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Distributed (ATC) Gradient Descent for High

Dimension Sparse Regression
Yao Ji, Student Member, IEEE, Gesualdo Scutari, Fellow, IEEE, Ying Sun, Member, IEEE, and Harsha Honnappa

AbstractÐWe study linear regression from data distributed
over a network of agents (with no master node) by means of
LASSO estimation, in high-dimension, which allows the ambient
dimension to grow faster than the sample size. While there
is a vast literature of distributed algorithms applicable to the
problem, statistical and computational guarantees of most of
them remain unclear in high dimension. This paper provides a
first statistical study of the Distributed Gradient Descent (DGD)
in the Adapt-Then-Combine (ATC) form. Our theory shows
that, under standard notions of restricted strong convexity and
smoothness of the loss functions±which hold with high probability
for standard data generation models±suitable conditions on the
network connectivity and algorithm tuning, DGD-ATC converges
globally at a linear rate to an estimate that is within the centralized
statistical precision of the model. In the worst-case scenario, the
total number of communications to statistical optimality grows
logarithmically with the ambient dimension, which improves on
the communication complexity of DGD in the Combine-Then-
Adapt (CTA) form, scaling linearly with the dimension. This
reveals that mixing gradient information among agents, as DGD-
ATC does, is critical in high-dimensions to obtain favorable rate
scalings.

Index TermsÐDistributed optimization, high-dimension statis-
tics, linear convergence, sparse linear regression.

I. INTRODUCTION

We study sparse linear regression over a network of m
agents, modeled as an undirected graph. In particular, no

centralized node is assumed in the network; agents can com-

municate only with their immediate neighbors±we refer to

these networks as mesh networks. Each agent i locally owns

n linear measurements of an s-sparse signal θ∗ ∈ R
d common

to all local models:

yi = Xiθ
∗ + wi, i = 1, . . . ,m, (1)

where yi ∈ R
n is the vector of n observations, Xi ∈ R

n×d

is the design matrix, wi ∈ R
n is observation noise. The total

sample size over the network is N = m ·n. We are interested

in the high-dimensional setting: the ambient dimension d is

larger (and grows faster) than the total sample size N and

s≪ d [44].

The LASSO estimator of θ∗ based on all N samples reads

θ̂ ∈ argmin
θ∈Rd : ∥θ∥1≤R

F (θ) ≜
1

m

m∑

i=1

fi(θ), (2)
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with

fi(θ) ≜
1

2n
∥yi −Xiθ∥2,

where the sparsity information is encoded via the projection

onto the ℓ1 ball. Solutions methods for (2) have been exten-

sively studied in the centralized setting (e.g., on master-worker

architecture); see, e.g., [4], [6], [21], [22], [45]. Our focus here

is on first-order methods; more specifically, the benchmark is

the Projected Gradient Descent (PGD) [2], whose performance

when applied to (2) can be summarized as follows: under (sub-

)Gaussian random matrix designs (see Assumption 2 for other

statistical models) and conditions for statistical consistency±

s log d/N = o(1)±the iterates {θt} generated by the PGD

(starting from θ0) satisfy with high-probability:

∥θt − θ̂∥2 ≤ rt ∥θ0 − θ̂∥2 + o(∥θ̂ − θ⋆∥2), (3)

with

r =
1− κΣ

−1 +O(s log d/N)

1−O(s log d/N)
,

where in the expression of the rate r we neglected universal

constants and κΣ ≥ 1 is the condition number of the covari-

ance matrix of the covariates (see Assumption 2). Notice that

the rate r is invariant to the ambient dimension d under high-

dimension scaling s, d/N → ∞ as long as s log d/N remains

constant. In words: the optimization error ∥θt − θ̂∥2 decays

linearly with rate r, up to a tolerance of a smaller order than

∥θ̂ − θ⋆∥2. Therefore every limit point of {θt} is within the

statistical error from θ⋆. This is the best one can hope for,

statistically (ignoring lower order terms) and computationally

(within first-order, non accelerated methods).

The PGD is not implementable on mesh networks: agents

cannot compute locally the full gradient ∇F , as they do not

have access to the entire data set, and sharing data across the

network is either infeasible (e.g., due to privacy issues) or

highly inefficient (e.g., due to excessive communication over-

head). A natural question is whether statistical/computational

guarantees similar to those of PGD can be mimicked by some

distributed algorithms. Of particular interest is the regime

wherein the local sample size n is below information theo-

retical bounds while the total one N is sufficient for statistical

consistency.

Decentralized versions of PGD have been extensively stud-

ied in the literature of distributed optimization (see Sec. I-B

for a review of the relevant works); with no doubts, Distributed

Gradient Descent (DGD) algorithms are among the most

popular ones [11], [12], [29], [30], [33]. Roughly speaking

they are of two types, based upon the information mixed
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locally by the agents, namely: the DGD in the Combine-then-

Adapt (DGD-CTA) form [29], [30] and the DGD in the Adapt-

Then-Combine update (DGD-ATC) [11], [12], [33]. DGD-CTA

averages local parameters vectors whereas DGD-ATC averages

both local parameter vectors and gradients. More specifically,

when applied to the LASSO problem (2), DGD-CTA and

DGD-ATC updates read for all t = 1, 2, . . . ,

DGD-CTA: θti =
∏

∥θi∥1≤R




m∑

j=1

wijθ
t−1
j − γ∇fi(θt−1

i )


 ,

(4)

and

DGD-ATC: θti =
∏

∥θi∥1≤R




m∑

j=1

wij
(
θt−1
j − γ∇fj(θt−1

j )
)

 ,

(5)

respectively, where θti is the estimate from agent i of the

common variable θ at iteration t;
∏

∥·∥1≤R(•) denotes the

Euclidean projection of its argument onto the ℓ1-ball {θ ∈ R
d :

∥θ∥1 ≤ R}, with R > 0; γ ∈ (0, 1] is the stepsize; and wij’s
are suitably chosen nonnegative weights, such that wij = 0 if

there is no link between i and j. In words, each agent i in

DGD-CTA builds its local update first performing one step of

mixing with the neighbors’ estimates θtj (termed consensus

step)±aiming at enforcing asymptotic agreement among all

the variables±followed by a ªcorrectionº based on its own

gradient ∇fi, and finally projected onto the ℓ1-ball to enforce

sparsity. On the other hand, the updates in DGD-ATC swap

the order of consensus and optimization steps, mixing thus

local parameters and gradients.

Despite their popularity, statistical-computational guaran-

tees of DGD-CTA and DGD-ATC remain elusive in high-

dimension. Existing studies are of pure optimization type±

lacking statistical properties of the limit points of the iterates

(4) and (5); furthermore, they are suitable only for low-

dimensions (see Sec. I-B for details). In the companion paper

[20] we provide the first statistical analysis of DGD-CTA in

high-dimension; this work complements [20] studying DGD-

ATC, offering thus a comparative analysis of the two schemes

in high-dimension. More specifically, in [20], we studied the

statistical properties of DGD-CTA applied to the LASSO

problem in Lagrangian form. Same conclusions can be proved

for the LASSO problem in the projected form (2): For standard

statistical models of predictors and stepsize γ = O(d−1), the

iterates generated by DGD-CTA enter, with high-probability,

an ε-neighborhood of a statistically optimal estimate of θ⋆ in

O
(
κΣ

dm2 logm

1− ρ
· log 1

ε

)
communications (iterations),

(6)

where ρ ∈ [0, 1) is a measure of the connectivity of the

network, the smaller ρ, the more connected the graph. This

result is of the same type of (3), showing thus that centralized

statistical accuracy is achievable over mesh networks at linear

rate. However, such a rate scales undesirably as O(d), which

contrasts with the rate-invariant property of PGD in the

centralized setting, as shown by (3). This is a consequence

of the stepsize choice γ = O(d−1). Numerical results in [20]

confirm that γ = O(d−1) cannot be eased, if one aims for

centralized statistical accuracy.

The role of γ is to control consensus errors, induced by

the use of local gradients ∇fj in the updates (4) rather than

the full gradient ∇F . A natural question is then whether

mixing the gradient along with the iterations, as in DGD-ATC,

will improve the rate dependence on the ambient dimension.

Understanding statistical-computational guarantees of DGD-

ATC in high-dimension as well as whether it improves over

DGD-CTA are open problems. This work provides an answer

to these questions, complementing the study in the companion

paper [20] of DGD-CTA in high-dimension.

A. Main contributions

Our contributions can be summarized as follows:

(i) Linear convergence up to a tolerance: Under suitably

restricted notions of strong convexity and smoothness of

F [2] (see Sec. II)±which hold with high probability for

a variety of statistical models underlying (1)±we identify

tuning recommendation ensuring the iterates generated by

DGD-ATC to converge at linear rate to a limit point that

is within a fixed tolerance from the centralized LASSO

solution θ̂±see Theorem 2.

Notice that, given the different nature of the CTA- and

ATC-form updates, the analysis in [20] is not usable

to study DTC-ATC: CTA-updates (4) can be interpreted

as those of the (proximal) gradient algorithm applied

to a centralized, lifted, penalized optimization problem

associated to the original LASSO formulation. This is

not the case for the ATC-iterates (5), which calls for an

ad-hoc analysis directly in the distributed domain.

(ii) Statistical-computational guarantees: When

customized to standard statistical models underlying

(1) (see Assumption 2), convergence results in (i) hold

with high probability (see Theorem 3); for instance, for

(sub-)Gaussian predictors and under s log d/N = o(1)
(needed for centralized statistical consistency) and

ρ ≤ poly
−1(d,m, κΣ), (7)

DGD-ATC with stepsize γ = O(1) enters with high-

probability an ε-neighborhood of a statistically optimal

estimate of θ⋆ in

O
(
κΣ log

1

ε

)
communications (gradient evaluations),

(8)

where we recall κΣ is the condition number of the

covariance matrix Σ of the data (see Assumption 2). This

rate matches (the order of) the one of the centralized PGD

[2].

When not met by the given graph and gossip matrix,

condition (7) on ρ, asking for a sufficiently connected

network, can be enforced via multiple rounds of commu-

nications per iteration t, resulting in

Õ
(
κΣ

log(d m)

1− ρ
log

1

ε

)
communications, (9)
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where Õ hides log-factors on optimization parameters but

m and d. This improves over the complexity of DGD-

CTA in (6), exhibiting a log-scaling with the ambient

dimension d versus a much less favorable linear one in

DGD-CTA. Numerical results show that these scalings

are fairly tight (see Sec. V).

Our analysis reveals an interesting, yet discovered, feature

of DGD-ATC versus DGD-CTA in high-dimensions: mixing

the local gradients along with the estimates, as DGD-ATC

employs, unlocks the use of stepsize values independent on d
(as in the PGD), yielding the more favorable rate scaling with

d as in (9) (log d versus d) while still achieving centralized

statistical errors. The burden on controlling consensus errors is

left to the network, which explains condition (7) on ρ, ensuring

sufficiently fast mixing. On the other hand, lacking the gradient

mixing, DGD-CTA does not enjoy this feature: no matter how

small ρ is, the stepsize γ cannot be freed by the dependence on

d. This fact cannot be inferred by existing comparative studies

of DGD-CTA and DGD-ATC (e.g., [41]), all performed in the

low-dimensional setting.

B. Related works

DGD-like methods: As anticipated, closely related to this

paper are the works that studied DGD algorithms in the CTA

[13], [27], [29], [30], [50], [51] and ATC [11], [12], [33],

[49] forms. When applied to the minimization of an average

loss f(θ) = 1/m
∑m
i=1 fi(θ), convergence guarantees of these

distributed methods can be roughly summarized as follows: (i)

for strongly convex and smooth losses fi (or f satisfying the

KL property [13], [51]), both type of schemes using a constant

stepsize converge at linear rate, but only to a neighborhood

of the minimizer of the average-loss f [50], [51], and the

size of the neighborhood scales as O(γ) (and is monotonic

on ρ for DGD-ATC). Convergence to the exact minimizer is

achieved employing diminishing stepsize rules, at the price of

slower sublinear rate [19], [51]. (ii) When the loss functions

are weakly convex, sublinear convergence is certified for both

methods, using a diminishing stepsize. A comparison between

DGD schemes in the ATC and CTA form can be found in

[41].

These results are unsatisfactory when applied to the LASSO

problem (2), and do not provide any statistical guarantee.

Specifically, (i) for fix d and N , they would predict sublinear

convergence rate, as the loss F is convex but not strongly

convex (recall d > N ); this would lead to the misleading

conclusion that, differently from the PGD in the centralized

setting, fast convergence to LASSO estimators is not achiev-

able over mesh networks by DGD-like algorithms, a fact

that contrasts with empirical evidences (see Sec. V) showing

linear convergence of both DGD-CTA and DGD-ATC, up to

some tolerance. (ii) When d grows faster than N±the typical

situation in high-dimension±the aforementioned studies break

down. In fact, they all require global smoothness of the loss

functions fi’s and F , a property that no longer holds under the

scaling d/N → ∞: for commonly used designs of predictors

xi’s, the Lipschitz constant of ∇F grows indefinitely with

d/N [44].

A statistical study of a DGD scheme that resembles DGD-

CTA, applied to the LASSO problem in the Lagrangian form

over mesh networks, was recently developed in the companion

work [20]: linear convergence to statistically optimal solu-

tions at rate as in (6) was certified. Statistical-computational

guarantees of DGD-ATC remains an open problem in high-

dimension, which are the contribution of this paper. We

remark that the convergence analysis we put forth here is

different from that in [20] for DGD-CTA, since the latter can

be reinterpreted as the centralized gradient method applied

to a lifted, penalized formulation, and thus builds on the

convergence analysis of the PGD in high-dimensions. There

exists no such interpretation for DGD-ATC in (5), which calls

for a different line of analysis.

Beyond DGD methods: The literature of distributed optimiza-

tion is plenty of schemes but DGD; they differ from plain

DGD for implementing some form of correction of the local

gradient direction, via distributed tracking mechanisms of the

full gradient [25], [28], [31], [39], [40], [48] or using dual

variables [16]±[18], [35]±[37]. A detailed discussion of these

methods goes beyond the scope of this work±we refer the

readers to the excellent tutorial [27] for more details. Here,

we only remark that, as for DGD-like methods, convergence

analyses of these other methods lack of statistical arguments

and break down in high-dimension. The only exception we are

aware of is the recent work [39], which studied convergence

of a distributed gradient-tracking (DGT) method, applied to

the LASSO problem over networks. In contrast to the DGD

methods (4) and (5), in DGT, agents employ a correction

of their local directions ∇fi forming a local estimate of

the average gradient ∇F . This is achieved via a suitably

designed dynamic consensus mechanism on the local gradients

(a.k.a. gradient tracking) [25], [48]. Under some technical

assumptions, the scheme is proved to reach a neighborhood

of a statistically optimal estimate of the unknown, sparse

parameter at a linear rate matching that of the centralized

proximal gradient up to O(s log d/N).
The above overview shows that, despite the popularity of

DGD(-ATC) algorithms in the literature, the understanding

of its statistical and computational guarantees (along with

its comparison with DGD-CTA) in high-dimension remain

elusive. This paper addresses this open problem, shedding

light on the role of the network in the statistical computational

tradeoffs of DGD algorithms.

C. Notation and paper organization

The rest of the paper is organized as follows. Sec. II intro-

duces the main assumptions on the data model and network

setting. Convergence of DGD-ATC is studied in Sec. III±

under RSC and RSM, linear convergence of the optimization

error is proved up to a tolerance. Sec. IV particularizes the

convergence results in Sec. II to the statistical model under

Assumption 2: linear convergence up to centralized statistical

precision is certified with high probability. Numerical results

supporting the theoretical findings are provided in Sec. V.

Notation: Let [m] ≜ {1, . . . ,m}, m ∈ N++; 1 is the vector

of all ones; ei ∈ R
d is the i-th canonical vector; Id is the d×d

identity matrix (when unnecessary, we omit the subscript); ⊗
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denotes the Kronecker product; and A ≻ 0 (resp. A ⪰ 0)

stands for A being positive definite (resp. semidefinite). Given

x1, . . . , xm ∈ R
d, the bold symbol x = [x⊤1 , . . . , x

⊤
m]⊤ ∈

R
md denotes the stack vector; for any x = [x⊤1 , . . . , x

⊤
m]⊤,

we define its block-average as xav ≜ (1/m)
∑m
i=1 xi, and

the disagreement vector x⊥ ≜ [x⊤⊥1, . . . , x
⊤
⊥m]⊤, with each

x⊥i ≜ xi − xav. Similarly, for any collection of matrices

X1, . . . , Xm ∈ R
n×d, we use bold notation for the stacked

matrix X = [X⊤
1 , . . . , X

⊤
m]⊤. We order the eigenvalues of

any symmetric matrix A ∈ R
m×m in nonincreasing fashion,

i.e., λmax(A) = λ1(A) ≥ . . . ≥ λm(A) = λmin(A). We

use ∥ · ∥ to denote the Euclidean norm; when other norms

are used, e.g., ℓ1-norm and ℓ∞, we will append the associate

subscript to ∥ · ∥, such as ∥ · ∥1, and ∥ · ∥∞; with a slight

abuse of notation, we still use ∥ • ∥0 to denote the cardinality

function. Consistently, when applied to matrices, ∥ · ∥ denotes

the operator norm induced by ∥ · ∥. Given S ⊆ [d] and

y ∈ R
d, we denote by |S| the cardinality of S and by

yS the |S|-dimensional vector containing the entries of y
indexed by the elements of S; Sc is the complement of S .

Let Bp(R) denote the ℓp-norm ball with radius R, for any

p = 0, 1, 2, . . . ; consistently with the adopted notation, B0(R)
is the set of vectors with sparsity at most R. Finally, we

recall that, for a random variable X , the ψ1-Orlicz norm is

defined as ∥X∥ψ1
= inf

{
t > 0 : E[exp (|X|/t)] ≤ 2

}
[43,

Definition 2.7.5]. Furthermore, ∥X∥ψ1
< ∞ is equivalent to

X belonging to the class of sub-exponential random variables

[43, Proposition 2.7.1].

The following quantities associated with (2) will be used

throughout the paper:

S ≜ supp{θ∗}, s = |S|, Lmax ≜ max
i∈[m]

λmax

(
X⊤
i Xi

n

)
.

(10)

Finally, we collect all the local data (yi, Xi)
m
i=1 into the

stacked vector y = [y⊤1 , . . . , y
⊤
m]⊤ ∈ R

N and matrix X =
[X⊤

1 , . . . , X
⊤
m]⊤ ∈ R

N×d.

II. SETUP AND BACKGROUND

In this section we introduce the main assumptions on the

data model and network setting.

A. Problem setting

In the high-dimension setting, d > N , the empirical loss F
in (2) is not strongly convex uniformly±the d×d Hessian ma-

trix X⊤X/N has at most rank N . However, strong convexity

and smoothness hold along a restricted set of directions, which

is enough to employ fast convergence and favorable statistical

guarantees of the PGD in the centralized setting [2]. Here we

postulate the same properties for the landscape of F , as stated

next.

Assumption 1 (RSC/RSM condition [2]). F in (2) satisfies

the Restricted Strong Convexity (RSC) property with curvature

µ > 0 and tolerance τµ > 0:

1

N
∥X∆∥2 ≥ µ

2
∥∆∥2 − τµ

2
∥∆∥21, ∀∆ ∈ R

d, (11)

and the Restricted Smoothness property (RSM) with parameter

L > 0 and tolerance τL > 0:

1

N
∥X∆∥2 ≤ L

2
∥∆∥2 + τL

2
∥∆∥21, ∀∆ ∈ R

d. (12)

It is assumed L ≥ µ.

The RSC/RSM conditions above are certified with high

probability by a variety of random design matrices X. Here

we consider the following.

Assumption 2. Suppose the design matrix X satisfies one of

the following random designs:

(a) Gaussian model: The rows of X ∈ R
N×d are i.i.d.

N (0,Σ), with Σ ≻ 0. Let κΣ ≜ λmax(Σ)/λmin(Σ)
denote the condition number of Σ;

(b) Sub-Gaussian model: The rows of X ∈ R
N×d are

centered i.i.d. sub-Gaussian with parameters (Σx, σ
2
x),

where Σx ≻ 0;

(c) Sub-exponential model: The entries of the matrix X are

centered independent sub-exponential random variables

centered with variance one and ∥Xij∥ψ1
≤ ψ, for all

i ∈ [N ] and j ∈ [d], and finite ψ > 0.

Lemma 1. Let X ∈ R
N×d be a random design matrix, the

following hold:

(a) Gaussian model: [32, Theorem 1] Under Assump-

tion 2(a), there exist universal constants c0, c1 > 0
such that, with probability at least 1 − exp(−c0N), the

RSC condition (11) and RSM condition (12) hold with

parameters

(µ, τµ) =

(
λmin(Σ), 2c1ζΣ

log d

N

)

and (L, τL) =

(
4λmax(Σ), 2c1ζΣ

log d

N

)
, (13)

respectively, with ζΣ ≜ max
i∈[d]

Σii;

(b) Sub-Gaussian model: [24, Lemma 1] Under Assump-

tion 2(b) and

N ≥ 4

c2
s log dmax

{
σ2
x

λ2min(Σx)
, 1

}
, (14)

with probability at least

1− 2 exp

(
−c2

2
N min

{
λ2min(Σx)

σ4
x

, 1

})
, (15)

the RSC condition (11) and RSM condition (12) hold with

parameters

(µ, τµ) =

(
λmin(Σx)

2
,
c3σ

4
x log d

λmin(Σx)N

)

and (L, τL) =

(
3λmax(Σx)

2
,
c3σ

4
x log d

λmin(Σx)N

)
, (16)

respectively;

(c) Sub-exponential model: Under Assumption 2(c) and

N ≥ ψ4

c24
log2 d, (17)
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with probability at least

1− c5 exp

(
−c4

√
s log

(
ed
√
N

s
√
s

))

− 2 exp

(
−10422c4

√
N

ψ2

)
, (18)

the RSC condition (11) and RSM condition (12) hold with

parameters

(µ, τµ) =

(
10395

10422
− 27c5ψ

2

√
s

N
log

(
ed
√
N

s
√
s

)
,

54c5ψ
2

√
1

sN
log

(
ed
√
N

s
√
s

)
+

54

10422s

)
,

(L, τL) =

(
10449

10422
+ 27c5ψ

2

√
s

N
log

(
ed
√
N

s
√
s

)
,

54c5ψ
2

√
1

sN
log

(
ed
√
N

s
√
s

)
+

54

10422s

)
,

respectively, where c4, c5 > 0 are universal constants.

Proof. The statement (c) is proved in Appendix B.

Sub-Gaussian ensemble covers several types of random

design matrices, including general bounded random [44, Theo-

rem 2.2.6], Bernoulli [5], [26], and Gaussian random designs

[32]. Sub-exponential designs capture random designs with

with heavier tails than sub-Gaussians [14], [38]; examples in-

clude element-wise square of sub-Gaussian [43, Lemma 2.7.6],

element-wise product of sub-Gaussians [43, Lemma 2.7.7],

and Johnson-Lindenstrauss random projection for dimension

reduction [9, Lemma 1].

B. Network setting

The network of agents is modeled as an undirected graph

G = (V, E), where V = [m] is the set of agents, and E is

the set of the edges; {i, j} ∈ E if and only if there is a

communication link between agent i and agent j. We make the

standard assumption on that G is connected, which is necessary

for the convergence of distributed algorithms. Given the DGD-

ATC scheme (5), we make the following standard assumption

on the weight matrix W ≜ (wij)
m
i,j=1, where PK denotes the

set of polynomials with degree no larger than K = 1, 2, . . ..

Assumption 3. [On the weight matrix W ] The matrix W =
(wij)

m
i,j=1 belongs to the following class W = PK(W ), where

PK ∈ PK , with PK(1) = 1, and W ≜
(
w̄ij
)m
i,j=1

has a

sparsity pattern compliant with G, that is (i) w̄ii > 0, for all

i ∈ [m]; (ii) w̄ij > 0, if (i, j) ∈ E; and w̄ij = 0 otherwise.

Furthermore, W is symmetric and stochastic, that is, W1 = 1
(and thus also 1⊤W = 1⊤). Define ρ ≜ ∥W − 11⊤/m∥.

It follows from Assumption 3 that

ρ = max{λ2(W ), |λmin(W )|} < 1. (19)

Roughly speaking, ρ measures how fast the network mixes

information (the smaller, the faster).

Several rules for choosing W have been proposed in the

literature satisfying Assumption 3, such as the Laplacian, the

Metropolis-Hasting, and the maximum-degree weights rules;

see, e.g., [27] and references therein. When K > 1, K rounds

of communications per iteration t are employed in the DGD

updates (4) and (5) (one iteration is counted as one computa-

tion of the gradient). This can be performed, for instance, using

in each of the K communication exchanges the same given

reference matrix W (satisfying Assumption 3), with associated

ρ̄ = ∥W − 11⊤/m∥ < 1, resulting in W = W
K

. Such a

W satisfies Assumption 3, with ρ = ∥WK − 11⊤/m∥ =
∥(W − 11⊤/m)K∥ = ρK . Faster information mixing can be

obtained using suitably designed polynomials PK(W ), such

as Chebyshev [3], [34] or Jacobi polynomials [7].

III. CONVERGENCE ANALYSIS

This section provides our first convergence result of DGD-

ATC in high-dimension: under RSC and RSM, linear con-

vergence of the optimization error (1/m)
∑m
i=1∥θti − θ̂∥2 is

proved up to a tolerance of O(∥θ̂ − θ∗∥2).
We begin introducing the key quantities instrumental to state

convergence of DGD-ATC. Recalling the parameters in the

RSC/RSM condition (Assumption 1), let us define

rρ ≜max





√√√√1− 1
κ +

8s(2τL+τµ)
L

1− 16sτL
L

+ ρ1/2
(
2Lmax

L
+

1

2

+
τLd

2L

)
, 2ρ1/2

(
1 +

Lmax

L

)}
, (20)

which will determine the convergence rate of DGD-ATC. The

initial optimality gap is defined as

η0 ≜ 2∥θ0av − θ̂∥, (21)

for given θ0i , i ∈ [m]. Finally we introduce the tolerance on

the final optimization error:

∆stat ≜ ∆cent +∆dist, (22)

where

∆cent ≜ 8

√
2(4τL + τµ)

L− 16sτL

(
∥θ̂ − θ∗∥1 +

√
s∥θ̂ − θ∗∥

)

and

∆dist ≜8ρ1/2
(
Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
8ρ1/2d1/2

L

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)
.

Notice that ∆stat is composed of a network independent

term, ∆cent (matching centralized statistical precision), and a

network dependent one ∆dist.

Theorem 2. Consider the LASSO problem (2) under As-

sumption 1. Let {θt} be the iterates generated by DGD-

ATC (5) from arbitrary, consensual initialization θ
0 (e.g.,

θ0i = 0, for all i = 1, . . . ,m) using a gossip matrix W
satisfying Assumption 3, and stepsize γ = 1/L. Suppose that
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√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2 ≤ η0 rt+1 +

1

1− r
· 24
√

2s(4τL + τµ)

L− 16sτL
∥θ̂ − θ∗∥

︸ ︷︷ ︸
centralized error

+
ρ1/2g(d,m)

1− r

(
∥θ̂ − θ∗∥+

√
log d

logmd
· maxi∈[m] s

1/2∥X⊤
i wi∥∞

µN
+
s1/2∥X⊤w∥∞

µN

)

︸ ︷︷ ︸
cost of decentralization

. (26)

the RSC/RSM parameters (µ, τµ), (L, τL) and the network

connectivity ρ are such that rρ < 1. Then, for any optimum θ̂

of the problem (2) for which ∥θ̂∥1 = R, we have
√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2 ≤ η0rt+1

ρ +
∆stat

1− rρ
, ∀ t = 0, 1, . . . .

(23)

Proof. See Sec. III-A.

Theorem 2 certifies linear convergence of DGD-ATC at rate

rρ, up to some tolerance. Both rρ and ∆stat depend on the

RSC/RSM parameters τµ, τL, the problem-related parameters

κ, d, s, Lmax, the network connectivity ρ and network size m.
The next corollary establishes explicit conditions on the

these parameters, in particular on ρ, for the rate rρ to be of

the same order of that of the centralized PGD [2, Theorem 1]

and the tolerance ∆stat to match centralized statistical precision

O(∥θ̂ − θ∗∥). Specifically, introducing

r ≜

√(
1− 1

2κ
+

8s(2τL + τµ)

L

)(
1− 24sτL

L

)−1

,

g(d,m) ≜
32Lmax

L
+ 20 +

4τLd

L
+ 8m

√
d logmd

s log d
,

(24)

we have the following.

Corollary 2.1. Instate the setting of Theorem 2. In addition,

suppose R ≤ ∥θ∗∥1,

µ > 80sτL + 16sτµ, and ρ ≤ c6
κ2g2(d,m)

, (25)

where c6 ∈ (0, 1] is some universal constant. Then, for any

optimum θ̂ of the LASSO problem (2) for which ∥θ̂∥1 = R,
Eq. (26) at the top of the page holds, for all t = 0, 1, . . ..

Proof. See Appendix D.

The following comments are in order.

(i) On the linear rate r: The contraction coefficient r
determining the linear decay of the optimization error depends,

as expected, on the restricted condition number κ and the

RSC/RSM tolerance parameters τµ, τL, the latter due to the

lack of strong convexity and smoothness in a global sense. No-

tice that this rate is of the same order of that of the centralized

PGD applied to the LASSO problem (2) [2, Theorem 1] and

improves on existing analyses of DGD-ATC [11], [12], [33],

[49] whose convergence to a solution of (2) is certified only at

sublinear rate, due to the lack of strong convexity in the global

sense (see Sec. I-B). When F is µ-strongly convexity and L-

smooth globally, i.e., τµ = τL = 0, the expression of r reduces

to
√
1− 1/(2κ), with κ = L/µ becoming the condition

number of F . This recovers the well-known convergence rate

of DGD-ATC in low-dimension (N > d) [49].

(ii) On the tolerance error: The tolerance in (26) consists

of a network independent and a network dependent term. The

smaller ρ, the smaller the overall tolerance. When customized

to the centralized setting [2]±ρ = 0 and s(τµ + τL) = o(1),
with the latter condition necessary for statistical consistency±

the overall tolerance reduces to that achievable by the PGD,

that is, o(∥θ̂−θ∗∥) [2]. When ρ ̸= 0, we will show in Sec. IV

that the overall tolerance in (26) can be made of the order of

the centralized statistical error ∥θ̂ − θ∗∥.

(iii) On the condition (25) on ρ: To ensure convergence

to statistical precision at rate of the order of the centralized

PGD, condition (25) on ρ is required. Roughly speaking, (25)

calls for the network to be sufficiently connected±the more

ill conditioned the problem (the larger κ) or the larger m
(network size), the smaller ρ is required. When the network

topology is given and ρ does not satisfy (25), one can still

enforce it by employing multiple rounds of communications.

The communication complexity will be studied explicitly in

the next section, where convergence is specialized to the

statistical model.

A. Proof of Theorem 2

We decompose the iterates θ
t+1 generated by DGD-ATC

into the average process θt+1
av and consensus error dynamic

θ
t+1
⊥ , for all t ≥ 0, 1, . . . ,

θt+1
av =

1

m

m∑

i=1

∏

∥θi∥1≤R




m∑

j=1

wij
(
θtj − γ∇fj(θtj)

)

 , (27)

and

θ
t+1
⊥ = θ

t+1 − 1m ⊗ θt+1
av . (28)

The average estimation error is controlled by these two terms,

according to

√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2 ≤ ∥θt+1

av − θ̂∥+m−1/2∥θt+1
⊥ ∥. (29)
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In Proposition 8 (see Appendix C1) and Proposition 10 (see

Appendix C2), we prove the following bounds for ∥θt+1
av − θ̂∥

and ∥θt+1
⊥ ∥, respectively:

∥θt+1
av − θ̂∥ ≤ rav∥θtav − θ̂∥+m−1/2

(
ρ+

Lmax

L

)
∥θt⊥∥

+
∆cent

4
+ ερ, (30)

∥θt+1
⊥ ∥ ≤ ρ

(
1 +

Lmax

L

)
∥θt⊥∥

+
ρm1/2Lmax

L
∥θtav − θ̂∥+m1/2 · ερ, (31)

where the rate rav, tolerance ∆cent, and error ερ are defined as

rav ≜

√(
1− κ−1 +

8s(2τL + τµ)

L

)(
1− 16sτL

L

)−1

+ ρ

(
Lmax

L
+

1

2
+
τLd

2L

)
, (32)

∆cent = 8

√
2(4τL + τµ)

L− 16sτL

(
∥θ̂ − θ∗∥1 +

√
s∥θ̂ − θ∗∥

)
, (33)

and

ερ ≜ρ

(
Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
ρd 1/2

L

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)
,

(34)

respectively. Notice that rav ≤ rρ. Since, under the as-

sumptions of the theorem, the RSC/RSM parameters (µ, τµ),
(L, τL), the problem parameters d, Lmax, and the network

parameters (m, ρ) are such that rρ ∈ (0, 1), it follows that

rav ∈ (0, 1).

Combining (30) and (31) yields, for any a > 0,

∥θt+1
av − θ̂∥+ a∥θt+1

⊥ ∥

≤
(
rav +

aρm1/2Lmax

L

)
∥θtav − θ̂∥

+
∆cent

4
+
(
1 + am1/2

)
· ερ

+

[
ρm−1/2 +

m−1/2Lmax

L
+ a

(
ρ+

ρLmax

L

)]
∥θt⊥∥

(a)

≤ rmax

(
∥θtav − θ̂∥+ a∥θt⊥∥

)
+

∆cent

4
+
(
1 + am1/2

)
· ερ,

where in (a) we defined

rmax ≜ max

{
rav +

aρm1/2Lmax

L
, a−1

(
ρm−1/2+

m−1/2Lmax

L

)
+ ρ+

ρLmax

L

}
. (35)

The first element in (35) is a non-increasing function of a
while the second element is a non-decreasing one. We can

thus minimize rmax by choosing a such that

rav +
aρm1/2Lmax

L
= a−1

(
ρm−1/2 +

m−1/2Lmax

L

)
+ ρ

+
ρLmax

L
,

which reads

a2 · ρm
1/2Lmax

L
+ a ·




√√√√1− µ
L +

8s(2τL+τµ)
L

1− 16sτL
L

+ρ

(
τLd

2L
− 1

2

)]
−
(
ρm−1/2 +

m−1/2Lmax

L

)
= 0.

To keep the expression of a simple, instead of solving the

second-order equation above, we choose an a that preserves

the same scaling on ρ and m of the solution, yielding a =
ρ−1/2m−1/2. With this choice, rmax reads

rmax

= max

{
rav +

ρ1/2Lmax

L
, ρ1/2

(
ρ+

Lmax

L

)
+ ρ+

ρLmax

L

}

(32),ρ≤1

≤ max





√√√√√√
1− 1

κ
+

8s(2τL + τµ)

L

1− 16sτL
L

+ ρ1/2
(
2Lmax

L

+
1

2
+
τLd

2L

)
, 2ρ1/2

(
1 +

Lmax

L

)}

(20)
= rρ.

Therefore, we can bound ∥θt+1
av − θ̂∥ and ∥θt+1

⊥ ∥ in (30) and

(31) as

∥θt+1
av − θ̂∥ ≤rtρ

(
∥θ1av − θ̂∥+ ρ−1/2m−1/2∥θ1

⊥∥
)
+

∆cent

4(1− rρ)

+

(
1 + ρ−1/2

)
ερ

1− rρ
,

∥θt+1
⊥ ∥ ≤rtρ

(
ρ1/2m1/2∥θ1av − θ̂∥+ ∥θ1

⊥∥
)

+
ρ1/2m1/2∆cent

4(1− rρ)
+
ρ1/2m1/2

(
1 + ρ−1/2

)
ερ

1− rρ
.

Using the above bounds in (29), we obtain

√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2 ≤ η1

(
1 + ρ1/2

)
rtρ +

(
1 + ρ1/2

)

1− rρ

[
∆cent

4

+
(
1 + ρ−1/2

)
ερ

]
, (36)

where η1 is a term related to the optimality gap at iteration 1,
defined as

η1 ≜ ∥θ1av − θ̂∥+ ρ−1/2m−1/2∥θ1
⊥∥.
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We further bound η1 as follows:

η1
(30),(31)

≤
(
rav +

ρ1/2Lmax

L

)
∥θ0av − θ̂∥+

(
ρm−1/2

+
m−1/2Lmax

L
+ ρ1/2m−1/2 +

ρ1/2m−1/2Lmax

L

)
∥θ0

⊥∥︸ ︷︷ ︸
=0

+
∆cent

4
+
(
1 + ρ−1/2

)
ερ

(32)
=

√√√√
(
1− κ−1 +

8s(2τL+τµ)
L

)

(
1− 16sτL

L

) ∥θ0av − θ̂∥

+

[
ρ

(
Lmax

L
+

1

2
+
τLd

2L

)
+
ρ1/2Lmax

L

]
∥θ0av − θ̂∥

+
∆cent

4
+
(
1 + ρ−1/2

)
ερ

ρ≤1

≤

√√√√
(
1− κ−1 +

8s(2τL+τµ)
L

)

(
1− 16sτL

L

) ∥θ0av − θ̂∥

+ ρ1/2
(
2Lmax

L
+

1

2
+
τLd

2L

)
∥θ0av − θ̂∥+ ∆cent

4

+
(
1 + ρ−1/2

)
ερ

(20)

≤ rρη
0

2
+

∆cent

4
+
(
1 + ρ−1/2

)
ερ, (37)

where η0 is defined in (21).

Chaining (37) with (36), we finally obtain
√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2

≤ η0

2

(
1 + ρ1/2

)
rt+1
ρ

+
2
(
1 + ρ1/2

)

1− rρ

[
∆cent

4
+
(
1 + ρ−1/2

)
ερ

]

(34)
=

η0

2

(
1 + ρ1/2

)
rt+1
ρ +

(
1 + ρ1/2

)

1− rρ

∆cent

2
+

2

1− rρ
(ρ

+ρ1/2 + ρ
3
2 + ρ

)
·
[(

Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
d 1/2

L

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)]

ρ≤1

≤ η0rt+1
ρ +

∆cent

1− rρ

+
8ρ1/2

1− rρ

(
Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
8ρ1/2

1− rρ

d 1/2

L

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)
.

This concludes the proof. □

IV. GUARANTEES FOR SPARSE LINEAR REGRESSION

W present now some consequences of Corollary 2.1, cus-

tomized to the sparse linear regression model. We provide

nonasymptotic convergence rate for the DGD-ATC under the

random Gaussian model for the data X [Assumption 2(a)] and

random noise vector w. Of particular interest is the scaling

of the communication complexity and final tolerance under

s, d/N → ∞ and s log d/N = O(1). Results are of proba-

bilistic type, as a consequence of Lemma 1(a), which certifies

RSC and RSM to hold with high probability. Statistical and

computational guarantees of the same flavor are established

also for the other random matrix designs in Assumption 2,

and discussed in Appendix A.

We preliminary define the following quantities:

r =

√(
1− 1

8κΣ
+ χ(Σ)

)
(1− χ(Σ))

−1
, (38)

where

χ(Σ) ≜
12c1ζΣ
λmax(Σ)

· s log d
N

, with ζΣ = max
i∈[d]

Σii; (39)

g(d,m) ≜16c8 ·
d+ logm

n
+ 20 + 2c1ζΣ · d log d

Nλmax(Σ)

+ 8m

√
d logmd

s log d
, (40)

where c8 ≥ 2 is an universal constant. Furthermore, the

centralized tolerance reduces to

∆ ≜ 24

√
χ(Σ)

1− χ(Σ)
. (41)

Using the above notations, convergence of DGD-ATC is stated

next.

Theorem 3. Consider the LASSO problem (2), with design

matrix X satisfying Assumption 2(a), noise vector w ∼
N (0, σ2IN ), and regularization parameter R ≤ ∥θ∗∥1. Fur-

thermore, let

N ≥ c13sζΣ log d

λmin(Σ)
and

d+ logm

n
> 1. (42)

Let {θt} be the iterates generated by DGD-ATC (5), us-

ing arbitrary, consensual initialization θ
0, stepsize γ =

1/(4λmax(Σ)), and gossip matrix W satisfying Assumption 3

with ρ such that

ρ ≤ c6
κ2Σ g

2(d,m)
. (43)

Then, for any optimum θ̂ of the problem (2) for which ∥θ̂∥1 =
R, and all t = 0, 1, . . . , there holds

√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2

≤ η0rt+1 +
∆

1− r
· 5σ

λmin(Σ)

√
6c11sζΣ log d

N︸ ︷︷ ︸
o
(√

s log d/N
)

+
ρ1/2g(d,m)

1− r

6σ

λmin(Σ)

√
6c11sζΣ log d

N︸ ︷︷ ︸
O
(√

s log d/N
)

(44)
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path 2-d grid complete star networks p-Erdős-Rényi p-Erdős-Rényi geometric random graph

(1− ρ(m))−1 O(m2) O(m logm) O(1) O(m2) O(1) [p = logm/m] O(1) [p = O(1)] O(m logm)

TABLE I: Scaling of (1− ρ(m))−1 with network size m, for different graph topologies.

with probability at least

[1− 4 exp(−c12 log d)][1− exp(−c12N)− 4 exp(−c12 log d)].
(45)

The universal constants above are: c1, c7 > 0, c6 ∈ (0, 1],
c8 ≥ 2, c9 > 32, c10 = c9/32 − 1, c11 > 2, c12 =
min{c7, c10, (c11 − 2)/2}, and c13 = max{192c1, c9}.

Proof. See Sec. IV-B.

A. Discussion

The following comments are in order.

(i) Linear convergence to statistically optimal estimates:

(44) certifies linear convergence at rate r of the average

optimization error to an estimate within the statistical pre-

cision of the model, that is, ∥θ̂ − θ∗∥ = O(
√
s log d/N).

Notice that when ρ = 0 (fully connected networks or star-

topologies), the statistical ball improves to o(
√
s log d/N),

matching that of the centralized PGD [2], see (3). For a fixed

network (satisfying (43)), the dependency of r on the ambient

dimension d, the total sample size N , and sparsity level s is

only through the ratio s log d/N (see (38)). This implies that

such a rate is invariant under the high-dimensional scaling

s, d/N → ∞ and s log d/N = O(1). Notice also that, under

s log d/N = o(1) and ρ satisfying (43), an ε-neighborhood of

a statistically optimal solution is achieved in O (κΣ log(1/ε))
number of iterations (communications). This is of the same

order of the rate of the centralized PGD [2].

(ii) Near optimal sample complexity: The above statis-

tical guarantees are achieved under condition (42) on the

total sample size N . This is nearly minimax optimal as

N = Ω(s log(d/s)). This proves that centralized statistical

consistency is achieved also when local sample sizes n do

not satisfy such a condition. This is possible thanks to the

information mixing employed throughout the network, and

thus at some communication cost, which will be quantified

next.

(iii) On the communication complexity and scaling: As

anticipated, condition (43) on ρ, when not met by the given

graph and gossip matrix W , can be enforced via multiple

rounds of communications per iteration. In fact, given W
satisfying Assumption 3, with ρ = ∥W − 11⊤/m∥ < 1, one

can build the new matrix WK with ∥WK − 11⊤/m∥ = ρK ,

and any K = 1, 2, . . .. As discussed in Sec. II-B, this matrix

still satisfies Assumption 3 and, when used in the update

(5) instead of W , corresponds to employing K rounds of

communications per gradient evaluation, each time using the

gossip matrix W . Now one can choose K so that ρK satisfies

(43), resulting in

K =

⌈
log
(
κ2Σ g

2(m, d)/c2)
)

log(1/ρ)

⌉

=O
(
log (d mκΣ (1 + λmin(Σ)))

1− ρ

)
(46)

communications per iteration. We remark that the dependence

on 1 − ρ in (46) can be improved to
√
1− ρ if K-order

Chebyshev polynomials are used as gossip matrix; see, e.g.,

[34], [47].

Using (46), we then conclude that an ε-neighborhood of a

stationary optimal solution is reached in at most

O
(
κΣ

log (d mκΣ (1 + λmin(Σ)))

1− ρ
log(1/ε)

)
(47)

communications. This improves on the communication com-

plexity of DGD-CTA [20] (see (6)), showing a more favorable

log-scaling with the ambient dimension d and the network

size m. These bounds are fairly tight, as confirmed by our

experiments in Sec. V.

(iv) Network dependence/scaling. According to (47) (see

also (44)), the network topology affects the convergence rate

of DGD-ATC as well as the statistical accuracy through the

terms log(dm)/ (1− ρ)−1 and ρ1/2g(d,m), respectively. As

expected, larger m or ρ ∈ [0, 1) yields more communications

and larger estimation error. Notice that ρ = ρ(m) itself is a

function of m (and the network topology).

Referring to (44), recall that, under (43), ρ(m)1/2g(d,m) =
O(1/κΣ). Thus, (44) remains within the centralized statistical

error O
(√

s log d/N
)

even for increasing ρ and m, as long

as (43) is enforced via K communication rounds per iteration,

with K given by (46). Therefore statistically consistency is

preserved at the cost of more communications.

To quantify the scaling of the communication complexity

(46) with m, Table. I provides the dependence of (1−ρ(m))−1

therein with m for different graphs, when the weights in W
are chosen according to the lazy Metropolis rule [27]. For

instance, complete graphs and Erdös-Rényi graphs have the

favorable scaling (1 − ρ(m))−1 = O(1), in contrast with

path graphs (O(m2)) or 2-d grid graphs (O(m logm)). While

this is informative of the impact of the specific topology and

network size on the total number of communications as in (47),

it does not capture the entire cost of communications from the

agents. For instance, denser networks are expected to generate

more traffic. In this light, counting each edge as one channel

use in each communication, a measure of communication cost

might be the total channel uses to ε-solutions. It is not difficult

to check that for complete graphs or Erdös-Rényi graphs with
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edge probability p = O(1), such a communication cost reads

O(m2) total channel uses while for Erdös-Rényi graph with

p = logm/m, it reduces to a more favorable Õ(m) (Õ hides

log-factors in the communication complexity).

(v) Comparison with CTA-DGD. Theorem 3 shows that,

when the network connectivity ρ is sufficiently small

(see (43)), DGD-ATC can adopt constant stepsize γ = O(1),
converging to a neighborhood of θ̂ of size O(

√
s log d/N).

This is in sharp contrast to the convergence result of DGD-

CTA, which requires the stepsize γ = O(1/d) regardless of

the network connectivity [20].

To explain the phenomenon intuitively, adding and subtract-

ing the centralized gradient ∇F , we can rewrite (4) and (5),

respectively as, for all t = 1, 2, . . . ,

DGD-CTA: θti =
∏

∥θi∥1≤R

( m∑

j=1

wijθ
t−1
j − γ∇F (θt−1

i )

+ γ (∇F (θt−1
i )−∇fi(θt−1

i ))︸ ︷︷ ︸
gradient discrepancy

)
, (48)

and

DGD-ATC: θti =
∏

∥θi∥1≤R

( m∑

j=1

wij
(
θt−1
j − γ∇F (θt−1

j )
)

+ γ
m∑

j=1

wij
(
∇F (θt−1

j )−∇fj(θt−1
j )

)
︸ ︷︷ ︸

gradient discrepancy

)
.

(49)

Note that, without the gradient discrepancy term±which is

generally O(d)±both algorithms coincide with centralized

PGD with consensual initialization, i.e., θ0i = θ0j , for all

i, j ∈ [m]. For CTA, the impact of the gradient discrepancy

term is controlled by requiring the stepsize γ = O(1/d)
to attain a solution of the same statistical precision as the

centralized PGD. As for ATC, in addition to being multiplied

by γ, the gradient discrepancy term is further averaged by

network consensus. This provides the opportunity to control

the gradient discrepancy leveraging both γ and the network

connectivity ρ: one can choose γ = O(1) while requiring ρ
inversely proportional to d.

The extra degree of freedom to control the error in ATC

using the network leads to significant improvements over

CTA in the high-dimensional setting when d → ∞. Limited

by the stepsize choice γ = O(1/d), the computation and

communication complexity of CTA grow linearly with d.

On the other hand, the the computation complexity of ATC

is independent of d, thanks to the larger stepsize choice

γ = O(1) and the fact that the network connectivity can be

improved exponentially by running multiple communication

steps, yielding more favorably communication complexity

scaling as O(log d).

B. Proof of Theorem 3

The proof is based on the following four steps: 1) We

fix w and consider as source of randomness the design

matrix X (cf. Lemma 1 Gaussian model) only, deriving a

high-probability upper bound for Lmax defined in (10) and

proving that F (θ) in (2) satisfies RSC and RSM conditions

(Assumption 1) with high-probability; 2) We then fix X

and consider the randomness coming from the noise w,
providing high-probability bounds for the noise-dependent

terms ∥X⊤w∥∞/N and max1≤i≤m∥X⊤
i wi∥∞/n; 3) We

show that (43) is sufficient for the condition on ρ in (25)

to hold with high-probability; 4) Under (42), we show that

µ > 80sτL+16sτµ holds with high-probability; and finally 5)

given the bound on the optimality gap as in (26), we conclude

that (44) holds with high-probability, for all θ̂ satisfying

∥θ̂∥1 = R.

• Step 1: Randomness from X. Recall that

Lmax = max
i∈[m]

λmax(X
⊤
i Xi/n) and ζΣ = max

i∈[d]
Σii.

c6L
2

κ2
(
32Lmax + 20L+ 4τLd+ 8mL

√
d logmd

s log d

)2

≥ 16c6λ
2
max(Σ)

16κ2Σ

(
32c8λmax(Σ)

(
1 +

d+ logm

n

)
+ 80λmax(Σ) + 8c1ζΣ

d log d

N
+ 32mλmax(Σ)

√
d logmd

s log d

)2

d+logm>n

≥ c6λ
2
max(Σ)

κ2Σ

(
64c8λmax(Σ)

(d+ logm)

n
+ 80λmax(Σ) +

8c1ζΣd log d

N
+ 32mλmax(Σ)

√
d logmd

s log d

)2

=
c6

16κ2Σ

[
16c8 ·

d+ logm

n
+ 20 + 2c1ζΣ · d log d

Nλmax(Σ)
+ 8mλmax(Σ)

√
d logmd

s log d

]2

(40)

≥ c6
κ2Σg

2(d,m)
. (53)
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Define the following events:

A1 ≜

{
X ∈ R

N×d
∣∣∣∣ Lmax ≤ c8λmax(Σ)

(
1 +

d+ logm

n

)}
,

A2 ≜

{
X ∈ R

N×d
∣∣∣∣X satisfies (11) and (12)

}
,

A3 ≜

{
X ∈ R

N×d
∣∣∣∣ max
j∈[d]

1√
N

∥Xej∥ ≤
√

3ζΣ
2

}
,

where c8 ≥ 2 is some universal constant, chosen as in (50)

below. We prove next that these events occur jointly with high-

probability.

(i) Bounding P(A1) and P(A3): Using [20, Theorem 7,

(83)] we infer that there exist universal constants c7 > 0 and

c8 ≥ 2 such that, with probability at least 1− 2 exp(−c7d), it

holds

Lmax ≤ c8λmax(Σ)

(
1 +

d+ logm

n

)
. (50)

In addition, [20, Theorem 7, (89)] shows that there exists a

universal constant c9 > 32, such that, for all N ≥ c9 log d,

we have

P

(
max
j∈[d]

∥Xej∥2
N

≤ 3

2
ζΣ

)
≥1− 2 exp(−c10 log d), (51)

where c10 = c9/32− 1 > 0.
(ii) Bounding P(A2): This follows readily from (13) in

Lemma 1.

Define A ≜ A1 ∩A2 ∩A3. Combining (50), (51), (13) and

using the union bound, we obtain

P(A) ≥ 1− 2 exp(−c7d)− exp(−c0N)− 2 exp(−c10 log d).

• Step 2: Randomness from w. We fix now X ∈ A and

consider w ∼ N (0, σ2IN ). Define

D1 ≜

{
w ∈ R

N

∣∣∣∣
∥X⊤w∥∞

N
≤ σ

√
3ζΣ
2

√
c11 log d

N

}
,

D2 ≜

{
w ∈ R

N

∣∣∣∣
max
i∈[m]

∥X⊤
i wi∥∞
n

≤ σ

√
3ζΣ
2

√
c11m logmd

n

}
,

and D ≜ D1 ∩ D2. Following similar steps as to get [20,

Theorem 7, (99)], we deduce that, for all c11 > 2,

P(A ∩D)

≥ [1− 4 exp{−[(c11 − 2) log d]/2}][1− exp(−c0N)

− 2 exp(−c7d)− 2 exp(−c10 log d)]
≥ [1− 4 exp(−c12 log d)]
· [1− exp(−c12N)− 4 exp(−c12 log d)]. (52)

where c12 = min{c7, c10, (c11 − 2)/2}.
• Step 3: γ = 1/4λmax(Σ) is sufficient for γ = 1/L to

hold with high-probability. It follows from (13) that γ =
1/(4λmax(Σ)) is sufficient for γ to equal 1/L with probability

at least 1− exp(−c0N).
• Step 4: Condition (25) on ρ holds with high probability

under (43). Substituting into (25) the expressions of (µ, τµ)
and (L, τL) (see (13)), κ = L/µ, and the high probability

upper bound for Lmax (see (50)), yields with probability at

least (52), (53) at the bottom of the previous page holds.

Therefore, (43) is sufficient for (25) to hold with probability

at least (52).

• Step 5: (42) is sufficient to guarantee µ > 80sτL+16sτµ.
Substituting into (24) the expression of (µ, τµ) and (L, τL)
(see (13)) yields, with probability at least 1− exp(−c0N),

r =

√(
1− 1

8κΣ
+ χ(Σ)

)
(1− χ(Σ))

−1
,

where χ(Σ) is defined in (39). In addition, if

N ≥ 192c1sζΣ
log d

λmin(Σ)
, (54)

then µ > 80sτL + 16sτµ holds with probability at least 1 −
exp(−c0N). Chaining (54) with N ≥ c9 log d, we conclude

that (42) is sufficient for both of them to hold. This can been

seen from

N ≥ c13sζΣ log d

λmin(Σ)

(a)

≥ max

{
192sc1ζΣ log d

λmin(Σ)
, c9 log d

}
, (55)

where c13 = max{192c1, c9}, and in (a) we used s ≥ 1 and

ζΣ ≥ λmin(Σ).

• Step 6: (44) holds with high-probability for all θ̂
satisfying ∥θ̂∥1 = R ≤ ∥θ∗∥1. Step 1-5 and R ≤ ∥θ∗∥1
imply that (26) holds with high-probability. Substituting into

(26) the expressions of r from (38), (µ, τµ), (L, τL) from (13),

the upper bound of Lmax as in (50), and the upper bound for

maxi∈[m] ∥X⊤
i wi∥∞/N, ∥X⊤w∥∞/N , the following holds

with probability at least (52),

√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2

(41)

≤ η0 rt+1 +
∆

1− r
· ∥θ̂ − θ∗∥

+
ρ1/2g(d,m)

1− r
·
(
∥θ̂ − θ∗∥+ σ

λmin(Σ)

√
6c11sζΣ log d

N

)
,

(56)

where ∆ is defined in (41). Invoking [15, Theorem11.1], we

have

∥θ̂ − θ∗∥ ≤ 8
√
s

µ− 4sτµ

∥X⊤w∥∞
N

. (57)

Substituting (µ, τµ), and the upper bound for ∥X⊤w∥∞/N
into (57), the following holds with probability at least (52),

∥θ̂ − θ∗∥ ≤ 8
√
s

λmin(Σ)− 8sc1ζΣ log d/N
σ

√
3ζΣ
2

√
c11 log d

N

(42),(55)

≤ 8
√
s

λmin(Σ)− 8λmin(Σ)/192
σ

√
3ζΣ
2

√
c11 log d

N

≤ 5

λmin(Σ)
σ

√
6c11sζΣ log d

N
. (58)

Chaining (56) with (58) completes the proof. □
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V. NUMERICAL RESULTS

In this section, we provide some experiments on syn-

thetic and real data; results on synthetic data are meant to

validate our theoretical findings. We run simulations on a

server equipped with Intel(R) Xeon(R) CPU E5-2699A v4 @

2.40GHz. We organize the experiments as follows:

1) Our first simulation shows that, with a proper choice of ρ,

DGD-ATC exhibits linear convergence up to centralized

statistical precision; also both the rate and tolerance are

invariant to s log d/N . This validates (44);

2) Our second experiment aims at checking the dependence

of ρ on the ambient dimension d, problem condition

number κΣ and network size m, supporting (43);

3) We contrast DGD-ATC and DGD-CTA; experiments con-

firm a communication complexity of the two schemes

scaling as predicted by (9) and (6), respectively;

4) We conclude the section by testing DGD-ATC and DGD-

CTA on high-dimension real data, showing that DGD-

ATC achieves centralized MSE error at a fast linear rate,

while DGD-CTA exhibits a speed accuracy dilemma.

Experimental setup (synthetic data): Given (1), the ground

truth θ∗ is generated by randomly sampling a multivariate

Gaussian N (0, Id) and thresholding the smallest d−s elements

to zero. The noise vector w follows N (0, 0.25IN ). Each row

of X ∈ R
N×d is independently generated, according to the

following procedure [2]. Let z1, . . . , zd−1 be i.i.d. N (0, 1),
for a fixed correlation ω ∈ [0, 1), set xi,1 = z1/

√
1− ω2

and xi,t+1 = ωxi,t + zt, for t ∈ [d − 1] and i ∈ [N ]. It

can be verified that all the eigenvalues of Σ = cov(xi) lie

within the interval [1/(1+ω)2, 2/[(1−ω)2(1+ω)]]. Therefore,

the closer ω to one, the larger the condition number κΣ. We

simulate an undirected graph G, following the Erdös-Rényi

model G(m, p), where m is the number of agents and p
is the probability that an edge is independently included in

the graph. The coefficients of the weight matrix W used

in all distributed algorithms are chosen according to the

Metropolis±Hastings rule [23]. The stepsize γ of DGD-ATC

is set to γ = (1−ω)2(1+ω)/8 ≤ 1/(4λmax(Σ)). Results are

averaged over 30 Monte Carlo repetitions.

1) Linear convergence up to centralized statisti-

cal precision (Fig. 1). Fig. 1 plots the estimation er-

ror vs. the iteration, for growing (N, d ) = {(240, 400),
(560, 6400), (860, 51200)}, fixed m = 20, and s = ⌊log d⌋,

so that the statistical precision s log d/N ≈ 0.125; ρ = 0.2
satisfies (43). We observe the following: (i) DGD-ATC shrinks

linearly up to the centralized LASSO error, as predicted by

(44); and (ii) both convergence rate and tolerance remain

invariant under s, d,N growing and fixed s log d/N ; this is

consistent with the dependencies on the rate and tolerance as

shown in (38) and (44), respectively. Note that this implies

that N can significantly exceed the total communications to

statistical optimality. For instance, in Fig. 1, the number of

communications to reach centralized statistical consistency is

of the order of the hundreds, and remains so even when the

sample size N is about 3.5 times larger (N = 860).

2) Scaling of ρ with d, κΣ and m (Fig. 2): We validate

here the aforementioned scaling of ρ as given in (43). (i)

0 100 200 300 400 500

−2

−1

0

1

2

local statistical error

centralized statistical error

iteration

lo
g
1
0
(∑

m i
=
1
‖θ

t i
−
θ∗
‖2
/
m
)

d = 400
d = 6400
d = 51200

Fig. 1: Estimation error vs. iteration, for different values of s, d,N
such that s log d/N ≈ 0.125; m = 20, ρ = 0.2.

Scaling of ρ with d: Fig. 2(a) plots the ratio between the

centralized statistical error and estimation error achieved by

DGD-ATC versus ρ, for different values of (N, d, s) (as in

Fig. 1) and fixed m. The figure shows that, as expected from

(43), as d grows, centralized statistical errors are achieved at

the price of smaller values of ρ. In other words, ρ cannot

be constant with d but vanishing. Fig. 2(b) investigates more

in details the scaling of ρ with d. Specifically, we plot the

values of ρ (in log scale) to achieve the centralized statistical

error within 3% precision versus the ambient dimension d
(log-scale). The plot shows a linear dependence of log ρ
with log d, thus validating (43). (ii) Dependence of ρ on

κΣ. Fig. 2(c) plots the estimation error versus iterations

for different values of ω and fixed N, d, s,m, ρ, resulting in

different κΣ. We choose ω → 1 to make the impact of κΣ
in (43) dominant. We fix (N,m, d, s) = (240, 10, 400, 5),
and simulate a network with ρ ≈ 0.6, for all ω ∈ {0.92,
0.93, 0.95}. The value of ρ is sufficiently small to achieve

centralized statistical error for ω = 0.92. However the figure

shows that, to keep centralized statistical consistency, larger

values of ω (thus larger λmax(Σ)) call for smaller values

of ρ±a constant ρ instead breaks statistical optimality of the

algorithm. (iii) Scaling of ρ with m: Fig. 2(d)&(e) plots the

estimation error versus iterations for different values of m, and

fixed s, d,N . The edge probabilities of the Erdös-Rényi model

are set so that, in the subplot (d), ρ remains approximately

constant (equal to 0.2) for all values m ∈ {20, 500, 1000}
while in the subplot (e) ρ ∈ {0.32, 0.063, 0.045}. The two

figures show that, to achieve centralized statistical errors, ρ
cannot stay constant with m but need to scale roughly as

ρ = O(1/
√
m). While this is consistent with (43), which

asks for a vanishing ρ with m, the rate suggested by (43),

ρ = O(1/m2), seems to be conservative.

3) Communication complexity: CTA-DGD vs. ATC-

DGD (Fig. 3): Fig. 3 compares communication complexity

of CTA-DGD [20] and ATC-DGD. Panel (a) plots the average

estimation error versus the total number of communications.

Multiple rounds of communications per gradient evaluation

are used in ATC-DGD to enforce condition (43) on ρ, when it

is not met by the given graph and gossip matrix W . Both
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Fig. 2: Scaling of ρ with d, κΣ, and m. (a): Ratio between solution error of DGD-ATC and centralized statistical error vs. ρ, for varying
s, d,N and fixed m. (b): ρ versus d (log-log scale) to achieve the centralized statistical error within 3% precision. (c): Estimation error
versus iterations, for different values of κΣ by varying ω, and fixed N, d, s,m, ρ. (d): Estimation error versus iterations, for growing m and
ρ fixed. (e) Estimation error versus iterations for growing m and ρ ≈ 1/

√
m.

schemes achieve centralized statistical errors at linear rate,

with ATC-DGD being much faster than CTA-DGD. Panel (b)

aims at validating the scaling of the communcation complexity

of CTA-DGD and ATC-DGD with d, as predicted by (6)

and (9), respectively. We plot the total number of commu-

nications needed to reach centralized statistical precision. The

figure is obtained generating (X,y), using different values

of d = {400, 800, · · · , 51200}, s = ⌊log d⌋, and N chosen

accordingly to keep roughly the same statistical precision. We

started with a weakly connected graph, ρ = 0.9, and, for any

chosen d, we run the least number of communications/iteration

for ATC-DGD to achieve centralized statistical errors.

The figure shows that the total number of communications

scales logarithmically with d for ATC-DGD, as predicted by

(9), and linearly with d for CTA-DGD, as proved in (6). This

validates our theoretical findings and supports the conclusion

that mixing gradient information among agents, as ATC-DGD

does, is critical to save communications.

Experiment on real data. We test the performance of CTA-

DGD and ATC-DGD on the dataset E2006-tfidf in the

LIBSVM library [10], which consists of financial risk data

from thousands of U.S. companies. There are in total d =
150360 features, and N = 19395 samples, with Ntrain =
16087 and Ntest = 3308. We normalize the training data such

that each dimension has mean zero and variance 1/Ntrain. The

testing data is normalized using the statistics computed on

the training data. We partition the training data into m = 10

subsets. Each agent i owns the training data set portion with

size 1608 (we drop 7 samples randomly to divide the sample

evenly). Since we do not have access of the ground truth θ∗,
we replace the ℓ2 statistical error and the ℓ2 optimization error

with the MSE errors

MSE
∞ ≜

1

mNtest

m∑

i=1

∥y∗test − ŷi∥2 and

MSE
t ≜

1

mNtest

m∑

i=1

∥y∗test − yti∥2,
(59)

respectively, where y∗test is the output of the test set, and ŷi =
Xiθ̂i, i ∈ [m], are the model forecasts; yti = Xiθ

t
i , i ∈ [m], are

the outputs at iteration t; and ŷ = Xθ̂ is the output generated

by the PDG (m = 1) in the centralized setting. The tuning of

the other parameters is the following. We set the projection

radius R by grid search to the value yielding the smallest

MSE∞. The stepsize of ATC-DGD is chosen by grid search to

achieve the fastest empirical convergence rate while reaching

the centralized MSE. The number of communications/iteration

of ACT-DGD is set to K = 18, resulting being the the least

number to achieve centralized MSE over a weakly connected

graph with ρ = 0.9. For CTA-DGD [20], we tested a few

stepsize values; however, because of the size of the problem,

even fairly small values are not enough to drive CTA-DGD to

achieve centralized MSE within the a reasonable number of
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Fig. 3: ATC-DGD vs. CTA-DGD. (a): Estimation error vs. total com-
munications. (b): Communications to centralized statistical precision
vs. dimension d(> N).

communications±this is due to unfavorable linear scaling of

the communications with the ambient dimension d.

Fig. 4 plots the MSEt versus the number of communications.

ATC-DGD achieves centralized MSE at linear rate within 2000
communications, while CTA-DGD lacks behind, exhibiting a

speed accuracy dilemma: smaller MSE errors are achieved (by

using smaller and smaller stepsize values) at the cost of slow

convergence.

VI. CONCLUSIONS

We established statistical and computational guarantees of

the DGD algorithm in the ATC-form, applied to a distributed

instance of the projected LASSO problem over mesh networks

wherein each agent owns only a subset of data. Under near

optimal (total) sample complexity±e.g., N = Ω(s log d) for

(sub)-Gaussian predictors±DGD-ATC provably achieves statis-

tically optimal estimates at linear rate±the rate is of the same

order of that of PGD solving the LASSO problem in a cen-

tralized fashion using all data samples N . For worst-case net-

works i.e., sparse topologies, the communication complexity±

the number of communications for statistical consistency±
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Fig. 4: MSEt vs.communications for ATC-DGD and CTA-DGD, using
the dataset E2006-tfidf in the LIBSVM library.

scales logarithmically with the ambient dimension d. This

showed a significant improvement over DGD in the CTA-

form, whose communication complexity scales linearly with

d [20]. This difference is sensible in high-dimensions, where

typically s, d,N → ∞, with d > N . We showed that this is

due to the fact that, in the ATC updates, the stepsize can be

chosen as γ = O(1), as long as ρ ≤ poly−1(d), resulting

in a logarithmic number of communications per iteration with

respect to d. On the other hand, the CTA updates lack mixing

local gradients; because of that, centralized statistical errors

can be achieved only under stepsize γ = O(1/d), resulting in

a number of iteration- and communication-scaling proportional

to d.

At the high-level, this work along with the companion

papers [20], [39] showed that when it comes to distributed

algorithms applied to high-dimensional statistical problems,

classical analyses in the literature of distributed optimization±

which are based on sole optimization arguments±are no longer

adequate; new studies are needed bringing statistical thinking

in distributed optimization. Hopefully this paper will inspire

new studies of distributed algorithms beyond DGD under this

lens (e.g., distributed primal-dual methods), whose statistical

guarantees remain unknown in high-dimension.

APPENDIX

A. Statistical and computational guarantees for other statisti-

cal models

In this section, we present the statistical and computa-

tional guarantees of DGD-ATC (the the counterpart of The-

orem 3) for random design matrices X following a sub-

Gaussian [Assumption 2(b)] or sub-exponential [Assump-

tion 2(c)] distribution±the two cases are discussed in Sec. A1

and Sec A2, respectively.

A1. Sub-Gaussian ensemble (Assumption 2(b)): Suppose

that X satisfies Assumption 2(b). Define the following quan-

tities:

r =

√(
1− 1

6κΣx

+ χ(Σx)

)
(1− χ(Σx))

−1
, (60)
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where

χ(Σx) ≜
16c3σ

4
x

λmax(Σx)λmin(Σx)
· s log d

N
, (61)

g(d,m) ≜ 128c15 ·
d+ logm

n
+ 40 +

8c3σ
4
xd log d

λmax(Σx)λmin(Σx)N

+ 24m

√
d logmd

s log d
, (62)

and c15 ≥ 2 is an universal constant. Finally, the centralized

tolerance reads

∆ ≜ 24

√
χ(Σx)

1− χ(Σx)
. (63)

Using the above notations, convergence of DGD-ATC is stated

as follows.

Theorem 4. Consider the LASSO problem (2), where the

design matrix X satisfies Assumption 2(b), the noise vector

w is sub-Gaussian with parameters (σ2IN , σ
2), and the

regularization parameter satisfies R ≤ ∥θ∗∥1. Furthermore,

let

N ≥ c19s log dmax

{
σ2
x

λ2min(Σx)
, 1

}
and

d+ logm

n
> 1.

(64)

Let {θt} be the iterates generated by DGD-ATC (5), us-

ing arbitrary, consensual initialization θ
0, stepsize γ =

2/(3λmax(Σx)), and gossip matrix W satisfying Assumption 3

with ρ such that

ρ ≤ c6
κ2Σx

g2(d,m)
. (65)

Then, for any optimum θ̂ of (2) for which ∥θ̂∥1 = R, and all

t = 0, 1, . . . , there holds
√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2

≤ η0rt+1 +
∆

1− r
· 17c16σσx
λmin(Σx)

√
s log d

N︸ ︷︷ ︸
o
(√

s log d/N
)

+
ρ1/2g(d,m)

1− r
· 19c16σσx
λmin(Σx)

√
s log d

N︸ ︷︷ ︸
O
(√

s log d/N
)

(66)

with probability at least

[1− 4 exp(−c18 log d)] ·[
1− 2 exp

(
−c18N min

{
λ2min(Σx)

σ4
x

, 1

})
− 4 exp(−c18d)

]
.

(67)

The universal constants above are: c2, c3 > 0, c6 ∈ (0, 1],
c14 > 0, c15 ≥ 2, c16 > 3, c17 = c216/(2 + c16

√
2)− 1, c18 =

min {c2/2, c14, c17} and c19 = max{192c3, 4/c2}.
Remark 4.1. When customized to the Gaussian case, the sub-

Gaussian parameter reduces to the variance; hence, a natural

candidate for σ2
x is the largest variance, i.e., σ2

x = ζΣ. In

this case, Theorem 4 recovers the guarantees as established

in Theorem 3 for Gaussian random ensemble by noticing ζΣ ≥
λmin(Σ).

Proof. The proof follow the same logic of that of Theorem 3;

the difference is in Steps 1 and 2 wherein we use now

the RSC/RSM conditions for sub-Gaussian random variables

and the Bernstein inequality [46] to bound ∥X⊤w∥∞ and

maxi∈m ∥X⊤
i wi∥. Next, we then present only the proof of

Steps 1 and 2.

• Step 1: Randomness from X. Recall Lmax =
maxi∈[m] λmax(X

⊤
i Xi/n). Define the following events:

A1 ≜

{
X ∈ R

N×d
∣∣∣∣ Lmax ≤ c15λmax(Σx)

(
1 +

d+ logm

n

)}
,

A2 ≜

{
X ∈ R

N×d
∣∣∣∣X satisfies (11) and (12)

}
,

where c15 ≥ 2 is a universal constant (see (50)). We prove

next that these two events occur jointly with high-probability.

(i) Bounding P(A1): By [42, Remark 5.40], the following

holds with probability at least 1− 2 exp(−c14d):

Lmax ≤ c15λmax(Σ)

(
1 +

d+ logm

n

)
, (68)

for some universal constants c14 > 0 and c15 ≥ 2.

(ii) Bounding P(A2): This follows readily from (16) (see

Lemma 1).

Define A ≜ A1 ∩A2. Combining (i) and (ii) and using the

union bound, we obtain

P(A)

≥ 1− 2 exp(−c14d)− 2 exp

(
−c2

2
N min

{
λ2min(Σx)

σ4
x

, 1

})
.

• Step 2: Randomness from w. We fix now X ∈ A and treat

w as sub-Gaussian vector with parameters (σ2IN , σ
2). Define

D1 ≜

{
w ∈ R

N

∣∣∣∣
∥X⊤w∥∞

N
≤ c16σσx

√
log d

N

}
,

D2 ≜



w ∈ R

N

∣∣∣∣
max
i∈[m]

∥X⊤
i wi∥∞
n

≤ c16σσx

√
m logmd

n



 ,

and D ≜ D1 ∩ D2. Since each pair of Xi and wi
are independent, and the columns of Xi are n dimen-

sional i.i.d sub-Gaussian random vectors, we deduce that

each element of X⊤
i wi is the sum of n independent sub-

exponential random variables with sub-exponential parameters

(
√
2σσx,

√
2σσx) [44, Exercise 2.13]. Applying Bernstein’s

inequality [46, Lemma 2.2.11] and the union bound, we have

P

(
max
i∈[m]

∥X⊤
i wi∥∞ ≤ t

)

≥ 1− 2 exp

(
− t2

2nσ2σ2
x + t

√
2σσx

+ logmd

)
, t ≥ 0.
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√√√√ 1

m

m∑

i=1

∥θt+1
i − θ̂∥2 ≤ η0rt+1

ψ +
∆

1− rψ
· 10√sσψmax

{
2 log d

Nc21
,

√
2 log d

Nc21

}
+ 25

√
sσψmax

{
2 log d

Nc21
,

√
2 log d

Nc21

}

︸ ︷︷ ︸
O
(√

smax
{

log d
N

,
√

log d
N

})

, (79)

Take t = c16σσx
√
N logmd and any c16 > 3, we have

P

(
max
i∈[m]

∥X⊤
i wi∥∞ ≤ c16σσx

√
N logmd

)

≥ 1− 2 exp

[
−
(

c216N

2n+ c21
√
2N logmd

− 1

)
logmd

]

N≥logmd

≥ 1− 2 exp

[
−
(

c216N

2N + c16N
√
2
− 1

)
logmd

]

≥ 1− 2 exp [−c17log d] ,

where c17 =
c216

2+c16
√
2
− 1 > 0.

Similarly, for X⊤w, it holds

P

(
∥X⊤w∥∞ ≤ c16σσx

√
N log d

)
≥ 1− 2 exp [−c17 log d] .

Therefore,

P(A ∩D)

= P(D|A)P(A) (69)

≥ [1− 4 exp(−c17 log d)]×[
1− 2 exp(−c14d)− 2 exp

(
−c2

2
N min

{
λ2min(Σx)

σ4
x

, 1

})]

≥ [1− 4 exp(−c18 log d)]×[
1− 2 exp

(
−c18N min

{
λ2min(Σx)

σ4
x

, 1

})
− 4 exp(−c18d)

]
.

(70)

where c18 = min {c2/2, c14, c17} .

A2. Sub-exponential ensemble: Consider now the sparse

regression model with the random matrix X satisfying As-

sumption 2(c). Define the following quantities:

rψ =

√(
1− 1

2κψ
+ χψ

)
(1− χψ)

−1
, (71)

where

χψ ≜ 24 ·
54c5ψ

2
√

s
N log

(
ed

√
N

s
√
s

)
+ 54

10422

10449
10422 + 27c5ψ2

√
s
N log

(
ed

√
N

s
√
s

) , (72)

and

κψ ≜

10449
10422 + 27c5ψ

2
√

s
N log

(
ed

√
N

s
√
s

)

10395
10422 − 27c5ψ2

√
s
N log

(
ed

√
N

s
√
s

) . (73)

For any ϵ > 0, define

g(d,m, ϵ)

≜
64c20d

1+2ϵ

n
[
10449
10422 + 27c5ψ2

√
s
N log

(
ed

√
N

s
√
s

)]

+

(
20 + 8m

√
d logmd

s log d

)

+
216c5dψ

2
√

1
sN log

(
ed

√
N

s
√
s

)
+ 4d

3s[
10449
10422 + 27c5ψ2

√
s
N log

(
ed

√
N

s
√
s

)] , (74)

where c20 ≥ 2 is an universal constant. Furthermore, let

∆ ≜ 24

√
χψ

1− χψ
. (75)

Using the above notations, convergence of DGD-ATC is

proved next.

Theorem 5. Consider the LASSO problem (2), where the

design matrix X satisfies Assumption 2(c), the noise vector

w is deterministic with bounded entries ∥w∥∞ ≤ σ, and the

regularization parameter satisfies R ≤ ∥θ∗∥1. Furthermore,

let

N ≥ max

{
ψ4

c24
log2 d, 104222c25ψ

4s log2

(
ed

s

√
N

s

)}
.

(76)

Let {θt} be the iterates generated by DGD-ATC (5), using

arbitrary, consensual initialization θ
0, stepsize

γ =
6

7 + 162c5ψ2
√

s
N log

(
ed

√
N

s
√
s

) , (77)

and gossip matrix W satisfying Assumption 3 with ρ such that

ρ ≤ c6
κ2ψg

2(d,m, ϵ)
, (78)

for the given ϵ > 0. Then, for any optimum θ̂ of (2) for which

∥θ̂∥1 = R, and t = 0, 1, . . . , Eq. (79) at the top of the page

holds, with probability at least

1− 5 exp (− log d)− exp

(
−c4

√
s log

(
ed
√
N

s
√
s

))

− 3 exp

(
−c4

√
N

ψ2

)
− 2 exp

(
−c21 min

{
d 2ϵ

ψ2
,
d

1
2
+ϵ

ψ

})
.

(80)

The universal constants above are: c4, c5 > 0, c6 ∈ (0, 1],
c20 ≥ 2, and c21 > 0.

Proof. Similarly to the proof of Theorem 4, in Step 1 and 2 we

now use the RSC/RSM conditions for sub-exponential random
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P

(
Lmax ≤ c20

(
1 +

d 1+2ϵ logmd

n

))
≥ (1− exp (− logmd))

(
1− 2 exp

(
−c21 min

{
d 2ϵ

ψ2
,
d

1
2
+ϵ

ψ

}))

≥ 1− exp (− logmd)− 2 exp

(
−c21 min

{
d 2ϵ

ψ2
,
d

1
2
+ϵ

ψ

})
. (82)

variables and the concentration inequality [42, Theorem 5.44]

to bound the heavy tail random variable Lmax while leveraging

Bernstein-type inequality [46] to bound the sub-exponential

random variables ∥X⊤w∥∞ and maxi∈m ∥X⊤
i wi∥.

• Step 1: Bounding Lmax. Define the following events:

A1 ≜

{
X ∈ R

N×d
∣∣∣∣ Lmax ≤ c20

(
1 +

d 1+2ϵ logmd

n

)}
,

A2 ≜

{
X ∈ R

N×d
∣∣∣∣X satisfies (11) and (12)

}
,

where c20 ≥ 2 is a universal constant (see (50)), and ϵ > 0
is arbitrary. We prove next that these events occur jointly

with high-probability. (i) Bounding P(A1): Under Assump-

tion 2(c), the d entries of each row of Xi, that is, e⊤j Xiek,

k ∈ [d], are independent centered sub-exponential variables.

Bernstein’s inequality implies

P
{
∥e⊤j Xi∥ ≥ d · t

}

= P





√√√√
d∑

k=1

|e⊤j Xiek|2 ≥ dt





≤ P

{∣∣∣∣∣

d∑

k=1

|e⊤j Xiek|
∣∣∣∣∣ ≥ d · t

}

[42, Prop. 5.16]

≤ 2 exp

(
−c21 min

{
t2

ψ2
,
t

ψ

}
d

)
, (81)

for all j ∈ [n] and i ∈ [m], and some universal constant

c21 > 0. For any given ϵ > 0, set t = d−
1
2
+ϵ; then,

P

{
∥e⊤j Xi∥ ≥ d

1
2
+ϵ
}
≤ 2 exp

(
−c21 min

{
d 2ϵ

ψ2
,
d

1
2
+ϵ

ψ

})
.

By [42, Theorem 5.44] it follows that for any j ∈ [n], and

i ∈ [m], if ∥e⊤j Xi∥ ≤ d
1
2
+ϵ, then, the following holds with

probability at least 1− exp{−c22t2 + log d},
∥∥∥∥
1

n
X⊤
i Xi − I

∥∥∥∥ ≤ max{a, a2}, with a ≜ t
d

1
2
+ϵ

√
n
,

for any given t ≥ 0 and some constant c22 > 0; which implies

(with the same probability)

∥∥∥ 1
n
X⊤
i Xi

∥∥∥ ≤
∥∥∥ 1
n
X⊤
i Xi − I

∥∥∥+
∥∥∥I
∥∥∥ ≤ max{a, a2}+ 1.

Applying the union bound, the following bound holds for

Lmax:

P

(
Lmax ≤ (1 + max{a, a2})

∣∣∣ ∥e⊤j Xi∥ ≤ d
1
2
+ϵ, ∀j ∈ [n]

)

≥ 1− exp{−c22t2 + logmd}.

Setting t =
√

2c−1
22 logmd, yields

a =

√
2c−1

22 logmd · d
1
2
+ϵ

√
n
.

Therefore, we conclude, under ∥e⊤j Xi∥ ≤ d
1
2
+ϵ, ∀j ∈ [n],

Lmax ≤
(
1 + a+ a2

)
≤ (1 + a)

2 ≤ 2
(
1 + a2

)

≤ 2

(
1 + 2c−1

22 logmd · d
1+2ϵ

n

)

≤ c20

(
1 +

d 1+2ϵ logmd

n

)
,

with probability at least 1 − exp (− logmd) and c20 =
max{2, 4c−1

22 } ≥ 2.
Chaining it with (81), we conclude that, for any given ϵ > 0,

Eq. (82) at the top of the page holds.

(ii) Bounding P(A2): This follows immediately from (19)

in Lemma 1.

Define A ≜ A1 ∩ A2. Combining (i), (ii) and using the

union bound, we obtain, under (17),

P(A)

≥ 1− exp

(
−c4

√
s log

(
ed
√
N

s
√
s

))
− 3 exp

(
−c4

√
N

ψ2

)

− exp (− logmd)− 2 exp

(
−c21 min

{
d 2ϵ

ψ2
,
d

1
2
+ϵ

ψ

})
.

(83)

• Step 2: Bounding maxi∈[m]∥X⊤
i wi∥∞ and ∥X⊤w∥∞.

Since Xi, i ∈ [m], are independent and the columns of Xi

are n dimensional i.i.d sub-exponential random vectors, each

element of X⊤
i wi is the sum of n independent sub-exponential

random variables with ψ1-norm at most σψ. Applying [42,

Proposition 5.16] and the union bound, we obtain

P

(
1

n
max
i∈[m]

∥X⊤
i wi∥∞ ≤ t

)

≥ 1− 2 exp

(
−c21 min

{
t2

σ2ψ2
,
t

σψ

}
n+ logmd

)
, t ≥ 0.

Thus, under 2logmd ≤ c21n and t = σψ
√

2 logmd
nc21

,

P

(
1

n
max
i∈[m]

∥X⊤
i wi∥∞ ≤ σψ

√
2 logmd

nc21

)

≥ 1− 2 exp

(
−c21 min

{
2σ2ψ2logmd

c21nσ2ψ2
,
σψ

√
2 logmd√
c21nσψ

}
n

+ logmd

)

≥ 1− 2 exp (− log d) , (84)
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D1 ≜

{
X ∈ R

N×d
∣∣∣∣
1

n
max
i∈[m]

∥X⊤
i wi∥∞ ≤ σψmax

{
2 logmd

nc21
,

√
2 logmd

nc21

}}
,

D2 ≜

{
X ∈ R

N×
∣∣∣∣

1

N
∥X⊤w∥∞ ≤ σψmax

{
2 log d

Nc21
,

√
2 log d

Nc21

}}
, and D ≜ D1 ∩D2.

(88)

while, under 2logmd > c21n and t = 2σψ logmd
nc21

, it holds

P

(
1

n
max
i∈[m]

∥X⊤
i wi∥∞ ≤ 2σψ logmd

nc21

)

≥ 1− 2 exp

(
−c21 min

{
4σ2ψ2log2md

c221n
2σ2ψ2

,
2σψlogmd

c21nσψ

}
n

+ logmd

)

≥ 1− 2 exp (− log d) . (85)

Combining (84) and (85), we have

P

(
1

n
max
i∈[m]

∥X⊤
i wi∥∞ ≤ σψmax

{
2 logmd

nc21
,

√
2 logmd

nc21

})

≥ 1− 2 exp (− log d) . (86)

Similarly, we can prove

P

(
1

N
∥X⊤w∥∞ ≤ σψmax

{
2 log d

Nc21
,

√
2 log d

Nc21

})

≥ 1− 2 exp (− log d) . (87)

Define D1 and D2 as in (88) at the top of the page. Then,

chaining (83), (86), and (87), we finally get

P(A ∩D) ≥

1− 5 exp (− log d)− exp

(
−c4

√
s log

(
ed
√
N

s
√
s

))

− 3 exp

(
−c4

√
N

ψ2

)
− 2 exp

(
−c21 min

{
d 2ϵ

ψ2
,
d

1
2
+ϵ

ψ

})
.

B. Proof of Lemma 1(c)

We begin recalling that, for any random matrix X satisfying

Assumption 1(c), the Restricted Isometry Property (RIP) holds

with high-probability [1, Theorem 3.3]. Then, we present a

lemma translating the RIP to RSC/RSM conditions.

Definition 1 (RIP [8]). The matrix X is said to satisfy the

Restricted Isometry Property (RIP) with constant rs > 0 if

(1− rs)∥∆∥2 ≤ 1

N
∥X∆∥2 ≤ (1 + rs)∥∆∥2 (89)

holds for all s-sparse vectors ∆ ∈ R
d.

Chaining [1, Theorem 3.3] (setting therein the free parame-

ter parameter θ′ = 1/10422) with [1, Lemma 3.5], we infer the

following high-probability result for sub-exponential design

matrices X.

Lemma 6. Let X be a random matrix satisfying Assump-

tion 2(c), and N such that (17) holds. Then, with probability

at least

1− c5 exp

(
−c4

√
s log

(
e d

√
N

s
√
s

))

− P

(
max
j≤d

∣∣∣∣
∥Xej∥2
N

− 1

∣∣∣∣ >
1

10422

)
,

X satisfies the RIP condition, with constant

rs ≤ c5ψ
2

√
s

N
log

(
ed
√
N

s
√
s

)
+

1

10422
,

where c4, c5 > 0 are universal constants.

We proceed with bounding

P

(
max
j≤d

∣∣∣∣
∥Xej∥2
N

− 1

∣∣∣∣ >
1

10422

)
.

Notice that each element of Xej is sub-exponential with

variance 1, thus
∥Xej∥2

N − 1 is a symmetric Weibull variable.

Using [1, Lemma 3.7], we have

P

(
max
j≤d

∣∣∣∣
∥Xej∥2
N

− 1

∣∣∣∣ >
1

10422

)
≤ 2 exp

(
−c4

10422
√
N

ψ2

)
.

We are ready to translate the RIP property to the RSC/RSM

conditions.

Lemma 7. Suppose X satisfies the RIP with parameter

rs > 0. Then, X satisfies the RSC and RSM properties with

parameters

(µ, τµ) = (1− 27rs, 54rs/s) > 0,

(L, τL) = (1 + 27rs, 54rs/s).

Proof. From the RIP of X it follows
∣∣∣∣
1

N
∥Xθ∥2 − ∥θ∥2

∣∣∣∣ ≤ rs∥θ∥2, ∀θ ∈ B0(s).

Therefore, since B0(s) ∩ B2(1) ⊂ B0(s), it holds
∣∣∣∣θ

⊤
(
X⊤X

N
− I

)
θ

∣∣∣∣ ≤ rs, ∀θ ∈ B0(s) ∩ B2(1).

Applying [24, Lemma 12], we have
∣∣∣∣θ

⊤
(
X⊤X

N
− I

)
θ

∣∣∣∣ ≤27rs

(
∥θ∥2 + 2

s
∥θ∥21

)
∀θ ∈ R

d,

which proves the RSC and RSM properties.

Chaining Lemma 6 and Lemma 7 concludes the proof of

Lemma 1(c).
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C. Auxiliary Results in the Proof of Theorem 2

This section contains some intermediate results used in

the proof of Theorem 2, namely: a bound of ∥θt+1
av − θ̂∥

(Proposition 8, Appendix C1) and of ∥θt+1
⊥ ∥ (Proposition 10,

Appendix C2).

It is convenient to introduce the following extra notation,

which will be used in the proofs of the results in this

section. Given the stacked quantities (see Sec. I-C) y =
[y⊤1 , . . . , y

⊤
m]⊤ ∈ R

N , X = [X⊤
1 , . . . , X

⊤
m]⊤ ∈ R

N×d, and

θ = [θ⊤1 , . . . , θ
⊤
m]⊤, let us define the stacked loss

f(θ) ≜

m∑

i=1

fi(θi), (90)

where fi is defined in (2). Thus, the stacked gradient reads

∇f(θ) =




∇f1(θ1)
...

∇fm(θm)


 =

1

n




X⊤
1 (X1θ1 − y1)

...

X⊤
m (Xmθm − ym)


 .

(91)

We will also use the following bound

λmax

(
X⊤X

N

)
≤ L

2
+
τLd

2
, (92)

which is a consequence of the RSM condition (12), that is,

for all ∆ ∈ R
d, there holds

1

N
∥X∆∥2 ≤ L

2
∥∆∥2 + τL

2
∥∆∥21 ≤

(
L

2
+
τLd

2

)
∥∆∥2.

C1. Proposition 8: The proposition provides an upper

bound of ∥θt+1
av − θ̂∥, used in (30).

Proposition 8. In the setting of Theorem 2, for all t =
0, 1, . . . , the following bound holds for ∥θt+1

av − θ̂∥ :

∥θt+1
av − θ̂∥

≤ rav∥θtav − θ̂∥+m−1/2

(
ρ+

Lmax

L

)
∥θt⊥∥+

∆cent

4
+ ερ.

(93)

Proof. Recall the definition of θt+1
av from (27). Adding and

subtracting terms we can rewrite it as, for all t = 0, 1, . . . ,

θt+1
av =

∏

∥θ∥1≤R

(
θtav − γ∇F (θtav)

)
+

1

m

m∑

i=1

γεti, (94)

where

εti ≜
1

γ


 ∏

∥θ∥1≤R




m∑

j=1

wij
(
θtj − γ∇fj(θtj)

)



−
∏

∥θ∥1≤R

(
θtav − γ∇F (θtav)

)

 . (95)

This allows one to interpret θt+1
av − (1/m)

∑m
i=1 γε

t
i as the

outcome of one iteration of the (centralized) PGD applied to

(2) at θtav. Choosing γ = 1/L and using the one-step descent

inequality [2, Eq. (54)] we obtain
∥∥∥∥∥θ
t+1
av − 1

Lm

m∑

i=1

εti − θ̂

∥∥∥∥∥

2

≤ 1− κ−1 + 8s(2τL + τµ)/L

1− 16sτL/L
∥θtav − θ̂∥2

+
2(4τL + τµ)/L

1− 16sτL/L

(
2∥θ̂ − θ∗∥1 + 2

√
s∥θ̂ − θ∗∥

)2
. (96)

Our next result is a bound on the error ∥(1/Lm)
∑m
i=1 ε

t
i∥.

Lemma 9. For
∥∥ 1
m

m∑
i=1

γεti
∥∥, Eq. (97) at the bottom of the

page holds.

Proof. See Appendix C3.

Using the triangle inequality
∥∥∥∥∥θ
t+1
av − θ̂ − 1

Lm

m∑

i=1

εti

∥∥∥∥∥ ≥ ∥θt+1
av − θ̂∥ −

∥∥∥∥∥
1

Lm

m∑

i=1

εti

∥∥∥∥∥ ,

and applying Lemma 9 with γ = 1/L yield

∥θt+1
av − θ̂∥

≤
√

1− κ−1 + 8s(2τL + τµ)/L

1− 16sτL/L
∥θtav − θ̂∥+

∥∥∥∥∥
1

Lm

m∑

i=1

εti

∥∥∥∥∥

+

√
2(4τL + τµ)/L

1− 16sτL/L

(
2∥θ̂ − θ∗∥1 + 2

√
s∥θ̂ − θ∗∥

)

Lem. 9
≤

[√
1− κ−1 + 8s(2τL + τµ)/L

1− 16sτL/L
+ ρ

(
Lmax

L
+

1

2

+
τLd

2L

)]
∥θtav − θ̂∥+m−1/2

(
ρ+

Lmax

L

)
∥θt⊥∥

+

√
2(4τL + τµ)/L

1− 16sτL/L

(
2∥θ̂ − θ∗∥1 + 2

√
s∥θ̂ − θ∗∥

)

+ ρ

(
Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
ρ d 1/2

L

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)

(a)
= rav∥θtav − θ̂∥+m−1/2

(
ρ+

Lmax

L

)
∥θt⊥∥+

∆cent

4
+ ερ,

where in (a), we use the definition of rav,∆cent, and ερ in (32),

(33), and (34), respectively.

This completes the proof.

∥∥∥∥
1

m

m∑

i=1

γεti

∥∥∥∥ ≤ m−1/2

(
ρ+ γLmax

)
∥θt⊥∥+ ργ

(
Lmax +

L

2
+
τLd

2

)(
∥θ̂ − θtav∥+ ∥θ̂ − θ∗∥

)

+ ργd1/2

(
mmaxi∈[m] ∥X⊤

i wi∥∞
∥X⊤w∥∞

+ 1

)
∥X⊤w∥∞

N
, ∀ t = 0, 1, . . . . (97)
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C2. Proposition 10: The proposition provides an upper

bound on the consensus error, used in (31).

Proposition 10. In the setting of Theorem 2, the following

bound holds for ∥θt+1
⊥ ∥, for all t = 0, 1, . . . ,

∥θt+1
⊥ ∥

≤ ρ

(
1 +

Lmax

L

)
∥θt⊥∥+

ρm1/2Lmax

L
∥θtav − θ̂∥+m1/2 · ερ.

(98)

Proof. We start rewriting the DGD-ATC as follows: for all

t = 0, 1, . . . ,





θ
t+1/2 = (W ⊗ Id) (θ

t − γ∇f(θt))

θt+1
i =

∏
∥θ∥1≤R

θ
t+1/2
i , for all i ∈ [m].

(99)

We observe that (1/m)∥θ⊥∥2 can be interpreted as the vari-

ance of a discrete random variable taking values θ1, . . . , θm
with uniform probability. Using (99), we can then write

1

m
∥θt+1

⊥ ∥2

=
1

m2

m∑

i=1

m∑

j=1

1

2

∥∥θt+1
i − θt+1

j

∥∥2

(a)

≤ 1

m2

m∑

i=1

m∑

j=1

1

2

∥∥∥θt+1/2
i − θ

t+1/2
j

∥∥∥
2

=
1

m

∥∥∥θt+1/2
⊥

∥∥∥
2

,

where (a) follows from the non-expansiveness of the projection

operator.

We proceed to bound ∥θt+1/2
⊥ ∥ as follows:

∥∥∥θt+1/2
⊥

∥∥∥
(99)
=

∥∥∥∥
((

W − 1

m
1m1⊤m

)
⊗ Id

)
(θt − γ∇f(θt))

∥∥∥∥
(b)
=

∥∥∥∥
((

(W − 1

m
1m1⊤m

)
⊗ Id

)

·
[
θ
t
⊥ − γ

(
∇f(θt)− 1m ⊗∇F (θ̂)

)]∥∥∥
(19)

≤ ρ∥θt⊥∥+ ργ
∥∥∥∇f(θt)− 1m ⊗∇F (θ̂)

∥∥∥
≤ ρ∥θt⊥∥+ ργ

∥∥∇f(θt)−∇f(1m ⊗ θtav)
∥∥

+ ργ
∥∥∥∇f(1m ⊗ θtav)−∇f(1m ⊗ θ̂)

∥∥∥

+ ργ∥∇f(1m ⊗ θ̂)− 1m ⊗∇F (θ̂)∥, (100)

where (b) follows from Assumption 3 that W1m = 1m.

To bound

∥∥∥∇f(1m ⊗ θ̂)− 1m ⊗∇F (θ̂)
∥∥∥ , we insert the

points ∇f(1m ⊗ θ∗), 1m ⊗∇F (θ∗), and write

∥∥∥∇f(1m ⊗ θ̂)− 1m ⊗∇F (θ̂)
∥∥∥

≤
∥∥∥∇f(1m ⊗ θ̂)−∇f(1m ⊗ θ∗)

∥∥∥
+ ∥∇f(1m ⊗ θ∗)− 1m ⊗∇F (θ∗)∥
+
∥∥∥1m ⊗∇F (θ∗)− 1m ⊗∇F (θ̂)

∥∥∥

(2),(91)
=

√√√√
m∑

i=1

∥∥∥∥
X⊤
i Xi

n
(θ̂ − θ∗)

∥∥∥∥
2

+m1/2

∥∥∥∥
1

N
X⊤X(θ̂ − θ∗)

∥∥∥∥

+

∥∥∥∥∥∥∥

1

n




X⊤
1 w1

...

X⊤
mwm


− 1

N




X⊤w
...

X⊤w




∥∥∥∥∥∥∥

≤

√√√√
m∑

i=1

∥∥∥∥
X⊤
i Xi

n
(θ̂ − θ∗)

∥∥∥∥
2

+m1/2 maxi∈[m] ∥X⊤
i wi∥

n

+m1/2

∥∥∥∥
1

N
X⊤X(θ̂ − θ∗)

∥∥∥∥ . (101)

Plugging in the expression of f , F and (101) into (100) gives

∥∥∥θt+1/2
⊥

∥∥∥

≤ ρ∥θt⊥∥+ ργ

√√√√
m∑

i=1

∥∥∥∥
X⊤
i Xi

n
(θti − θtav)

∥∥∥∥
2

+ ργ

√√√√
m∑

i=1

∥∥∥∥
X⊤
i Xi

n
(θ̂ − θtav)

∥∥∥∥
2

+ ργ

√√√√
m∑

i=1

∥∥∥∥
X⊤
i Xi

n
(θ̂ − θ∗)

∥∥∥∥
2

+ ργm1/2 maxi∈[m] ∥X⊤
i wi∥

n
+ ργm1/2 ∥X⊤w∥

N

+ ργm1/2

∥∥∥∥
1

N
X⊤X(θ̂ − θ∗)

∥∥∥∥

(10)

≤ ρ∥θt⊥∥+ ργ

√√√√
m∑

i=1

L2
max ∥θti − θtav∥

2

+ ργ

√√√√
m∑

i=1

L2
max

∥∥∥θ̂ − θtav

∥∥∥
2

+ ργ

√√√√
m∑

i=1

L2
max

∥∥∥θ̂ − θ∗
∥∥∥
2

+ ργm1/2 maxi∈[m] ∥X⊤
i wi∥

n

+ ργm1/2 ∥X⊤w∥
N

+ ργm1/2

∥∥∥∥
1

N
X⊤X(θ̂ − θ∗)

∥∥∥∥ .
(102)

It remains to relate maxi∈[m] ∥X⊤
i wi∥ and ∥X⊤w∥ to the

statistical error bound. Using norm bound ∥x∥ ≤ d 1/2∥x∥∞,
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for any x ∈ R
d, thus, we have

maxi∈[m] ∥X⊤
i wi∥

n
+

∥X⊤w∥
N

≤ d 1/2

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)
. (103)

Using (92), (103) in (102), we obtain

∥∥∥θt+1/2
⊥

∥∥∥

≤ (ρ+ ργLmax) ∥θt⊥∥+ ργm1/2Lmax∥θ̂ − θtav∥

+ ργm1/2

(
Lmax +

L

2
+
τLd

2

)
∥θ̂ − θ∗∥

+ ργm1/2d 1/2

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)
.

Letting γ = 1/L completes the proof.

C3. Proof of Lemma 9: We decompose εti defined in (95)

as

εti =
1

γ


 ∏

∥θ∥1≤R

(
θtav − γ∇F (θtav)− γϵti

)

−
∏

∥θ∥1≤R

(
θtav − γ∇F (θtav)

)

 ,

where

ϵti ≜ − 1

γ

m∑

j=1

wij
(
θtj − γ∇fj(θtj)

)
+

1

γ
θtav −∇F (θtav).

(104)

Thus
∥∥∥∥∥
1

m

m∑

i=1

γεti

∥∥∥∥∥
(a)

≤ 1

m

m∑

i=1

∥γϵti∥

(104)
=

1

m

m∑

i=1

∥∥∥∥∥∥

m∑

j=1

wij
(
θtj − γ∇fj(θtj)

)
− θtav + γ∇F (θtav)

∥∥∥∥∥∥

≤ 1

m

m∑

i=1

∥∥∥∥∥∥

m∑

j=1

wij(θ
t
j − θtav)

∥∥∥∥∥∥
︸ ︷︷ ︸

Term I

+
γ

m

m∑

i=1

∥∥∥∥∥∥

m∑

j=1

wij∇fj(θtj)−∇F (θtav)

∥∥∥∥∥∥
︸ ︷︷ ︸

Term II

,

where in (a) we used the non-expansiveness of the projection

operator.

We proceed bounding Term I and Term II:

Term I ≤

√√√√√ 1

m

m∑

i=1

∥∥∥∥∥∥

m∑

j=1

wij
(
θtj − θtav

)
∥∥∥∥∥∥

2

= m−1/2
∥∥(W ⊗ Id)

(
θ
t − 1m ⊗ θtav

)∥∥

= m−1/2

∥∥∥∥
((

W − 1

m
1m1⊤m

)
⊗ Id

)(
θ
t − 1m ⊗ θtav

)∥∥∥∥
(19)

≤ ρm−1/2∥θt − 1m ⊗ θtav∥ (105)

and

Term II

≤ γ

m

m∑

i=1

∥∥∥∥∥∥

m∑

j=1

wij
(
∇fj(θtj)−∇fj(θtav)

)
∥∥∥∥∥∥

+
γ

m

m∑

i=1

∥∥∥∥∥∥

m∑

j=1

wij
(
∇fj(θtav)−∇F (θtav)

)
∥∥∥∥∥∥

≤ γm−1/2
∥∥(W ⊗ Id)[∇f(θt)−∇f(1m ⊗ θtav)]

∥∥
+ γm−1/2

∥∥(W ⊗ Id)[∇f(1m ⊗ θtav)− 1m ⊗∇F (θtav)]
∥∥

(b)
= γm−1/2

∥∥(W ⊗ Id)[∇f(θt)−∇f(1m ⊗ θtav)]
∥∥

+ γm−1/2

∥∥∥∥
((

W − 1

m
1m1⊤m

)
⊗ Id

)(
∇f(1m ⊗ θtav)

−1m ⊗∇F (θtav)
) ∥∥∥∥

(19)

≤ γm−1/2
∥∥(W ⊗ Id)[∇f(θt)−∇f(1m ⊗ θtav)]

∥∥
+ ργm−1/2

∥∥∇f(1m ⊗ θtav)− 1m ⊗∇F (θtav)
∥∥

≤γm−1/2
∥∥∇f(θt)−∇f(1m ⊗ θtav)

∥∥

+ ργm−1/2
∥∥∥∇f(1m ⊗ θtav)−∇f(1m ⊗ θ̂)

∥∥∥

+ ργm−1/2
∥∥∥∇f(1m ⊗ θ̂)− 1m ⊗∇F (θ̂)

∥∥∥

+ ργm−1/2
∥∥∥1m ⊗∇F (θ̂)− 1m ⊗∇F (θtav)

∥∥∥

(91)
= γm−1/2

√√√√
m∑

i=1

∥∥∥∥
X⊤
i Xi

n
(θti − θtav)

∥∥∥∥
2

+ ργm−1/2

√√√√
m∑

i=1

∥∥∥∥
X⊤
i Xi

n
(θ̂ − θtav)

∥∥∥∥
2

+ ργm−1/2
∥∥∥∇f(1m ⊗ θ̂)− 1m ⊗∇F (θ̂)

∥∥∥

+ ργ

∥∥∥∥
1

N
X⊤X(θ̂ − θtav)

∥∥∥∥, (106)

where (b) follows from

(
1

m
1m1⊤m ⊗ Id

)
∇f(1m ⊗ θtav) = 1m ⊗∇F (θtav).
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Substituting (10), (101), (103) into (106), we have

Term II

(92)

≤ γm−1/2Lmax∥θt⊥∥

+ ργ

(
Lmax +

L

2
+
τLd

2

)(∥∥∥θ̂ − θtav

∥∥∥+
∥∥∥θ̂ − θ∗

∥∥∥
)

+ ργd 1/2

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)
.

(107)

The proof is completed combining the upper bounds of Term

I and Term II as in (105) and (107), respectively. □

D. Proof of Corollary 2.1.

We begin showing that, under (25),

rρ ≤ r, (108)

where rρ and r are defined in (20) and (24), respectively.

Define

δ ≜

√
1− (2κ)−1 + 8s(2τL + τµ)/L

1− 24sτL/L

−
√

1− κ−1 + 8s(2τL + τµ)/L

1− 16sτL/L
.

Since

rρ ≤

√√√√1− 1
κ +

8s(2τL+τµ)
L

1− 16sτL
L

+ ρ1/2
(
4Lmax

L
+

5

2
+
τLd

2L

)
,

it is sufficient to prove
√√√√1− 1

κ +
8s(2τL+τµ)

L

1− 16sτL
L

+ ρ1/2
(
4Lmax

L
+

5

2
+
τLd

2L

)
≤ r

⇔ ρ1/2
(
4Lmax

L
+

5

2
+
τLd

2L

)
≤ δ

⇔ ρ ≤
(

2Lδ

8Lmax + 5L+ τLd

)2

.

(109)

To this end, we proceed lower bounding δ as

δ ≥
√

1− (2κ)−1 + 8s(2τL + τµ)/L

1− 16sτL/L

−
√

1− κ−1 + 8s(2τL + τµ)/L

1− 16sτL/L

(a)

≥ 1√
1 + 8s(2τL + τµ)/L

· 1

4κ

(b)

≥ 1√
1 +

1

2κ

· 1

4κ

=
1√

16κ2 + 8κ
, (110)

where in (a) we dropped the negative terms −(2κ)−1,−κ−1,
and −16sτL/L; and in (b) we used µ > 80sτL + 16sτµ.

Combining (110) with (109), we conclude that (25) is

sufficient for (109):

(
2Lδ

8Lmax + 5L+ τLd

)2

(110)

≥ L2

2(2κ2 + κ) (8Lmax + 5L+ τLd)
2

κ>1
≥ L2

6κ2 (8Lmax + 5L+ τLd)
2

(24)

≥ 8

3κ2g2(d,m)
c6∈(0,1]

≥ c6
κ2g2(d,m)

,

where c6 ∈ (0, 1] is a free parameter. In addition, using

µ > 80sτL + 16sτµ, yields r < 1.

It remains to derive the expression of the tolerance error as

in the RHS of (26), given that in (23). Using the expression
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of ∆stat we have:

∆stat

1− rρ

(108)

≤ 1

1− r
· 8
√

2(4τL + τµ)

L− 16sτL

(
∥θ̂ − θ∗∥1 +

√
s∥θ̂ − θ∗∥

)

+
8ρ1/2

1− r
·
[(

Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
d1/2

L

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)]

R≤∥θ∗∥1

≤ 1

1− r
· 24
√

2s(4τL + τµ)

L− 16sτL
∥θ̂ − θ∗∥

+
8ρ1/2

1− r
·
[(

Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
d1/2

L

(
maxi∈[m] ∥X⊤

i wi∥∞
n

+
∥X⊤w∥∞

N

)]

=
1

1− r
· 24
√

2s(4τL + τµ)

L− 16sτL
∥θ̂ − θ∗∥

+
8ρ1/2

1− r

(
Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
8ρ1/2d1/2m

(1− r)κs1/2

(
maxi∈[m] s

1/2∥X⊤
i wi∥∞

µN

+
1

m

s1/2∥X⊤w∥∞
µN

)

≤ 1

1− r
· 24
√

2s(4τL + τµ)

L− 16sτL
∥θ̂ − θ∗∥

+
8ρ1/2

1− r

(
Lmax

L
+

1

2
+
τLd

2L

)
∥θ̂ − θ∗∥

+
8ρ1/2d1/2m

(1− r)κs1/2

(
maxi∈[m] s

1/2∥X⊤
i wi∥∞

µN

+
s1/2∥X⊤w∥∞

µN

)

(24)

≤ 1

1− r
· 24
√

2s(4τL + τµ)

L− 16sτL
∥θ̂ − θ∗∥

+
ρ1/2g(d,m)

1− r

(
∥θ̂ − θ∗∥+ s1/2∥X⊤w∥∞

µN

+

√
log d

logmd
· maxi∈[m] s

1/2∥X⊤
i wi∥∞

µN

)
.

This completes the proof.
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