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DISTRIBUTED OPTIMIZATION BASED ON GRADIENT
TRACKING REVISITED: ENHANCING CONVERGENCE RATE VIA

SURROGATION\ast 

YING SUN\dagger , GESUALDO SCUTARI\ddagger , AND AMIR DANESHMAND\ddagger 

Abstract. We study distributed multiagent optimization over graphs. We consider the min-
imization of F + G subject to convex constraints, where F is the smooth strongly convex sum of
the agent's losses and G is a nonsmooth convex function. We build on the SONATA algorithm: the
algorithm employs the use of surrogate objective functions in the agents' subproblems (thus going
beyond linearization, such as proximal-gradient) coupled with a perturbed consensus mechanism that
aims to locally track the gradient of F . SONATA achieves precision \epsilon > 0 on the objective value in
\scrO (\kappa g log(1/\epsilon )) gradient computations at each node and \~\scrO 

\bigl( 
\kappa g(1  - \rho ) - 1/2 log(1/\epsilon )

\bigr) 
communication

steps, where \kappa g is the condition number of F and \rho characterizes the connectivity of the network.
This is the first linear rate result for distributed composite optimization; it also improves on existing
(nonaccelerated) schemes just minimizing F , whose rate depends on much larger quantities than \kappa g .
When the loss functions of the agents are similar, due to statistical data similarity or otherwise,
SONATA employing high-order surrogates achieves precision \epsilon > 0 in \scrO 

\bigl( 
(\beta /\mu ) log(1/\epsilon )

\bigr) 
iterations

and \~\scrO 
\bigl( 
(\beta /\mu )(1  - \rho ) - 1/2 log(1/\epsilon )

\bigr) 
communication steps, where \beta measures the degree of similarity

of agents' losses and \mu is the strong convexity constant of F . Therefore, when \beta /\mu < \kappa g , the use of
high-order surrogates yields provably faster rates than those achievable by first-order models; this is
without exchanging any Hessian matrix over the network.

Key words. distributed optimization, gradient tracking, linear rate, machine learning, statisti-
cal similarity, surrogate functions
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1. Introduction. We study distributed optimization over networks in the form

(P)
min
\bfx 

U(x) \triangleq 
1

m

m\sum 

i=1

fi(x)

\underbrace{}  \underbrace{}  
F (\bfx )

+G(x)

s.t. x \in \scrK ,

where fi : \BbbR 
d \rightarrow \BbbR is the loss function of agent i, assumed to be smooth and convex,

while F is strongly convex on \scrK ; G : \BbbR d \rightarrow \BbbR is a nonsmooth convex function on
\scrK ; and \scrK \subseteq \BbbR 

d represents the set of common convex constraints. Each fi is known
to the associated agent only. The goal is to cooperatively solve (P) by exchanging
information only with their immediate neighbors.

Distributed optimization in the form (P) has found a wide range of applications in
several areas, including network information processing, telecommunications, multi-
agent control, and machine learning. An instance of particular interest to this work is
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DISTRIBUTED GRADIENT-TRACKING METHODS 355

the distributed empirical risk minimization (ERM), whereby the goal is to minimize
the average loss over some dataset, distributed across the nodes of the network. Let-

ting \scrD (i) = \{ z(i)1 , . . . , z
(i)
n \} be the dataset of n examples available at node i's side, the

local empirical loss reads fi(x) = (1/n)
\sum n

j=1 f(x; z
(i)
j ), where f(x; z

(i)
j ) measures the

fit of parameter x to the data z
(i)
j . Datasets are usually large and high-dimensional,

which makes routing local data to other agents (let alone to a centralized node) infea-
sible or highly inefficient. Given the cost of communications (especially if compared
with the speed of local processing), the challenge in such a network setting is designing
distributed algorithms that are communication-efficient.

Our focus pertains to such a design in two settings (one being a special case of
the other): (1) The scenario where no significant relationship can be assumed among
the local functions fi---this has been extensively studied in the literature and will
be referred to as the unrelated setting; and (2) the case where the fi's are related,
e.g., because they reflect statistical similarity in the data residing at different nodes.
This is the case, e.g., of ERM problems: when data samples are independent and
identically distributed (i.i.d.) among machines, quantities such as the gradients and
Hessian matrices of the local functions differ by \beta = \~\scrO (1/

\surd 
n) (with high probability)

[2, 10, 38, 58]; we will refer to this as the \beta -related setting. If properly exploited in the
algorithmic design, such similarity can yield significant communication savings over
general purpose optimization algorithms.

Problem (P) in the two settings above has been extensively studied in the central-
ized environment, including star-networks wherein there is a master node connected
to all the other workers. Our interest is in the following (nonaccelerated) algorithms.

(1) Unrelated setting. (P) can be solved on star-networks employing the standard
proximal gradient method: to reach precision \epsilon > 0 on the objective value, one needs
\scrO 
\bigl( 
\kappa g log(1/\epsilon )

\bigr) 
iterations (which is also the number of communication rounds between

the master and the workers), where \kappa g is the condition number of F .
(2) \beta -related setting. When agents' functions fi are sufficiently similar---specifically,

1+\beta /\mu < \kappa g---a linear rate scaling with \kappa g may be highly unsatisfactory. For instance,
this is the case of some ill-conditioned functions. Another example is ERM losses
with optimal regularization \mu = \scrO (1/

\surd 
mn) and L-smooth constant L = \scrO (1) (e.g.,

see [58, Table 1] for ridge regression); we have \kappa g = \scrO (
\surd 
m \cdot n) while \beta /\mu = \scrO (

\surd 
m)--

the former grows with the local sample size n, while the latter is independent. Func-
tion similarity has been explicitly explored in DANE [38], a mirror-descent scheme for
(P) with G \equiv 0 whereby workers perform a local data preconditioning via a suitably
chosen Bregman divergence, and the master averages the solutions of the workers. For
quadratic losses, DANE achieves communication complexity \widetilde \scrO ((\beta /\mu )2 log 1/\epsilon ) (it is
assumed that \beta /\mu \geq 1). More recently, [9] proposed CEASE, which achieves DANE's
rate but for nonquadratic losses and G \not \equiv 0. Applying the convergence analysis of
mirror descent in [19] to CEASE enhances its rate to \widetilde \scrO ((\beta /\mu ) log 1/\epsilon ).

A natural question is whether similar results---in particular the dependence of the
rate on global optimization parameters as obtained on star-networks in the unrelated
and \beta -related settings---are achievable over general network topologies. The litera-
ture of distributed algorithms over general network topologies---albeit vast---does not
provide a satisfactory answer, leaving a gap between rate results over star-networks
and what has been certified over general graphs; see section 1.2 for a review of the
state of the art. In a nutshell, (i) there are no distributed schemes provably achieving
a linear rate for (P) with G \not \equiv 0 and/or constraints (cf. Table 1). Furthermore, even
considering the unconstrained minimization of F (i.e., G\equiv 0 and \scrK =\BbbR 

d), (ii) linear
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convergence is certified at a rate depending on much larger quantities than the global
condition number \kappa g (see Table 2); and (iii) when 1+\beta /\mu < \kappa g (\beta -related setting), no
rate improvement is provably achieved by existing distributed algorithms. These are
much more pessimistic rate dependencies than what is achieved over star-topologies.
The goal of this paper is to close this gap.

1.1. Major contributions. Our major results are summarized next.
1. We provide the first linear convergence rate analysis of a distributed algo-

rithm, SONATA (Successive cONvex Approximation algorithm over Time-
varying digrAphs), applicable to the composite, constrained formulation (P)
over graphs. SONATA was earlier proposed in the companion paper [36]
for nonconvex problems and directed, time-varying graphs. It combines the
use of surrogate functions in the agents' subproblems with a perturbed con-
sensus mechanism that aims at locally tracking the gradient of F . Surrogate
functions replace the more classical first order approximation of the local fi's,
which is the omnipresent choice in current distributed algorithms, offering the
potential to better suit the geometry of the problem. For instance, (approxi-
mate) Newton-type subproblems or mirror descent-type updates naturally fit
our surrogate models; they are the key enabler of provably faster rates in the
\beta -related setting. We comment on SONATA's rates below (cf. Table 3).

2. The unrelated setting (Table 3). When the network is sufficiently connected or
it has a star-topology, SONATA reaches an \epsilon -solution on the objective value
in \scrO 

\bigl( 
\kappa g log(1/\epsilon )

\bigr) 
iterations/communications, which matches the rate of the

centralized proximal-gradient algorithm. For arbitrary network connectivity,
the same iteration complexity is achieved at the cost of \scrO ((1 - \rho ) - 1/2) rounds
of communications per iteration (employing Chebyshev acceleration), where
\rho \in [0, 1) is the second largest eigenvalue modulus of the mixing matrix.
Our rates improve on those of existing distributed algorithms, which instead
show a more pessimistic dependence on the optimization parameters and are
proved under more restrictive assumptions; contrast Table 2 with Table 3.

3. The \beta -related setting (Table 3). When the agents' functions are sufficiently
similar (specifically, 1+\beta /\mu < \kappa g), the use of a mirror descent-type surrogate
over linearization of the fi's provably yields faster rates, at higher computa-
tion costs. This improves on the rate of existing distributed algorithms, which
are oblivious of function similarity (cf. Table 2). Notice that this is achieved
without exchanging any Hessian matrix over the network but by leveraging
function homogeneity via surrogation. When customized over star-topologies,
SONATA's rates improve on DANE/CEASE's rates too.

4. Time-varying directed graphs. The above rate improvements are extended
also to time-varying directed graphs. Because of space limitations, details
can be found in the long version of the paper [42].

1.2. Related works. Early works on distributed optimization aimed at decen-
tralizing the (sub)gradient algorithm. The Distributed Gradient Descent (DGD) was
introduced in [26] for unconstrained instances of (P) and in [18] for least squares,
both over undirected graphs. A refined convergence rate analysis of DGD [26] can
be found in [55]. Subsequent variants of DGD include the projected (sub)gradient
algorithm [27] and the push-sum gradient consensus algorithm [23], the latter imple-
mentable over digraphs. While different, the updates of the agents' variables in the
above algorithms can be abstracted as a combination of one (or multiple) consensus
step(s) (weighted average with neighbors variables) and a local (sub)gradient descent
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Table 1

Existing linearly convergent distributed algorithms. SONATA is the only scheme achieving a
linear rate in the presence of G in (P) or constraints. The expression of the rates of the above
nonaccelerated schemes (when available) is reported in Table 2. SONATA over time-varying graphs
is discussed in the long version of the paper [42].

Algorithms [11, 12, 16, 17, 20, 22, 30, 39, 41] [28, 48, 49, 57] [21, 24, 25, 32] SONATA

Problem:

F (smooth) each fi scvx each fi scvx F scvx F scvx

G (nonsmooth) \checkmark 

constraints \scrK \checkmark 

Network:
time-varying only [20] only [24, 32] \checkmark 

digraph \checkmark only [24, 32] \checkmark 

Table 2

Linear rate of existing nonaccelerated algorithms over undirected graphs: Communications
rounds to reach \epsilon > 0 accuracy; Li and \mu i are the smoothness and strong convexity constants
of fi, respectively; Lmx \triangleq maxiLi, \mu mn \triangleq mini \mu i; and \rho \in [0, 1) is the second largest eigenvalue
modulus of the mixing matrix (cf. (3.14)). The rates above include the quantities \kappa l, \^\kappa , and \=\kappa rather
than the much more desirable global condition number \kappa g \triangleq L/\mu (L and \mu are the smoothness and
strong convexity constants of F , respectively). Furthermore, they are independent of \beta , implying
that faster rates are not certified when 1 + \beta /\mu < \kappa g (\beta -related setting). Note that when the gos-
sip matrix used in the algorithms above is symmetric and Chebyshev acceleration is employed, the
dependence of the communication complexity on the network improves to

\surd 
1 - \rho .

Algorithm Problem Linear rate: \scrO 
\bigl( 
\delta log(1/\epsilon )

\bigr) 

EXTRA [39] F \delta = \scrO 
\bigl( \kappa 2

\ell 
1 - \rho 

\bigr) 
, \kappa \ell = Lmx

\mu mn

DIGing [24, 25] F \delta = \^\kappa 1.5

(1 - \rho )2
, \^\kappa \triangleq Lmx

(1/m)
\sum 

i \mu i

Harnessing [30] F \delta =
\kappa 2

\ell 

(1 - \rho )2

NIDS [16], ABC [14] F \delta = max
\bigl\{ 
\kappa \ell ,

1
1 - \rho 

\bigr\} 

Exact Diffusion [56] F \delta = \=\kappa 2

1 - \rho 
, \=\kappa \triangleq Lmx

\mu mx

Augmented Lagrangian [12] F \delta = \kappa \ell 
1 - \rho 

ADMM [41] F
\kappa 4

\ell 
1 - \rho 

Table 3

Summary of convergence rates of SONATA over undirected graphs: Number of communication
rounds to reach \epsilon -accuracy. In the table, \beta is the homogeneity parameter measuring the similarity
of the loss functions fi (cf. Definition 2.1); the other quantities are defined as in Table 2. The

extra averaging steps are performed using Chebyshev acceleration [3, 33]. The \widetilde O notation hides log
dependence on \kappa g and \beta /\mu (see section 3.4.2 for the exact expressions).

Surrogate Communication rounds Extra averaging \rho (network) \beta 

linearization
\scrO (\kappa g log (1/\epsilon )) \ding{55}

\rho = \scrO (\kappa  - 1
g (1 + \beta 

L
) - 2)

or

star-networks

arbitrary

\widetilde \scrO 
\biggl( 

\kappa g\surd 
1 - \rho 

log(1/\epsilon )

\biggr) 
\ding{51} arbitrary arbitrary

local fi

\scrO (1 \cdot log (1/\epsilon )) \ding{55}

\rho = \scrO 
\biggl( \Bigl( 

1 + \beta 
\mu 

\Bigr)  - 2 \Bigl( 
\kappa g + \beta 

\mu 

\Bigr)  - 2
\biggr) 

or

star-networks
\beta \leq \mu 

\widetilde \scrO 
\biggl( 

1\surd 
1 - \rho 

log(1/\epsilon )

\biggr) 
\ding{51} arbitrary

\scrO 
\biggl( 
\beta 

\mu 
\cdot log (1/\epsilon )

\biggr) 
\ding{55}

\rho = \scrO 
\biggl( \Bigl( 

1 + L
\beta 

\Bigr)  - 1 \Bigl( 
\kappa g + \beta 

\mu 

\Bigr)  - 1
\biggr) 

or

star-networks
\beta > \mu 

\widetilde \scrO 
\biggl( 

\beta /\mu \surd 
1 - \rho 

\cdot log(1/\epsilon )
\biggr) 

\ding{51} arbitrary
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step, controlled by a step-size (in some schemes followed by a proximal operation). A
diminishing step-size is used to reach exact consensus on the solution, converging thus
at a sublinear rate. With a fixed step-size \alpha , a linear rate of the iterates is achievable,
but it can only converge to an \scrO (\alpha )-neighborhood of the solution [26, 55].

Several subsequent attempts have been proposed to cope with this speed-accuracy
dilemma, leading to algorithms converging to the exact solution by employing a con-
stant step-size. Based upon the mechanism put forth to cancel the steady state error in
the individual gradient direction, existing proposals can be roughly organized in three
groups, namely (i) primal-based distributed methods leveraging the idea of gradient
tracking [6, 7, 24, 28, 29, 30, 47, 48, 49, 51, 52, 53]; (ii) distributed schemes using
ad hoc corrections of the local optimization direction [4, 39, 57]; and (iii) primal-
dual-based methods [12, 17, 22, 33, 41]. We elaborate next on these works, focusing
on schemes achieving a linear rate; Table 1 organizes these schemes based upon the
setting in which their convergence is established, while Table 2 reports the explicit
expression of the rates.

(i) Gradient-tracking-based methods. In these schemes, each agent updates its
own variables along a direction that tracks the global gradient \nabla F . This idea was
proposed independently in the NEXT algorithm [6, 7] for problem (P) and in AUG-
DGM [53] for strongly convex, smooth, unconstrained optimization. The work [43]
introduced SONATA, extending NEXT over (time-varying) digraphs. A convergence
rate analysis of [53] was later developed in [24, 30, 54], with [24] considering also
(time-varying) digraphs. Other algorithms based on the idea of gradient tracking and
implementable over digraphs are ADD-OPT [47] and [49]. Subsequent schemes [48],
the Push-Pull [28] and the \scrA \scrB [32] algorithms, relaxed previous conditions on the
mixing matrices used in the consensus and gradient tracking steps over digraphs,
which need be neither row-stochastic nor column-stochastic. All the schemes above
except NEXT and SONATA are applicable only to smooth, unconstrained instances
of (P), with each fi strongly convex. This latter assumption is restrictive in some
applications, such as distributed machine learning, where not all fi are strongly convex
but F is so.

(ii) Ad hoc gradient correction-based methods. These methods developed specific
corrections of the plain DGD direction. Specifically, EXTRA [39] and its variant over
digraphs, EXTRA-PUSH [57], introduce two different weight matrices for any two
consecutive iterations as well as leverage history of gradient information. They are
applicable only to smooth, unconstrained problems; when each fi is strongly convex,
they generate iterates that converge linearly to the minimizer of F . To deal with an
additive convex nonsmooth term in the objective, [40] proposed PG-EXTRA, which is
thus applicable to (P) over undirected graphs, possibly with different local nonsmooth
functions. However, linear convergence is not certified. A different approach is to use
a linearly increasing number of consensus steps rather than directly correcting the
gradient direction; this has been studied in [4] for unconstrained minimization of
smooth, strongly convex fi's over undirected graphs.

(iii) Primal-dual methods. A common theme of these schemes is employing a
prima-dual reformulation of the original multiagent problem whereby dual variables
associated to a properly defined (augmented) Lagrangian function serve the purpose
of correcting the plain DGD local direction. Examples of such algorithms include
(i) distributed ADMM methods [13, 41] and their inexact implementations [17, 21];
(ii) distributed augmented Lagrangian-based methods with randomized primal vari-
able updates [12]; and (iii) a distributed dual ascent method employing tracking of the
average of the primal variable [20]. All these schemes are applicable only to smooth,
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unconstrained optimization over undirected graphs.
To summarize, the above literature review shows that currently there exists no

distributed algorithm for the general formulation (P) that provably converges at a
linear rate to the exact solution, in the presence of a nonsmooth function G or con-
straints (cf. Table 1), let alone mentions digraphs. Furthermore, when it comes to
the dependence of the rate on the optimization parameters, Table 3 shows that, even
restricting to unconstrained, smooth minimization, SONATA's rates improve on ex-
isting ones---in particular, SONATA provably obtains fast convergence if the agents'
objective functions (e.g., data) are sufficiently similar.

Concurrent works. While our manuscript was under review and available on
arXiv [42], a few other related technical reports appeared online [1, 15, 31], which we
briefly discuss next. The authors in [1] studied a class of distributed proximal gradient-
based methods to solve problem (P) with G \not = 0, over undirected, static, graphs. The
algorithms reach an \epsilon -solution in \scrO 

\bigl( 
\u \kappa (1 - \rho ) - 1 log(1/\epsilon )

\bigr) 
iterations/communications,

where \u \kappa \triangleq Lmx/\mu . The authors in [31] proposed an inexact distributed projected gra-
dient descent method for the unconstrained minimization of F and proved a communi-
cation complexity of \~O

\bigl( 
\kappa g (1 - \rho ) - 1 log2(1/\epsilon )

\bigr) 
( \~\scrO hides a log-dependence on L2

max/\mu 
2),

which depends on the global condition number \kappa g. SONATA's rates compare favor-
ably with those above. Furthermore, since both schemes [1] and [31] are gradient-type
methods, unlike SONATA, their performance cannot benefit from function similarity,
if any. On the other hand, [15] explicitly considered the \beta -related setting and pro-
posed Network-DANE, a decentralization of the DANE algorithm. It turns out that
Network-DANE is a special case of SONATA; there are however some important dif-
ferences in the convergence analysis/results. First, convergence in [15] is established
only for the unconstrained minimization of F (G = 0 and \scrK = \BbbR 

d) over undirected
graphs, with each fi assumed to be strongly convex. Second, convergence rates therein
are more pessimistic than those predicted by our analysis. In fact, the best commu-
nication complexity of Network-DANE reads \~O

\bigl( 
(1 + (\beta /\mu )2)(1 - \rho ) - 1/2 log(1/\epsilon )

\bigr) 
for

quadratic fi's and worsens to \~O
\bigl( 
\kappa \ell (1 + \beta /\mu )(1  - \rho ) - 1/2 log(1/\epsilon )

\bigr) 
for nonquadratic

losses. Note that the latter is of the order of the worst-case rate of first-order meth-
ods, which do not benefit from function similarity. A direct comparison with Table 3
shows that SONATA's rates exhibit a better dependence on the optimization param-
eters (\kappa g versus \kappa \ell ) and \beta /\mu in all scenarios. In particular, in the \beta -related setting,
SONATA retains faster rates, even when fi's are nonquadratic.

1.3. Paper organization. Section 2 introduces the main assumptions on the
optimization problem and network, along with some motivating examples from ma-
chine learning. The SONATA algorithm over undirected graphs is studied in section 3;
in particular, linear convergence is proved in section 3.3, while a detailed discussion
on the rate expression and its scalability properties is provided in section 3.4. The
case of time-varying, possibly directed, graphs can be found in the long version of the
paper, along with some numerical results supporting our theoretical findings [42].

2. Problem and network setting. This section summarizes the assumptions
on the optimization problem and network setting.

2.1. Assumptions on problem (P). Our algorithmic design and convergence
results pertain to two problem settings, namely (i) the one where the local functions
fi are generic and unrelated (cf. section 2.1.1), and (ii) the case where they are related
(cf. section 2.1.2). These two settings are formally introduced below.

2.1.1. The unrelated setting. Consider the following standard assumption.
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Assumption A (on problem (P)).
A1 The set \emptyset \not = \scrK \subseteq \BbbR 

d is closed and convex;
A2 each fi : \scrO \rightarrow \BbbR is twice differentiable on the open set \scrO \supseteq \scrK and convex;
A3 F satisfies

\mu I \preceq \nabla 2F (x) \preceq LI \forall x \in \scrK ,

with \mu > 0 and 0 < L < \infty ;
A4 G : \scrK \rightarrow \BbbR is convex possibly nonsmooth.

Note that A3 together with A2 implies

(2.1) \mu iI \preceq \nabla 2fi(x) \preceq LiI \forall x \in \scrK , \forall i \in [m],

for some \mu i \geq 0 and 0 < Li < \infty . Unlike existing works (cf. Table 1), we do not
require each fi to be strongly convex but just F (cf. A3). Also, twice differentiability
of fi is not really necessary but is assumed here to simplify our derivations.

Under Assumption A, we define the global conditional number associated to (P):

(2.2) \kappa g \triangleq 
L

\mu 
.

Related quantities determining the (linear) convergence rate of existing distributed
algorithms are (cf. Table 2):

(2.3) \kappa \ell \triangleq 
Lmx

\mu mn
, \^\kappa \triangleq 

Lmx

(1/m)
\sum 

i \mu i
, \u \kappa \triangleq 

Lmx

\mu 
, and \=\kappa \triangleq 

Lmx

\mu mx
,

where

(2.4) Lmx \triangleq max
i=1,...,m

Li, \mu mn \triangleq min
i=1,...,m

\mu i, and \mu mx \triangleq max
i=1,...,m

\mu i.

When \mu i = 0, we set \kappa \ell = \infty . It is not difficult to check that \kappa g can be much smaller
than \u \kappa , \=\kappa , \^\kappa , and \kappa \ell ; see, e.g., [42, Example 1].

In the setting above, our goal is to design linearly convergent algorithms whose
iteration complexity is proportional to \kappa g instead of the larger quantities in (2.3).

2.1.2. The \bfitbeta -related setting. This scenario considers explicitly the case where
the functions fi are similar, in the sense defined below [2].

Definition 2.1 (\beta -related fi's). Under Assumption A, let \beta \geq 0 be the smallest
number such that

\bigm\| \bigm\| \nabla 2F (x) - \nabla 2fi(x)
\bigm\| \bigm\| 
2
\leq \beta , for all x \in \scrK .

The more similar the fi's, the smaller \beta . For arbitrary fi's, \beta is of the order

\beta \leq max
i=1,...,m

max \{ | L - \mu i| , | \mu  - Li| \} .

The interesting case is when 1 + \beta /\mu << \kappa g; a specific example is discussed next.
Case study: Convex-Lipschitz-bounded learning problems over networks. Consider

a stochastic learning setting whereby the ultimate goal is to minimize some population
objective

(2.5) x \star \in argmin
\bfx \in \scrH 

F (x), with F (x) \triangleq \BbbE \bfz \sim \scrP [f(x; z)] ,

where f : \scrO \times \scrZ \rightarrow \BbbR is the loss function, assumed to be C2, convex (but not strongly
convex), and L-smooth on the open set \scrO \supset \scrH , for all z \in \scrZ ; \scrH \subseteq \BbbR 

d is the set of

D
o

w
n
lo

ad
ed

 0
4
/2

8
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTRIBUTED GRADIENT-TRACKING METHODS 361

hypothesis classes, assumed to be convex and closed; \scrZ is the set of examples; and \scrP 
is the (unknown) distributed of z \in \scrZ . Furthermore, we assume that any x \star \in \scrB B \triangleq 

\{ x : \| x\| \leq B\} for some 0 < B < \infty . This setting includes, for example, supervised
generalized linear models, where z = (w, y) and f(x; (w, y)) = \ell (\bfitphi (w)\top x; y) for some
(strongly) convex loss \ell (\bullet ; y) and feature mapping \bfitphi . For instance, in linear regression,
f(x; (w, y)) = (y  - \bfitphi (w)\top x)2, with \bfitphi (w) \in \BbbR 

d and y \in \BbbR ; for logistic regression, we
have f(x; (w, y)) = log(1 + exp( - y(\bfitphi (w)\top x))), with w \in \BbbR 

d and y \in \{  - 1, 1\} .
To solve (2.5), the m agents have access only to a finite number, say N = nm,

of i.i.d. samples from the distribution \scrP , evenly and randomly distributed over the
network. Using the notation introduced in section 1, the ERM problem reads

\widehat x \triangleq argmin
\bfx \in \scrH 

\widehat F (x) \triangleq 
1

m

m\sum 

i=1

fi(x;\scrD (i)), fi(x;\scrD (i)) =
1

n

n\sum 

j=1

f(x; z
(i)
j ) +

\lambda 

2
\| x\| 2,

which is clearly an instance of (P), satisfying Assumption A.

We derive the associated \beta /\mu and contrast it with \kappa g. \widehat F is \lambda -strongly convex;
therefore, we can set \mu = \lambda . The optimal choice of \lambda is the one minimizing the
statistical error resulting in the use of \widehat x as proxy for x \star ; we have [37, Th. 7]:

(2.6) \lambda = \scrO 
\Bigl( \sqrt{} 

G2
f/(B

2 N)
\Bigr) 
,

where Gf is the Lipschitz constant of f(\bullet ; z) on \scrH \bigcap \scrB B for all z \in \scrZ .
An estimate of \beta can be obtained by exploring the statistical similarity of fi.

Under the additional assumption that \nabla 2f(\bullet ; z) is M -Lipschitz on \scrH , for all z \in \scrZ ,
the following holds with high probability [59, Lemma 6]:

(2.7) sup
\bfx \in \scrB B

\bigm\| \bigm\| \bigm\| \nabla 2fi(x; z) - \nabla 2 \^F (x)
\bigm\| \bigm\| \bigm\| \leq \beta = \widetilde \scrO 

\Biggl( \sqrt{} 
L2 d

n

\Biggr) 
,

for all z \in \scrZ , i \in [m], where \widetilde \scrO hides the log-factor dependence.
Based on (2.6)--(2.7), an estimate of \beta /\mu and \kappa g reads

(2.8) 1 +
\beta 

\mu 
= 1 + \widetilde \scrO 

\Bigl( 
L
\surd 
dm

\Bigr) 
and \kappa g = 1 + \widetilde \scrO 

\Bigl( 
L
\surd 
dmn

\Bigr) 
.

Note that \kappa g increases with the local sample size n, while \beta /\mu does not (neglecting log-
factors). It turns out that algorithms converging at a rate depending on \kappa g exhibit a
speed-accuracy dilemma: small statistical errors in (2.6) (larger n) are achieved at the
cost of more iterations (larger \kappa g). In this setting, it is desirable to design distributed
algorithms whose rate depends on \beta /\mu rather than \kappa g.

2.2. Network setting. We model the network of agents as a fixed, undirected
graph; we write \scrG \triangleq (\scrV , \scrE ), where \scrV \triangleq \{ 1, . . . ,m\} denotes the vertex set---the set of
agents---while \scrE \triangleq \{ (i, j) | i, j \in \scrV \} represents the set of edges---the communication
links; (i, j) \in \scrE iff there exists a communication link between agent i and j. We make
the following standard assumption on the graph connectivity.

Assumption B (on the network). The graph \scrG is connected.

The network setting covers, as a special case, star-networks, i.e., architectures
with a centralized node (a.k.a. master node) connected to all the others (a.k.a. work-
ers). This is the typical computational architecture of several federated learning
systems.
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Algorithm 3.1. SONATA over undirected graphs.

Data: x0
i \in \scrK and y0

i = \nabla fi(x
0
i ), i \in [m].

Iterate: \nu = 1, 2, . . .

[S.1] [Distributed Local Optimization] Each agent i solves

(3.1a) \widehat x\nu 
i \triangleq argmin

\bfx i\in \scrK 

\widetilde fi(xi;x
\nu 
i ) +

\bigl( 
y\nu 
i  - \nabla fi(x

\nu 
i )
\bigr) \top 

(xi  - x\nu 
i )\underbrace{}  \underbrace{}  

\widetilde Fi(\bfx i;\bfx \nu 
i )

+G(xi)

and updates

(3.1b) x
\nu + 1

2

i = x\nu 
i + \alpha \cdot d\nu 

i , with d\nu 
i \triangleq \widehat x\nu 

i  - x\nu 
i ;

[S.2] [Information Mixing] Each agent i computes

(a) Consensus

(3.1c) x\nu +1
i =

m\sum 

j=1

wijx
\nu + 1

2

j ,

(b) Gradient tracking

(3.1d) y\nu +1
i =

m\sum 

j=1

wij

\bigl( 
y\nu 
j +\nabla fj(x

\nu +1
j ) - \nabla fj(x

\nu 
j )
\bigr) 
.

end

3. The SONATA algorithm. We recall here the SONATA/NEXT algorithm
[7, 36], customized to undirected, static, graphs. Each agent i maintains and updates
iteratively a local copy xi \in \BbbR 

d of the global variable x, along with the auxiliary
variable yi \in \BbbR 

d, which estimates the gradient of F . Denoting by x\nu 
i (resp., y\nu 

i ) the
values of xi (resp., yi) at iteration \nu = 0, 1, . . . , the SONATA algorithm is described
in Algorithm 3.1. In words, each agent i, given the current iterates x\nu 

i and y\nu 
i , first

solves a strongly convex optimization problem wherein \widetilde Fi is an approximation of the
sum-cost F at x\nu 

i ;
\widetilde fi in (3.1a) is a strongly convex function, which plays the role

of a surrogate of fi (cf. Assumption C below), while y\nu 
i acts as approximation of

the gradient of F at x\nu 
i , that is, \nabla F (x\nu 

i ) \approx y\nu 
i (see discussion below). Then, agent

i updates x\nu 
i along the local direction d\nu 

i [cf. (3.1b)], using the step-size \alpha \in (0, 1];

the resulting point x
\nu +1/2
i is broadcast to its neighbors. The update x

\nu +1/2
i \rightarrow x\nu +1

i

is obtained via the consensus step (3.1c), while the y-variables are updated via the
perturbed consensus (3.1d), aiming at tracking \nabla F (x\nu 

i ).
The main assumptions underlying the convergence of SONATA are discussed next.
\bullet On the subproblem (3.1a) and surrogate functions \widetilde fi. The surrogate functions

satisfy the following conditions.

Assumption C. Each \widetilde fi : \scrO \times \scrO \rightarrow \BbbR is C2 and satisfies
(i) \nabla \widetilde fi(x;x) = \nabla fi(x) for all x \in \scrK ,

(ii) \nabla \widetilde fi(\bullet ;x) is \widetilde Li-Lipschitz continuous on \scrK for all x \in \scrK ,

(iii) \widetilde fi(\bullet ;x) is \widetilde \mu i-strongly convex on \scrK for all x \in \scrK ,

where\nabla \widetilde fi(x; z) is the partial gradient of \widetilde fi at (x, z) with respect to the first argument.

The assumption states that \widetilde fi should be regarded as a surrogate of fi that pre-
serves at each iterate x\nu 

i the first order properties of fi. Conditions (i)--(iii) are
certainly satisfied if one uses the classical linearization of fi, that is,
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(3.2) \widetilde fi(xi;x
\nu 
i ) = \nabla fi(x

\nu 
i )

\top (xi  - x\nu 
i ) +

\tau i
2
\| xi  - x\nu 

i \| 2, with \tau i > 0,

which leads to the standard proximal-gradient update for \widehat xi. Note that if, in addition,
G = 0 and \scrK = \BbbR 

d, (3.1a)--(3.1c) reduces to the standard (ATC) consensus/gradient-
tracking step (setting \alpha = 1 and absorbing 1/\tau i into the common stepsize \gamma ) x\nu +1

i =\sum 
j wij(x

\nu 
i  - \gamma y\nu 

i ) [24, 30, 53]. However, Assumption C allows us to cover a much
wider array of approximations that better suit the geometry of the problem at hand,
enhancing convergence speed. For instance, on the opposite side of (3.2), we have a
surrogate retaining all of the structure of fi, such as

(3.3) \widetilde fi(xi;x
\nu 
i ) = fi(xi) +

\tau i
2
\| xi  - x\nu 

i \| 2, with \tau i > 0.

We refer the reader to [8, 34, 35] as good sources of examples of nonlinear surro-
gates satisfying Assumption C; here we only anticipate that, when the fi's are suffi-
ciently similar, higher order models such as (3.3) indeed yield faster rates of SONATA
than those achievable using linear surrogates (3.2). Further intuition is provided next.

Under Assumption C, it is not difficult to check that, for every i \in [m], there
exist constants D\ell 

i and Du
i , D

\ell 
i \leq Du

i , such that
(3.4)

D\ell 
i I \preceq \nabla 2 \widetilde fi(x,y) - \nabla 2F (x) \preceq Du

i I \forall x,y \in \scrK ; let Di \triangleq max\{ | D\ell 
i | , | Du

i | \} .
For instance, (3.4) holds with Di = max\{ | \widetilde \mu i  - L| , | \widetilde Li  - \mu | \} . Roughly speaking, the

smallerDi the better \widetilde Fi (defined in (3.1a)) approximates F . One can then expect that,

if the local functions are sufficiently similar (\beta is small), surrogates \widetilde fi exploiting higher
order information of fi, such as (3.3), may be more effective than mere linearization.
Our theoretical findings confirm the above intuition; see section 3.4.

\bullet Consensus and gradient tracking steps (3.1c)--(3.1d). In the consensus and
tracking steps, the weights wij satisfy the following standard assumption.

Assumption D. The weight matrix W \triangleq (wij)
m
i,j=1 has a sparsity pattern com-

pliant with \scrG , that is,
D1 wii > 0 for all i = 1, . . . ,m;
D2 wij > 0 if (i, j) \in \scrE ; and wij = 0 otherwise;
Furthermore, W is doubly stochastic, that is, 1\top W = 1\top and W1 = 1.

Several rules have been proposed in the literature compliant with Assumption D,
such as the Laplacian, the Metropolis--Hastings, and the maximum-degree rules [50].

Finally, we comment on the anticipated gradient tracking property of the y-
variables, that is, \| \nabla F (x\nu 

i ) - y\nu 
i \| \rightarrow 0 as \nu \rightarrow \infty . Define the average processes

(3.5) \=y\nu \triangleq 
1

m

m\sum 

i=1

y\nu 
i and \nabla f

\nu 
\triangleq 

1

m

m\sum 

i=1

\nabla fi(x
\nu 
i ).

Summing (3.1d) over i \in [m] and invoking the doubly stochasticity of W; we have

(3.6) \=y\nu +1 = \=y\nu +\nabla f
\nu +1  - \nabla f

\nu 
.

Applying (3.6) inductively and using the initial condition y0
i = \nabla fi(x

0
i ), i \in [m], yield

(3.7) \=y\nu = \nabla f
\nu 
, \forall \nu = 0, 1, . . . .

That is, the average of all the y\nu 
i 's in the network is equal to that of the \nabla fi(x

\nu 
i )'s

at every iteration \nu . Assuming that consensus on x\nu 
i 's and y\nu 

i 's is asymptotically
achieved, that is, \| x\nu 

i  - x\nu 
j \|  - \rightarrow 

\nu \rightarrow \infty 
0 and \| y\nu 

i  - y\nu 
j \|  - \rightarrow 

\nu \rightarrow \infty 
0, i \not = j, (3.7) would imply

the desired gradient-tracking property \| \nabla F (x\nu 
i ) - y\nu 

i \| \rightarrow 0 as \nu \rightarrow \infty for all i \in [m].
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Algorithm 3.2. SONATA on star-networks (SONATA-Star).

Data: x0 \in \scrK .

Iterate: \nu = 1, 2, . . .

[S.1] Each worker i evaluates \nabla fi(x
\nu ) and sends it to the master node;

[S.2] The master broadcasts \nabla F (x\nu ) = 1/m
\sum m

i=1 \nabla fi(x
\nu ) to the workers;

[S.3] Each worker i computes

\widehat x\nu 
i \triangleq argmin

\bfx i\in \scrK 

\widetilde fi(xi;x
\nu ) +

\bigl( 
\nabla F (x\nu ) - \nabla fi(x

\nu 
i )
\bigr) \top 

(xi  - x\nu ) +G(xi)

and sends \widehat x\nu 
i to the master;

[S.4] The master computes

x\nu +1 = x\nu + \alpha 

\Biggl( 
1

m

m\sum 

i=1

\widehat x\nu 
i  - x\nu 

\Biggr) 

and sends it back to the workers.

end

3.1. A special instance: SONATA on star-networks. Although the main
focus of the paper is studying SONATA over mesh networks, it is worth discussing
here a special instance over star-networks. Consider a star (undirected) graph with
m nodes, where one of them (the master node) connects with all the others (work-
ers). The workers still own only one function fi of the sum-cost F . Problem (P)
can be solved using Algorithm 3.2, which corresponds to SONATA (up to a proper

initialization), with weight matrix W = [1, 0m,m - 1] [1/m, 0m,m - 1]
\top 
.

Connection with existing schemes. SONATA-star, employing linear surrogates
(cf. (3.2)) and \alpha = 1, reduces to the proximal gradient algorithm. When the surrogates
(3.3) are used (and still \alpha = 1), SONATA-star coincides with the DANE algorithm [38]
if G = 0 and to the CEASE (with averaging) algorithm [9] if G \not = 0. Nevertheless,
our convergence rates improve on those of DANE and CEASE; see section 3.4.1.

3.2. Intermediate definitions. We conclude this section by introducing some
quantities that will be used in the rest of the paper. We define the optimality gap as

(3.8) p\nu \triangleq 

m\sum 

i=1

\bigl( 
U(x\nu 

i ) - U(x \star )
\bigr) 
,

where x \star is the unique solution of problem (P).
We stack the local variables and gradients in the column vectors

(3.9)
x\nu \triangleq [x\nu \top 

1 , . . . , x\nu \top 
m ]\top , y\nu \triangleq [y\nu \top 

1 , . . . ,y\nu \top 
m ]\top , \nabla f\nu \triangleq [\nabla f1(x

\nu 
1)

\top , . . . ,\nabla fm(x\nu 
m)\top ]\top .

The average of each of the vectors above is defined as \=x\nu \triangleq (1/m) \cdot \sum m
i=1 x

\nu 
i . The

consensus disagreements on x\nu 
i 's and y\nu 

i 's are

(3.10) x\nu 
\bot \triangleq x\nu  - 1m \otimes \=x\nu and y\nu 

\bot \triangleq y\nu  - 1m \otimes \=y\nu ,

respectively, while the gradient tracking error is defined as

(3.11) \bfitdelta \nu \triangleq [\bfitdelta \nu \top 1 , . . . , \bfitdelta \nu \top m ]\top , with \bfitdelta \nu i \triangleq \nabla F (x\nu 
i ) - y\nu 

i , i = 1, . . . ,m.
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Recalling Li, \widetilde Li, \widetilde \mu i, D
\ell 
i , and Di as given in Assumptions A and C and (3.4), we

introduce the following algorithm-dependent parameters:

(3.12) \widetilde \mu mn \triangleq min
i\in [m]

\widetilde \mu i, \widetilde Lmx \triangleq max
i\in [m]

, \widetilde Li, D\ell 
mn \triangleq min

i\in [m]
D\ell 

i , Dmx \triangleq max
i\in [m]

Di.

Finally, given the weight matrix W, we define

(3.13) \widehat W \triangleq W \otimes Id and J \triangleq 
1

m
1m1\top 

m \otimes Id.

Under Assumptions B and D, it is well known that (see, e.g., [46])

(3.14) \rho \triangleq \sigma (\widehat W  - J) < 1,

where \sigma (\bullet ) denotes the largest singular value of its argument.

3.3. Linear convergence rate. Our proof of the linear rate of SONATA passes
through the following steps: Step 1: We begin showing that the optimality gap p\nu con-
verges linearly up to an error of the order of \scrO (\| x\nu 

\bot 
\| 2 + \| y\nu 

\bot 
\| 2); see Proposition 3.4.

Step 2 proves that \| x\nu 
\bot 
\| and \| y\nu 

\bot 
\| are also linearly convergent up to an error \scrO (\| d\nu \| );

see Proposition 3.5. In Step 3 we close the loop establishing \| d\nu \| = \scrO (
\surd 
p\nu + \| y\nu 

\bot 
\| );

see Proposition 3.6. Finally, in Step 4, we properly chain together the above in-
equalities (cf. Proposition 3.8) so that a linear rate is proved for the sequences \{ p\nu \} ,
\{ \| x\nu 

\bot 
\| 2\} , \{ \| y\nu 

\bot 
\| 2\} , and \{ \| d\nu \| 2\} ; see Theorems 3.9 and 3.10. We will tacitly assume

that Assumptions A, B, C, and D are satisfied.

3.3.1. Step 1: \bfitp \bfitnu converges linearly up to \bfscrO (\| x\bfitnu 

\bot 
\| \bftwo + \| y\bfitnu 

\bot 
\| \bftwo ). Invoking

the convexity of U and the doubly stochasticity of W, we can bound p\nu +1 as

(3.15) p\nu +1 \leq 
m\sum 

i=1

m\sum 

j=1

wij

\Bigl( 
U
\bigl( 
x
\nu + 1

2

j

\bigr) 
 - U(x \star )

\Bigr) 
=

m\sum 

i=1

\Bigl( 
U(x

\nu + 1

2

i ) - U(x \star )
\Bigr) 
.

We can now bound U(x
\nu + 1

2

j ), regarding the local optimization (3.1a)--(3.1b) as a
perturbed descent on the objective, whose perturbation is due to the tracking error
\bfitdelta \nu . In fact, Lemma 3.1 below shows that, for sufficiently small \alpha , the local update
(3.1b) will decrease the objective value U up to some error, related to \bfitdelta \nu i .

Lemma 3.1. Let \{ x\nu 
i \} be the sequence generated by SONATA; there holds

U(x
\nu + 1

2

i ) \leq U(x\nu 
i ) - \alpha 

\Bigl( \Bigl( 
1 - \alpha 

2

\Bigr) 
\widetilde \mu i +

\alpha 

2
\cdot D\ell 

i

\Bigr) 
\| d\nu 

i \| 2 + \alpha \| d\nu 
i \| \| \bfitdelta \nu i \| ,(3.16)

with D\ell 
i and \bfitdelta \nu i defined as in (3.4) and (3.11), respectively.

Proof. Consider the Taylor expansion of F :

F (x
\nu + 1

2

i ) =F (x\nu 
i ) +\nabla F (x\nu 

i )
\top (\alpha d\nu 

i ) + (\alpha d\nu 
i )

\top H(\alpha d\nu 
i )

(3.11)
= F (x\nu 

i ) +
\bigl( 
\bfitdelta \nu i

\bigr) \top 
(\alpha d\nu 

i ) +
\bigl( 
y\nu 
i

\bigr) \top 
(\alpha d\nu 

i ) + (\alpha d\nu 
i )

\top H(\alpha d\nu 
i ),

(3.17)

where H \triangleq 
\int 1

0
(1 - \theta )\nabla 2F (\theta x

\nu + 1

2

i + (1 - \theta )x\nu 
i )d\theta .

Invoking the optimality of \widehat x\nu 
i and defining \widetilde Hi \triangleq 

\int 1

0
\nabla 2 \widetilde fi(\theta \widehat x\nu 

i +(1 - \theta )x\nu 
i ;x

\nu 
i )d\theta ,

we have

G(x\nu 
i ) - G(\widehat x\nu 

i ) \geq (d\nu 
i )

\top 
\bigl( 
\nabla \widetilde fi(\widehat x\nu 

i ;x
\nu 
i ) + y\nu 

i  - \nabla fi(x
\nu 
i )
\bigr) 
= (d\nu 

i )
\top 
\bigl( 
y\nu 
i + \widetilde Hid

\nu 
i

\bigr) 
,(3.18)
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where the equality follows from \nabla \widetilde fi(x\nu 
i ;x

\nu 
i ) = \nabla fi(x

\nu 
i ) and the integral form of the

mean value theorem. Substituting (3.18) into (3.17) and using the convexity of G
yields

F (x
\nu + 1

2

i )

\leq F (x\nu 
i ) + (\bfitdelta \nu i )

\top (\alpha d\nu 
i ) + \alpha 

\Bigl( 
 - (d\nu 

i )
\top \widetilde Hid

\nu 
i + (\alpha d\nu 

i )
\top H(d\nu 

i )
\Bigr) 
+G(x\nu 

i ) - G(x
\nu + 1

2

i ).

(3.19)

It remains to bound \alpha H - \widetilde Hi. We proceed as follows:

\alpha H - \widetilde Hi

(3.1b)
=

\int \alpha 

0

(1 - \theta /\alpha )\nabla 2F (\theta \widehat x\nu 
i + (1 - \theta )x\nu 

i )d\theta  - 
\int 1

0

\nabla 2 \widetilde fi(\theta \widehat x\nu 
i + (1 - \theta )x\nu 

i ;x
\nu 
i )d\theta 

(3.4)

\preceq  - 
\int \alpha 

0

(1 - \theta /\alpha ) \cdot (D\ell 
i ) I d\theta  - 

\int \alpha 

0

(\theta /\alpha )\nabla 2 \widetilde fi(\theta \widehat xi + (1 - \theta )x\nu 
i ;x

\nu 
i )d\theta 

(3.20)

 - 
\int 1

\alpha 

\nabla 2 \widetilde fi(\theta \widehat x\nu 
i + (1 - \theta )x\nu 

i ;x
\nu 
i )d\theta 

(a)

\preceq  - 1

2
\alpha (D\ell 

i ) I - 
\Bigl( 
1 - \alpha 

2

\Bigr) 
\widetilde \mu i I,

where (a) follows from Assumption C(iii). Substituting (3.20) into (3.19) completes
the proof.

We can now substitute (3.16) into (3.15) and get

p\nu +1 \leq p\nu +

m\sum 

i=1

\biggl\{ 
\alpha \| d\nu 

i \| \| \bfitdelta \nu i \|  - \alpha 
\Bigl( 
1 - \alpha 

2

\Bigr) 
\widetilde \mu i\| d\nu 

i \| 2  - 
D\ell 

i

2
\alpha 2\| d\nu 

i \| 2
\biggr\} 

(3.21a)

(a)

\leq p\nu  - 
\biggl( \Bigl( 

1 - \alpha 

2

\Bigr) 
\widetilde \mu mn +

\alpha D\ell 
mn

2
 - 1

2
\epsilon opt

\biggr) 
\alpha \| d\nu \| 2 + 1

2
\epsilon  - 1
opt \alpha \cdot \| \bfitdelta \nu \| 2,(3.21b)

where in (a) we used Young's inequality, with \epsilon opt > 0 satisfying

(3.22)
\Bigl( 
1 - \alpha 

2

\Bigr) 
\widetilde \mu mn +

\alpha D\ell 
mn

2
 - 1

2
\epsilon opt > 0,

and D\ell 
mn is defined in (3.12).

Next we lower bound \| d\nu \| 2 in terms of the optimality gap.

Lemma 3.2. The following lower bound holds for \| d\nu \| 2:

(3.23) \alpha \| d\nu \| 2 \geq \mu 

D2
mx

\biggl( 
p\nu +1  - (1 - \alpha )p\nu  - \alpha 

\mu 
\| \bfitdelta \nu \| 2

\biggr) 
,

where Dmx is defined as in (3.12).

Proof. Invoking the optimality condition of \widehat x\nu 
i yields

G(x \star ) - G(\widehat x\nu 
i ) \geq  - (x \star  - \widehat x\nu 

i )
\top 

\Bigl( 
\nabla \widetilde fi(\widehat x\nu 

i ;x
\nu 
i ) + y\nu 

i  - \nabla fi(x
\nu 
i )
\Bigr) 
.(3.24)
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Using the \mu -strong convexity of F , we can write

U(x \star ) \geq U(\widehat x\nu 
i ) +G(x \star ) - G(\widehat x\nu 

i ) +\nabla F (\widehat x\nu 
i )

\top (x \star  - \widehat x\nu 
i ) +

\mu 

2
\| x \star  - \widehat x\nu 

i \| 2

(3.24)

\geq U(\widehat x\nu 
i )+

\Bigl( 
\nabla F (\widehat x\nu 

i ) - \nabla \widetilde fi(\widehat x\nu 
i ;x

\nu 
i ) - 

\bigl( 
y\nu 
i  - \nabla fi(x

\nu 
i )
\bigr) \Bigr) \top 

(x \star  - \widehat x\nu 
i ) +

\mu 

2
\| x \star  - \widehat x\nu 

i \| 2

= U(\widehat x\nu 
i ) +

\mu 

2

\bigm\| \bigm\| \bigm\| x \star  - \widehat x\nu 
i +

1

\mu 

\Bigl( 
\nabla F (\widehat x\nu 

i ) - \nabla \widetilde fi(\widehat x\nu 
i ;x

\nu 
i ) - 

\bigl( 
y\nu 
i  - \nabla fi(x

\nu 
i )
\bigr) \Bigr) \bigm\| \bigm\| \bigm\| 

2

 - 1

2\mu 

\bigm\| \bigm\| \bigm\| \nabla F (\widehat x\nu 
i ) - \nabla \widetilde fi(\widehat x\nu 

i ;x
\nu 
i ) - 

\bigl( 
y\nu 
i  - \nabla fi(x

\nu 
i )
\bigr) \bigm\| \bigm\| \bigm\| 

2

\geq U(\widehat x\nu 
i ) - 

1

2\mu 

\bigm\| \bigm\| \bigm\| \nabla F (\widehat x\nu 
i )\pm \nabla F (x\nu 

i ) - \nabla \widetilde fi(\widehat x\nu 
i ;x

\nu 
i ) - 

\bigl( 
y\nu 
i  - \nabla fi(x

\nu 
i )
\bigr) \bigm\| \bigm\| \bigm\| 

2

\geq U(\widehat x\nu 
i ) - 

1

\mu 

\bigm\| \bigm\| \bigm\| \nabla F (\widehat x\nu 
i ) - \nabla F (x\nu 

i ) +\nabla fi(x
\nu 
i ) - \nabla \widetilde fi(\widehat x\nu 

i ;x
\nu 
i )
\bigm\| \bigm\| \bigm\| 
2
 - 1

\mu 
\| \bfitdelta \nu i \| 2

= U(\widehat x\nu 
i ) - 

1

\mu 

\bigm\| \bigm\| \bigm\| \bigm\| 
\int 1

0

\Bigl( 
\nabla 2F (\theta \widehat x\nu 

i + (1 - \theta )x\nu 
i ) - \nabla 2 \widetilde fi(\theta \widehat x\nu 

i + (1 - \theta )x\nu 
i ;x

\nu 
i )
\Bigr) 
(d\nu 

i ) d\theta 

\bigm\| \bigm\| \bigm\| \bigm\| 
2

 - 1

\mu 
\| \bfitdelta \nu i \| 2

\geq U(\widehat x\nu 
i ) - 

D2
i

\mu 
\| d\nu 

i \| 2  - 1

\mu 
\| \bfitdelta \nu i \| 2.

Rearranging the terms and summing over i \in [m] yields

(3.25) \| d\nu \| 2 \geq \mu 

D2
mx

\Biggl( 
m\sum 

i=1

\bigl( 
U(\widehat x\nu 

i ) - U(x \star )
\bigr) 
 - 1

\mu 
\| \bfitdelta \nu \| 2

\Biggr) 
.

Using (3.15) in conjunction with U(x
\nu + 1

2

i ) \leq \alpha U(\widehat x\nu 
i ) + (1 - \alpha )U(x\nu 

i ) leads to

(3.26) \alpha 

m\sum 

i=1

(U(\widehat x\nu 
i ) - U(x \star )) \geq p\nu +1  - (1 - \alpha )p\nu .

Combining (3.25) with (3.26) provides the desired result (3.23).

As a last step, we upper bound \| \bfitdelta \nu \| 2 in (3.21) in terms of the consensus errors
\| x\nu 

\bot 
\| 2 and \| y\nu 

\bot 
\| 2.

Lemma 3.3. The following upper bound holds for the tracking error \| \bfitdelta \nu \| 2:
(3.27) \| \bfitdelta \nu \| 2 \leq 4L2

mx\| x\nu 
\bot \| 2 + 2\| y\nu 

\bot \| 2,
where Lmx is defined as in (2.4).

Proof.

\| \bfitdelta \nu \| 2 (3.11)
=

m\sum 

i=1

\| \nabla F (x\nu 
i )\pm \=y\nu  - y\nu 

i \| 2

(3.5)
=

1

m2

m\sum 

i=1

\bigm\| \bigm\| \bigm\| 
m\sum 

j=1

\nabla fj(x
\nu 
i ) - 

m\sum 

j=1

\nabla fj(x
\nu 
j ) +m \cdot \=y\nu  - m \cdot y\nu 

i

\bigm\| \bigm\| \bigm\| 
2

(2.1), (2.4)

\leq 1

m2

m\sum 

i=1

\left( 
 2m

m\sum 

j=1

L2
mx\| x\nu 

i  - x\nu 
j \| 2 + 2m2\| \=y\nu  - y\nu 

i \| 2
\right) 
 

=4L2
mx\| x\nu 

\bot \| 2 + 2\| y\nu 
\bot \| 2.

We are ready to prove the linear convergence of the optimality gap up to consensus
errors. The result is summarized in Proposition 3.4 below. The proof follows readily
by multiplying (3.21) and (3.23) by \widetilde \mu mn - L

2 \alpha  - 1
2\epsilon opt and 6(L2 + \widetilde L2

mx)/\mu , respectively,
adding them together to cancel out \| d\nu \| , and using (3.27) to bound \| \bfitdelta \nu \| 2.
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Proposition 3.4. The optimality gap p\nu (cf. (3.8)) satisfies

(3.28) p\nu +1 \leq \sigma (\alpha ) \cdot p\nu + \eta (\alpha ) \cdot 
\bigl( 
4L2

mx\| x\nu 
\bot \| 2 + 2\| y\nu 

\bot \| 2
\bigr) 
,

where \sigma (\alpha ) \in (0, 1) and \eta (\alpha ) > 0 are defined as

\sigma (\alpha ) \triangleq 1 - \alpha 

\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

D2
mx

\mu +
\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

,(3.29)

\eta (\alpha ) \triangleq 

1
2\epsilon 

 - 1
opt\alpha \cdot D2

mx

\mu + \alpha 
\mu \cdot 

\Bigl( \bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

\Bigr) 

D2
mx

\mu +
\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

;(3.30)

\epsilon opt satisfies (3.22); and Lmx and \widetilde \mu mn, D
\ell 
mn, Dmx are defined in (2.4) and (3.12),

respectively.

3.3.2. Step 2: \| x\bfitnu 

\bot 
\| and \| y\bfitnu 

\bot 
\| linearly converge up to \bfscrO (\| d\bfitnu \| ). We

upper bound \| x\nu 
\bot 
\| and \| y\nu 

\bot 
\| in terms of \| d\nu \| . We begin rewriting the SONATA

algorithm (3.1a)--(3.1d) in vector-matrix form; using (3.9) and (3.13), we have

x\nu +1 = \widehat W(x\nu + \alpha d\nu ),(3.31a)

y\nu +1 = \widehat W(y\nu +\nabla f\nu +1  - \nabla f\nu ).(3.31b)

Noting that x\nu 
\bot 
= (I - J)x\nu (similarly, y\nu 

\bot 
= (I - J)y\nu ) and (I - J)\widehat W = \widehat W - J (due

to the doubly stochasticity of W), it follows from (3.31) that

x\nu +1
\bot 

= (\widehat W  - J)(x\nu 
\bot + \alpha d\nu ),(3.32)

y\nu +1
\bot 

= (\widehat W  - J)(y\nu 
\bot +\nabla f\nu +1  - \nabla f\nu ).(3.33)

Using (3.32)--(3.33), Proposition 3.5 below establishes linear convergence of the con-
sensus errors x\nu 

\bot 
and y\nu 

\bot 
, up to a perturbation.

Proposition 3.5. The following hold:

\| x\nu +1
\bot 

\| \leq \rho \| x\nu 
\bot \| + \alpha \rho \| d\nu \| ,(3.34a)

\| y\nu +1
\bot 

\| \leq \rho \| y\nu 
\bot \| + 2Lmx\rho \| x\nu 

\bot \| + \alpha Lmx\rho \| d\nu \| ,(3.34b)

with \rho and Lmx defined as in (3.14) and (2.4), respectively.

Proof. We prove next (3.34b); (3.34a) follows readily from (3.32). Using (3.31a),
(3.33), and the Lipschitz continuity of \nabla fi (cf. (2.1)), we can bound \| y\nu +1

\bot 
\| as

\| y\nu +1
\bot 

\| \leq \rho \| y\nu 
\bot \| + \rho \| \nabla f\nu +1  - \nabla f\nu \| 

\leq \rho \| y\nu 
\bot \| + Lmx\rho \| (\widehat W  - I)x\nu 

\underbrace{}  \underbrace{}  
=(\widehat \bfW  - \bfI )\bfx \nu 

\bot 

+ \alpha \widehat Wd\nu \| 

\leq \rho \| y\nu 
\bot \| + 2Lmx\rho \| x\nu 

\bot \| + \alpha Lmx\rho \| d\nu \| ,

where in the last inequality we used \| W\| \leq 1.

3.3.3. Step 3: \| d\bfitnu \| = \bfscrO (
\surd 
\bfitp \bfitnu + \| y\bfitnu 

\bot 
\| ) (closing the loop). Given the

inequalities in Propositions 3.4 and 3.5, to close the loop, one needs to link \| d\nu \| to
the quantities in the aforementioned inequalities, which is done next.
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Proposition 3.6. The following upper bound holds for \| d\nu \| :

(3.35) \| d\nu \| 2 \leq 6

\mu 

\Biggl( \biggl( 
Dmx

\widetilde \mu mn
+ 1

\biggr) 2

+
4L2

mx

\widetilde \mu 2
mn

\Biggr) 
p\nu +

3

\widetilde \mu 2
mn

\| y\nu 
\bot \| 2,

where Lmx and \widetilde Lmx, \widetilde \mu mn, Dmx are defined as in (2.4) and (3.12), respectively.

Proof. By optimality of \widehat x\nu 
i and x \star we have

\Bigl( 
\nabla \widetilde fi(\widehat x\nu 

i ;x
\nu 
i ) + y\nu 

i  - \nabla fi(x
\nu 
i )
\Bigr) \top 

(x \star  - \widehat x\nu 
i ) +G(x \star ) - G(\widehat x\nu 

i ) \geq 0,

\nabla F (x \star )\top (\widehat x\nu 
i  - x \star ) +G(\widehat x\nu 

i ) - G(x \star ) \geq 0.

Summing the two inequalities above while adding and subtracting \=y\nu yields

0 \leq 

\Biggl( 
\nabla F (\bfx  \star ) - 

1

m

m\sum 

j=1

\nabla fj(\bfx 
\nu 
j ) +\nabla fi(\bfx 

\nu 
i ) - \nabla \widetilde fi(\widehat \bfx \nu 

i ;\bfx 
\nu 
i )

\Biggr) \top 

(\widehat \bfx \nu 
i  - \bfx 

 \star )

+ \| \=\bfy \nu  - \bfy 
\nu 
i \| \| \widehat \bfx \nu 

i  - \bfx 
 \star \| 

\leq 
\Bigl( 
\nabla F (\bfx  \star ) - \nabla F (\bfx \nu 

i ) +\nabla fi(\bfx 
\nu 
i ) - \nabla \widetilde fi(\widehat \bfx \nu 

i ;\bfx 
\nu 
i )
\Bigr) \top 

(\widehat \bfx \nu 
i  - \bfx 

 \star )

+ \| \=\bfy \nu  - \bfy 
\nu 
i \| \| \widehat \bfx \nu 

i  - \bfx 
 \star \| +

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \nabla F (\bfx \nu 
i ) - 

1

m

m\sum 

j=1

\nabla fj(\bfx 
\nu 
j )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \| \widehat \bfx 
\nu 
i  - \bfx 

 \star \| 

\leq 
\Bigl( 
\nabla F (\bfx  \star ) - \nabla F (\bfx \nu 

i ) +\nabla fi(\bfx 
\nu 
i )\pm \nabla \widetilde fi(\bfx  \star ;\bfx \nu 

i ) - \nabla \widetilde fi(\widehat \bfx \nu 
i ;\bfx 

\nu 
i )
\Bigr) \top 

(\widehat \bfx \nu 
i  - \bfx 

 \star )

+ \| \=\bfy \nu  - \bfy 
\nu 
i \| \| \widehat \bfx \nu 

i  - \bfx 
 \star \| +

\Biggl( 
1

m

m\sum 

j=1

Lj

\bigm\| \bigm\| \bfx \nu 
i  - \bfx 

\nu 
j

\bigm\| \bigm\| 
\Biggr) 
\| \widehat \bfx \nu 

i  - \bfx 
 \star \| 

\leq 

\biggl( \int 1

0

\Bigl( 
\nabla 2

F (\theta \bfx  \star + (1 - \theta )\bfx \nu 
i ) - \nabla 2 \widetilde fi

\bigl( 
\theta \bfx 

 \star + (1 - \theta )\bfx \nu 
i ;\bfx 

\nu 
i

\bigr) \Bigr) 
(\bfx  \star  - \bfx 

\nu 
i ) d\theta 

\biggr) \top 

(\widehat \bfx \nu 
i  - \bfx 

 \star )

 - \widetilde \mu i \| \widehat \bfx \nu 
i  - \bfx 

 \star \| 
2
+ \| \=\bfy \nu  - \bfy 

\nu 
i \| \| \widehat \bfx \nu 

i  - \bfx 
 \star \| +

\Biggl( 
1

m

m\sum 

j=1

Lj

\bigm\| \bigm\| \bfx \nu 
i  - \bfx 

\nu 
j

\bigm\| \bigm\| 
\Biggr) 
\| \widehat \bfx \nu 

i  - \bfx 
 \star \| 

\leq Di \| \bfx 
 \star  - \bfx 

\nu 
i \| \| \widehat \bfx \nu 

i  - \bfx 
 \star \|  - \widetilde \mu i \| \widehat \bfx \nu 

i  - \bfx 
 \star \| 

2
+ \| \=\bfy \nu  - \bfy 

\nu 
i \| \| \widehat \bfx \nu 

i  - \bfx 
 \star \| 

+

\Biggl( 
1

m

m\sum 

j=1

Lj

\bigm\| \bigm\| \bfx \nu 
i  - \bfx 

\nu 
j

\bigm\| \bigm\| 
\Biggr) 
\| \widehat \bfx \nu 

i  - \bfx 
 \star \| .

Rearranging terms and using the reverse triangle inequality, we obtain the follow-
ing bound for \| d\nu 

i \| :

(3.36) Di \| x \star  - x\nu 
i \| + \| \=y\nu  - y\nu 

i \| +

\left( 
 1

m

m\sum 

j=1

Lj

\bigm\| \bigm\| x\nu 
i  - x\nu 

j

\bigm\| \bigm\| 
\right) 
 

\geq \widetilde \mu i \| \widehat x\nu 
i  - x \star \| \geq \widetilde \mu i (\| d\nu 

i \|  - \| x \star  - x\nu 
i \| ) .

Therefore,

\| d\nu 
i \| 2 \leq 3

\biggl( 
Di

\widetilde \mu i
+ 1

\biggr) 2

\| x \star  - x\nu 
i \| 2 +

3

\widetilde \mu 2
i

\| \=y\nu  - y\nu 
i \| 2 +

3

\widetilde \mu 2
i

\left( 
 1

m

m\sum 

j=1

Lj

\bigm\| \bigm\| x\nu 
i  - x\nu 

j

\bigm\| \bigm\| 
\right) 
 

2
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\leq 3

\biggl( 
Di

\widetilde \mu i
+ 1

\biggr) 2

\| \bfx  \star  - \bfx 
\nu 
i \| 

2
+

3

\widetilde \mu 2
i

\| \=\bfy \nu  - \bfy 
\nu 
i \| 

2 +
6L2

mx

\widetilde \mu 2
im

\Biggl( 
m\sum 

j=1

\| \bfx \nu 
j  - \bfx 

 \star \| 2 +m\| \bfx \nu 
i  - \bfx 

 \star \| 2
\Biggr) 
.

Summing over i = 1, . . . ,m and using the \mu -strong convexity of U completes the
proof.

3.3.4. Step 4: Proof of the linear rate (chaining the inequalities). We
are now ready to prove the linear rate of the SONATA algorithm. We build on the
following intermediate result, introduced in [24].

Lemma 3.7. Given the sequence \{ s\nu \} , define the transformations

(3.37) SK(z) \triangleq max
\nu =0,...,K

| s\nu | z - \nu and S(z) \triangleq sup
\nu \in \BbbN 

| s\nu | z - \nu 

for z\in (0, 1). If S(z) is bounded, then | s\nu | = \scrO (z\nu ).

We show next how to chain the inequalities (3.28), (3.34), and (3.35) so that
Lemma 3.7 can be applied to the sequences \{ p\nu \} , \{ \| x\nu 

\bot 
\| 2\} , \{ \| y\nu 

\bot 
\| 2\} , and \{ \| d\nu \| 2\} ,

establishing thus their linear convergence.

Proposition 3.8. Let PK(z), XK
\bot 
(z), Y K

\bot 
(z), and DK(z) denote the transfor-

mation (3.37) applied to the sequences \{ p\nu \} , \{ \| x\nu 
\bot 
\| 2\} , \{ \| y\nu 

\bot 
\| 2\} , and \{ \| d\nu \| 2\} , respec-

tively. Given the constants \sigma (\alpha ) and \eta (\alpha ) (defined in Proposition 3.4) and the free
parameters \epsilon x, \epsilon y > 0 (to be determined), the following hold:

PK(z) \leq GP (\alpha , z) \cdot 
\bigl( 
4L2

mxX
K
\bot (z) + 2Y K

\bot (z)
\bigr) 
+ \omega p,(3.38a)

XK
\bot (z) \leq GX(z) \cdot \rho 2\alpha 2DK(z) + \omega x,(3.38b)

Y K
\bot (z) \leq GY (z) \cdot 8L2

mx\rho 
2XK

\bot (z) +GY (z) \cdot 2L2
mx\rho 

2\alpha 2DK(z) + \omega y,(3.38c)

DK(z) \leq C1 \cdot PK(z) + C2 \cdot Y K
\bot (z),(3.38d)

for all

z \in 
\bigl( 
max\{ \sigma (\alpha ), \rho 2(1 + \epsilon x), \rho 

2(1 + \epsilon y)\} , 1
\bigr) 
,(3.39)

where

GP (\alpha , z) \triangleq 
\eta (\alpha )

z  - \sigma (\alpha )
, \omega p \triangleq 

z

z  - \sigma (\alpha )
\cdot p0,(3.40a)

GX(z) \triangleq 
(1 + \epsilon  - 1

x )

z  - \rho 2(1 + \epsilon x)
, \omega x \triangleq 

z

z  - \rho 2(1 + \epsilon x)
\cdot \| x0

\bot \| 2,(3.40b)

GY (z) \triangleq 
(1 + \epsilon  - 1

y )

z  - \rho 2(1 + \epsilon y)
, \omega y \triangleq 

z

z  - \rho 2(1 + \epsilon y)
\cdot \| y0

\bot \| 2,(3.40c)

C1 \triangleq 
6

\mu 

\Biggl( \biggl( 
Dmx

\widetilde \mu mn
+ 1

\biggr) 2

+
4L2

mx

\widetilde \mu 2
mn

\Biggr) 
, C2 \triangleq 

4

\widetilde \mu 2
mn

.(3.40d)

Proof. Squaring (3.34) and using Young's inequality yields

\| x\nu +1
\bot 

\| 2 \leq \rho 2(1 + \epsilon x)\| x\nu 
\bot \| 2 + \rho 2(1 + \epsilon  - 1

x )\alpha 2\| d\nu \| 2

\| y\nu +1
\bot 

\| 2 \leq \rho 2(1 + \epsilon y)\| y\nu 
\bot \| 2 + \rho 2(1 + \epsilon  - 1

y )
\Bigl( 
8L2

mx\| x\nu 
\bot \| 2 + 2\alpha 2L2

mx\| d\nu \| 2
\Bigr) (3.41)

for arbitrary \epsilon x, \epsilon y > 0. The proof is completed by taking the maximum of both sides
of (3.28), (3.35), and (3.41) over \nu = 0, . . . ,K and using max\nu =0,...,K | s\nu +1| z - \nu \geq 
z \cdot max\nu =0,...,K | s\nu | z - \nu  - z \cdot | s0| for any sequence \{ s\nu \} and z \in (0, 1).

D
o

w
n
lo

ad
ed

 0
4
/2

8
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTRIBUTED GRADIENT-TRACKING METHODS 371

DK

PK

Y K
\bot 

XK
\bot 

Y K
\bot 

Y K
\bot 

DK

XK
\bot 

DK

DK
(3.38d)

(3.38d)

(3.38a)

(3.38a)

(3.38b)

(3.38c)

(3.38c)

(3.38b)

Fig. 1. Chain of the inequalities in Proposition 3.8 leading to (3.42).

Chaining the inequalities in Proposition 3.8 in the way shown in Figure 1, we can
bound DK(z) as (see Appendix A for the proof)

DK(z) \leq \scrP (\alpha , z) \cdot DK(z) +\scrR (\alpha , z),(3.42)

where \scrP (\alpha , z) is defined as

\scrP (\alpha , z) \triangleq GP (\alpha , z) \cdot GX(z) \cdot C1 \cdot 4L2
mx \cdot \rho 2 \cdot \alpha 2

+ (GP (\alpha , z) \cdot 2C1 + C2) \cdot GY (z) \cdot 2L2
mx\rho 

2 \cdot \alpha 2

+ (GP (\alpha , z) \cdot 2C1 + C2) \cdot GY (z) \cdot 8L2
mx\rho 

2 \cdot GX(z) \cdot \rho 2 \cdot \alpha 2,

(3.43)

and \scrR (\alpha , z) is a remainder, which is bounded under (3.39).
Therefore, as long as \scrP (\alpha , z) < 1, (3.42) implies

(3.44) DK(z) \leq \scrR (\alpha , z)

1 - \scrP (\alpha , z)
< +\infty ,

and thus \{ \| d\nu \| 2\} vanishes R-linearly at rate at least z (cf. Lemma 3.7). Applying
the same argument to the other inequalities in Proposition 3.8, one can conclude that
also the sequences \{ p\nu \} , \{ \| x\nu 

\bot 
\| 2\} , and \{ \| y\nu 

\bot 
\| \} converge R-linearly to zero.

The last step consists in showing that there exist \alpha \in (0, 1] and z \in (0, 1) satisfying
(3.39), such that \scrP (\alpha , z) < 1. This is proved in Theorem 3.9 below.

Theorem 3.9. Consider problem (P) under Assumptions A--B, and the SONATA
algorithm (3.1a)--(3.1d), under Assumptions C and D, with \widetilde \mu mn \geq D\ell 

mn. Then, there
exists a sufficiently small step-size \=\alpha \in (0, 1] (see the proof for its expression) such
that for all \alpha < \=\alpha , \{ U(x\nu 

i )\} converges to U \star at an R-linear rate, i \in [m].

Proof. The proof consists of the following two steps: Step 1: We first consider the
``marginal"" stable case by letting z = 1, and we show that there exists \=\alpha > 0 so that
\scrP (\alpha , 1) < 1 for all \alpha \in (0, \=\alpha ). Step 2: Then, invoking the continuity of \scrP (\alpha , z), we
argue that, for any \alpha \in (0, \=\alpha ), one can find \=z(\alpha ) < 1 such that \scrP 

\bigl( 
\alpha , \=z(\alpha )

\bigr) 
< 1. This

implies the boundedness of DK
\bigl( 
\=z(\alpha )

\bigr) 
, and thus \| d\nu \| 2 = \scrO 

\bigl( 
\=z(\alpha )\nu 

\bigr) 
(cf. Lemma 3.7).

\bullet Step 1. We begin optimizing the free parameters \epsilon x, \epsilon y, and \epsilon opt. Since the goal is
to find the largest \=\alpha so that \scrP (\alpha , 1) < 1, for all \alpha \in (0, \=\alpha ), the optimal choice of \epsilon x,
\epsilon y, and \epsilon opt is the one that minimizes \scrP (\alpha , 1), that is,

(3.45) \epsilon  \star = argmin
\epsilon >0

1 + \epsilon  - 1

1 - \rho 2(1 + \epsilon )
=

1 - \rho 

\rho 
.

We then set \epsilon x = \epsilon y = \epsilon  \star and proceed to optimize \epsilon opt, which appears in \eta (\alpha ) and
\sigma (\alpha ). Recalling the definition of \eta (\alpha ) and \sigma (\alpha ) (cf. Proposition 3.4) and the constraint
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(3.22), the problem boils down to minimizing

GP (\alpha , 1) =
\eta (\alpha )

1 - \sigma (\alpha )
=

1
2\epsilon 

 - 1
opt \cdot D2

mx

\mu + 1
\mu \cdot 

\Bigl( \bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

\Bigr) 

\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

,

subject to \epsilon opt \in (0, 2\widetilde \mu mn - \alpha (\widetilde \mu mn - D\ell 
mn)). To have a nonempty feasible set, we require

\alpha < 2\widetilde \mu mn/(\widetilde \mu mn  - D\ell 
mn) (recall that it is assumed that \widetilde \mu mn \geq D\ell 

mn). Setting the
derivative of GP (\alpha , 1) with respect to \epsilon opt to zero yields \epsilon  \star opt =

\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn+\alpha D\ell 

mn/2,
which is strictly feasible and thus the solution.

Let \scrP  \star (\alpha , z) denote the value of \scrP (\alpha , z) corresponding to the optimal choice of
the above parameters. The expression of \scrP  \star (\alpha , 1) reads

\scrP  \star (\alpha , 1) \triangleq G \star 
P (\alpha ) \cdot C1 \cdot 4L2

mx \cdot 
\rho 2

(1 - \rho )2
\cdot \alpha 2

+ (G \star 
P (\alpha ) \cdot 2C1 + C2) \cdot 2L2

mx \cdot 
\rho 2

(1 - \rho )2
\cdot \alpha 2

+ (G \star 
P (\alpha ) \cdot 2C1 + C2) \cdot 8L2

mx \cdot 
\rho 4

(1 - \rho )4
\cdot \alpha 2,

(3.46)

where

(3.47) G \star 
P (\alpha ) \triangleq 

D2

mx

\mu + 1
\mu \cdot 

\Bigl( \bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha 
\Bigr) 2

\Bigl( \bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha 
\Bigr) 2 .

\bullet Step 2. Since \scrP  \star (\bullet , 1) is continuous and monotonically increasing on (0, 2\widetilde \mu mn/
(\widetilde \mu mn  - D\ell 

mn), with \scrP  \star (0, 1) = 0, there exists some \=\alpha < 2\widetilde \mu mn/(\widetilde \mu mn  - D\ell 
mn) such that

\scrP  \star (\alpha , 1) < 1, for all \alpha \in (0, \=\alpha ). One can verify that, for any \alpha \in (0, 2\widetilde \mu mn/(\widetilde \mu mn  - 
D\ell 

mn)), \scrP  \star (\alpha , z) is continuous at z = 1. Therefore, for any fixed \alpha \in (0, \=\alpha ), \scrP  \star (\alpha , 1) <
1 implies the existence of some \=z(\alpha ) < 1 such that \scrP  \star (\alpha , \=z(\alpha )) < 1.

We conclude the proof providing the expression of a valid \=\alpha . Restricting \alpha \leq 
\widetilde \mu mn/(\widetilde \mu mn  - D\ell 

mn), we upper bound G \star 
P (\alpha ) by G \star 

P (\widetilde \mu mn/(\widetilde \mu mn  - D\ell 
mn)). Using for

G \star 
P (\alpha ) this upper bound in (3.46) and solving the resulting \scrP  \star (\alpha , 1) < 1 for \alpha yields

\alpha < \alpha 1 \triangleq 

\biggl( 
G \star 

P

\biggl( \widetilde \mu mn

\widetilde \mu mn  - D\ell 
mn

\biggr) 
\cdot C1 \cdot 4L2

mx \cdot 
\rho 2

(1 - \rho )2

+

\biggl( 
G \star 

P

\biggl( \widetilde \mu mn

\widetilde \mu mn  - D\ell 
mn

\biggr) 
\cdot 2C1 + C2

\biggr) 
\cdot 2L2

mx \cdot 
\rho 2

(1 - \rho )2

+

\biggl( 
G \star 

P

\biggl( \widetilde \mu mn

\widetilde \mu mn  - D\ell 
mn

\biggr) 
\cdot 2C1 + C2

\biggr) 
\cdot 8L2

mx \cdot 
\rho 4

(1 - \rho )4

\biggr)  - 1

2

.

(3.48)

Therefore, a valid \=\alpha is \=\alpha = min\{ \widetilde \mu mn/(\widetilde \mu mn  - D\ell 
mn), \alpha 1\} .

The next theorem provides an explicit expression of the convergence rate in The-
orem 3.9 in terms of the step-size \alpha ; the constants J , A 1

2

, and \alpha \ast therein are defined

in (B.7), (B.5) with \theta = 1/2, and (B.9), respectively.

Theorem 3.10. In the setting of Theorem 3.9, suppose that the step-size \alpha sat-
isfies \alpha \in (0, \alpha mx), with \alpha mx \triangleq min\{ (1  - \rho )2/A 1

2

, \widetilde \mu mn/(\widetilde \mu mn  - Dmn), 1\} . Then,
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U(x\nu 
i ) - U \star = \scrO (z\nu ), for all i \in [m], where

(3.49) z =

\left\{ 
  
  

1 - J \cdot \alpha for \alpha \in (0,min\{ \alpha \ast , \alpha mx\} ) ,\biggl( 
\rho +

\sqrt{} 
\alpha A 1

2

\biggr) 2

for \alpha \in [min\{ \alpha \ast , \alpha mx\} , \alpha mx) .

Proof. See Appendix B.

3.4. Discussion. Theorem 3.10 provides a unified set of convergence conditions
for different choices of surrogates and network topologies. To shed light on the expres-
sion of the rate and its dependence on the key optimization and network parameters,
we customize here Theorem 3.10 to specific network topologies and surrogate func-
tions. We begin considering star-networks (cf. section 3.4.1) and then move to general
graph topologies with no master node (cf. section 3.4.2). We will customize the rate

achieved by SONATA employing the following two surrogate functions \widetilde fi, representing
the two extreme choices in the spectrum of admissible surrogates:

\bullet Linearization.

(3.50) \widetilde fi(xi;x
\nu 
i ) \triangleq \nabla fi(x

\nu 
i )

\top (xi  - x\nu 
i ) +

L

2
\| xi  - x\nu 

i \| 2;

\bullet Local fi.

(3.51) \widetilde fi(xi;x
\nu 
i ) \triangleq fi(xi) +

\beta 

2
\| xi  - x\nu 

i \| 2.

3.4.1. Star-networks: SONATA-Star. Convergence of SONATA-Star (Algo-
rithm 3.2) is established in Corollary 3.11 below.

Corollary 3.11. Consider problem (P) under Assumption A over a star-net-
work; let \{ x\nu \} be the sequence generated by SONATA-Star, based on the surrogate
functions satisfying Assumption C and step-size \alpha \in (0,min(2\widetilde \mu mn/(\widetilde \mu mn  - D\ell 

mn), 1)].
Then, for all i = 1, . . . ,m,

(3.52) U(x\nu ) - U \star = \scrO (z\nu ), with z = 1 - \alpha \cdot 
\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

\alpha D\ell 
mn

2
D2

mx

2\mu +
\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

\alpha D\ell 
mn

2

.

In particular, when the surrogates (3.50) and (3.51) are employed along with \alpha = 1,
the rate above reduces to the following expressions:

\bullet Linearization (3.50). z \leq 1  - \kappa  - 1
g . Therefore, U(x\nu )  - U \star \leq \epsilon in at most

\scrO (\kappa g log(1/\epsilon )) iterations (communications).
\bullet Local fi (3.51).

(3.53) z \leq 1 - 1

1 + 4 \cdot \beta 
\mu \cdot min\{ 1, \beta 

\mu \} 
.

Therefore, U(x\nu ) - U \star \leq \epsilon in at most

(3.54)

\left\{ 
   
   

\scrO 
\bigl( 
1 \cdot log

\bigl( 
1/\epsilon 

\bigr) \bigr) 
if \beta \leq \mu ,

\scrO 
\Bigl( 

\beta 
\mu \cdot log

\bigl( 
1/\epsilon 

\bigr) \Bigr) 
if \beta > \mu 

iterations (communications).
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Proof. See Appendix C.

The following comments are in order. When linearization is employed, SONATA-
Star matches the iteration complexity of the centralized proximal-gradient algorithm.
When the fi's are sufficiently similar, (3.53)--(3.54) proves that faster rates can be
achieved if surrogates (3.51) are chosen over first-order approximations. As a case
study, consider the problem discussed in section 2.1.2: plugging (2.8) into Corol-

lary 3.11 shows that using the surrogates (3.51) yields \widetilde \scrO 
\bigl( 
L
\surd 
dm \cdot log(1/\epsilon )

\bigr) 
iterations

(communications); this contrasts with \widetilde \scrO 
\bigl( 
L
\surd 
dmn \cdot log(1/\epsilon )

\bigr) 
, achieved by first-order

methods (and SONATA-Star using linearization), which instead increases with the
sample size n.

Comparison with DANE and CEASE. For quadratic losses (and G = 0), the rate
of DANE, \scrO 

\bigl( 
(\beta /\mu )2 \cdot log(1/\epsilon )

\bigr) 
, is worse than (3.54). For nonquadratic losses, [38]

did not show any rate improvement of DANE over plain gradient algorithms, i.e.,
\scrO 
\bigl( 
\kappa g \cdot log(1/\epsilon )

\bigr) 
, while SONATA-star still retains (3.54). Comparing to the rate

achievable by CEASE, \scrO 
\bigl( 
(\beta /\mu )2 \cdot log(1/\epsilon )

\bigr) 
, SONATA improves by a factor \beta /\mu ,

which matches the order of the mirror-descent algorithm.

3.4.2. The general case. The convergence rate of SONATA over general graphs
is summarized in Corollary 3.12 for the linearization surrogates (3.50), while Corollar-
ies 3.13 and 3.14 consider the surrogates (3.51) based on local fi, with Corollary 3.13
addressing the case \beta \leq \mu and Corollary 3.14 the case \beta > \mu . The step-size \alpha is tuned
to obtain favorable rate expressions.

Corollary 3.12 (linearization surrogates). In the setting of Theorem 3.10, let
\{ x\nu \} be the sequence generated by SONATA, using the surrogates (3.50) and step-size
\alpha = c \cdot \alpha mx, c \in (0, 1), with \alpha mx = min\{ 1, (1 - \rho )2/(\rho \cdot 110\kappa g(1+\beta /L)2)\} . The number
of iterations (communications) needed for U(x\nu 

i ) - U \star \leq \epsilon , i \in [m], is

Case I. \scrO (\kappa g log(1/\epsilon )) , if
\rho 

(1 - \rho )2
\leq 1

110\kappa g

\Bigl( 
1 + \beta 

L

\Bigr) 2 ,

(3.55)

Case II. \scrO 
\Biggl( \bigl( 

\kappa g + \beta /\mu 
\bigr) 2

\rho 

(1 - \rho )2
log(1/\epsilon )

\Biggr) 
, otherwise.

(3.56)

Proof. See Appendix D.

Corollary 3.13 (local fi, \beta \leq \mu ). Instate the assumptions of Theorem 3.10
and suppose \beta \leq \mu . Consider SONATA using the surrogates (3.51) and step-size \alpha =
c \cdot \alpha mx, c \in (0, 1), with \alpha mx = min\{ 1, (1 - \rho )2/(M\rho )\} and M = 193(1+ \beta 

\mu )
2(\kappa g +

\beta 
\mu )

2.

The number of iterations (communications) needed for U(x\nu 
i ) - U \star \leq \epsilon , i \in [m], is

Case I. \scrO (1 \cdot log(1/\epsilon )) , if
\rho 

(1 - \rho )2
\leq 1

193
\Bigl( 
1 + \beta 

\mu 

\Bigr) 2 \Bigl( 
\kappa g +

\beta 
\mu 

\Bigr) 2 ,

(3.57)

Case II. \scrO 
\Biggl( 

\kappa 2
g \rho 

(1 - \rho )2
log(1/\epsilon )

\Biggr) 
, otherwise.

(3.58)
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Corollary 3.14 (local fi, \beta > \mu ). Instate the assumptions of Theorem 3.10
and suppose \beta > \mu . Consider SONATA using the surrogates (3.51) and step-size
\alpha = c\cdot \alpha mx, c \in (0, 1), with \alpha mx = min\{ 1, (1 - \rho )2/(M\rho )\} and M = 253(1+L

\beta )(\kappa g+
\beta 
\mu ).

The number of iterations (communications) needed for U(x\nu 
i ) - U \star \leq \epsilon , i \in [m], is

Case I. \scrO 
\biggl( 
\beta 

\mu 
\cdot log(1/\epsilon )

\biggr) 
, if

\rho 

(1 - \rho )2
\leq 1

253
\Bigl( 
1 + L

\beta 

\Bigr) \Bigl( 
\kappa g +

\beta 
\mu 

\Bigr) ,

(3.59)

Case II. \scrO 
\Biggl( 
(\kappa g + (\beta /\mu ))

2
\rho 

(1 - \rho )2
log(1/\epsilon )

\Biggr) 
, otherwise .

(3.60)

The proof of Corollaries 3.13 and 3.14 can be found in Appendix E.
Several comments are in order.

\bullet Rate of centralized (nonaccelerated) methods (Case I). For a fixed optimization
problem, if the network is sufficiently connected (\rho ``small""), the bottleneck on the
rate is given by the optimization process; SONATA matches the network-independent
rate order achieved on star-topologies (cf. Corollary 3.11) by the proximal gradient
algorithm when linearization is employed (cf. (3.55)) and by the mirror-descent scheme
when the local fi's are used in the surrogates (cf. (3.57) and (3.59)).
\bullet Network-dependent rates (Case II). As expected, the convergence rate deteriorates
as \rho increases, i.e., the network connectivity gets worse. This translates in a less
favorable dependence of the complexity on \kappa g and \beta /\mu , and network scalability of the
order of \rho /(1 - \rho )2. When \beta 

\surd 
\rho = \scrO (L) (e.g., the network is decently connected or \beta =

\scrO (L)), the complexity becomes \scrO 
\bigl( 
\kappa 2
g(1 - \rho ) - 2 log(1/\epsilon )

\bigr) 
, which compares favorably

with that of existing distributed schemes, determined instead by the local quantities
(2.3). The rate dependence on (1  - \rho ) - 2 can be improved leveraging accelerated
consensus protocols, as discussed below.
\bullet Linearization (3.50) versus local fi (3.51) surrogates. As already observed in the
setting of star-networks, the use of local losses as surrogates employs a form of pre-
conditioning in agents' subproblems. When the fi's are sufficiently similar to each
other, so that 1 + \beta /\mu < \kappa g, exploiting local Hessian information via (3.51) provably
reduces the iteration/communication complexity over linear models (3.50)---contrast
(3.55) with (3.57) and (3.59). Note that these faster rates are achieved without ex-
changing any matrices over the network, which is a key feature of SONATA. On the
other hand, when the functions fi are heterogeneous, the local surrogates (3.51) are
no longer informative of the average-loss F , and using linearization might yield better
rates. These design recommendations are supported by numerical results; see [42].
\bullet Multiple communications rounds and acceleration. When the network is not suf-
ficiently connected (as in Case I), one can still achieve iteration complexity of the
order of that of centralized methods, at the cost of multiple, finite, rounds of commu-
nications per iteration. Specifically, let \rho 0 be the connectivity of the given network,
associated with a given weight matrix W; suppose we run K steps of communications
per iteration (computation) in (3.31a)--(3.31b), each time using the weight matrix W;
this yields an effective network with improved connectivity \rho = \rho K0 . One can then
choose K so that the ratio \rho K0 /(1  - \rho K0 )2 satisfies the condition triggering Case I in
Corollaries 3.12--3.14, as briefly summarized next.

(1) Linearization. Invoking Corollary 3.12, one can check that the order of such a
K is K = \scrO (log(\kappa g(1+\beta /L)2)/ log(1/\rho 0)) = \scrO (log(\kappa g(1+\beta /L)2)/(1 - \rho 0)); therefore,
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SONATA using the surrogates (3.50) reaches an \epsilon -solution in \scrO (\kappa g log(1/\epsilon )) iterations
and \scrO 

\bigl( 
\kappa g \cdot (1 - \rho 0)

 - 1 log(\kappa g(1 + \beta /L)2) log(1/\epsilon )
\bigr) 
communications. The dependence

on the network connectivity \rho 0 can be further improved leveraging Chebyshev polyno-
mials [3] based on a symmetric weight matrix W: the final communication complexity
of SONATA reads

\scrO 
\biggl( 

\kappa g\surd 
1 - \rho 0

\cdot log
\bigl( 
\kappa g(1 + \beta /L)2

\bigr) 
log(1/\epsilon )

\biggr) 
.

We refer the reader to [42] for details on the implementation of Chebyshev polynomials
in the communication steps of SONATA.

(2) Local fi surrogates. Considering the case \beta \geq \mu (Corollary 3.14), we can show
that SONATA using the surrogates (3.51) and employing multiple rounds of com-
munications per iteration reaches an \epsilon -solution in \scrO (\beta /\mu \cdot log(1/\epsilon )) iterations and
\scrO 

\bigl( 
\beta /\mu \cdot log

\bigl( 
(\kappa g + \beta /\mu )(1 + L/\beta )

\bigr) 
(1 - \rho 0)

 - 1 log(1/\epsilon )
\bigr) 
communications. If Cheby-

shev polynomials are used to accelerate the communications, the communication com-
plexity further improves to

\scrO 
\biggl( 

\beta /\mu \surd 
1 - \rho 0

\cdot log
\bigl( 
(\kappa g + \beta /\mu )(1 + L/\beta )

\bigr) 
log(1/\epsilon )

\biggr) 
.

4. Concluding remarks. We studied convergence of the SONATA algorithm,
solving composite optimization problems over mesh networks. For strongly convex
sum-loss functions, the algorithm was proved to converge at a linear rate, which
depends on the global condition number \kappa g of the sum-loss; this improves on existing
results showing a much more pessimistic dependence on optimization parameters.
When the local losses are \beta -similar, faster rates (and thus communication savings)
are provably achievable---scaling with \beta /\mu ---at the cost of higher local computations.

Some extensions of the SONATA framework worth mentioning include (i) the
application to directed, time-varying digraphs [42]; (ii) the use of preconditioned
Newton steps as local agents' updates, in substitution of surrogates (3.51) [5]; (iii) the
acceleration of the plain algorithm in both unrelated scenarios and \beta -related scenarios,
matching (up to log-factors) lower complexity bounds [44]; and (iv) the generalization
to asynchronous modus operandi (still preserving linear convergence) [45].

Appendix A. Proof of (3.42). Chaining the inequalities in (3.38) as shown
in Figure 1, we have

DK(z) \leq C1 \cdot PK(z) + C2 \cdot Y K
\bot (z)

\leq C1 \cdot 
\Bigl( 
GP (\alpha , z) \cdot 

\bigl( 
4L2

mxX
K
\bot (z) + 2Y K

\bot (z)
\bigr) 
+ \omega p

\Bigr) 
+ C2 \cdot Y K

\bot (z)

= C1 \cdot GP (\alpha , z) \cdot 4L2
mxX

K
\bot (z) + (C1 \cdot GP (\alpha , z) \cdot 2 + C2)Y

K
\bot (z) + C1 \cdot \omega p

\leq C1 \cdot GP (\alpha , z) \cdot 4L2
mx \cdot GX(z) \cdot \rho 2\alpha 2DK(z)

+ (C1 \cdot GP (\alpha , z) \cdot 2 + C2) \cdot GY (z) \cdot 8L2
mx\rho 

2XK
\bot (z)

+ (C1 \cdot GP (\alpha , z) \cdot 2 + C2) \cdot GY (z) \cdot 2L2
mx\rho 

2\alpha 2DK(z)

+ C1 \cdot \omega p + (C1 \cdot GP (\alpha , z) \cdot 2 + C2) \cdot \omega y + C1 \cdot GP (\alpha , z) \cdot 4L2
mx \cdot \omega x

\leq C1 \cdot GP (\alpha , z) \cdot 4L2
mx \cdot GX(z) \cdot \rho 2\alpha 2DK(z)

+ (C1 \cdot GP (\alpha , z) \cdot 2 + C2) \cdot GY (z) \cdot 8L2
mx\rho 

2 \cdot GX(z) \cdot \rho 2\alpha 2DK(z)

+ (C1 \cdot GP (\alpha , z) \cdot 2 + C2) \cdot GY (z) \cdot 2L2
mx\rho 

2\alpha 2DK(z)

+ C1 \cdot \omega p + (C1 \cdot GP (\alpha , z) \cdot 2 + C2) \cdot \omega y + C1 \cdot GP (\alpha , z) \cdot 4L2
mx \cdot \omega x
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+ (C1 \cdot GP (\alpha , z) \cdot 2 + C2) \cdot GY (z) \cdot 8L2
mx\rho 

2 \cdot \omega x.

Notice that, under (3.39), GP (\alpha , z), GX(z), GY (z) and \omega p, \omega x, \omega y are all bounded,
which implies that the reminder \scrR (\alpha , z) in (3.38) is bounded as well.

Appendix B. Proof of Theorem 3.10. We find the smallest z satisfying
(3.39) such that \scrP (\alpha , z) < 1 for \alpha \in (0, \alpha mx), with \alpha mx \in (0, 1) to be determined.

Let us begin considering the condition z > \sigma (\alpha ) in (3.39). To simplify the analysis,
we impose instead the following stronger version:

z \geq \sigma (\alpha ) +
(\theta \cdot \alpha ) \cdot 

\Bigl( \bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

\Bigr) 

D2
mx

\mu +
\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2 \alpha  - 1
2\epsilon opt

(B.1)

for some \theta \in (0, 1), which will be chosen to tighten the bound. Notice that the right-
hand side of (B.1) is strictly larger than \sigma (\alpha ) but still strictly less than one, for any
\alpha \in (0, (2\widetilde \mu mn  - \epsilon opt)/(\widetilde \mu mn  - D\ell 

mn)), with given \epsilon opt \in (0, 2\widetilde \mu mn).
Observe that in the expression of \scrP (\alpha , z), the only coefficient multiplying \alpha 2

that depends on \alpha is the optimization gain GP (\alpha , z) \triangleq \eta (\alpha )/(z  - \sigma (\alpha )). Using (B.1),
GP (\alpha , z) can be upper bounded as
(B.2)

GP (\alpha , z) \leq inf
\epsilon opt\in (0,2\widetilde \mu mn - \alpha (\widetilde \mu mn - D\ell 

mn
))

1
2
\epsilon  - 1
opt \cdot 

D2

mx

\mu 
+ 1

\mu 
\cdot 
\Bigl( \bigl( 

1 - \alpha 
2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2
\alpha  - 1

2
\epsilon opt

\Bigr) 

\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

D\ell 
mn

2
\alpha  - 1

2
\epsilon opt

\cdot \theta  - 1

= G
 \star 
P (\alpha ) \cdot \theta 

 - 1
,

where the minimum is attained at \epsilon  \star opt \triangleq \widetilde \mu mn  - \alpha 
2 (\widetilde \mu mn  - D\ell 

mn), and G \star 
P (\alpha ) is defined

as in (3.47). Substituting the upper bound (B.2) into \scrP (\alpha , z) and setting therein
\epsilon opt = \epsilon  \star opt, we get the following sufficient condition for \scrP (\alpha , z) < 1:

(B.3) G \star 
P (\alpha ) \cdot \theta  - 1 \cdot C1 \cdot 4L2

mx \cdot GX(z) \cdot \rho 2 \cdot \alpha 2

+
\bigl( 
G \star 

P (\alpha ) \cdot \theta  - 1 \cdot 2C1 + C2

\bigr) 
\cdot GY (z) \cdot 2L2

mx\rho 
2 \cdot \alpha 2

+
\bigl( 
G \star 

P (\alpha ) \cdot \theta  - 1 \cdot 2C1 + C2

\bigr) 
\cdot GY (z) \cdot 8L2

mx\rho 
2 \cdot GX(z) \cdot \rho 2 \cdot \alpha 2 < 1.

To minimize the left-hand side, we set \epsilon x = \epsilon y = (
\surd 
z  - \rho )/\rho . Furthermore, using

the fact that G \star 
P (\alpha ) is monotonically increasing on \alpha \in (0, 2\widetilde \mu mn/(\widetilde \mu mn  - D\ell 

mn)), and
restricting \alpha \in (0, \widetilde \mu mn/(\widetilde \mu mn  - D\ell 

mn)], a sufficient condition for (B.3) is

(B.4) \alpha \leq \alpha (z) \triangleq 

\biggl( 
A1,\theta 

1

(
\surd 
z  - \rho )2

+A2,\theta 
1

(
\surd 
z  - \rho )2

+A3,\theta 
1

(
\surd 
z  - \rho )4

\biggr)  - 1/2

,

where A1,\theta , A2,\theta , and A3,\theta are constants defined as

A1,\theta \triangleq G \star 
P (\widetilde \mu mn/(\widetilde \mu mn  - D\ell 

mn)) \cdot \theta  - 1 \cdot C1 \cdot 4L2
mx \cdot \rho 2,

A2,\theta \triangleq 
\bigl( 
G \star 

P (\widetilde \mu mn/(\widetilde \mu mn  - D\ell 
mn)) \cdot \theta  - 1 \cdot 2C1 + C2

\bigr) 
\cdot 2L2

mx\rho 
2,

A3,\theta \triangleq 
\bigl( 
G \star 

P (\widetilde \mu mn/(\widetilde \mu mn  - D\ell 
mn)) \cdot \theta  - 1 \cdot 2C1 + C2

\bigr) 
\cdot 8L2

mx\rho 
4.

Condition (B.4) shows the rate z must satisfy

(B.5) z \geq 
\Bigl( 
\rho +

\sqrt{} 
A\theta \alpha 

\Bigr) 2

, with A\theta \triangleq 
\sqrt{} 

A1,\theta +A2,\theta +A3,\theta .
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Notice that, under \epsilon x = \epsilon y = (
\surd 
z  - \rho )/\rho , (B.5) implies z > \rho 2(1 + \epsilon x) = \rho 2(1 +

\epsilon y) = \rho 
\surd 
z, which are the other two conditions on z in (3.39). Therefore, overall, z

must satisfy (B.1) and (B.5). Letting \epsilon opt = \epsilon  \star opt in (B.1), the condition simplifies to

z \geq 1 - \widetilde \mu mn  - \alpha 
2 (\widetilde \mu mn  - D\ell 

mn)
2D2

mx

\mu + \widetilde \mu mn  - \alpha 
2 (\widetilde \mu mn  - D\ell 

mn)
\cdot (1 - \theta )\alpha .

Therefore, the overall convergence rate can be upper bounded by \scrO (\=z\nu ), where
(B.6)

\=z = inf
\theta \in (0,1)

max

\Biggl\{ \Bigl( 
\rho +

\sqrt{} 
A\theta \alpha 

\Bigr) 2

, 1 - \widetilde \mu mn  - \alpha 
2 (\widetilde \mu mn  - D\ell 

mn)
2D2

mx

\mu + \widetilde \mu mn  - \alpha 
2 (\widetilde \mu mn  - D\ell 

mn)
\cdot (1 - \theta )\alpha 

\Biggr\} 
.

Finally, we further simplify (B.6). Letting \theta = 1/2 and using \alpha \in (0, \widetilde \mu mn/(\widetilde \mu mn  - 
D\ell 

mn)], the second term in (B.6) can be upper bounded by

(B.7) 1 - \widetilde \mu mn\mu 

4D2
mx + \widetilde \mu mn\mu 

\cdot 1
2\underbrace{}  \underbrace{}  

\triangleq J

\alpha .

The condition \=z < 1 imposes the following upper bound on \alpha : \alpha < \alpha mx = min\{ (1  - 
\rho )2/A 1

2

, \widetilde \mu mn/(\widetilde \mu mn  - D\ell 
mn), 1\} . Equation (B.6) then simplifies to

(B.8) \=z = max

\Biggl\{ \biggl( 
\rho +

\sqrt{} 
\alpha A 1

2

\biggr) 2

, 1 - J\alpha 

\Biggr\} 
.

Note that as \alpha increases from 0, the first term in the max operator above is mono-
tonically increasing from \rho 2 < 1, while the second term is monotonically decreasing
from 1. Therefore, there must exist some \alpha \ast so that the two terms are equal, which
is

(B.9) \alpha \ast =

\left( 
  
 - \rho 

\sqrt{} 
A 1

2

+
\sqrt{} 
A 1

2

+ J(1 - \rho 2)

A 1

2

+ J

\right) 
  

2

.

To conclude, given the step-size satisfying \alpha \in (0, \alpha mx), the sequence \{ \| d\nu \| 2\} 
converges at rate \scrO (z\nu ), with z as given in (3.49).

Appendix C. Proof of Corollary 3.11. Since W = J, we have \bfitdelta \nu = 0; then
(3.21a) and (3.23) reduce to

(C.1) p\nu +1 \leq p\nu  - 
\biggl( \Bigl( 

1 - \alpha 

2

\Bigr) 
\widetilde \mu mn +

\alpha D\ell 
mn

2

\biggr) 
\alpha \| d\nu \| 2

and

(C.2) \alpha \| d\nu \| 2 \geq 2\mu 

D2
mx

\bigl( 
p\nu +1  - (1 - \alpha )p\nu 

\bigr) 
,

respectively. Combining (C.1) and (C.2) and using \alpha < 2\widetilde \mu mn/(\widetilde \mu mn  - Dmn) yields

p\nu +1 \leq 

\left( 
 1 - \alpha \cdot 

\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

\alpha D\ell 
mn

2
D2

mx

2\mu +
\bigl( 
1 - \alpha 

2

\bigr) 
\widetilde \mu mn +

\alpha D\ell 
mn

2

\right) 
 p\nu ,(C.3)D

o
w

n
lo

ad
ed

 0
4
/2

8
/2

3
 t

o
 1

2
8
.2

1
0
.1

2
6
.1

9
9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTRIBUTED GRADIENT-TRACKING METHODS 379

which proves (3.52).
We next customize (3.52) to the specific choices of the surrogate functions.

\bullet Linearization. Consider the choice of \widetilde fi as in (3.50). We have \widetilde \mu mn = L; and we
can set D\ell 

mn = 0, Dmx = L - \mu , and \alpha = 1. Substituting these values into (3.52), we
obtain z \leq 1 - \kappa  - 1

g .

\bullet Local fi. Consider now \widetilde fi as in (3.51). By \nabla 2fi(x) \succeq 0 for all x \in \scrK , and by

Definition 2.1, we have 0 \preceq \nabla 2 \widetilde fi(x,y)  - \nabla 2F (x) \preceq 2\beta I for all x,y \in \scrK . Therefore,
we can set D\ell 

mn = 0, Dmx = 2\beta , and \widetilde \mu mn = \beta +(\mu  - \beta )+. Using these values in (3.52)
yields

z

\left\{ 
  
  

= 1 - \alpha \cdot \beta (1 - \alpha 
2 )

2\beta 2

\mu 
+\beta (1 - \alpha 

2 )
if \mu \leq \beta ,

\leq 1 - \alpha \cdot \mu (1 - \alpha 
2 )

2\beta 2

\mu 
+\mu (1 - \alpha 

2 )
if \mu > \beta .

(C.4)

Setting \alpha = min\{ 1, 2\widetilde \mu mn/((\mu  - \beta )+ + \beta )\} = 1 in the expression above yields (3.53).

Appendix D. Proof of Corollary 3.12. According to Theorem 3.10, the rate
z can be bounded as

(D.1) z \leq max\{ z1, z2\} , with z1 \triangleq 1 - \alpha \cdot J and z2 \triangleq 

\Bigl( 
\rho +

\sqrt{} 
\alpha A 1

2

\Bigr) 2

,

where J and A 1

2

are defined as in (B.7) and (B.5), respectively.
The proof consists in bounding properly z1 and z2 based upon the surrogate

(3.50) postulated in the corollary. We begin particularizing the expressions of J and

A 1

2

. Since \nabla 2 \widetilde fi(xi;x
\nu 
i ) = L, one can set \widetilde \mu mn = L, and (3.4) holds with D\ell 

mn = 0 and

Dmx = L - \mu . Furthermore, by Assumption 2.1, it follows that \beta \geq \lambda max(\nabla 2fi(x)) - L
for all x \in \scrK ; hence, one can set Lmx = L + \beta . Next, we will substitute the above
values into the expressions of J and A 1

2

.

To do so, we need to first particularize the quantities G \star 
P (

\widetilde \mu mn

\widetilde \mu mn - D\ell 
mn

) (cf. (3.47)),

C1, and C2 (cf. (3.40d)):

G \star 
P

\biggl( \widetilde \mu mn

\widetilde \mu mn  - D\ell 
mn

\biggr) 
= G \star 

P (1) =
4(L - \mu )2 + L2

\mu L2
,

C1 =
6

\mu L2

\bigl( 
(2L - \mu )2 + 4(L+ \beta )2

\bigr) 
, and C2 =

4

L2
.

Accordingly, the expressions of J and A 1

2

read

(D.2) J =
1

2

\kappa g

4(\kappa g  - 1)2 + \kappa g
\in 

\biggl[ 
1

8\kappa g
,
1

2

\biggr] D
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and

(A 1

2

)2 = G
 \star 
P (1) \cdot 2 \cdot C1 \cdot 4L

2
mx \cdot \rho 2 + (G \star 

P (1) \cdot 4 \cdot C1 + C2) \cdot 2L
2
mx\rho 

2

+ (G \star 
P (1) \cdot 4 \cdot C1 + C2) \cdot 8L

2
mx\rho 

4

=(24G \star 
P (1) \cdot C1 + 5C2) \cdot 2L

2
mx\rho 

2

=

\biggl( 
24 \cdot 

4(L - \mu )2 + L2

\mu L2
\cdot 

6

\mu L2

\bigl( 
(2L - \mu )2 + 4(L+ \beta )2

\bigr) 
+ 20L - 2

\biggr) 
\cdot 2(L+ \beta )2\rho 2

\leq 

\biggl( 
24 \cdot 

5

\mu 
\cdot 

24

\mu L2

\bigl( 
L

2 + (L+ \beta )2
\bigr) 
+ 20L - 2

\biggr) 
\cdot 2(L+ \beta )2\rho 2

=

\Biggl( 
24 \cdot 24 \cdot 5

\Biggl( 
1 +

\biggl( 
1 +

\beta 

L

\biggr) 2
\Biggr) \biggl( 

1 +
\beta 

L

\biggr) 2

\kappa 
2
g + 20

\biggl( 
1 +

\beta 

L

\biggr) 2
\Biggr) 

\cdot 2\rho 2

\leq 1102 \cdot \kappa 2
g

\biggl( 
1 +

\beta 

L

\biggr) 4

\rho 
2
,

(D.3)

where in the last inequality we have used the fact that \kappa g \geq 1.
Using the above expressions, in what follows we upper bound z1 and z2.
By (D.3), we have

(D.4) z2 \leq \=z2 \triangleq 

\Bigl( 
\rho +

\sqrt{} 
\alpha M\rho 

\Bigr) 2

, with M \triangleq 110 \cdot \kappa g(1 + \beta /L)2.

Since \alpha \in (0, 1] must be chosen so that z \in (0, 1], we impose max\{ z1, \=z2\} < 1,
implying \alpha \leq min\{ J - 1, (1  - \rho )2/(M\rho ), 1\} . Since J - 1 > 1 (cf. (D.2)), the condition
on \alpha reduces to \alpha \leq \alpha mx \triangleq min\{ (1  - \rho )2/(M\rho ), 1\} . Choose \alpha = c \cdot \alpha mx, for some
given c \in (0, 1). Depending on the value of \rho , either \alpha mx = 1 or \alpha mx = (1 - \rho )2/(M\rho ).
\bullet Case I: \alpha mx = 1. This corresponds to the case M\rho \leq (1 - \rho )2, which happens when
the network is sufficiently connected (\rho is small). Note that we also have \rho \leq 1/110;
otherwise M\rho \geq 110\kappa g \rho > 1 > (1 - \rho )2. In this setting, \alpha = c \cdot \alpha mx = c, and

z1 = 1 - c \cdot J,

\=z2 =
\Bigl( 
\rho +

\sqrt{} 
cM\rho 

\Bigr) 2 (a)

\leq 
\Bigl( 
1 - (1 - \rho ) +

\sqrt{} 
c(1 - \rho )2

\Bigr) 2

=
\bigl( 
1 - 

\bigl( 
1 - \surd 

c
\bigr) 
(1 - \rho )

\bigr) 2 \leq 1 - 
\bigl( 
1 - \surd 

c
\bigr) 2

(1 - \rho )2

(b)

\leq 1 - (1 - \surd 
c)2(1 - 1/110)2,

where in (a) we used M\rho \leq (1 - \rho )2 and (b) follows from \rho \leq 1/110.
Therefore, z can be bounded as

z \leq max\{ z1, \=z2\} \leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot (1 - 1/110)

2 \cdot J

\leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot (1 - 1/110)

2 \cdot 1

8\kappa g
.

(D.5)

\bullet Case II. \alpha mx = (1  - \rho )2/(M\rho ). This corresponds to the case M\rho \geq (1  - \rho )2. We
have \alpha = c \cdot \alpha mx = c \cdot (1 - \rho )2/(M\rho ),

z1 = 1 - J c

M\rho 
\cdot (1 - \rho )2, and \=z2 = 1 - 

\bigl( 
1 - \surd 

c
\bigr) 2

(1 - \rho )2.

We claim that (J c)/(M\rho ) < 1. Suppose this is not the case, that is, M\rho \leq Jc.
Since Jc < 1/2 (cf. (D.2)) and M \geq 110\kappa , M\rho \leq Jc would imply \rho < 1/(220\kappa g).
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This however is in contradiction to the assumption M\rho \geq (1  - \rho )2, as it would lead
to 1/2 > M\rho \geq (1 - \rho )2 > (1 - 1/(220\kappa g))

2.
Using (J c)/(M\rho ) < 1, we can bound z:

z \leq max\{ z1, \=z2\} \leq 1 - c J

M\rho 
\cdot 
\bigl( 
1 - \surd 

c
\bigr) 2

(1 - \rho )2

\leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot 1

8\kappa g
\cdot (1 - \rho )2

110 \cdot \kappa g \cdot (1 + \beta /L)2 \cdot \rho .

Appendix E. Proof of Corollaries 3.13 and 3.14. We prove the two
corollaries together. We follow steps similar to those in Appendix D but customized
to the surrogate (3.51). We begin by particularizing the expressions of J and A 1

2

.

In the setting of the corollary, we have \nabla 2 \widetilde fi(x;y) = \nabla 2fi(x) + \beta I for all y \in \scrK ;

\nabla 2fi(x) \succeq 0 for all x \in \scrK ; and, by Assumption 2.1, 0 \preceq \nabla 2 \widetilde fi(x,y) - \nabla 2F (x) \preceq 2\beta I
for all x,y \in \scrK . Therefore, we can set D\ell 

mn = 0, Dmx = 2\beta , \widetilde \mu mn = \beta + (\mu  - \beta )+ =
max\{ \beta , \mu \} , and Lmx = L+ \beta .

Using these values, G \star 
P (

\widetilde \mu mn

\widetilde \mu mn - D\ell 
mn

), C1, and C2 can be simplified as follows:

G \star 
P

\biggl( \widetilde \mu mn

\widetilde \mu mn  - D\ell 
mn

\biggr) 
= G \star 

P (1) =
16\beta 2 +max\{ \beta , \mu \} 2

\mu max\{ \beta , \mu \} 2 ,

C1 =
6

\mu 

\Biggl( \biggl( 
2\beta 

max\{ \beta , \mu \} + 1

\biggr) 2

+
4(L+ \beta )2

max\{ \beta , \mu \} 2

\Biggr) 
, and C2 =

4

max\{ \beta , \mu \} 2 .

Accordingly, the expressions of J and A 1

2

read

(E.1) J =
1

2

1

1 + 16
\Bigl( 

\beta 
\mu 

\Bigr) 
\cdot min

\Bigl\{ 
1, \beta 

\mu 

\Bigr\} 

and

(A 1

2

)2

\leq (24G \star 
P (1) \cdot C1 + 5C2) \cdot 2L2

mx\rho 
2

\leq 
\Biggl( 
24 \cdot 16\beta 

2 +max\{ \beta , \mu \} 2
max\{ \beta , \mu \} 2 \cdot 6

\mu 2

\Biggl( \biggl( 
2\beta 

max\{ \beta , \mu \} + 1

\biggr) 2

+
4(L+ \beta )2

max\{ \beta , \mu \} 2

\Biggr) 
+

20

max\{ \beta , \mu \} 2

\Biggr) 
\cdot 2(L+ \beta )2\rho 2

=

\left\{ 
   
   

\biggl( 
24 \cdot 17 \cdot 6 \cdot 

\biggl( 
9 + 4

\Bigl( 
1 + L

\beta 

\Bigr) 2\biggr) 
\cdot 
\Bigl( 
\kappa g + \beta 

\mu 

\Bigr) 2
+ 20

\Bigl( 
1 + L

\beta 

\Bigr) 2\biggr) 
\cdot 2\rho 2, \beta > \mu ,

\biggl( 
24 \cdot 
\Bigl( 

16\beta 2

\mu 2 + 1
\Bigr) 
\cdot 6
\Bigl( 
\kappa g + \beta 

\mu 

\Bigr) 2 \biggl( \Bigl( 
2\beta 
\mu 

+ 1
\Bigr) 2

+ 4
\Bigl( 
\kappa g + \beta 

\mu 

\Bigr) 2\biggr) 
+ 20

\Bigl( 
\kappa g + \beta 

\mu 

\Bigr) 2\biggr) 
\cdot 2\rho 2, \beta \leq \mu ,

\leq M2\rho 2,

where

M =

\left\{ 
 
 
253

\Bigl( 
1 + L

\beta 

\Bigr) \Bigl( 
\kappa g +

\beta 
\mu 

\Bigr) 
, \beta > \mu ,

193
\Bigl( 
1 + \beta 

\mu 

\Bigr) 2 \Bigl( 
\kappa g +

\beta 
\mu 

\Bigr) 2

, \beta \leq \mu .
(E.2)

Similarly to the proof of Corollary 3.12, we bound z \leq max\{ z1, z2\} as

(E.3) z \leq max\{ z1, \=z2\} , with z1 \triangleq 1 - \alpha \cdot J and \=z2 \triangleq 

\Bigl( 
\rho +

\sqrt{} 
\alpha M \rho 

\Bigr) 2

,
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where J and M are now given by (E.1) and (E.2), respectively. For max\{ z1, z2\} < 1,
we require \alpha \leq \alpha mx \triangleq min\{ 1, (1 - \rho )2/(M\rho )\} , and choose \alpha = c \cdot \alpha mx, with arbitrary
c \in (0, 1). We study separately the cases \beta > \mu and \beta \leq \mu .

(1) \beta > \mu . In this case we have

(E.4) M = 253

\biggl( 
1 +

L

\beta 

\biggr) \biggl( 
\kappa g +

\beta 

\mu 

\biggr) 
and J =

1

2

1

1 + 16 (\beta /\mu )
\geq 1

34(\beta /\mu )
.

Since \alpha = c\alpha mx = cmin\{ 1, (1  - \rho )2/(M\rho )\} , we study next the case \alpha mx = 1 and
\alpha mx = (1 - \rho )2/(M\rho ) separately.

\bullet Case I. \alpha mx = 1. We have M\rho \leq (1 - \rho )2, \alpha = c, and thus

z1 = 1 - c \cdot J and \=z2 \leq 1 - 
\bigl( 
1 - \surd 

c
\bigr) 2

(1 - \rho )2.

Since M \geq 253 and (1  - \rho )2 \leq 1, it must be that \rho \leq 1/253. Therefore, the
rate z can be bounded as

z \leq max\{ z1, \=z2\} \leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot J \cdot (1 - \rho )2

\leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot 

\biggl( 
1 - 1

253

\biggr) 2

\cdot 1

34
\cdot \mu 
\beta 
.

\bullet Case II. \alpha mx = (1  - \rho )2/(M\rho ). This corresponds to M\rho \geq (1  - \rho )2, \alpha =
c \cdot (1 - \rho )2/(M\rho ), and

z1 = 1 - J c

M\rho 
\cdot (1 - \rho )2 and \=z2 \leq 1 - 

\bigl( 
1 - \surd 

c
\bigr) 2

(1 - \rho )2.

Using the same argument as in the proof of Corollary 3.12, Case II, one can
show that (c J)/(M\rho ) < 1. Therefore,

z \leq max\{ z1, \=z2\} \leq 1 - 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot c J \cdot (1 - \rho )2

M\rho 
(E.4)

\leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot 1

34
\cdot (1 - \rho )2

253
\Bigl( 
\kappa g +

\beta 
\mu 

\Bigr) 2

\rho 
.

(2) \beta \leq \mu . In this case we have

(E.5) M = 193

\biggl( 
1 +

\beta 

\mu 

\biggr) 2 \biggl( 
\kappa g +

\beta 

\mu 

\biggr) 2

and J =
1

2

1

1 + 16 (\beta /\mu )
2 .

\bullet Case I. \alpha mx = 1. Following the same reasoning as \mu \leq \beta , we can prove

z \leq max\{ z1, \=z2\} \leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot 

\biggl( 
1 - 1

193

\biggr) 2

\cdot 1

2 + 32
\Bigl( 

\beta 
\mu 

\Bigr) 2 .(E.6)

\bullet Case II. \alpha mx = (1  - \rho )2/(M\rho ). We claim that (c J)/(M\rho ) \leq 1; otherwise
\rho \leq c/386, which would lead to the following contradiction: c/2 \geq (c J) >
M\rho \geq (1 - \rho )2 \geq (1 - c/386)2. Therefore,

z \leq max\{ z1, \=z2\} \leq 1 - c \cdot 
\bigl( 
1 - \surd 

c
\bigr) 2 \cdot 1

2 + 32
\Bigl( 

\beta 
\mu 

\Bigr) 2

(1 - \rho )2

193
\Bigl( 
1 + \beta 

\mu 

\Bigr) 2 \Bigl( 
\kappa g +

\beta 
\mu 

\Bigr) 2

\rho 

\leq 1 - c\prime \cdot (1 - \rho )2

\kappa 2
g \rho 

,
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where c\prime \in (0, 1) is a suitable constant, independent of \beta /\mu , \kappa g, and \rho .
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