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Abstract—We study linear regression from data distributed
over a network of agents (with no master node) by means of
LASSO estimation, in high-dimension, which allows the ambient
dimension to grow faster than the sample size. While there
is a vast literature of distributed algorithms applicable to the
problem, statistical and computational guarantees of most of
them remain unclear in high dimension. This paper provides a
first statistical study of the Distributed Gradient Descent (DGD)
in the Adapt-Then-Combine (ATC) form. Our theory shows
that, under standard notions of restricted strong convexity and
smoothness of the loss functions—which hold with high probability
for standard data generation models—suitable conditions on the
network connectivity and algorithm tuning, DGD-ATC converges
globally at a /inear rate to an estimate that is within the centralized
statistical precision of the model. In the worst-case scenario, the
total number of communications to statistical optimality grows
logarithmically with the ambient dimension, which improves on
the communication complexity of DGD in the Combine-Then-
Adapt (CTA) form, scaling linearly with the dimension. This
reveals that mixing gradient information among agents, as DGD-
ATC does, is critical in high-dimensions to obtain favorable rate
scalings.

Index Terms—Distributed optimization, high-dimension statis-
tics, linear convergence, sparse linear regression.

I. INTRODUCTION

We study sparse linear regression over a network of m
agents, modeled as an undirected graph. In particular, no
centralized node is assumed in the network; agents can com-
municate only with their immediate neighbors—we refer to
these networks as mesh networks. Each agent ¢ locally owns
n linear measurements of an s-sparse signal 6* € R common
to all local models:

yi = X0 +w;, i=1,...,m, ()

where y; € R™ is the vector of n observations, X; € Rnxd
is the design matrix, w; € R"™ is observation noise. The total
sample size over the network is N = m -n. We are interested
in the high-dimensional setting: the ambient dimension d is
larger (and grows faster) than the total sample size N and
s < d [44].

The LASSO estimator of 6* based on all N samples reads

o~

f € argmin

1 m
F(0) 2= f:(0), 2)
0eRe: |01 <R m =
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with .
(0) &2 —ly — X.0]2
fi(0) QnHyz Xi0|°,

where the sparsity information is encoded via the projection
onto the /1 ball. Solutions methods for (2) have been exten-
sively studied in the centralized setting (e.g., on master-worker
architecture); see, e.g., [4], [6], [21], [22], [45]. Our focus here
is on first-order methods; more specifically, the benchmark is
the Projected Gradient Descent (PGD) [2], whose performance
when applied to (2) can be summarized as follows: under (sub-
)Gaussian random matrix designs (see Assumption 2 for other
statistical models) and conditions for statistical consistency—
slogd/N = o(1)-the iterates {0’} generated by the PGD
(starting from 6°) satisfy with high-probability:

16" — 8] < rt1/8° — 8]|> + o(]|6 — 6*[|), 3)

with
. 1—ky '+ O(slogd/N)
B 1—0(slogd/N)

where in the expression of the rate » we neglected universal
constants and kx > 1 is the condition number of the covari-
ance matrix of the covariates (see Assumption 2). Notice that
the rate r is invariant to the ambient dimension d under high-
dimension scaling s,d/N — oo as long as slogd/N remains
constant. In words: the optimization error ||#* — 6||? decays
liﬁearly with rate r, up to a tolerance of a smaller order than
|0 — 6*||2. Therefore every limit point of {#'} is within the
statistical error from 6*. This is the best one can hope for,
statistically (ignoring lower order terms) and computationally
(within first-order, non accelerated methods).

The PGD is not implementable on mesh networks: agents
cannot compute locally the full gradient VF', as they do not
have access to the entire data set, and sharing data across the
network is either infeasible (e.g., due to privacy issues) or
highly inefficient (e.g., due to excessive communication over-
head). A natural question is whether statistical/computational
guarantees similar to those of PGD can be mimicked by some
distributed algorithms. Of particular interest is the regime
wherein the local sample size n is below information theo-
retical bounds while the total one N is sufficient for statistical
consistency.

Decentralized versions of PGD have been extensively stud-
ied in the literature of distributed optimization (see Sec. I-B
for a review of the relevant works); with no doubts, Distributed
Gradient Descent (DGD) algorithms are among the most
popular ones [11], [12], [29], [30], [33]. Roughly speaking
they are of two types, based upon the information mixed
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locally by the agents, namely: the DGD in the Combine-then-
Adapt (DGD-CTA) form [29], [30] and the DGD in the Adapt-
Then-Combine update (DGD-ATC) [11], [12], [33]. DGD-CTA
averages local parameters vectors whereas DGD-ATC averages
both local parameter vectors and gradients. More specifically,
when applied to the LASSO problem (2), DGD-CTA and
DGD-ATC updates read for all t =1,2,...,

> w0 |

=1
4

pep-cTa: ) = ]
l0:ll. <R

and

D wii (07 =4V EE5Y) ]

j=1
(&)
respectively, where 0! is the estimate from agent i of the
common variable 6 at iteration t; HH'Hl <r(e) denotes the
Euclidean projection of its argument onto the £;-ball {# € R% :
161 < R}, with R > 0; v € (0,1] is the stepsize; and w;;’s
are suitably chosen nonnegative weights, such that w;; = 0 if
there is no link between ¢ and j. In words, each agent 7 in
DGD-CTA builds its local update first performing one step of
mixing with the neighbors’ estimates 9; (termed consensus
step)—aiming at enforcing asymptotic agreement among all
the variables—followed by a ‘“correction” based on its own
gradient V f;, and finally projected onto the ¢;-ball to enforce
sparsity. On the other hand, the updates in DGD-ATC swap
the order of consensus and optimization steps, mixing thus

local parameters and gradients.

Despite their popularity, statistical-computational guaran-
tees of DGD-CTA and DGD-ATC remain elusive in high-
dimension. Existing studies are of pure optimization type—
lacking statistical properties of the limit points of the iterates
(4) and (5); furthermore, they are suitable only for low-
dimensions (see Sec. I-B for details). In the companion paper
[20] we provide the first statistical analysis of DGD-CTA in
high-dimension; this work complements [20] studying DGD-
ATC, offering thus a comparative analysis of the two schemes
in high-dimension. More specifically, in [20], we studied the
statistical properties of DGD-CTA applied to the LASSO
problem in Lagrangian form. Same conclusions can be proved
for the LASSO problem in the projected form (2): For standard
statistical models of predictors and stepsize v = O(d~!), the
iterates generated by DGD-CTA enter, with high-probability,
an e-neighborhood of a statistically optimal estimate of 6* in

pep-atc: ) =[]
6:ill. <R

2
@ <K2drrilo;)gm -log i) communications (iterations),

(6)
where p € [0,1) is a measure of the connectivity of the
network, the smaller p, the more connected the graph. This
result is of the same type of (3), showing thus that centralized
statistical accuracy is achievable over mesh networks at linear
rate. However, such a rate scales undesirably as O(d), which
contrasts with the rate-invariant property of PGD in the
centralized setting, as shown by (3). This is a consequence
of the stepsize choice v = O(d~!). Numerical results in [20]
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confirm that v = O(d~') cannot be eased, if one aims for
centralized statistical accuracy.

The role of ~ is to control consensus errors, induced by
the use of local gradients V f; in the updates (4) rather than
the full gradient VF. A natural question is then whether
mixing the gradient along with the iterations, as in DGD-ATC,
will improve the rate dependence on the ambient dimension.
Understanding statistical-computational guarantees of DGD-
ATC in high-dimension as well as whether it improves over
DGD-CTA are open problems. This work provides an answer
to these questions, complementing the study in the companion
paper [20] of DGD-CTA in high-dimension.

A. Main contributions

Our contributions can be summarized as follows:

(i) Linear convergence up to a tolerance: Under suitably
restricted notions of strong convexity and smoothness of
F' [2] (see Sec. II)-which hold with high probability for
a variety of statistical models underlying (1)-we identify
tuning recommendation ensuring the iterates generated by
DGD-ATC to converge at linear rate to a limit point that
is within a fixed tolerance from the centralized LASSO
solution #—see Theorem 2.

Notice that, given the different nature of the CTA- and
ATC-form updates, the analysis in [20] is not usable
to study DTC-ATC: CTA-updates (4) can be interpreted
as those of the (proximal) gradient algorithm applied
to a centralized, lifted, penalized optimization problem
associated to the original LASSO formulation. This is
not the case for the ATC-iterates (5), which calls for an
ad-hoc analysis directly in the distributed domain.
Statistical-computational guarantees: When
customized to standard statistical models underlying
(1) (see Assumption2), convergence results in (i) hold
with high probability (see Theorem 3); for instance, for
(sub-)Gaussian predictors and under slogd/N = o(1)
(needed for centralized statistical consistency) and

(i)

P S pOly_l(d7m7"<‘./Z)a (7)

DGD-ATC with stepsize v = O(1) enters with high-
probability an e-neighborhood of a statistically optimal
estimate of 6* in

1 . . .
@) <H§; log ) communications (gradient evaluations),
€

®)
where we recall kx is the condition number of the
covariance matrix X of the data (see Assumption 2). This
rate matches (the order of) the one of the centralized PGD
[2].
When not met by the given graph and gossip matrix,
condition (7) on p, asking for a sufficiently connected
network, can be enforced via multiple rounds of commu-
nications per iteration ¢, resulting in

O

1
1 log ) communications,  (9)
— €
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where O hides log-factors on optimization parameters but
m and d. This improves over the complexity of DGD-
CTA in (6), exhibiting a log-scaling with the ambient
dimension d versus a much less favorable linear one in
DGD-CTA. Numerical results show that these scalings
are fairly tight (see Sec. V).

Our analysis reveals an interesting, yet discovered, feature
of DGD-ATC versus DGD-CTA in high-dimensions: mixing
the local gradients along with the estimates, as DGD-ATC
employs, unlocks the use of stepsize values independent on d
(as in the PGD), yielding the more favorable rate scaling with
d as in (9) (logd versus d) while still achieving centralized
statistical errors. The burden on controlling consensus errors is
left to the network, which explains condition (7) on p, ensuring
sufficiently fast mixing. On the other hand, lacking the gradient
mixing, DGD-CTA does not enjoy this feature: no matter how
small p is, the stepsize « cannot be freed by the dependence on
d. This fact cannot be inferred by existing comparative studies
of DGD-CTA and DGD-ATC (e.g., [41]), all performed in the
low-dimensional setting.

B. Related works

DGD-like methods: As anticipated, closely related to this
paper are the works that studied DGD algorithms in the CTA
[13], [27], [29], [30], [50], [51] and ATC [11], [12], [33],
[49] forms. When applied to the minimization of an average
loss f(0) =1/m>""", fi(6), convergence guarantees of these
distributed methods can be roughly summarized as follows: (i)
for strongly convex and smooth losses f; (or f satisfying the
KL property [13], [51]), both type of schemes using a constant
stepsize converge at linear rate, but only to a neighborhood
of the minimizer of the average-loss f [50], [S1], and the
size of the neighborhood scales as O() (and is monotonic
on p for DGD-ATC). Convergence to the exact minimizer is
achieved employing diminishing stepsize rules, at the price of
slower sublinear rate [19], [51]. (i) When the loss functions
are weakly convex, sublinear convergence is certified for both
methods, using a diminishing stepsize. A comparison between
DGD schemes in the ATC and CTA form can be found in
[41].

These results are unsatisfactory when applied to the LASSO
problem (2), and do not provide any statistical guarantee.
Specifically, (i) for fix d and N, they would predict sublinear
convergence rate, as the loss F' is convex but not strongly
convex (recall d > N); this would lead to the misleading
conclusion that, differently from the PGD in the centralized
setting, fast convergence to LASSO estimators is not achiev-
able over mesh networks by DGD-like algorithms, a fact
that contrasts with empirical evidences (see Sec. V) showing
linear convergence of both DGD-CTA and DGD-ATC, up to
some tolerance. (ii) When d grows faster than N-the typical
situation in high-dimension—the aforementioned studies break
down. In fact, they all require global smoothness of the loss
functions f;’s and F, a property that no longer holds under the
scaling d/N — oo: for commonly used designs of predictors
x;’s, the Lipschitz constant of V' grows indefinitely with
d/N [44].

. ©2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE germission. See htf] s://www.ieee.org/[publications/_rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on April 29,2023 at 02:20:30 UT!

A statistical study of a DGD scheme that resembles DGD-

CTA, applied to the LASSO problem in the Lagrangian form
over mesh networks, was recently developed in the companion
work [20]: linear convergence to statistically optimal solu-
tions at rate as in (6) was certified. Statistical-computational
guarantees of DGD-ATC remains an open problem in high-
dimension, which are the contribution of this paper. We
remark that the convergence analysis we put forth here is
different from that in [20] for DGD-CTA, since the latter can
be reinterpreted as the centralized gradient method applied
to a lifted, penalized formulation, and thus builds on the
convergence analysis of the PGD in high-dimensions. There
exists no such interpretation for DGD-ATC in (5), which calls
for a different line of analysis.
Beyond DGD methods: The literature of distributed optimiza-
tion is plenty of schemes but DGD; they differ from plain
DGD for implementing some form of correction of the local
gradient direction, via distributed tracking mechanisms of the
full gradient [25], [28], [31], [39], [40], [48] or using dual
variables [16]-[18], [35]-[37]. A detailed discussion of these
methods goes beyond the scope of this work—we refer the
readers to the excellent tutorial [27] for more details. Here,
we only remark that, as for DGD-like methods, convergence
analyses of these other methods lack of statistical arguments
and break down in high-dimension. The only exception we are
aware of is the recent work [39], which studied convergence
of a distributed gradient-tracking (DGT) method, applied to
the LASSO problem over networks. In contrast to the DGD
methods (4) and (5), in DGT, agents employ a correction
of their local directions V f; forming a local estimate of
the average gradient VE. This is achieved via a suitably
designed dynamic consensus mechanism on the local gradients
(a.k.a. gradient tracking) [25], [48]. Under some technical
assumptions, the scheme is proved to reach a neighborhood
of a statistically optimal estimate of the unknown, sparse
parameter at a linear rate matching that of the centralized
proximal gradient up to O(slogd/N).

The above overview shows that, despite the popularity of
DGD(-ATC) algorithms in the literature, the understanding
of its statistical and computational guarantees (along with
its comparison with DGD-CTA) in high-dimension remain
elusive. This paper addresses this open problem, shedding
light on the role of the network in the statistical computational
tradeoffs of DGD algorithms.

C. Notation and paper organization

The rest of the paper is organized as follows. Sec. II intro-
duces the main assumptions on the data model and network
setting. Convergence of DGD-ATC is studied in Sec. III-
under RSC and RSM, linear convergence of the optimization
error is proved up to a tolerance. Sec. IV particularizes the
convergence results in Sec. II to the statistical model under
Assumption 2: linear convergence up to centralized statistical
precision is certified with high probability. Numerical results
supporting the theoretical findings are provided in Sec. V.

Notation: Let [m] = {1,...,m}, m € Ny,; 1 is the vector
of all ones; e; € R? is the i-th canonical vector; I is the d x d
identity matrix (when unnecessary, we omit the subscript); ®
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denotes the Kronecker product; and A > 0 (resp. A = 0)
stands for A being positive definite (resp. semidefinite). Given

T1,..., Ty € R, the bold symbol x = [z],...,z]]" €
R™4 denotes the stack vector; for any x = [z],..., 2],
we define its block-average as x,y = (1/m)>.7", z;, and

the disagreement vector x| = [z],,...,z], ]T, with each
x,; & x; — x,. Similarly, for any collection of matrices
X1,...,X,, € R"*4 we use bold notation for the stacked
matrix X = [X[,..., X,]]T. We order the eigenvalues of
any symmetric matrix A € R™*™ in nonincreasing fashion,
e, Amax(4) = M(4) > ... 2 An(A) = Amin(A). We
use || - || to denote the Euclidean norm; when other norms
are used, e.g., /1-norm and /.,, we will append the associate
subscript to || - ||, such as || - ||1, and || - ||oo; With a slight
abuse of notation, we still use || @ ||p to denote the cardinality
function. Consistently, when applied to matrices, || - || denotes
the operator norm induced by || - ||. Given § C [d] and
y € R? we denote by |S| the cardinality of S and by
ys the |S|-dimensional vector containing the entries of y
indexed by the elements of S; S¢ is the complement of S.
Let B,(R) denote the ¢,-norm ball with radius R, for any
p=0,1,2,...; consistently with the adopted notation, B (R)
is the set of vectors with sparsity at most R. Finally, we
recall that, for a random variable X, the ;-Orlicz norm is
defined as || X[y, = inf {t > 0 : E[exp (|X|/t)] < 2} [43,
Definition 2.7.5]. Furthermore, || X||,, < oo is equivalent to
X belonging to the class of sub-exponential random variables
[43, Proposition 2.7.1].

The following quantities associated with (2) will be used
throughout the paper:

XTXi
S £supp{0*}, s=IS], Lmax = max )\max( : )
1€[m

n

(10)
Finally, we collect all the local data (y;, X;), into the
stacked vector y = [y{,...,y,]T € RY and matrix X =
[(X{,..., X, T e RVxd,

II. SETUP AND BACKGROUND

In this section we introduce the main assumptions on the
data model and network setting.

A. Problem setting

In the high-dimension setting, d > N, the empirical loss F
in (2) is not strongly convex uniformly—the d x d Hessian ma-
trix X "X /N has at most rank N. However, strong convexity
and smoothness hold along a restricted set of directions, which
is enough to employ fast convergence and favorable statistical
guarantees of the PGD in the centralized setting [2]. Here we
postulate the same properties for the landscape of F', as stated
next.

Assumption 1 (RSC/RSM condition [2]). F' in (2) satisfies
the Restricted Strong Convexity (RSC) property with curvature
> 0 and tolerance 1, > 0:

T

AR,

1
FIXAI? = Zla)? - vAERY, (D)
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and the Restricted Smoothness property (RSM) with parameter
L > 0 and tolerance 1, > 0:

1 L TL
SIXAIP < ZIAI2+ ZAR, VAR (12

It is assumed L > .

The RSC/RSM conditions above are certified with high
probability by a variety of random design matrices X. Here
we consider the following.

Assumption 2. Suppose the design matrix X satisfies one of
the following random designs:

(a) Gaussian model: The rows of X € RV*? are iid.
N(O,%), with £ = 0. Let k5 2 Amax(E)/Amin(2)
denote the condition number of 3;

Sub-Gaussian model: The rows of X € RN*? gre
centered i.i.d. sub-Gaussian with parameters (X;,02),
where >, = 0;

Sub-exponential model: The entries of the matrix X are
centered independent sub-exponential random variables
centered with variance one and ||X;;lly, < ¥, for all
i € [N] and j € [d], and finite 1) > 0.

(b)

(c)

Lemma 1. Let X € RY*? be a random design matrix, the
following hold:

(a) Gaussian model: [32, Theorem 1] Under Assump-
tion 2(a), there exist universal constants cg,c; > 0
such that, with probability at least 1 — exp(—coN), the
RSC condition (11) and RSM condition (12) hold with
parameters

(1, 7) = (Amin(z)’chCz lof,d)

]
and (L,7) = (zu,mx(z),chg2 Oﬁd) :

respectively, with (s, £ max Y;;
i€ld

(b) Sub-Gaussian model: [24, Lemma 1] Under Assump-

tion 2(b) and

4 o2
NZ fslogdmax m,l y (14)

C2 min

with probability at least

1—2exp <—c22Nmin{

the RSC condition (11) and RSM condition (12) hold with
parameters

2
Bl 1)

Oy

_ )\min(zx) 030';2L 10g d
R G
3>\max Ex C, O';l logd
and (L,7) = < 2( )7 )\3. = g)N>’ (16)

respectively;
(c) Sub-exponential model: Under Assumption 2(c) and

4

N > —log?d,

> a7)
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with probability at least

1 — csexp (—64\/§10g (%y))

10422c4v' N
— 2exp _ 10422¢c, v N : (18)
e
the RSC condition (11) and RSM condition (12) hold with

parameters

(10395 s [s edvV'N
(s ) = (10422 —27csy Nlog (s\/§> )
1 edvV' N 54
desp?y [ — 1
Moty TN Og( sv/5 ) * 104223>’
(10449 2 [ edvV'N
(L,TL) = (10422 + 27C577Z) N]og ( s\/g ) y

1 edvV'N 54
2 [
et TN log< sv/5 ) * 104223>’

respectively, where c4,cs > 0 are universal constants.

Proof. The statement (c) is proved in Appendix B. [

Sub-Gaussian ensemble covers several types of random
design matrices, including general bounded random [44, Theo-
rem 2.2.6], Bernoulli [5], [26], and Gaussian random designs
[32]. Sub-exponential designs capture random designs with
with heavier tails than sub-Gaussians [14], [38]; examples in-
clude element-wise square of sub-Gaussian [43, Lemma 2.7.6],
element-wise product of sub-Gaussians [43, Lemma 2.7.7],
and Johnson-Lindenstrauss random projection for dimension
reduction [9, Lemma 1].

B. Network setting

The network of agents is modeled as an undirected graph
G = (V,&), where V = [m)] is the set of agents, and & is
the set of the edges; {i,j} € & if and only if there is a
communication link between agent ¢ and agent j. We make the
standard assumption on that G is connected, which is necessary
for the convergence of distributed algorithms. Given the DGD-
ATC scheme (5), we make the following standard assumption
on the weight matrix W = (wij)i% 1, where Py denotes the
set of polynomials with degree no larger than K =1,2,....

Assumption 3. [On the weight matrix W] The matrix W =
(wij)i" 1 belongs to the following class W = P (W), where
Pgx € Pg, with Pg(1) = 1, and W & (u‘)ij)znj:l has a
sparsity pattern compliant with G, that is (i) w;; > 0, for all
i € [m]; (i) wi; > 0, if (4,5) € £ and w;; = 0 otherwise.
Furthermore, W is symmetric and stochastic, that is, W1 =1
(and thus also 1TW = 17). Define p = |W — 117 /m).
It follows from Assumption 3 that
p = max{A2(W), [Amin(W)|} < 1. (19)

Roughly speaking, p measures how fast the network mixes
information (the smaller, the faster).
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Several rules for choosing W have been proposed in the
literature satisfying Assumption 3, such as the Laplacian, the
Metropolis-Hasting, and the maximum-degree weights rules;
see, e.g., [27] and references therein. When K > 1, K rounds
of communications per iteration ¢ are employed in the DGD
updates (4) and (5) (one iteration is counted as one computa-
tion of the gradient). This can be performed, for instance, using
in each of the K communication exchanges the same given
reference matrix W (satisfying Assumption 3), with associated
p = |[W —11T/m|| < 1, resulting in W = W™, Such a
W satisfies Assumption 3, with p = ||WK — 117 /m]| =
(W — 117 /m)¥|| = p*. Faster information mixing can be
obtained using suitably designed polynomials Pg (W), such
as Chebyshev [3], [34] or Jacobi polynomials [7].

III. CONVERGENCE ANALYSIS

This section provides our first convergence result of DGD-
ATC in high-dimension: under RSC and RSM, linearA con-
vergence of the optimization error (1/m)> 1" ||0f — 62 is
proved up to a tolerance of (9(||§f 6*)1%).

We begin introducing the key quantities instrumental to state
convergence of DGD-ATC. Recalling the parameters in the
RSC/RSM condition (Assumption 1), let us define

1_l+m 2L, 1
A K L 1/2 max
T, =max oo +p < + =

7-Ld 1/2 L max
—],2 1+ —— 20
t57 ) 1 2p ( +—7 . (20)
which will determine the convergence rate of DGD-ATC. The

initial optimality gap is defined as

o 2 2162, — 0], 1)

0

for given 67,7 € [m]. Finally we introduce the tolerance on

the final optimization error:
Astat £ A(:em + Adista (22)
where

2(4mp + 1)

ACCII é 8
‘ L — 16s7L,

(1= 07111 + V518 - 071))
and

Lypax 1 710d\ ~ .
Adist é8p1/2 ( ++L) H<9—9 ||

L 2 2L
81/21/2 <maxie[m] 11X wil oo xTwoo>
+ + :
n N

L

Notice that Ay is composed of a network independent
term, Ay (matching centralized statistical precision), and a
network dependent one Ag.

Theorem 2. Consider the LASSO problem (2) under As-
sumption 1. Let {0'} be the iterates generated by DGD-
ATC (5) from arbitrary, consensual initialization 8° (e.g.,
09 = 0, for all i = 1,...,m) using a gossip matrix W
satisfying Assumption 3, and stepsize v = 1/ L. Suppose that

from IEEE Xplore. Restrictions apply.
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1 & s 1 2s(41, +7,) |~
— it — g2 < Ottt —— 24y | L6 —6*
e D B < et ey [ 0|
centralized error
+ p1/2g(da m) ||§_ 9*” + logd . ma‘XiE[HL] 81/2||X7,Tw2‘|00 + Sl/2||XTW||°° (26)
1—7r logmd uN uN '

cost of decentralization

the RSC/RSM parameters (ji,7,), (L,71) and the network

connectivity p are such that v, < 1. Then, for any optimum 7
of the problem (2) for which ||0||1 = R, we have

Astat

1 m
- ottl _ 9|12 < pOpttl
YN < g

=1

, Vt=0,1,....

(23)

Proof. See Sec. III-A. O

Theorem 2 certifies linear convergence of DGD-ATC at rate
T,, Up to some tolerance. Both 7, and Ay, depend on the
RSC/RSM parameters 7,7z, the problem-related parameters
K,d, s, Lymax, the network connectivity p and network size m.

The next corollary establishes explicit conditions on the
these parameters, in particular on p, for the rate r, to be of
the same order of that of the centralized PGD [2, Theorem 1]
and tlle tolerance Agy,, to match centralized statistical precision
O(||6 — 6*||). Specifically, introducing

-1
1 2457,
£ 1 - — 1—
" \/( o L)

8s(27r, + 7,)

. (24)
32L max 47r.d dlogmd
d £ TTmax 9 |2
g(d,m) T +20+ + 8m Slogd

we have the following.

Corollary 2.1. Instate the setting of Theorem 2. In addition,
suppose R < |6*||1,

Ce
W22 (dm)’
where cg € (0,1] is some universal constant. Then, for any
optimum 0 of the LASSO problem (2) for which ||0|1 = R,
Eq. (26) at the top of the page holds, for allt = 0,1, .. ..

Proof. See Appendix D.

> 80str, + 16s7,, and 25)

p<

O

The following comments are in order.
(i) On the linear rate r: The contraction coefficient r
determining the linear decay of the optimization error depends,
as expected, on the restricted condition number x and the
RSC/RSM tolerance parameters 7,7y, the latter due to the
lack of strong convexity and smoothness in a global sense. No-
tice that this rate is of the same order of that of the centralized
PGD applied to the LASSO problem (2) [2, Theorem 1] and
improves on existing analyses of DGD-ATC [11], [12], [33],
[49] whose convergence to a solution of (2) is certified only at
sublinear rate, due to the lack of strong convexity in the global

. ©2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE germission. See htf| s://www.ieee.org/[publications/_rights/index.html for more information.
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sense (see Sec. I-B). When F' is p-strongly convexity and L-
smooth globally, i.e., 7,, = 71, = 0, the expression of 7 reduces
to \/1—1/(2k), with k = L/u becoming the condition
number of F. This recovers the well-known convergence rate
of DGD-ATC in low-dimension (N > d) [49].

(ii) On the tolerance error: The tolerance in (26) consists
of a network independent and a network dependent term. The
smaller p, the smaller the overall tolerance. When customized
to the centralized setting [2]-p = 0 and s(7, + 72) = o(1),
with the latter condition necessary for statistical consistency—
the overall /}olerance reduces to that achievable by the PGD,
that is, o(]|0 — 6*|) [2]. When p # 0, we will show in Sec. IV
that the overall tolerance in (26)Acan be made of the order of
the centralized statistical error ||6 — 6*||.

(iii) On the condition (25) on p: To ensure convergence
to statistical precision at rate of the order of the centralized
PGD, condition (25) on p is required. Roughly speaking, (25)
calls for the network to be sufficiently connected—the more
ill conditioned the problem (the larger k) or the larger m
(network size), the smaller p is required. When the network
topology is given and p does not satisfy (25), one can still
enforce it by employing multiple rounds of communications.
The communication complexity will be studied explicitly in
the next section, where convergence is specialized to the
statistical model.

A. Proof of Theorem 2

We decompose the iterates 8! generated by DGD-ATC
into the average process 05! and consensus error dynamic
0"t forallt >0,1,...,

S wi; (08 =V D) |, @D

j=1

m
ot =3 11
av m ‘

i=10;. <R

and

O =0t — 1, @0, (28)

The average estimation error is controlled by these two terms,
according to

a

1 & —~ —~
— N ll05 = 0)12 < [l05F — 0] +m 20T (29)
m

=1
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In Proposition 8 (see Appendix CI) and Proposition 10 (see
Appendix C2), we prove the following bounds for ||§LF1 — 4|
and [0 |, respectively:

Y N — Linax
1057 =B < 6l 142 (ot E2) o

A
+ chent_’_gp7 (30)
Lmax
o < (1 22 o
1/2L ) R
P2 g, = Bl +m /2 e, BD)

where the rate 74y, tolerance Ay, and error €, are defined as

—1
21 + 16
- A\/(l 1 8s(27, TH)) (1 STL>

Lmax 1 7-Ld
+'°< L a2t 2L>’

(32)

241 + 1) /o ~
Acen - = ( 0— 0" 6 — 6" ); 33
e o (A VA ) BES)
and
L 1 TLd ~
N max < _
2o (2 5+ ) 10-07)
d/? [ max;cim Xi—rwi o XTW||oo
P epm) | I Jr|| w]| ’
L n N
(34)

respectively. Notice that r,, < r,. Since, under the as-
sumptions of the theorem, the RSC/RSM parameters (i, 7,),
(L,7L), the problem parameters d, Lyax, and the network
parameters (m, p) are such that r, € (0,1), it follows that
ray € (0,1).

Combining (30) and (31) yields, for any a > 0,

10571 = 0 + all ']

1/2L ) R
< (rav + M) ||92tw - 9”

L
ACGH[
4

+ +(1+am1/2>-5p

m_1/2Lmax meax
(o L) oy

Acem
4

+ [pm_l/2 +

(@) ~
< s (105 = B + all6 1) + =+ (14 am?/?) -,

where in (a) we defined

apml/L?Lmax 7 o1 (pm_1/2+

m_1/2Lde + p+ meax
L L '

A
Tmax — Max {rav +

(35)

The first element in (35) is a non-increasing function of a
while the second element is a non-decreasing one. We can
thus minimize 7y, by choosing a such that

apm2 L ax m 2L
Fav + 14 7 ma :a—l (pm1/2+ ma >+p

L
PLimax
+ 7
which reads
8s(21r+7.)
a2.pml/2Lmax+a' 1_%—1_%
L 1— 16]s:TL

wd 1\| —1j2, M7 P Linax ) _
()] )

To keep the expression of a simple, instead of solving the
second-order equation above, we choose an a that preserves
the same scaling on p and m of the solution, yielding a =
p~1/2m=1/2_ With this choice, r'max reads

rmax
1/2Llnax Lmax Lmax
maX{T’aerpL,,Dl/Z (p+ L> +p+pL}
1 8s(2rp + 1)
(2p<1 et T L e (2
= max |67, e\t
L
1 TLd 1/2 Lmax
Z 4 LT 9 1/2 (4 Dmax
gt 2L>’ P 7
6
= 7,

Therefore, we can bound [|651 — 6] and 6] in (30) and
(31) as

~ ~ A
eI+l _ || <yt ( oL _d -1/2,,-1/2| 91 ) cent
|| av || —rp || av H +p m || J_” + 4(1 _rp)
L+ e,
1—r, ’
1051 <r, (pM/2m 203, — 0]+ 16% )
P2 2 A PPV (14 p7V/?) ¢,
41 —rp) 1—r,

Using the above bounds in (29), we obtain

1 — ~ 1 1/2 Acer
=)ot = 0]J2 <m <1+p1/2> T+ (L+p"%) t
mia 1-r, 4

+(140712) 5, (36)

where 7; is a term related to the optimality gap at iteration 1,
defined as

m 2 0y — 0l + o~ 2m= 12|61
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We further bound 7, as follows: nonasymptotic convergence rate for the DGD-ATC under the
random Gaussian model for the data X [Assumption 2(a)] and
n random noise vector w. Of particular interest is the scaling
(30)é31) _— p1/2Lmax I 00 _ §|| " ( m—1/2 of the communication complexity and final tolerance under
- “ L v p s,d/N — oo and slogd/N = O(1). Results are of proba-
m= Y20 12 172 P 2m V2L 0 bilistic type, as a consequence of Lemma 1(a), which certifies
7 T tmT L> 1611]  RSC and RSM to hold with high probability. Statistical and
=0 computational guarantees of the same flavor are established
Agent _1/9 also for the other random matrix designs in Assumption 2,
+ + (1 +p Y ) € . . .
4 P and discussed in Appendix A.
( 1l 4 SS(QTLJFTM)) We preliminary define the following quantities:
= 65 - 8] i
- 16sT av —
(1—2¢%) rz\/(l—&,uw@))(l—x(x)) L6
Lmax 1 7_Ld pl/QLmax 0 N ¥
+ P 7 +§+ﬁ +T Hgav_en where
Acent —1/2 ) & % . slogd ith - ... (39
+— +(1+p /)ap x(%) (D) N Wi G =maxS; (39)
_ 8s(21r+7,)
p<1 (1—/6 1+T) 0 d N d +logm dlogd
=16cg - —— +20+ 2 e
< (1 _ 1627-L) ||9av - QH g( 7m) 8 n * * ClCE NAmaX(E)
2L 1 7.d ~ A dlogmd
V2 (Zmex  — oy TEE ) 160 — 6 cent + 8my [, 40)
o2 (R g Lo 20 o -+ 5 - (
+ <1 + p—l/ 2) £p where cg > 2 is an universal constant. Furthermore, the
20) oA centralized tolerance reduces to
r
< by 2y (14p712) e, 37 S
2 4 a x(%)
A=£24 Ik (4D
where 70 is defined in (21). 1=x(%)
Chaining (37) with (36), we finally obtain Using the above notations, convergence of DGD-ATC is stated
next.
1 & ~
— Z|\9$+1 - 0|12 Theorem 3. Consider the LASSO problem (2), with design
mia matrix X satisfying Assumption 2(a), noise vector W ~
n° 12 441 N(0,02Iy), and regularization parameter R < ||0*||1. Fur-
< 9 (1 +p )Tp thermore, let
log d d + logm
2(1+p?) TA ., ¢138Cx logd d +logm
N (1 /; ) [ s (1 +p_1/2) Ep} Nz SRS )
T
t .
a0 1° N (1—|—p1/2) Avent 9 Let {0} be the iterates g.en.e.rat.ed .by DOGD—ATC (5), us-
=3 1+4+p T, + - 5 + 1 (p ing arbitrary, consensual initialization 0°, stepsize v =
"p "o 1/(4Amax (X)), and gossip matrix W satisfying Assumption 3
+pM? 4 p% + ,0) . Lmax + 1 + TLd ||§, 0* || with p such that
L 2 2L 6
< . 43
+d1/2 (maxie[m] 11X wi o . ||XTW||OO>1 P> K2 g2(d, m) (43)
L n N Then, for any optimum aof the problem (2) for which ||§||1 =
pél Prt 4 Acent R,and all t =0,1,..., there holds
? 1- Tp 1 m
802 (Liax 1 71d\ ~ ZNT6 g2
+ 4 a; +7+L ||6—9*|| mZ” i H
1-r, L 2 2L i=1
L 82 A2 (maxig | XS willeo [ XTWlloo < poptity B 50 [6ensGologd
l—Tp L n N ' o 1—r )\min(z) N
This concludes the proof. O 0(\/ slogd/N )
pY%g(d,m) 6o 6c115Cs logd
IV. GUARANTEES FOR SPARSE LINEAR REGRESSION + 1—7r /\min(z) N (44)
W present now some consequences of Corollary 2.1, cus-
tomized to the sparse linear regression model. We provide O(V slog d/ N>
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path 2-d grid complete  star networks

p-Erd6s-Rényi p-Erd6s-Rényi geometric random graph

(1=p(m))~t  O(m?)  O(mlogm)  O(1) O(m?)

O(1) [p=logm/m] O(1) [p=0O(1)] O(mlogm)

TABLE I: Scaling of (1 — p(m))~! with network size m, for different graph topologies.

with probability at least

[1 — 4exp(—ci2log d)][1 — exp(—c12N) — dexp(—ci2 log d)].

(45)
The universal constants above are: c1,c; > 0,c6 € (0,1],
g > 2, ¢c9 > 32 cio = /32 - l,enn > 2, cip =
min{ez, c10, (c11 — 2)/2}, and c¢13 = max{192¢y,co}.

Proof. See Sec. IV-B. O

A. Discussion

The following comments are in order.

(i) Linear convergence to statistically optimal estimates:
(44) certifies linear convergence at rate r of the average
optimization error to an estimate within the statistical pre-
cision of the model, that is, |6 — 0% = O(y/slogd/N).
Notice that when p = 0 (fully connected networks or star-
topologies), the statistical ball improves to o(4/slogd/N),
matching that of the centralized PGD [2], see (3). For a fixed
network (satisfying (43)), the dependency of r on the ambient
dimension d, the total sample size IV, and sparsity level s is
only through the ratio slogd/N (see (38)). This implies that
such a rate is invariant under the high-dimensional scaling
$,d/N — oo and slogd/N = O(1). Notice also that, under
slogd/N = o(1) and p satisfying (43), an e-neighborhood of
a statistically optimal solution is achieved in O (kx log(1/¢))
number of iterations (communications). This is of the same
order of the rate of the centralized PGD [2].

(ii) Near optimal sample complexity: The above statis-
tical guarantees are achieved under condition (42) on the
total sample size N. This is nearly minimax optimal as
N = Q(slog(d/s)). This proves that centralized statistical
consistency is achieved also when local sample sizes n do
not satisfy such a condition. This is possible thanks to the
information mixing employed throughout the network, and
thus at some communication cost, which will be quantified
next.

(iii) On the communication complexity and scaling: As
anticipated, condition (43) on p, when not met by the given
graph and gossip matrix W, can be enforced via multiple
rounds of communications per iteration. In fact, given W
satisfying Assumption 3, with p = ||[IW — 11T /m|| < 1, one
can build the new matrix WX with |[WX — 117 /m|| = p¥,
and any K = 1,2,.... As discussed in Sec. II-B, this matrix
still satisfies Assumption 3 and, when used in the update
(5) instead of W, corresponds to employing K rounds of
communications per gradient evaluation, each time using the
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gossip matrix 7. Now one can choose K so that p€ satisfies
(43), resulting in

" Fog (5 9 (m, d)/cgw

log(1/p)
_0 <10g (dm Hz}l(i: )‘min(z)))> (46)

communications per iteration. We remark that the dependence
on 1 — p in (46) can be improved to /1 — p if K-order
Chebyshev polynomials are used as gossip matrix; see, e.g.,
[34], [47].

Using (46), we then conclude that an e-neighborhood of a
stationary optimal solution is reached in at most

o (FCE log (d m ks (1 + Anin(2))) log(l/s))
1—-p

communications. This improves on the communication com-
plexity of DGD-CTA [20] (see (6)), showing a more favorable
log-scaling with the ambient dimension d and the network
size m. These bounds are fairly tight, as confirmed by our
experiments in Sec. V.

(iv) Network dependence/scaling. According to (47) (see
also (44)), the network topology affects the convergence rate
of DGD-ATC as well as the statistical accuracy through the
terms log(dm)/ (1 — p)~* and p'/2g(d, m), respectively. As
expected, larger m or p € [0,1) yields more communications
and larger estimation error. Notice that p = p(m) itself is a
function of m (and the network topology).

Referring to (44), recall that, under (43), p(m)/?g(d, m) =
O(1/kyx). Thus, (44) remains within the centralized statistical
error O (w/slog d/N ) even for increasing p and m, as long
as (43) is enforced via K communication rounds per iteration,
with K given by (46). Therefore statistically consistency is
preserved at the cost of more communications.

To quantify the scaling of the communication complexity
(46) with m, Table. I provides the dependence of (1—p(m))~*
therein with m for different graphs, when the weights in W
are chosen according to the lazy Metropolis rule [27]. For
instance, complete graphs and Erdos-Rényi graphs have the
favorable scaling (1 — p(m))~! = O(1), in contrast with
path graphs (O(m?)) or 2-d grid graphs (O(m logm)). While
this is informative of the impact of the specific topology and
network size on the total number of communications as in (47),
it does not capture the entire cost of communications from the
agents. For instance, denser networks are expected to generate
more traffic. In this light, counting each edge as one channel
use in each communication, a measure of communication cost
might be the total channel uses to e-solutions. It is not difficult
to check that for complete graphs or Erdos-Rényi graphs with

(47)

from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3267742

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

edge probability p = O(1), such a communication cost reads
O(m?) total channel uses while for Erdos-Rényi graph with
p = logm/m, it reduces to a more favorable O(m) (O hides
log-factors in the communication complexity).
(v) Comparison with CTA-DGD. Theorem 3 shows that,
when the network connectivity p is sufficiently small
(see (43)), DGD-ATC can adopt constant stepsize 7 = o),
converging to a neighborhood of 6 of size O(y/slogd/N).
This is in sharp contrast to the convergence result of DGD-
CTA, which requires the stepsize v = O(1/d) regardless of
the network connectivity [20].

To explain the phenomenon intuitively, adding and subtract-
ing the centralized gradient VF, we can rewrite (4) and (5),
respectively as, for all t =1,2,...,

pep-cta: 6f = [] (Zwijt?;_l—*yVF(Gf_l)
l6:la <R
(VPO - VAEOT)). @)

gradient discrepancy

j=1

and

pep-atc: 0= [] (Zwij (61 — A VF(O 1)
l6:ll <R

+9 ) wiy (VEO) = V5(057)).

Jj=1

Jj=1

gradient discrepancy

(49)

Note that, without the gradient discrepancy term-which is
generally O(d)-both algorithms coincide with centralized
PGD with consensual initialization, i.e., 0? = 9?, for all
i,j € [m]. For CTA, the impact of the gradient discrepancy
term is controlled by requiring the stepsize v = O(1/d)
to attain a solution of the same statistical precision as the
centralized PGD. As for ATC, in addition to being multiplied
by -, the gradient discrepancy term is further averaged by
network consensus. This provides the opportunity to control

the gradient discrepancy leveraging both v and the network
connectivity p: one can choose v = O(1) while requiring p
inversely proportional to d.

The extra degree of freedom to control the error in ATC
using the network leads to significant improvements over
CTA in the high-dimensional setting when d — oo. Limited
by the stepsize choice v = O(1/d), the computation and
communication complexity of CTA grow linearly with d.
On the other hand, the the computation complexity of ATC
is independent of d, thanks to the larger stepsize choice
v = O(1) and the fact that the network connectivity can be
improved exponentially by running multiple communication
steps, yielding more favorably communication complexity
scaling as O(logd).

B. Proof of Theorem 3

The proof is based on the following four steps: 1) We
fix w and consider as source of randomness the design
matrix X (cf. Lemma 1 Gaussian model) only, deriving a
high-probability upper bound for L,y defined in (10) and
proving that F'(f) in (2) satisfies RSC and RSM conditions
(Assumption 1) with high-probability; 2) We then fix X
and consider the randomness coming from the noise w,
providing high-probability bounds for the noise-dependent
terms || XTw|loo/N and maxi<i<m|| X, willoo/n; 3) We
show that (43) is sufficient for the condition on p in (25)
to hold with high-probability; 4) Under (42), we show that
i > 8087z, +1657, holds with high-probability; and finally 5)
given the bound on the optimality gap as in (26), we conclude
that (44) holds with high-probability, for all 6 satisfying
6]l = R.

e Step 1: Randomness from X. Recall that

Limax = Max Apax(X;' X;/n) and  (x = max X;;.
i€[m)] i€[d]

Cg L2

dlogmd\~
k2 (3200 + 20L + 47 d + 8mL, | 08¢
slogd

1606)\?1,@)((2)

16K% (3208/\max(2) (1 +

d+logm>n
>

d+logm
n

+ 80 Amax(X) + 8c1(x
66)\2

dlogd

2
dlogmd
+ 32m/\max(2) \/E)

max(E)

- I
“22 (6463 /\max(z) %irn)

Cé

+ 80 Amax(X) +

8c1(xdlogd
N

2
dlogmd
+ 32mAmaX(E) \/ﬂ)

d+1
|:1603 . m + 20 + 201(2 .
n
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2
dlogd dlogmd

NN vy 3 >\max b 1

N (5 T SmAmax (B[ =05

(53)
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Define the following events:

1
A, 2 {X ERVX | L < o hman(D) (1 + CH;“”) }

Ay & {X e RV*4| X satisfies (11) and (12)},
1 3(Cs

A A{XGRNXd max —|| Xe,|| < },
3 ma \/NH il < 2

where cg > 2 is some universal constant, chosen as in (50)
below. We prove next that these events occur jointly with high-
probability.

(i) Bounding P(A;) and P(A3): Using [20, Theorem 7,
(83)] we infer that there exist universal constants c¢; > 0 and
cs > 2 such that, with probability at least 1 — 2 exp(—czd), it
holds

Lmax S CSAInax(E) (1 + (50)

d+ logm
- .
In addition, [20, Theorem 7, (89)] shows that there exists a
universal constant cg > 32, such that, for all N > cglogd,
we have
1 Xe;]?

P(max

3
< — >1 — _ 1
jed N o~ 2<E> >1—2exp(—ciologd), (51)

where c1g = 09/32 —1>0.

(ii) Bounding P(As): This follows readily from (13) in
Lemma 1.

Define A £ A; N Ay N As. Combining (50), (51), (13) and
using the union bound, we obtain

P(A) > 1 — 2exp(—crd) — exp(—coN) — 2 exp(—cyp log d).

e Step 2: Randomness from w. We fix now X € A and
consider w ~ N (0, 0?1 ). Define

X Twl|oo 13¢s [ci1logd
D 2 RN 7” < 22y /=
! {W < ‘ N U 2 N ’

max || X, w; ]| oo
D, & {w e RN

and D £ D; N Dy. Following similar steps as to get [20,
Theorem 7, (99)], we deduce that, for all ¢1; > 2,

P(AN D)

> [1 = 4exp{—[(en1 — 2)logd]/2}][1 — exp(—co V)
— 2exp(—crd) — 2 exp(—ciolog d)]

>[I — dexp(—ci2log d)]

“[1 —exp(—c12V) — 4exp(—ciz2log d)]. (52)

where ¢13 = min{ez, ¢19, (c11 — 2)/2}.

o Step 3: v = 1/4A\pax(X) is sufficient for v = 1/L to
hold with high-probability. It follows from (13) that v =
1/(4Mmax(X)) is sufficient for 7 to equal 1/L with probability
at least 1 — exp(—coNN).

e Step 4: Condition (25) on p holds with high probability
under (43). Substituting into (25) the expressions of (p,7,)
and (L,71) (see (13)), k = L/u, and the high probability

i€[m) <U\/3(g\/cumlogmd
n - 2 n T+ 1—r

upper bound for L,,,x (see (50)), yields with probability at

least (52), (53) at the bottom of the previous page holds.
Therefore, (43) is sufficient for (25) to hold with probability

at least (52).

o Step 5: (42) is sufficient to guarantee 1 > 80577 + 1657,.

Substituting into (24) the expression of (u,7,) and (L, 77)

(see (13)) yields, with probability at least 1 — exp(—coN),

. ¢ (1- g+ X®) 2D

where x(X) is defined in (39). In addition, if

logd

N Z 19201SC2 )\.7(2:),

(54
then p > 80s7y, + 1657, holds with probability at least 1 —
exp(—coN). Chaining (54) with N > ¢glogd, we conclude
that (42) is sufficient for both of them to hold. This can been
seen from

c138(x logd (g) A 192sc1(x logd
Amin(E) - )\min(z)

where ¢13 = max{192¢y,¢9}, and in (a) we used s > 1 and
CE Z )\min(z)~ ~
e Step 6: (44) holds with high-probability for all 0
satisfying ||0]|; = R < ||0*||1. Step 1-5 and R < ||0*|;
imply that (26) holds with high-probability. Substituting into
(26) the expressions of r from (38), (u, 7.), (L, 1) from (13),
the upper bound of L.« as in (50), and the upper bound for
max;e ] [| X,  willoo /N, [|XTW]|lo/N, the following holds
with probability at least (52),

1 & ~
o leﬁf“ —0[2
=1

(41)

A ~
< UOTtJrl + 17_7“ . Hg_a*H

~ N o 6c115Cx logd
(ne Pl )

(56)

N > ,c@logd}, (55)

p'/%g(d, m)

where A is defined in (41). Invoking [15, Theorem11.1], we
have
8vs X wll

0— 07| <
| = p— 4sT, N

(57)

Substituting (u,7,,), and the upper bound for ||X"Tw||o/N
into (57), the following holds with probability at least (52),

Ha_a*H < 8\/5 o & C11 IOgd
T Amin(X) — 8sci¢s logd/N V 2V N

(42),(55) 8v/s
< Vs

3¢s [einlogd
or] 252
Amin (2) — 8 min (X)/192 2 N

) 6c115Cx logd
< 1/ . 58
- )\min(z)a N ( )
Chaining (56) with (58) completes the proof. O
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V. NUMERICAL RESULTS

In this section, we provide some experiments on syn-
thetic and real data; results on synthetic data are meant to
validate our theoretical findings. We run simulations on a
server equipped with Intel(R) Xeon(R) CPU E5-2699A v4 @
2.40GHz. We organize the experiments as follows:

1) Our first simulation shows that, with a proper choice of p,
DGD-ATC exhibits linear convergence up to centralized
statistical precision; also both the rate and tolerance are
invariant to slogd/N. This validates (44);

2) Our second experiment aims at checking the dependence
of p on the ambient dimension d, problem condition
number xyx, and network size m, supporting (43);

3) We contrast DGD-ATC and DGD-CTA; experiments con-
firm a communication complexity of the two schemes
scaling as predicted by (9) and (6), respectively;

4) We conclude the section by testing DGD-ATC and DGD-
CTA on high-dimension real data, showing that DGD-
ATC achieves centralized MSE error at a fast linear rate,
while DGD-CTA exhibits a speed accuracy dilemma.

Experimental setup (synthetic data): Given (1), the ground
truth 0* is generated by randomly sampling a multivariate
Gaussian NV (0, I;) and thresholding the smallest d—s elements
to zero. The noise vector w follows N(0,0.251y). Each row
of X € R¥*4 is independently generated, according to the
following procedure [2]. Let zi,...,24—1 be iid. N(0,1),
for a fixed correlation w € [0,1), set z;1 = 21 /v1— w?
and ;441 = wxy + 2, for t € [d —1] and i € [N]. It
can be verified that all the eigenvalues of ¥ = cov(z;) lie
within the interval [1/(14+w)?,2/[(1—w)?(14w)]]. Therefore,
the closer w to one, the larger the condition number ky. We
simulate an undirected graph G, following the Erdos-Rényi
model G(m,p), where m is the number of agents and p
is the probability that an edge is independently included in
the graph. The coefficients of the weight matrix W used
in all distributed algorithms are chosen according to the
Metropolis—Hastings rule [23]. The stepsize v of DGD-ATC
issettoy = (1 —w)?(14+w)/8 < 1/(4Amax(X)). Results are
averaged over 30 Monte Carlo repetitions.

1) Linear convergence up to centralized statisti-
cal precision (Fig. 1). Fig. 1 plots the estimation er-
ror vs. the iteration, for growing (N,d) = {(240,400),
(560, 6400), (860,51200)}, fixed m = 20, and s = [logd],
so that the statistical precision slogd/N = 0.125; p = 0.2
satisfies (43). We observe the following: (i) DGD-ATC shrinks
linearly up to the centralized LASSO error, as predicted by
(44); and (ii) both convergence rate and tolerance remain
invariant under s,d, N growing and fixed slogd/N; this is
consistent with the dependencies on the rate and tolerance as
shown in (38) and (44), respectively. Note that this implies
that N can significantly exceed the total communications to
statistical optimality. For instance, in Fig. 1, the number of
communications to reach centralized statistical consistency is
of the order of the hundreds, and remains so even when the
sample size N is about 3.5 times larger (N = 860).

2) Scaling of p with d, Ky and m (Fig. 2): We validate
here the aforementioned scaling of p as given in (43). (i)
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Fig. 1: Estimation error vs. iteration, for different values of s,d, N
such that slogd/N = 0.125; m = 20, p = 0.2.

Scaling of p with d: Fig. 2(a) plots the ratio between the
centralized statistical error and estimation error achieved by
DGD-ATC versus p, for different values of (V,d,s) (as in
Fig. 1) and fixed m. The figure shows that, as expected from
(43), as d grows, centralized statistical errors are achieved at
the price of smaller values of p. In other words, p cannot
be constant with d but vanishing. Fig. 2(b) investigates more
in details the scaling of p with d. Specifically, we plot the
values of p (in log scale) to achieve the centralized statistical
error within 3% precision versus the ambient dimension d
(log-scale). The plot shows a linear dependence of logp
with logd, thus validating (43). (ii) Dependence of p on
ky. Fig. 2(c) plots the estimation error versus iterations
for different values of w and fixed N,d, s, m, p, resulting in
different kyx. We choose w — 1 to make the impact of Ky
in (43) dominant. We fix (N,m,d,s) = (240,10,400,5),
and simulate a network with p =~ 0.6, for all w € {0.92,
0.93,0.95}. The value of p is sufficiently small to achieve
centralized statistical error for w = 0.92. However the figure
shows that, to keep centralized statistical consistency, larger
values of w (thus larger Apax(X)) call for smaller values
of p—a constant p instead breaks statistical optimality of the
algorithm. (iii) Scaling of p with m: Fig. 2(d)&(e) plots the
estimation error versus iterations for different values of m, and
fixed s,d, N. The edge probabilities of the Erdos-Rényi model
are set so that, in the subplot (d), p remains approximately
constant (equal to 0.2) for all values m € {20,500,1000}
while in the subplot (e) p € {0.32,0.063,0.045}. The two
figures show that, to achieve centralized statistical errors, p
cannot stay constant with m but need to scale roughly as
p = O(1/y/m). While this is consistent with (43), which
asks for a vanishing p with m, the rate suggested by (43),
p = O(1/m?), seems to be conservative.

3) Communication complexity: CTA-DGD vs. ATC-
DGD (Fig. 3): Fig. 3 compares communication complexity
of CTA-DGD [20] and ATC-DGD. Panel (a) plots the average
estimation error versus the total number of communications.
Multiple rounds of communications per gradient evaluation
are used in ATC-DGD to enforce condition (43) on p, when it
is not met by the given graph and gossip matrix W. Both
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Fig. 2: Scaling of p with d, xkx, and m. (a): Ratio between solution error of DGD-ATC and centralized statistical error vs. p, for varying
s,d, N and fixed m. (b): p versus d (log-log scale) to achieve the centralized statistical error within 3% precision. (¢): Estimation error
versus iterations, for different values of x5 by varying w, and fixed NV, d, s, m, p. (d): Estimation error versus iterations, for growing m and
p fixed. (e) Estimation error versus iterations for growing m and p ~ 1/y/m.

schemes achieve centralized statistical errors at linear rate,
with ATC-DGD being much faster than CTA-DGD. Panel (b)
aims at validating the scaling of the communcation complexity
of CTA-DGD and ATC-DGD with d, as predicted by (6)
and (9), respectively. We plot the total number of commu-
nications needed to reach centralized statistical precision. The
figure is obtained generating (X,y), using different values
of d = {400,800, ---, 51200}, s = |logd], and N chosen
accordingly to keep roughly the same statistical precision. We
started with a weakly connected graph, p = 0.9, and, for any
chosen d, we run the least number of communications/iteration
for ATC-DGD to achieve centralized statistical errors.

The figure shows that the total number of communications
scales logarithmically with d for ATC-DGD, as predicted by
(9), and linearly with d for CTA-DGD, as proved in (6). This
validates our theoretical findings and supports the conclusion
that mixing gradient information among agents, as ATC-DGD
does, is critical to save communications.

Experiment on real data. We test the performance of CTA-
DGD and ATC-DGD on the dataset E2006-tfidf in the
LIBSVM library [10], which consists of financial risk data
from thousands of U.S. companies. There are in total d =
150360 features, and N = 19395 samples, with Ny, =
16087 and Ny = 3308. We normalize the training data such
that each dimension has mean zero and variance 1/Nyyi,. The
testing data is normalized using the statistics computed on
the training data. We partition the training data into m = 10
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subsets. Each agent ¢ owns the training data set portion with
size 1608 (we drop 7 samples randomly to divide the sample
evenly). Since we do not have access of the ground truth 6%,
we replace the /o statistical error and the /o optimization error
with the MSE errors

MSE™® £ !

m
D llyies — 9:ll*  and
i=1

M Niest 4

) m (59)
* t)12
§ Yiest — Yill >
mN[es[ — || test ||

(1>

MSE!

respectively, where ¥ is the output of the test set, and g; =
X;0;, i € [m), are the model forecasts; y! = X;6, i € [m)], are
the outputs at iteration ¢; and y = X4 is the output generated
by the PDG (m = 1) in the centralized setting. The tuning of
the other parameters is the following. We set the projection
radius R by grid search to the value yielding the smallest
MSE®°. The stepsize of ATC-DGD is chosen by grid search to
achieve the fastest empirical convergence rate while reaching
the centralized MSE. The number of communications/iteration
of ACT-DGD is set to K = 18, resulting being the the least
number to achieve centralized MSE over a weakly connected
graph with p = 0.9. For CTA-DGD [20], we tested a few
stepsize values; however, because of the size of the problem,
even fairly small values are not enough to drive CTA-DGD to
achieve centralized MSE within the a reasonable number of
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Fig. 3: ATC-DGD vs. CTA-DGD. (a): Estimation error vs. total com-
munications. (b): Communications to centralized statistical precision
vs. dimension d(> N).

communications—this is due to unfavorable linear scaling of
the communications with the ambient dimension d.

Fig. 4 plots the MSE! versus the number of communications.
ATC-DGD achieves centralized MSE at linear rate within 2000
communications, while CTA-DGD lacks behind, exhibiting a
speed accuracy dilemma: smaller MSE errors are achieved (by
using smaller and smaller stepsize values) at the cost of slow
convergence.

VI. CONCLUSIONS

We established statistical and computational guarantees of
the DGD algorithm in the ATC-form, applied to a distributed
instance of the projected LASSO problem over mesh networks
wherein each agent owns only a subset of data. Under near
optimal (total) sample complexity—e.g., N = Q(slogd) for
(sub)-Gaussian predictors—DGD-ATC provably achieves statis-
tically optimal estimates at linear rate—the rate is of the same
order of that of PGD solving the LASSO problem in a cen-
tralized fashion using all data samples /N. For worst-case net-
works i.e., sparse topologies, the communication complexity—
the number of communications for statistical consistency—
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Fig. 4: MSE® vs.communications for ATC-DGD and CTA-DGD, using
the dataset E2006-t£idf in the LIBSVM library.

scales logarithmically with the ambient dimension d. This
showed a significant improvement over DGD in the CTA-
form, whose communication complexity scales linearly with
d [20]. This difference is sensible in high-dimensions, where
typically s,d, N — oo, with d > N. We showed that this is
due to the fact that, in the ATC updates, the stepsize can be
chosen as v = O(1), as long as p < poly '(d), resulting
in a logarithmic number of communications per iteration with
respect to d. On the other hand, the CTA updates lack mixing
local gradients; because of that, centralized statistical errors
can be achieved only under stepsize v = O(1/d), resulting in
a number of iteration- and communication-scaling proportional
to d.

At the high-level, this work along with the companion
papers [20], [39] showed that when it comes to distributed
algorithms applied to high-dimensional statistical problems,
classical analyses in the literature of distributed optimization—
which are based on sole optimization arguments—are no longer
adequate; new studies are needed bringing statistical thinking
in distributed optimization. Hopefully this paper will inspire
new studies of distributed algorithms beyond DGD under this
lens (e.g., distributed primal-dual methods), whose statistical
guarantees remain unknown in high-dimension.

APPENDIX

A. Statistical and computational guarantees for other statisti-
cal models

In this section, we present the statistical and computa-
tional guarantees of DGD-ATC (the the counterpart of The-
orem 3) for random design matrices X following a sub-
Gaussian [Assumption 2(b)] or sub-exponential [Assump-
tion 2(c)] distribution—the two cases are discussed in Sec. Al
and Sec A2, respectively.

Al. Sub-Gaussian ensemble (Assumption 2(b)): Suppose
that X satisfies Assumption 2(b). Define the following quan-
tities:

r—\/<1— !
6%21

(60)

. x<zx>) (1= X)),

from IEEE Xplore. Restrictions apply.

ermission. See httgs://www.ieee.org/ ublications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3267742

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

where I losd
£,) 2 8% 2% 61
X( ) )\max(zz))\min(zm) N ’ ( )
d+ logm 8caoidlogd
d,m) £ 128¢y5 - ———=— + 40 z
g( ’m) 1 * + )\max<zw))\min(2x)N
1
4 24, | lo8md (62)
slogd

and c15 > 2 is an universal constant. Finally, the centralized
tolerance reads

X(2z)
1- X(EJ) .

Using the above notations, convergence of DGD-ATC is stated
as follows.

Theorem 4. Consider the LASSO problem (2), where the
design matrix X satisfies Assumption 2(b), the noise vector
w is sub-Gaussian with parameters (0*Ix,0?), and the
regularization parameter satisfies R < ||0*||1. Furthermore,
let

2 d+1
N > clgslogdmax{)\iﬁjz”zz),l} and # > 1.
(64)
Let {0t} be the iterates generated by DGD-ATC (5), us-
ing arbitrary, consensual initialization 0°, stepsize v =

2/(3Amax (X)), and gossip matrix W satisfying Assumption 3
with p such that

A224 (63)

C6

p< (65)

K3, g%(d,m)’

Then, for any optimum ) of (2) for which ||§H1 = R, and all
t=0,1,..., there holds

1 & ~
o Z\Wf“ — 0|2
=1

A 17cig00; \/m
< 0, .t+1 .
=0T * 1-r )\min(zx) N
o(\/eTog @)
" p'2g(d, m) 19016001\/m
I—r )\min(zz> N

o (+/3Tox /)

(66)

with probability at least

[1 — 4exp(—cislogd)] -
[1 — 2exp <—018N min {
UIIJ
(67)
The universal constants above are: ca,c3 > 0,¢6 € (0,1],
cia > 0, e15 > 2, ¢16 > 3,c17 = c1/(2 + c16V2) — 1, c18 =
min {c2/2, c14,¢17} and c19 = max{192cs,4/cz}.

Remark 4.1. When customized to the Gaussian case, the sub-
Gaussian parameter reduces to the variance, hence, a natural
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)‘Eningzx)’l}> —4eXp(—618d):| :

candidate for ag is the largest variance, i.e., 0’3 =(x. In
this case, Theorem 4 recovers the guarantees as established
in Theorem 3 for Gaussian random ensemble by noticing (s, >
)\min(E)-

Proof. The proof follow the same logic of that of Theorem 3;
the difference is in Steps 1 and 2 wherein we use now
the RSC/RSM conditions for sub-Gaussian random variables
and the Bernstein inequality [46] to bound ||XTw|. and
max;em || X, w;|. Next, we then present only the proof of
Steps 1 and 2.

e Step 1: Randomness from X. Recall L., =
MAX; ¢ ] Amax (X ;' X;/n). Define the following events:

d+1
Lmax S 015/\max(2x) <1 + —i_?’(L)ng) }7

X satisfies (11) and (12)}7

A & {X € RV

A, & {X e RVxd

where c15 > 2 is a universal constant (see (50)). We prove
next that these two events occur jointly with high-probability.

(i) Bounding P(A;): By [42, Remark 5.40], the following
holds with probability at least 1 — 2 exp(—cy4d):

; (68)

d+1
Lmax S CISAmax(z) <1 + —i_T;)ng)

for some universal constants ¢4 > 0 and c¢15 > 2.

(ii) Bounding P(A5): This follows readily from (16) (see
Lemma 1).

Define A £ A; N Ay. Combining (i) and (ii) and using the

union bound, we obtain
/\fnin (E-K) } )
— 1 .
O—I

o Step 2: Randomness from w. We fix now X € A and treat
w as sub-Gaussian vector with parameters (021, 02). Define

P(A)

>1—2exp(—c1ad) — 2exp (—c;Nmin {

XTW|| 0o log d
D, & {W e RN ‘ % < ¢1600 O]%f },
max | X w;
i [ml d
.D2 £ W € RN —ZE[WL] S C1600 77” ogm s
n n
and D 2 D; N D, Since each pair of X; and wj;

are independent, and the columns of X; are m dimen-
sional i.i.d sub-Gaussian random vectors, we deduce that
each element of X, w; is the sum of n independent sub-
exponential random variables with sub-exponential parameters
(V200,,V/200,) [44, Exercise 2.13]. Applying Bernstein’s
inequality [46, Lemma 2.2.11] and the union bound, we have

P (max X il < 1)
1€lm
t2
2n0202 + t\ 200,

21—2exp(— —|—logmd>7 t>0.
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1 & ~ A
LS ot e <ot 4 A 100y max{
m = 11—y

21ogd} +25\/§J1/)max{210gd
2

2logd
, (79
Neg, } (79)

NCQl

O(ﬁmax{ 10]%,‘1 ,\/@})

Take t = c1600,+/N logmd and any ¢4 > 3, we have

P <m[ax]||XiTwilloo < ¢16004+/Nlog md)
1e|m
2
cieN
>1-2 — —11)1 d
- exp[ <2n+021 2N log md ) e }

N>log md 2 N
zg 1—2exp [— (CM - 1) logmd}
2N + ClGN\/i
> 1—2exp[—ci7logd],

2
Ci6 _
T3 1>0.

Similarly, for X Tw, it holds

where c17 =

P (”XTWHOO < ¢1600,+/ N log d) >1—2exp[—ci7logd].
Therefore,

P(AN D)

=P(D|A)P(A)

> [1 — dexp(—ci7log d)]x

[1 — 2exp(—cyad) — 2exp <—C22N min{

> [1 — dexp(—cislogd)] x

(69)

2 )

A2 (2
[1 — 2exp (—ClgN min {’“mg'x), 1}) - 4exp(—clgd)}
UI
(70
where ¢1g5 = min {c2/2, ¢14,¢17} . O

A2. Sub-exponential ensemble: Consider now the sparse
regression model with the random matrix X satisfying As-
sumption 2(c). Define the following quantities:

ry = \/<1—2iw+x¢,> (1—xy) ", (71)
where
e 5desyp?\/ log (ef\‘/ﬁN) + o3 -
18+ 27cs /T los (47F)
and
oy 2 it + 27wy R o (47 (73)

18 — 27es /T oz (47)
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For any € > 0, define

g(d,m;e)
N 64020d 1+42€

S edvV N
n [18332 + 27cs1p? /5 log ( 8\/9[)}

1
+ (20 4 8, | Logmd
slogd
216¢5dyp? % log (%) + %

) (74)
44 S edvV N
[ 10448 + 27esu? /5 log (<Y )|
where cop > 2 is an universal constant. Furthermore, let
ALy [ Xv (75)
1 — Xw

Using the above notations, convergence of DGD-ATC is
proved next.

Theorem 5. Consider the LASSO problem (2), where the
design matrix X satisfies Assumption 2(c), the noise vector
w is deterministic with bounded entries ||W| oo < o, and the
regularization parameter satisfies R < ||0*||1. Furthermore,
let

4 d |N
N > max { 7’% log? d, 1042220§w4s log? (e ) }
¢ sV s

(76)
Let {0'} be the iterates generated by DGD-ATC (5), using
arbitrary, consensual initialization 69, stepsize

6
v = ,
7+ 162¢507 /5 log (49X
and gossip matrix W satisfying Assumption 3 with p such that

< (78)

(77)

[
p= nig%d,m,e)’

Jfor the given € > 0. Then, for any optimum gof (2) for which
0] = R, and t = 0,1,..., Eq. (719) at the top of the page
holds, with probability at least

1 —5exp (—logd) — exp (—04\/§10g (fg))

C4\/N d25 d%+e
—3exp | — 02 — 2exp | —c21 min W77 .

(80)

The universal constants above are: cq,c5 > 0,c6 € (0,1],
co0 > 2, and co1 > 0.

Proof. Similarly to the proof of Theorem 4, in Step 1 and 2 we
now use the RSC/RSM conditions for sub-exponential random

from IEEE Xplore. Restrictions apply.
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142¢ 2 gide
P (Lmax < eog (1 + dnogmd>) > (1 — exp (—logmd)) (1 — 2exp (—021 min {(flﬂ, dq/)}))

d2e d%—&-e
>1—exp(—logmd) —2exp | —cg; min .

. 82
NER (82)

variables and the concentration inequality [42, Theorem 5.44]
to bound the heavy tail random variable L., while leveraging
Bernstein-type inequality [46] to bound the sub-exponential
random variables || X" w||o, and max;e, || X, w;.

e Step 1: Bounding L,,,. Define the following events:

d1+2el d
A 2 {X € RM* | Loax < 20 <1 + ogm) }»

n

Ay 2 {X e RVxd

X satisfies (11) and (12)},

where cog > 2 is a universal constant (see (50)), and € > 0
is arbitrary. We prove next that these events occur jointly
with high-probability. (i) Bounding P(A;): Under Assump-
tion 2(c), the d entries of each row of X, that is, ejTXiek,
k € [d], are independent centered sub-exponential variables.
Bernstein’s inequality implies

P{lle] Xill > d-t}

d

=P Z|€;X¢6k|2 > dt
k=1
d
< IP’{ > le) Xiex|| > d.t}
k=1

[42, Prop. 5.16] < t2 ¢ p g1
S 2eXp —C21 min{7} ) ) ( )
P2y

for all j € [n] and ¢ € [m], and some universal constant
. 1
co1 > 0. For any given € > 0, set t = d~27¢; then,

1 d e d%—i—e
IP’{HG;FXZH > di“'ﬁ} < 2exp (—021 min {1/)27 U)}> .

By [42, Theorem 5.44] it follows that for any j € [n], and
. 1 . .

i € [m], if |le] X;|| < d="¢, then, the following holds with

probability at least 1 — exp{—ca2t? + log d},

date
v

for any given £ > 0 and some constant ceo > 0; which implies

(with the same probability)

1
‘XiTXi - IH < max{a,a’}, with a2t
n

1 1
H—X;Xi < H—XZTXI»—IH—FHIH Smax{a,aQ}—l—l.
n n

Applying the union bound, the following bound holds for

LIIlaX :

P (Lmax < (1 + max{a, a}) ‘ ||e;-rX,-H <dztevje [n])
>1— exp{fcmt2 + logmd}.

. ©2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE germission. See htf| s://www.ieee.org/[publications/_rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on April 29,2023 at 02:20:30 UT!

Setting t = 1/20521 log md, yields
date
a = \/2cy5 logmd - \;ﬁ .

Therefore, we conclude, under ||ejTXiH <dzte Vje[n],

Linax < (1+a+a?) < (1+a)® <2(1+d?)

d1+26
)
d'*2¢logmd
n b

<2 (1 + 2¢5 logmd -

< ca0 (1+

with probability at least 1 — exp(—logmd) and cog =
max{2,4cy5 } > 2.

Chaining it with (81), we conclude that, for any given € > 0,
Eq. (82) at the top of the page holds.

(ii) Bounding P(A5): This follows immediately from (19)
in Lemma 1.

Define A £ A; N Ay. Combining (i), (ii) and using the
union bound, we obtain, under (17),

P(4)

>1—exp <—C4\/§log (%)) —3ex

' d2e d%—i—e
—exp (—logmd) — 2exp [ —co; min PR .

(83)

e Step 2: Bounding max;c(,[| X, wills and [ X'w|w.
Since X;, i € [m], are independent and the columns of X
are n dimensional i.i.d sub-exponential random vectors, each
element of X, w; is the sum of n independent sub-exponential
random variables with ¢;-norm at most ov. Applying [42,
Proposition 5.16] and the union bound, we obtain

1
P < max|| X, w; e < t)

n i€[m]

. 2t
>1—2exp (—021 mm{(ﬂw, w}n—l—logmd) , t>0.
Thus, under 2log md < co1n and t = o) %,

1 2logmd
P ( max || X; w;]|co < m,z;,/ogm>
n i€[m] nca1

202%logmd oi\/2log md
n
Co1n021)2 \/Ca1no

>1—2exp <021 min {

+ log md)
>1—2exp(—logd), (84)
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Dy 2 {X € RVx4

n i€[m|

Dy 2 {XGRNX

1
NHXTWHOO <oy max{

1
— max || X, wi]| oo < 0 max

2logmd  [2logmd
nc21 ’ ncay ’
(88)
2logd [2logd N
D = DN Ds.
NCgl s N021 } }, and 1 n 2

while, under 2logmd > ¢o1n and ¢ = 2221984 it holds
1 20 1 d
P ( max || X; w0 < awogm)
n i€[m] necay
~1_96 cor i 402?log® md 20¢logmd .
—9exp | —
B P * 3 n?o?? c21noY
+ log md)
>1—2exp(—logd). (85)
Combining (84) and (85), we have
1 21 21
P ( max||XiTwiHoo <oy max{ ogmd7 \/ 0gmd}>
N i€[m)] nea1 necoy
>1—2exp(—logd). (86)
Similarly, we can prove
1 2logd [2logd
P —|X"wl|e < otpmax ,
(N X Wil < o { Ve })
>1—2exp(—logd). (87)

Define D; and D, as in (88) at the top of the page. Then,
chaining (83), (86), and (87), we finally get

P(AND) >

1—>5exp(—logd) — exp <_c4\/§10g (fg))

— 3exp —64\/N — 2exp | —c21min s &
g R

B. Proof of Lemma 1(c)

We begin recalling that, for any random matrix X satisfying
Assumption 1(c), the Restricted Isometry Property (RIP) holds
with high-probability [1, Theorem 3.3]. Then, we present a
lemma translating the RIP to RSC/RSM conditions.

Definition 1 (RIP [8]). The matrix X is said to satisfy the
Restricted Isometry Property (RIP) with constant vy > 0 if

l)

O

1
(L=l A" < FIXAF < @ +r)lAl* 89

holds for all s-sparse vectors A € R

Chaining [1, Theorem 3.3] (setting therein the free parame-
ter parameter 6/ = 1/10422) with [1, Lemma 3.5], we infer the
following high-probability result for sub-exponential design
matrices X.
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Lemma 6. Let X be a random matrix satisfying Assump-
tion 2(c), and N such that (17) holds. Then, with probability

at least
edvVN
1 — csexp <C4\/§10g ( s ))
)

_P -
(r;?ff 10422

X satisfies the RIP condition, with constant

X'2
1Xe,| _1‘

ry < C5¢2\/§10g (ej\\/ff) 103122,
where c4,c5 > 0 are universal constants.
We proceed with bounding
P (max| P 1> oz
Notice that eachH ;leﬁgent of Xe; is sub-exponential with
€j

variance 1, thus — 1 is a symmetric Weibull variable.
Using [1, Lemma 3.7], we have

1
P ) <2exp| -
( >10422>— eXp( “Ty

We are ready to translate the RIP property to the RSC/RSM
conditions.

max
j<d

1 Xe, |2 1‘ 10422\/N>
_ . .

Lemma 7. Suppose X satisfies the RIP with parameter
rs > 0. Then, X satisfies the RSC and RSM properties with
parameters

= (1 —27rq,54r,/s) > 0,
= (14 27ry, 541,/ s).

(1t T;t)
(La TL)

Proof. From the RIP of X it follows

1
’NHX(’II2 —161I%] < 7s]1011%, V6 € Bo(s).

Therefore, since By(s) NBa(1) C Bo(s), it holds

XX
o7 (N _ ]) 9’ <rs, VO €EBy(s)NBa(1).

Applying [24, Lemma 12], we have

XX
Ti
(%5

which proves the RSC and RSM properties.

2
- 1) 9’ <27r, <||9|2 + 89||§> Vo € R?,
O

Chaining Lemma 6 and Lemma 7 concludes the proof of
Lemma 1(c).
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C. Auxiliary Results in the Proof of Theorem 2

This section contains some intermediate results used in
the proof of Theorem 2, namely: a bound of ||#:F! — 4|
(Proposition 8, Appendix C1) and of ||@" || (Proposition 10,
Appendix C2).

It is convenient to introduce the following extra notation,
which will be used in the proofs of the results in this
section. Given the stacked quantities (see Sec. I-C) y =
[y, oyt € RV, X = [X],...,X,]]T € RV*4 and
0=1[0],...,0]]7, let us define the stacked loss

f(6) = Zﬁ(ei),

where f; is defined in (2). Thus, the stacked gradient reads

(90)

Vfi(6h) X (X161 — 1)
V) = : = :
me(em) X;;E, (Xm,em, - ym)
oD
We will also use the following bound
XX L 1rd
o) <« 2y BT
)\max<N>_2+2, 92)

which is a consequence of the RSM condition (12), that is,
for all A € R%, there holds

1 L TL, L TLd
—IXAIZ < AP+ Al < (= + =) 14>
SIXAIR < SIAR+ Al < (5 + 5 ) Al
Cl. Proposition 8: The proposition provides an upper
bound of [|#LF1 — 6]|, used in (30).
Proposition 8. In the setting of Theorem 2, for all t =
0,1,..., the following bound holds for |05t — 0| :
ol

N Lmax A n
<l =B+ (o ) o+ S

4

+ep.
93)

Proof. Recall the definition of A5 from (27). Adding and
subtracting terms we can rewrite it as, for all t = 0,1, ...,

ot = 11

1 m
(ezv - FYVF(Q:W)) + E Z 7557 (94)
1=1

l6lh <R
where
1 m
€f é; I (Do wi (6 —4V£5(6%)
l6lh<r \j=1
- II (6, —~vF@©L) 95)
l6lh <R

This allows one to interpret 65 — (1/m) Y7, vel as the
outcome of one iteration of the (centralized) PGD applied to
(2) at 6,. Choosing v = 1/L and using the one-step descent
inequality [2, Eq. (54)] we obtain

1 m 2

t+1 Z t_

o - Lm ei—f
i=1

1— k=t +8s(2r, +7,)/L o, — §||2
- 1—16s7/L w
241 +74)/L ( ~ ~ 2
- (2|60 — 0" 2 9—9*) . (96
Our next result is a bound on the error |[(1/Lm) Y ", et

m
Lemma 9. For || X > ~el||, Eq. (97) at the bottom of the
i=1

page holds.
Proof. See Appendix C3. O
Using the triangle inequality
~ 1 ~ 1 &
9t+17077 t > 0t+179 | t
av Lm ;El — || av H Lm ;52 Y
and applying Lemma 9 with v = 1/L yield
1657 9
1— k=1 48s(2r +7,)/L ~ 1 «—
< £ 0L, — 0 — L
—\/ 1— 16sm./L 19 =01+ 725 ;E
2(4rp +71,)/L ( ~ ~
———= (2]|6 — 0" 2|0 — 0* )
eyl GO e
Lem. 9 1— -1 85(2 L Lmax 1
m k™1 +8s(21 + 7))/ +p 41
1—16s7/L L 2
7-Ld N — Lm X
R R O S I
2(4rp +71,)/L ( ~ ~
———2 (2]|6 — 9" 2|0 — 0* )
Tyl IO N R
Lmax 1 TLd ~
-+ = 1]]0-0"
wo( By e T 100
L pd1/2 maxie[m] IlX;r’leOO n ||)(TW||oo
L n N
@ Y — Lmax cenl
oty = Bl 2 (o ) o+ B

where in (a), we use the definition of 74y, Acent, and €, in (32),
(33), and (34), respectively.
This completes the proof. O

m

1
Hm;’75§

— L TLd ~ ~ "
R (R [ R O R (RN )

2 2

IXT W]l

+ pyd'/? (mmaXie[m] 15" w0

Vi=0,1,.... o7

) Xl
N )
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C2. Proposition 10: The proposition provides an upper
bound on the consensus error, used in (31).

Proposition 10. In the setting of Theorem 2, the following
bound holds for 0|, for all t =0,1,. ..,

(gl

Loax pm1/2L
<o (14 Z Yot +

6k, — Ol 4+ m -,

(98)

Proof. We start rewriting the DGD-ATC as follows: for all
t=0,1,...,

O'/2 = (W & I1,) (6" —yV f(6Y))

t+1 t4+1/2
0; = II o )
6l <R

for all i€ [m)]. 9

We observe that (1/m)||@||? can be interpreted as the vari-
ance of a discrete random variable taking values 61,...,6,,
with uniform probability. Using (99), we can then write

1
— |l

I K&l 2
= 52 > 5l =6
i=1 j=1
@ 1

m m 1
= mQZzi‘
i=1 j=1

t+1/2  pt+1/2]2

LSl
1| 4t+1/2

— e ‘
e

2

7

where (a) follows from the non-expansiveness of the projection
operator.

t+1/2
We proceed to bound ||0°

|

99)

|| as follows:

01+1/2H

‘ <(W — ;1m1;> ® Id) o' — wf(et))H

(- wr)er)

: [91 — (Vf(et) 1 ® VF@))] H

19 ~

< pl0' ]+ oy ||[V(6") — 1 0 VF@)|

< pllOLl+ Py [[V£8") = V(Ln @64
07 |V @ 04) = V(1 ©0)

-~ -~

®

(100)

where (b) follows from Assumption 3 that W1, = 1,,.
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20

To bound HVf(lm ®0)—1,® VF(&A?)H , we insert the
points Vf(1,, ® %), 1, ® VF(6*), and write

vam 20) 1 ® VF(§)H

< V5 (im0 8) - Vim0
IV (L ® 0°) — 1, ® VE(6Y)|
+ Hlm ©VEO) — 1, @ VF@H

m 2
2,01 XX ~ 2 | L wT~id o
= —— (0 — 0% —X ' X(0—46
Z; (O = 0)|| ! XX - 07)
I XlTwl XTW
N I8 B
n : N :
L X, w, X Tw
XX o~ ? max;e () || X, wil|
<[P E -0 +m' :
~| n n
1 .
+m!/? NXTX(H—G*) ‘ (101)

Plugging in the expression of f, F' and (101) into (100) gives

t+1/2
et
. m XTXZ 2
< O+ pvy| Y — (0 — 0,)
=1
m XTXZ N 2
+ vy D | T 0 - 6L
1=1
m XTXl N 2
A ——(0-0")
=1

-
1/2 MaXie[m] [|X; w| +P’Ym1/2 IXTw]
n N

1 T N *
X X0 )‘

+ pym

+ pym!/?

19 t }m: 2 t 2
< p||0J_|| +py Lmax ||91 - 93\/”
=1

n R 2
v | D Lo ||0 — 05,
=1
+ iLQ 0 — o+ ? + 172 18X [m] 12X, wi
Y o max pym -
XT 1 .
+ pym!/? IX_wi + pym!/? NXTX(Q - 9*)H .

(102)

It remains to relate max;e|, [| X, w;|| and [|XTw]| to the
statistical error bound. Using norm bound ||z|| < d'/?||z|so,
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for any 2 € R, thus, we have We proceed bounding Term I and Term ITI:
max;em) || X, will N X w| -
i (maxidm] IXTwillos ||xTw||oo> oz TS [ 2| 2 = 0L)
n N i=1 ||s=
=V W @ 1) (0 = 1, 05|
Using (92), (103) in (102), we obtain 1
=m1/? ((W - m1m1,1> ® Id> (6" —1,, ®0L) ‘
1/2 (19)
Jo < pm 20t 1, @ 6L (105)
< (p + P’YLmax) HOtL” + p’le/QLmaxHo - GEVH
L d\ -~
+ pym! /2 (Lmax +5+ T;) 16— 67| and
max;e i | X, willso XTwl oo
+ /212 ( cim Xl X )  Term I
<L wi; (Vf;(607) — V f;(6;,
Letting v = 1/L completes the proof. O - m = ! ( il ]) il ))
. t : LA |
N C3. Proof of Lemma 9: We decompose ¢; defined in (95) n % Z szj (V fj(ﬂfw) _v F(wa))
i=1||j=1
o ; o < 2| @ L)V £(8) ~ V(L @ 6]
“=3| I =yvre) —ae) Fam 2 (W @ 1)V (L @ 04) — 1 © VE(65)]
1= b _
Zym V2 |(W @ L)V (0") = V(L @ 6]
— H (Gt - ’VVF(Gt )) —1/2 1 T t
av av ’ W —-—1,1 1, 1, ® 0,
1ol <R tym —lnly ) @ 1a ) (VI(1n @ 63)
where —1,, @ VF(6L)) H
1 & 1 a
€22 (6 V) + 20 - V@), < am W @ L[TAe) - V(1o o)
i=1 (104) +pym ™2 ||V (L @ 0L) — 1 @ VF(6L,) |
<ym V2| VF(0') = V(L @ 6,
Thus pym 2|V (L @ 04) = V(L 2 )|
izﬁ + pym 12 HVf(lm®§) . 1m®VF(§)H
m
o + pym~ V2 H1m ® VF@) - 1,, ® VF(6L,)
@ 1 .
<3 lhell — :
i=1 D =172 Z X/ X (6t —0L)
o ) m m P n [ av
=N A D S wis (65 =V (6) — O +AVE(©) :
i=1 ||j=1 L T XTX ~
-1/2 — @ -e
< — wi;\U, av ~ ~
M= +p’ym71/2HVf(1m®9)—1m®VF(0)H
. +py H;IXTX(@— o), (106)
v
i=1||j=1

where (b) follows from

Term II

where in (a) we used the non-expansiveness of the projection 1 T . .
operator. (mlmlm ® Id) Vi(lm ®@0y) = 1nm @ VF(0,).
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Substituting (10), (101), (103) into (106), we have

Term I1I

92)
< 'Vm_l/szaXHBﬁ_ H

22

where in (a) we dropped the negative terms —(2x) "1, —x 1,
and —16s7;,/L; and in (b) we used p > 80577, + 1657,,.

L 7rd ~ ~
oy (Lmax tg+ 2> (H9 — || + H9 — 9 ) Combining (110) with (109), we conclude that (25) is
sufficient for (109):
12 [ maXiepm [1X willee | X TW]o
+ pvd
n N
(107)
The proof is completed combining the upper bounds of Term
I and Term IT asin (105) and (107), respectively. O
D. Proof of Corollary 2.1.
We begin showing that, under (25),
Tp ST, (108)

where r, and r are defined in (20) and (24), respectively.

Define
5 A\/1 — (25)"t +8s(2r + 714)/L
1— 24s7, /L ( oL >2
1= k=1 +8s(2r +7,)/L 8Lmax + 5L + 1.d
1—16s7/L ’ (1;0) 12
Since 2(2’“‘-’2 + K/) (SLmax + 5L + TLd>2
K>1 L2
1- L4 80t ALy 5 Tid = 6K2 (8Lmax + 5L + 71.d)°
o= 1 — 16z tp L 279 ) 24) 8
. . 3k2g%(d, m)
it is sufficient to prove c6€(0,1] 6
2.2 )
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To this end, we proceed lower bounding ¢§ as
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(109)
where ¢ € (0,1] is a free parameter. In addition, using
p > 80s7r, + 1657, yields r < 1.

(110) It remains to derive the expression of the tolerance error as

in the RHS of (26), given that in (23). Using the expression
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