. By reordering, this will

surgeries induce an isotopy on R taking it to a punctured torus in X which contains no
self-edges of Gp. We have shown that the presence of a self-triangle class in either
G4 or G p obstructs the existence of a potential set of transverse self-edge classes (and
by extension a self-triangle) in the other. Iterating this argument, we have 7} + 75 < g,
as claimed.

Recall that across both state graphs, there are a total of 3(z} +7j) classes of transverse
pairs coming from self-triangles. By an analogous argument, in G 4 there are at most
g — (t}j + 1) pairs which are not part of any self-triangle. By contrast, these do not
obstruct a transverse pair in G g: for an example, see the left-hand graph depicted in
Figure 7 and note that it is isotopic to its dual.
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XXX
XOOOC XX XX

long short

Figure 11: Left, the long resolution of a twist region. Right, the short resolu-
tion of a twist region.

Therefore, the same bound holds for Gp. By adding across both state graphs, we have
(27) Ny +Mp<3(tf+t5)+2g—2(t +15) =28 +15+ 15

This implies

(28) ty+p— My —hp>—2g,

as desired. O

In [7], the authors bound the quantity analogous to x from above by recategorizing the
vertices and edges based on how twist regions in D reveal themselves in two different
ways in each of the state graphs. Referring to Figure 11, we call these “long” and
“short” resolutions. Edges are also called “long” and “short” if they come from that
type of resolution. Notice that short edges coming from the same twist region are
all in the same equivalence class. This is the exact same property exhibited by the
“reduced edges” in [7], which leads to Proposition 4.6, the upper bound in the planar
case. As there is no difference in the definition of a twist region between the planar and
higher-genus cases, the proof goes through without changes as long as one replaces
“reduced edges” with “equivalence classes of edges”.

Proposition 15 [7, Proposition 4.6] Let D be a reduced alternating diagram on a
closed, orientable surface >. Then

(29) eq+ep—vq—vg+2=2tw(D).

For the lower bound, only a slight modification of the methods used in the planar case
is required. Let us first summarize the argument, which appears in Section 4.3 of [7].
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The authors first assume that there are no single-crossing twist regions, so that each
region contains at least one bigon. Recall that D may be viewed as a 4—valent graph I'.
They obtain a new 3—valent graph P by collapsing strings of bigons in I" to red edges.
A 2-valent graph, ® may be obtained by deleting the red edges. Figure 12 depicts
these graphs.

The authors call the regions of P “provinces” and the regions of ® “countries”. In [7],
the graphs are all constructed on the Turaev surface of D, but since we only deal with
alternating links, the graphs P and ® embed naturally on X. Note that P inherits the
cellular embedding of D, so all provinces are disks, while countries may be nontrivial
regions. For each country, its provinces correspond to vertices in either G4 or Gp
which are incident to more than two edges (the authors call these “n—gon” vertices).
The red edges which divide countries into provinces are dual to sets of parallel short
edges which connect the two provinces. Recall that if short edges are dual to the same
red edge, then they are in the same equivalence class. The converse is not true, however;
there may exist short edges dual to distinct red edges which will become identified.
The key to the authors’ argument is to realize that these different short edges must lie
in the same country. So, to find a lower bound the authors investigate the number of
short edges in each country that will survive when we pass to equivalence classes. We
now prove a version of their result [7, Lemma 4.8].

Proposition 16 Let D be a reduced alternating diagram on a closed, orientable
surface ¥ such that every twist region of D has at least two crossings. Let N be a
country of D, and let eghor(N') denote the number of equivalence classes of short edges
contained in N and eg‘(N ) the number of self-edge equivalence classes in N which
are homologous to a boundary component of N. Let tw(/N') denote the number of twist
regions in N and let |0N | denote the number of loops in ® which bound N. Then

(30) eshort (V) = tw(N) 4+ 1 —[ON |+ e5(N).
Proof Consider the dual graph of N, defined to be a connected ribbon graph G whose

vertices are the provinces of N, edges are dual to the red edges in NV, and boundary
components are the loops in ® which bound N. In [7], the authors obtain a lower bound
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by finding a spanning tree of G, or alternatively by cutting N along red edges until
a disk remains. In our case, it suffices to do the same with a spanning quasi-tree of G.

A quasi-tree is a ribbon graph with exactly one boundary component. We can obtain a
spanning quasi-tree by removing edges as long as they reduce the number of boundary
components of the graph, which corresponds to cutting N along dual red edges. Thus,
it suffices to cut V along |dN | — 1 red edges.

Note that if G is a quasi-tree, then N cannot contain any short edges which are in the
same equivalence class, yet are dual to different red edges. Otherwise, these short edges
form a nullhomologous curve separating N, forcing there to be at least two boundary
components. Also note that there can be no self-edges which are homologous to a
boundary component of N, for the exact same reason. Recall that a cellularly embedded
diagram must be connected, so that all self-edges are short.

Thus, any classes we are left with correspond to a unique one of the remaining
tw(N) + 1 —|0N| red edges left in the country. Adding back in the self-edge classes
which were removed, we obtain the desired inequality. a

The final step in [7] is to find a bound on the number of countries. A small but important
modification is needed here. In the planar case, the authors show that every component
of ® contains at least three vertices. As we will see, this does not hold in the surface
case, and this issue must be resolved in order to avoid canceling the term for the twist
number in the lower bound.

Proposition 17 Let D be a reduced alternating diagram on a closed, orientable
surface X such that every twist region of D has at least two crossings. Let eghorx denote
the total number of equivalence classes of short edges in G4 and Gpg. Then

(31) €short = %tW(D)'i‘ 1—g(%).

Proof Let ¢ be a component of @, which may be thought of as a simple closed curve
in X. Since D is reduced, ¢ must contain at least two vertices, or else it would bound
a monogon region corresponding to a nugatory crossing. We call ¢ “bad” if it has
exactly two vertices and “good” if it has at least three. Let |®|p,q denote the number of
bad curves and |®|g004 the number of good curves, and || the total number of curves.

Suppose ¢ is bad. Then because P is cellularly embedded, the two red edges incident
to the vertices of ¢ must lie on opposite sides of ¢. Otherwise, ¢ would bound a bigon
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Figure 13: A bad loop. The boundary-homologous self-edges are drawn in green.

region, and all bigons were collapsed in the construction of P. Also note that ® inherits
the checkerboard coloring of D, so we see that these are indeed distinct red edges,
which lie in separate countries. By following along ¢, we see that on each side of ¢ the
red edge forms a border between a province and itself. Thus, the red edge is dual to a
self-edge which represents the same homology class as ¢ in H;(X). This is illustrated
in Figure 13. By homological adequacy, we have that this self-edge along with ¢ are
homologically essential. In a country N, there can be at most two essential boundary
components which are homologous. To see this, recall that these two homologous
curves separate X, so a third one would separate N. Therefore, for each bad curve
there are two boundary-homologous classes of self-edges in the neighboring countries,
and there is at worst a 2:1 correspondence between bad curves and a given self-edge
class. Therefore, ej > |®[pad, Where e5 = 3y €5 (N).

The total number of vertices in P is at least three times the number of good edges.
Since every red edge has two vertices, this gives us that tw(D) > %|<D| good- Let n(D)
denote the number of countries in ®. By summing (30) over all countries, we get
€short = tW(D) + I’l(D) - 2|CI)| + e;

>tw(D) +n(D)—2|P| 4+ |P|paa
tw(D) +n(D) —|[®| - |<D|good
> 1tw(D) +n(D) —|®|
> 1tw(D)+1-g().

The last inequality follows from the fact that if we cut X along the simple closed curves
in @, at most g of these cuts are nonseparating. m|

We combine these results into a proposition mirroring [7, Theorem 4.10].
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Proposition 18 Let D be a reduced alternating diagram on a closed, orientable
surface ¥ such that every twist region of D has at least three crossings. Then

(32) * > 1tw(D) +1—g(%).

Proof Like the authors in [7], we define vpigon as the total number of bigon vertices
in G4 and Gp. Bigon vertices are incident to exactly two edges and correspond to
the vertices in the long resolution of a twist region. We define v,_gon to be the total
number of n—gon vertices. We have already seen that egor¢ counts the total number of
equivalence classes of short-edges, which are edges coming from a short resolution.
Likewise, we define ejong to be the total number of equivalence classes of edges coming
from a long resolution. We remark that an edge is long if and only if it is incident
to at least one bigon vertex. (When every twist region has at least three crossings,
no two long edges can be in the same equivalence class.) Every vertex and edge
across both state graphs falls into exactly one of these categories, so we can regroup
€4 +ep—Vq— VB = €short t €long — Ubigon — Vn-gon-

The long resolution of a twist region with ¢ crossings has exactly ¢ — 1 bigon vertices
and ¢ long edges. By summing over every twist region, we see that Vpigon = c(D)—1(D)
and ejong = ¢(D). Recall that the n—gon vertices become provinces in P, and the twist
regions become red edges. Therefore, by summing over countries, we can compute
X(2) = Vp_gon — tw(D). Putting this all together,
x=egq+ep—vq4—vp+2+1,+15— My —Mp

= €short T+ €long — Ubigon — Un—gon +2+ fj + T;;_ (hjl - fhz

= eshort + ¢(D) — (c(D) —tw(D)) = Up_gon + 2+ 14 + 15— )y — hp

= €short — X(E) +2+ T: + TE_ (h; - rh;}

> eshort — X(X) +2—2g(X) = egpont

> Ltw(D)+1-g(2). O

Combining (29) and (32), we obtain a proof of Theorem 1.

In [9], the authors bound the hyperbolic volume of the complement of a “weakly gener-
alized” alternating link in terms of the twist number. A weakly generalized alternating
link is a link in a compact, irreducible, orientable 3—manifold with a projection onto
a surface X, with some additional properties that guarantee the complement admits
a complete hyperbolic structure. They also require the diagram to be twist-reduced.
See [9] for the specific definitions of these terms.
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Theorem 19 [9, Theorem 1.4] Let X be a closed orientable surface of genus at least
one, and let L be a link that admits a twist-reduced weakly generalized cellularly
embedded alternating projection D onto ¥ x {0} in Y = X x [—1, 1]. Then the interior
of Y \ L admits a hyperbolic structure. If X is a torus, then we have

(33) FVoct - tW(D) < vol(Y \ L) < 100 - tw(D),

where vy is the volume of a regular ideal tetrahedron, and v is the volume of a
regular ideal octahedron.

If ¥ has genus at least two,

(34) FVoct - ((W(D) = 3x(2)) < vol(Y \ L) < 6vc; - tw(D).

Direct substitution of (1) into these volume bounds yields Corollary 2.
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