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Finite-Bit Quantization for Distributed Algorithms
With Linear Convergence
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Abstract—This paper studies distributed algorithms for
(strongly convex) composite optimization problems over mesh
networks, subject to quantized communications. Instead of focus-
ing on a specific algorithmic design, a black-box model is pro-
posed, casting linearly convergent distributed algorithms in the
form of fixed-point iterates. The algorithmic model is equipped
with a novel random or deterministic Biased Compression (BC)
rule on the quantizer design, and a new Adaptive encoding Non-
uniform Quantizer (ANQ) coupled with a communication-efficient
encoding scheme, which implements the BC-rule using a finite
number of bits (below machine precision). This fills a gap existing
in most state-of-the-art quantization schemes, such as those based
on the popular compression rule, which rely on communication of
some scalar signals with negligible quantization error (in practice
quantized at the machine precision). A unified communication
complexity analysis is developed for the black-box model, deter-
mining the average number of bits required to reach a solution of
the optimization problem within a target accuracy. It is shown
that the proposed BC-rule preserves linear convergence of the
unquantized algorithms, and a trade-off between convergence
rate and communication cost under ANQ-based quantization is
characterized. Numerical results validate our theoretical findings
and show that distributed algorithms equipped with the proposed
ANQ have more favorable communication cost than algorithms
using state-of-the-art quantization rules.

Index Terms— Distributed algorithms, linear convergence,
quantization, optimization methods.

I. INTRODUCTION

E STUDY distributed optimization over a network
of m agents modeled as an undirected (connected)
graph. We consider mesh networks, that is, arbitrary topologies
with no central hub connected to all the other agents, where
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each agent can communicate with its immediate neighbors
(master/worker architectures can be treated as a special case).
The m agents aim at solving cooperatively the optimization
problem

1 m
i - 7 ) P
min ;f (x) +7(x) (P)
—————
—F(x)

where each f; is the local cost function of agent ¢, assumed
to be smooth, convex, and known only to the agent; r : R —
[—00, 00] is a non-smooth, convex (extended-value) function
known to all agents, which may be used to force shared
constraints or some structure on the solution (e.g., sparsity);
and the global loss F': R? — R (or in some cases each local
loss f;) is assumed to be strongly convex on the domain of r.
This setting is fairly general and finds applications in several
areas, including network information processing, telecommu-
nications, multi-agent control, and machine learning (e.g., see
[11-[3D).

Since the functions f; can only be accessed locally and
routing local data to other agents is infeasible or highly
inefficient, solving (P) calls for the design of distributed
algorithms that alternate between a local computation proce-
dure at each agent’s side and some rounds of communication
among neighboring nodes. While most existing works focus
on ad-hoc solution methods, here we consider a general
distributed algorithmic framework, encompassing algorithms
whose dynamics are modeled by the fixed-point iteration

2" = A(2"), (1)

where z* is the updating variable at iteration k and A is a
mapping that embeds the local computation and communica-
tion steps, whose fixed point typically coincides with solutions
of (P). This model encompasses several distributed algorithms
over different network architectures, each one corresponding
to a specific expression of z and A-see Sec. II for some
examples.

By assuming that F' is strongly convex, we explicitly target
distributed schemes in the form (1) that converge to solutions
of (P) at linear rate. Furthermore, since the cost of communi-
cations is often the bottleneck for distributed computing when
compared with local (possibly parallel) computations (e.g., [4],
[5]), we achieve communication efficiency by embedding the
iterates (1) with quantized communication protocols.

Quantizing communication steps of distributed optimiza-
tion algorithms have received significant attention in recent
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years—see Sec. I-B for a comprehensive overview of the
state-of-the-art. Here we only point out that existing distrib-
uted algorithms over mesh networks are applicable only to
unconstrained instances of (P) and smooth objective functions
(i.e., » # 0). Furthermore, even in these special instances,
such schemes rely on quantization rules that subsume some
scalar signals to be encoded with negligible error—the typical
example is the renowned compression protocol [6]. While in
practice this is achieved by quantizing at the machine precision
(e.g., 32 or 64 bit floating-point), on the theoretical side,
existing convergence analyses become elusive. In such cases,
the assessment of their convergence is left to simulations.

The goal of this paper is to design a black-box quantization
mechanism for the class of distributed algorithms (1) applica-
ble to Problem (P) over mesh networks that preserves their lin-
ear convergence while employing communications quantized
with finite-bit (below machine precision). As discussed next,
this is an open problem.

A. Summary of Main Contributions

In a nutshell, we summarize our major contributions as
follows.

1) A Black-Box Quantization Model for (1): We propose
a novel black-box model that introduces quantization in the
communication steps of linearly convergent distributed algo-
rithms cast in the form (1). Our approach paves the way
to a unified design of quantization rules and analysis of
their impact on the convergence rate of a gamut of distrib-
uted algorithms. This constitutes a major departure from the
majority of existing studies focusing on ad-hoc algorithms
and quantization rules, which in fact are special instances
of our framework. Furthermore, our model brings for the
first time quantization to distributed algorithms applicable to
composite optimization problems (i.e., (P) with » Z 0). This is
particularly relevant in machine learning applications, where
empirical risk minimization problems call for (non-smooth)
regularizations or constraints to control the complexity of the
solution (e.g., to enforce sparsity or low-rank structure) and
avoid overfitting.

2) Preserving Linear Convergence of (1) Under Quantiza-
tion: To enable quantization below the machine precision,
we provide a novel biased compression rule (the BC-rule)
on the quantizer design equipping the proposed black-box
model, which allows to preserve linear convergence of the
distributed algorithms while using a finite number of bits
(below machine precision) and without altering their original
tuning. Our condition encompasses several deterministic and
random quantization rules as special cases, new and old [7]—
[23].

3) A Novel Finite-Bit Quantizer: To implement the BC-rule,
we also propose a novel finite-bit quantizer (below machine
precision) fulfilling the BC-rule along with a communication-
efficient bit-encoding/decoding rule which enables transmis-
sions on digital channels. The resulting Adaptive encoding
Non-uniform Quantizer (ANQ) adapts the number of bits of
the output (discrete representation) based upon the input sig-
nal. By doing so, it achieves a more communication-efficient
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design than existing quantizers that adopt a fixed number of
bits based on a predetermined fixed [7]-[10], [12], [13], [15],
[16], [18], [19], [23] or shrinking range [11], [14], [17], [20]-
[22] of the input signal, or that rely on transmissions of scalar
values at machine precision [6], [24]-[39].

4) Communication Complexity: We derive a unified com-
plexity analysis for any distributed algorithm belonging to our
black-box model, solving (P) (possibly with r # 0) over mesh
networks. Specifically, we prove that, under suitable conditions
and proper tuning (see Theorem 13), an e-solution of (P)
(using a suitable optimality measure) is achieved by any of
such distributed algorithms in

1
(=

log(d/e)) iterations,
using
1 . . .
(’)(d log (1 + m)) bits/agent/iteration,

where A € (0,1) is the convergence rate of the distrib-
uted algorithm our quantization method is applied to, which
depends on the condition number of the agents’ function as
well as network parameters. Table I customizes the above
result to a variety of state-of-the-art distributed schemes sub-
ject to quantization, using the explicit expression of A\ (see
Table II and Corollaries 14-17). This permits for the first time
to benchmark several distributed algorithms under quantiza-
tion, and compare them with other state-of-the-art quantization
schemes (Table I). Notice that the proposed methods compare
favorably with existing ones and, remarkably, they achieve e-
accuracy with the same number of iterations (in a O-sense) as
their unquantized counterparts.

5) Numerical Evaluations: Finally, we extensively validate
our theoretical findings on smooth and non-smooth regularized
linear and logistic regression problems. Among others, our
evaluations show that 1) linear convergence of all distributed
algorithms is preserved under finite-bit quantization based
upon the proposed BC-rule; 2) as predicted by our analysis,
the rate approaches that of their unquantized counterpart
(implemented at machine precision) when a sufficient number
of bits is used; 3) the proposed ANQ quantization outper-
forms, in terms of both convergence rate and communication
cost, existing quantization schemes operating below machine
precision—i.e., Q-Dual [22] and Q-NEXT [21]-or at machine
precision—e.g., those relying on the conventional compression
rule, such as LEAD [25] and COLD [39].

B. Related Works

The literature on distributed algorithms is vast; here,
we review relevant works employing some form of quantiza-
tion with linear convergence guarantees [20]-[22], [24], [30],
[33], [36], [38], categorized into those relying on machine
precision quantization and those relying on limited precision
quantization.

1) Machine Precision Quantization Schemes [24], [30],
[33], [36], [38]: Distributed algorithms employing quantiza-
tion in the agents’ communications are proposed in [24], [30],
[33], [36], [38] for special instances of (P) with » = 0 (i.e.,
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TABLE I
COMMUNICATION COMPLEXITY OF THE PROPOSED QUANTIZED DISTRIBUTED ALGORITHMS VS. THE STATE OF THE ART

[ Algorithm [ Problem, network |

[Bits/agent/iteration] x [Iterations to c-accuracy] ]

State-of-the-art Quantized Distributed Algorithms

Q-GD over star [22] (P) with » = 0, star

O(dlog (1+ kd) x nlog(d/e))

(P) with r =0,

compr.)**

Q-NEXT [20], [21] . N/A
Q-Primal-Dual [22] ® errtl};sg =0, N/A
Primal-Dual (rand-K compr., (P) with r =0, K
Option-D) [24]#* mesh O(d(B +logd) x 1= log(d/ 8)>
Primal-Dual (Option-D) [24], . _
LEAD [25] (both dit-K () with 7 =0, O((d+B) x 12 log(d/e))

ANQ-embedded Distributed Algorithms (this work)

GD over star (P) with » = 0, star

(’)(dlog(l + k) X klog (d/a))

(Prox-)EXTRA, (Prox-)NIDS (P), mesh O(d log (max {1 + K, ﬁ}) X max {m, ﬁ} log(d/€)>
(P) with r =0, 1 1
NIDS mesh o (d log (max {1 + 615 }) X max {m, q} log(d/€)>
(Prox-)NEXT, (Prox-)DIGing (P), mesh O (d log (max {1 + K, ﬁ }) X max {n, ﬁ} log(d/a))
. (P) with r = 0,
Primal-Dual mesh O(d log (1 + l—sz) X 1fp2 log(d/e)

Number of bits/agent/iteration times the number of iterations to achieve € accuracy for the proposed ANQ applied to state of the art distributed algorithms
solving various instances of (P) over star or mesh networks;  is the condition number of each f;, d is the dimension of x, p2 is the second largest eigenvalue
of the gossip matrix W used in these algorithms (note that p2 = O for star-networks or fully-connected graphs); see also Corollaries 14-17. **: the complexities
of these schemes are adapted from [24]; p and poo in O(1/(1 — p2)); the compression rate is chosen as ©(1) to match the iterations to e-accuracy of the
ANQ-Primal-Dual, hence K = ©(d) for rand-K and S = 2K-1 —1 = ©(+/d) for dit-K; B is the number of bits used to encode each scalar with negligible

loss in precision (as required by the convergence theory therein).

smooth and unconstrained optimization). In these schemes,
quantization is implemented by compressing the signal x € R¢
through a (random or deterministic!) compression operator
x — Q(x), that satisfies the compression rule

E[[|O(x) — x||2] < w||x||2, for some w>0. (2)

This rule subsumes the transmission of some scalar sig-
nals with negligible quantization errors, e.g., the norm of
x, requiring thus in theory infinite machine precision (see
Corollary 9 for a formal proof). While quantizing at the
machine precision is a viable strategy in practice, convergence
guarantees of distributed algorithms relying on (2) become
elusive—they are established only under negligible quantization
errors of the transmitted norm signal. By generalizing the
conventional compression rule, the proposed BC-rule over-
comes this theoretical limitation and permits to explicitly
model the communication cost of quantized communications
below machine precision. As we will demonstrate numerically
in Sec.VI, our explicit formulation of the communication cost
allows to define more communication efficient quantization
schemes than state-of-the-art algorithms relying on machine
precision.
2) Limited Precision Quantization Schemes [20]-[22]:

While finite-rate quantization has been extensively studied
for average consensus schemes (e.g., [8], [9], [11], [12],

'We treat compression rules using deterministic mappings QF as special
cases of the random ones; in this case, the expected value operator will just
return the deterministic value argument.

[14], [17]-[19], [23]), their extension to optimization algo-
rithms over mesh networks is less explored [20]-[22]. Specif-
ically, in our prior work [20], we equipped the NEXT algo-
rithm [40], [41] with a finite-bit deterministic quantization
to solve (P) with » = 0; to preserve linear convergence,
the quantizer shrinks its input range linearly. An expres-
sion of the convergence rate of the scheme in [20] has
been later determined in [21] along with its scaling prop-
erties with respect to problem, network, and quantization
parameters.

The closest paper to our work is [22], where the authors
proposed a finite-bit quantization mechanism preserving linear
convergence of some algorithms cast as (1). Yet, there are
several key differences between [22] and our work. First,
the convergence analysis in [22] is applicable only to algo-
rithms solving smooth, unconstrained optimization problems,
and thus not to Problem (P) with » # 0. Second, linear
convergence under finite-bit quantization is explicitly proved
in [22] only for schemes whose updates utilize current iterate
information, namely: gradient descent (GD) over star networks
and the Primal-Dual algorithm in [42] over mesh networks.
This leaves open the question of whether distributed algo-
rithms using historical information—e.g., in the form of gra-
dient tracking or dual variables—are linearly convergent under
finite-bit quantization, and under which conditions; renowned
examples include EXTRA [43], AugDGM [44], DIGing [45],
Harnessing [46], and NEXT [40], [41]. Our work provides a
positive answer to these open questions. Third, the commu-
nication complexity of the scheme in [22] is only provided
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(a) (b)

Fig. 1. Examples of star network (a) versus mesh topology (b).

for star networks, not for mesh networks, which instead is a
novel contribution of this work for a wide class of distributed
algorithms—see Table I and Sec. V. Fourth, [22] proposed an
ad-hoc deterministic quantization rule while the proposed BC-
rule encompasses several deterministic and random quantiza-
tions (including that in [22] as a special case), possibly using
a variable number of bits (adapted to the input signal). As a
result, even when customized to the setting/algorithms in [22],
the BC-rule leads to more communication-efficient schemes,
both analytically (see Sec. V) and numerically (see Sec. VI).

C. Organization and Notation

The remainder of this paper is organized as follows. Sec. II
introduces the proposed black-box model, which casts dis-
tributed algorithms in the form (1). Sec. III embeds quan-
tized communications, introduces the proposed BC-rule, and
analyzes the convergence properties. Sec. IV describes the
proposed quantizer, the ANQ, and studies its communication
cost. Sec. V investigates the communication complexity, and
customizes the proposed framework and convergence guaran-
tees to several existing distributed algorithms, equipping them
with the ANQ rule. Sec. VI provides some numerical results,
while Sec. VII draws concluding remarks. All the proofs of
our results are presented in the appendix.

Notation: Throughout the paper, we will use the following
notation. We denote by Z,R the set of integers and real
numbers, respectively. For any positive integer a, we define
[a] & {1,---,a}. We denote by 0,1, and I the vector of all
zeros, the vector of all ones, and the identity matrix, respec-
tively (of appropriate dimension). For vectors ¢y, - - - , ¢, and
a set S C [m), define cs = {c; : i € S}. We use || - || to
denote a norm in the Euclidean space (whose dimension will
be clear from the context); when a specific norm is used, such
as {5 or £, we will append the associated subscript to || - ||.
The ith eigenvalue of a real, symmetric matrix G is denoted
by pi(G), ordered in non-increasing order such that p; (G) >
...pi(G) > pit1(G). We will use a superscript to denote
iteration counters of sequences generated by the algorithms,
for instance, z* will denote the value of the z-sequence at
iteration k; we will instead use (x)* for the kth-power of .
Finally, asymptotic behaviors of functions are captured by the
standard big-O, ©, and Q notations: 1) g(x) = O(h(z)) as
x — xo if and only if limsup, ., |g(z)/h(z)| € [0,00);
2) g(z) = Q(h(x)) if and only if h(z) = O(g(z)); and 3)
g(x) = O(h(x)) if and only if g(z) = O(h(z)) = Q(h(x)).
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We model a network of m agents as a fixed, undirected,
connected graph G = (V, &), where V = [m)] is the set of
vertices (agents) and £ C V x V is the set of edges (commu-
nication links); (4,7) € £ if there is a link between agents
i and 7, so that the two can send information to each other.
We let N;={j : (i,7) € £} be the set of neighbors of agent
i, and assume that (i,7) € &, ie., i € N;. Master/workers
architectures will be considered as special instances—see Fig. 1.

ITI. A GENERAL DISTRIBUTED ALGORITHMIC
FRAMEWORK: EXACT COMMUNICATIONS

In this section, we cast distributed algorithms to solve (P)
in the form (1). As a warm-up, we begin with schemes
using only current information to produce the next update (cf.
Sec. II-A). We then generalize the model to capture distributed
algorithms using historical information via multiple rounds of
communications between computation steps (cf. Sec. II-B).

A. Warm-Up: A Class of Distributed Algorithms

We cast distributed algorithms in the form (1) by incor-
porating computations and communications as two separate
steps. We use state variable z; to capture local information
owned by agent ¢ (including optimization variables) and ¢;
to denote the signal transmitted by agent i to its neighbors.?
Similarly to [22], the updates of the z, ¢-variables read: for
agent i € [m],
& =Ci(z)),

(2 (2

k+1 k
Zi+ :Ai(Z

79

(communication step)

éj“v), (computation step) (MO)

where the function z; — C;(2z;) models the processing on the
local information z” at the current iterate, generating the signal
¢” transmitted to agent i’s neighbors; the function (z;, €y, ) —
A;(zi, ;) produces the update of the agent i’s state variable
z;, based upon the local information at iteration k, and the
signals received by its neighbors in N;.

Some examples: The algorithmic model (MO) captures a
variety of distributed algorithms that build updates using single
rounds of communications; examples include the renewed
DGD [47], NIDS [48], and the Primal-Dual scheme [42].
To show a concrete example, consider DGD, which aims at
solving a special instance of (P) with » = 0; agents’ updates
read

xi = (Emjwz—jxi) = V(D) i€lm],
Jj=1

where xf’ is the local copy owned by agent 7 at iteration k of
the optimization variables x, < is a step-size, and w;;’s are
nonnegative weights properly chosen and compliant with the
graph G (i.e., w;; > 0 if (¢,7) € &; and w;; = 0 otherwise).
It is not difficult to check that DGD can be cast in the form
(MO) by letting

zf = éf = xf
At ek) = (7, wieh) =V 1iah).
Despite its generality, model (MO) leaves out several
important distributed algorithms, specifically, the majority of

2Dimensions of these vectors are algorithm-dependent and omitted for
simplicity, and will be clear from the context.
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schemes employing correction of the gradient direction based
on past state information—these are the best performing algo-
rithms to date. Examples include EXTRA [43], DIGing [45]
and their proximal version, NEXT/SONATA [40], [41], [49],
and the ABC framework [50], just to name a few. Consider,
for instance, NEXT/SONATA:

Yjen: wis (X5 = 7¥5)

k+1
{.Yf“ 2jen; Wij (yj + VLG = V(). @)

Clearly, these updates do not fit model (MO): the update of the
y-variable uses information from two iterations (k and & + 1).
This calls for a more general model, introduced next.

B. Proposed General Model (Using Historical Information)
We generalize the algorithmic model (MO) as follows: for
all i € [m],

=Ci (2}, 0x,),

(multiple
Ak’Pi Bk kR communication rounds)
¢ = (& ( i N )’
it = A, (z f,éfv}, e cﬁ[ ), (computation step) (M)

These updates embed R > 1 rounds of local communications,
via the functions (zi,éj’\fil) — C? (zz,éjvl), the function
(zi, €55 EN) Ai(zi,é}\fi, -+, &5 ) updates the local
state by using the ¢y, signals received from the neighbors
during all R rounds of communications, along with z;. Stack-
ing agents’ state-variables z;, communication signals ¢;, and
mappings C; and A; into the respective vectors z, ¢, C* and

A, we can rewrite (M) in the compact form

ch0 =0, (multiple
¢ks=C*(z",e"*71), s € [R],f communication rounds)
PAREES .A(zk N ) (computation step)

Absorbing the communication signals ¢** in the mapping A,
we can finally write the above system as a fixed-point iterate
on the z-variables only:

2"l = A(z") £ A(zk,Cl(zk,O), cee
CR(a", 1 (2, €Y (2",0) -+ ))). (M)

Under suitable conditions, the iterates (M’) convergence to
fixed-points z>° = A(z>°) of the mapping A, possibly con-
strained to a set Z 2 z>°. The convergence rate depends on the
properties of A; here we focus on linear convergence, which
can be established under the following standard condition.
Assumption 1: Let A:Z = Z; the following hold: (i) A
admits a fixed-point z*°; and (ii) A is A-pseudo-contractive
on Z w.r.t. some norm || e ||, that is, there exists A € (0,1)

such that
| A(z) = 2%|| < A- |z —2%||, Vze Z.

Without loss of generality, the norm || e || is scaled such that
[olla<Ile].’

3This is always possible since || || is a norm defined on a finite-dimensional
field.
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The following convergence result follows readily from
Assumption 1 and [52, Ch. 3, Prop. 1.2].

Theorem 2: Let A : Z — Z satisfy Assumption 1. Then:
i) the fixed point z* is unique; and ii) the sequence {z"}
generated by the update (M’) converges Q-linearly to z*° w.r.t.
the norm || e || at rate ), i.e., 2| <\ |28 — 2|

Discussion: Our model treats the underlying unquantized
algorithm as a black-box with convergence rate A, which
depends on the optimization problem parameters—the smooth-
ness and strong convexity constants L and u of the agents’
functions (often via the condition number x)—and the network
connectivity (spectral properties of W). Table II collects some
representative examples.

The algorithmic framework (M) encompasses a variety
of distributed algorithms, while Theorem 2 captures their
convergence properties; in addition to the schemes covered
by (MO) as a special case when R = 1, (M) can also
represent EXTRA [43] and its proximal version [50], NEXT
[40], [41], [49] and its proximal version [50], DIGing [45] and
its proximal version [50], and prox-NIDS [50]. Appendix D
provides specific expressions for the mappings A and C*® for
each of the above algorithms, along with their convergence
properties under Theorem 2; here, we elaborate on the NEXT
algorithm (3) as an example. It can be cast in the form (M)
by using R = 2 rounds of communications and letting

k

X Akl

Zf = k| C?
Yi

éf’ =Y +Vfl< Z wz]Ak 1> sz( ) and

JEN;

~k,1
E k1 Ak2) [ Zjej\/ U)Z]Cj ‘| .

—X _'Yy“

k+1
= Ai(z;, €y, , €y, k2
ZjEM w;;C;”

III. A GENERAL DISTRIBUTED ALGORITHMIC
FRAMEWORK: QUANTIZED COMMUNICATIONS

In this section, we equip the distributed algorithmic frame-
work (M) with quantized communications. The communi-
cation channel between any two agents is modeled as a
noiseless digital channel: only quantized signals are received
with no errors. This means that, in each of the communication
rounds, the signals é?’l,...,é?R, j € N, received by
agent ¢ may no longer coincide with the intended, unquan-
tized ones Cj (z%,0y,), .- CR(ZJ , €N, ), generated at the
transmitter side of agents j € M. This calls for a proper
encoding/decoding mechanism that transfers, via quantized
communications, the aforementioned unquantized signals at
the receiver sides with limited distortion. Here, we leverage
differential encoding/decoding techniques [11] coupled with
a novel quantization rule.

We begin by recalling the idea of quantized differen-
tial encoding/decoding in the context of a point-to-point
communication—the same mechanism will be then embedded
in the communication of the distributed multi-agent frame-
work (M). Consider a transmitter-receiver pair; let c* be the
unquantized information generated at iteration k, intended to
be transferred to the receiver over the digital channel, and let
¢* be the estimate of c¥, built using quantized information.
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TABLE II

CONVERGENCE RATE OF REPRESENTATIVE LINEARLY CONVERGENT D1

STRIBUTED ALGORITHMS CAST IN THE PROPOSED FRAMEWORK (M)

Algorithm Problem Network Convergence rate \
GD over star networks [51] P) withr =0 Star :—H
(Prox-)EXTRA [50] P) Mesh max { - \/ p2(W) }
(Prox-)NIDS [50] (P) Mesh max {%% \/ p2(W) }
NIDS [48] (P) with 7 =0 Mesh max {\/1 — T, \/p2 (w)}
(Prox-)NEXT [50] (P) Mesh max {571, \/1-(1—p2(W))?}
(Prox-)DIGing [50] (P) Mesh max{ T (1—pa(W))2 }
09)
Primal-Dual [22], [42] (P) with = 0 Mesh ey Rl
p1(L) +1
pm—1(L) K

The convergence rates above are obtained under the tuning described in Appendix D; , L, and p is the condition number, the smoothness constant
and the strong convexity constant of each f;, respectively, and W is the gossip matrix used in the communication steps of the algorithms; for the Primal-Dual

algorithm, L is the graph Laplacian, defined in Appendix D.7.

The differential encoding/decoding rule reads: ¢° = 0, and for
k>1,

qk — Qk(ck _ ék—l)’

ek = ekt _'_qk’ )

where QF is the quantization operator (a map from real
vectors to the set of quantized points), possibly dependent on
iteration k. In words, at each iteration, the encoder quantizes
the prediction error c® — ¢F~1 rather than the current esti-
mate c¥, generating the quantized signal q*, which 1s then
transmltted over the digital channel. The estimate ¢* of c*
is then built from q* using a one-step prediction rule. Since
qk’ is received unaltered, ¢ is identical at the transmitter’s
and receiver’s sides. Note that, when quantization errors are
negligible q* = Q%(c* — é*~1) ~ c* — &*~!, the estimate
reads ¢* = ¢F 1 4 gF mebl 4¢P — ekl = ¢,

We can now introduce our distributed algorithmic frame-
work using quantized communications, as described in Algo-
rithm 1; it embeds the differential encoding/decoding rule (4)
in each communication round of model (M). The fixed-point
based formulation of Algorithm 1 then reads: for ¢ € [m],

et =2k, 0,

et =l o (P e, (multiple
quantized
5B Rk kRt communication
¢, =Cl(z z¥, ¢y, , rounds)
ékR _ Ak LR Q’“( kR Ai_chR)’
k+1 =A,; (zf, éﬁ/l, e cf\/R), (computation step).

Stacking agents’ state-variables z;, signals c; and ¢;, and
mappings C{, A;, and QF into the respective vectors z, c, ¢,
Cs, A, and QF, we can rewrite the above steps in compact
form as

&0 =0, (multiple

chs — s (zk7 6’6’5*1)7 quantized

ek = eh=Lls + Qk (ks — ehmls), communication
s € [R], rounds)

zF Tl = A(z",eFt . eb ). (computation step).

Q-M)

Algorithm 1 Distributed Algorithmic Framework With Quan-
tized Communications
Initialization: ¢~%* = 0, for all s € [R]; and z° € Z. Set
k=0;
Iteration k — k + 1
(S.1): Multiple quantized communication
rounds

for s=1,..., R, each agent i:
« Computes c/* = Ci(z ’f,éf\/s Y [with & £ o]
o Generates q;"" = OF ( — f ) and broadcasts it

to its nelghbors je M,
o Upon receiving the signals qf’s from its neighbors j €

. ~k.s
N, it reconstructs ¢; % as

Akys _ Ak— k, . .
et =eT 1), JEN;
end

(S.2): Computation Step

Each agent ¢ updates its own z’”‘1

k+1 _ E Akl kR
Z, 7A(z2,cM,~',cNi ).

according to

2

Model (Q-M) paves the way to a unified design and
convergence analysis of several distributed algorithms—all the
schemes cast in the form (M)-employing quantization in the
communications, as elaborated next.

A. Convergence Analysis

We begin by establishing sufficient conditions on the quan-
tization mapping QF and algorithmic functions A and C in (Q-
M) to preserve linear convergence

1) On the Quantization Mapping QF: A first critical choice
is the quantizer Q (we omit the dependence on k£ and ¢ for
notation simplicity), including both random and deterministic
quantization rules (the latter as a special cases of the former).
For random quantization, the function Q(x) is a random
variable for any given x € R%, defined on a suitable probability
space (generally dependent on x). We define the following
novel biased compression rule (BC-rule), for each agent 1.
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Definition 3 (Biased Compression Rule): Given x € R%,
Q(x) (possibly, a random variable defined on a suitable
probability space) satisfies the BC-rule with bias 7 > 0 and
compression rate w € [0, 1) if

E[||Q60) - x[3] < Vin +wlxl, vxeRL )

When Q(x) is a deterministic map, (5) reduces to
Q) — x|, < Vdn+w|x|2 VxeR (6)

Roughly speaking, the bias 7 determines the basic spacing
between quantization points, uniform across the entire domain.
On the other hand, the compression term w adds a non-uniform
spacing between quantization points: points farther away from
0 have more separation.

The BC-rule encompasses and generalizes several existing
compression and quantization rules proposed in the literature
for specific algorithms, deterministic [6], [7], [9], [11],
(131, [14], [16], [17], [20]-[22], [27]-[29], [32], [35], [38]
and random [6], [8], [10], [12], [15], [18], [19], [23]-[26],
[29]-[31], [33]-[39]. Specifically, (i) the compression rules
proposed in [6], [24]-[26], [29]-[31], [33]-[39] (resp. [6],
[27]1-[29], [32], [35], [38]) can be interpreted as unbiased
instances of (5) [resp. (6)], i.e., corresponding to 77 = 0. The
proof of Lemma 7 in Sec. IV will show that such special
instances theoretically require an infinite number of bits to
encode quantized signals, even when the input x is bounded.
In practice, they are successfully implemented using finite bits
at the machine precision (e.g., to encode some scalar quan-
tities, such as the norm of the signal to be transmitted [36]).
However, their convergence analyses tacitly assume that errors
at machine precision are negligible. Hence, these schemes have
no performance guarantees when implemented with limited
(below machine) precision quantizations. On the other hand,
as it will be seen in Sec. IV, the bias term 1 > 0 in the
proposed BC-rule guarantees that quantized signals satisfying
such rule can be encoded using a finite number of bits,
hence can be implemented with limited precision. (ii) The
quantization rules in [8], [10], [12], [15], [18], [19], [23]
(resp. [7], [9], [111, [13], [14], [16], [17], [20]-[22]) are special
instances of the BC-rule (5) [resp. (6)], with w = 0. While they
can be implemented using a finite number of bits (provided
that the signals to be quantized are uniformly bounded), they
do not take advantage of the degree of freedom offered by
the compression rate w to improve communication efficiency,
as shown numerically in Sec. VI-D.

2) On the Algorithmic Mappings A and C*: Our analysis
requires additional standard conditions on the mappings .A and
C*® to preserve linear convergence under quantization. Roughly
speaking, the functions .4 and C® should vary smoothly with
respect to perturbations in their arguments, so that small quan-
tization errors result in small deviations from the trajectory of
the unquantized algorithm, as postulated next.*

4For the sake of notation, the constants L4, Lc and Lz defined in
Assumptions 4 and 5 are assumed to be independent of the index s (commu-
nication round). Our convergence results can be readily extended to constants
dependent on s.
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Assumption 4: There exists a constant L4 > 0 such that,
for every s € [R], it holds

||A(Z,C1,"' 705,.” ,CR)—A(Z,Cl,”' 768a"' 7CR)H

< Lalle® =&, (M

for all c*,& € R™¢, uniformly with respect to z € Z, and
ch,...,cs7 st R e R
Assumption 5: There exist constants Lc, Lz > 0 such that

|C%(z,¢) — C*(z,¢')||2 < Le||c — /|2, Ve, &/ € R™, (8)
|C°(z,c) — C*(2',c)||a < Lz|z — 2|2, V2,2’ € Z, 9)

uniformly with respect to z € Z and ¢ € R™4, respectively.
These assumptions are quite mild, and satisfied by a variety

of existing distributed algorithms, as shown in Appendix D.

We are now ready to introduce our main convergence result.
Theorem 6: Let {z*} be the sequence generated by Algo-

rithm 1 under Assumptions 1, 4, and 5, with QF satisfying

the BC-rule (5) with bias = 7" - (¢)* and compression rate

w € [0,0(0)), for some o € (A, 1) and n° > 0, where @(o)

is defined as

N o—A

" R 0—A+2LaLz[Rmax{1,(2Lc)E1}]

@(0) 5. (10)

Then,
E[sz_zoong]évb,(o-)k’ k:()v]-a"'v

where 1 is a positive constant, whose expression is given in
(39), Appendix A.
Proof: See Appendix A. [ ]

Note that, when the deterministic instance of the BC-rule
is used [see (6)], the convergence rate reads ||z — 2| <
Vo - (o), forall k=0,1,....

Theorem 6 shows that linear convergence is achievable
when communications are quantized in distributed optimiza-
tion, provided that the bias 1 and compression rate w of the
BC-rule are chosen suitably. The shrinking requirement on the
bias n (linear at rate o) is not restrictive, since it is consistent
with the contraction dynamics of the iterates: the range of
inputs to the quantizer vanishes in a similar fashion, a fact
that guarantees that quantized values can be encoded using a
uniformly bounded number of bits (see Theorem 12, Sec. V).
Similarly, the bound on w guarantees that quantization errors
along the iterates do not accumulate excessively.

Theorem 6 certifies linear convergence in terms of number
of iterations. However, the algorithm that uses quantized com-
munications converges slower (with rate o) than its unquan-
tized counterpart (rate \), revealing a tension between the
amount of quantization/compression of the transmitted signals
(measured by 7 and w) and the resulting linear convergence
rate o: as we will see in the forthcoming sections, this tension
entails a trade-off between faster convergence (closer to that of
the unquantized algorithm) and communication cost, which we
aim to characterize. Building on this result, we will also inves-
tigate the communication complexity of the schemes (Q-M)
—the total number of bits needed to reach an e-solution of
problem (P). Since this analysis depends on the specific
quantizer design, the next section introduces a novel quantizer
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that efficiently implements the BC-rule, and a communication-
efficient bit-encoding/decoding scheme. When embedded in
(Q-M), the proposed quantization leads to linearly convergent
distributed algorithms whose communication complexity com-
pares favorably with that of existing ad-hoc schemes (V).

IV. NON-UNIFORM QUANTIZER WITH ADAPTIVE
ENCODING/DECODING

As discussed in Sec. III, the BC-rule encompasses a
variety of quantizer designs. In this section, we propose a
quantizer that fulfills the BC-rule with minimum number
of quantization points (Sec. IV-A). The quantizer is then
coupled with a communication-efficient bit-encoding/decoding
rule which enables transmission on the digital channel
(Sec. IV-B). We refer to the proposed quantizer coupled with
the encoding/decoding scheme as Adaptive encoding Non-
uniform Quantizer (ANQ).

A. Quantizer Design

Since no information is assumed on the distribution of the
input signal, a natural approach is to quantize each vector
signal component-wise. We design such a scalar quantizer
Q : [-0,0] — Q under the BC-rule by minimizing the
number of quantization points |Q| for a fixed input range
[—0,0]. Equivalently, we seek Q that maximizes ¢ under
the BC-rule, for a given number N = |Q| of quantization
points. These designs are provided in Lemmas 7 and 8 for
the deterministic and probabilistic cases, respectively. For
convenience, we focus on the case of N odd; the case of
N even is provided in Appendices B and B. We point out
that the restriction of the input of Q to [—d, 0], as opposed
to the unconstrained domain in the BC-rule (Definition 3),
is instrumental in formulating the quantizer’s design as an
optimization problem. As shown in Lemmas 7 and 8, the
resulting optimized quantization points are independent of the
specific choice of d; hence, the proposed quantizer can be used
(component-wise) for input signals in R?.

Lemma 7 (Deterministic Quantizer): Let Q : [—4,0] — Q.
The maximum range ¢ that can be quantized using |Q| =
N (odd) points under the BC-rule (6) with bias n > 0 and
compression rate w € [0,1) is

_ q(N-1)/2 T q(N+1)/2

5(n,w, N) = 5 : (an
with quantization points
1 ¢
G =—qi=- [(ﬂ) - 1] L Lz0. (12
w [\l—-w

The resulting optimal quantization rule reads: x — Q(z) =
Qe(z)» With

In(1 —w)+In(1+ %|x|)" 13

o(z) = si .
(z) = sign(2) [ In(14+w) —In(l —w)
Proof: See Appendix B.1. [ |
Lemma 8 (Probabilistic Quantizer): For any given x &
[-9,6], let Q(z) € Q be a random variable defined on a
suitable probability space. The maximum range § that can be
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quantized using |Q| = N (odd) points under the BC-rule (5)
with E[Q(z)] = x, bias n > 0 and compression rate w € [0,1)
is

5(77,(4},]\7) =q(N-1)/2> (14)

with quantization points
n 20
Qe =—q—= —[( 1+(w)2+w) - 1], ¢>0. (15)
w

The resulting optimal quantization rule reads:  — Q(z) =
qe(z)> with

(-1, w.p. —qlq_’-’;i ;
U(z) = w_q,, and
¢, WP Gy
In(1+ 2|z
l= sign(x){ ( Tl —‘ (16)
2In (/14 (w)2+ w)

Proof: See Appendix B.2.

From these lemmas, one infers that quantization points
under the BC-rule should be non-uniformly spaced—hence the
name ANQ. Furthermore, the deterministic quantizer maps
an input x to the nearest gy, whereas the probabilistic one
maps x to one of the two nearest quantization points, selected
randomly such that E[Q(z)] = .

Note that, when specialized to the conventional compression
rule that uses 7 = 0, the two lemmas above yield §(0,w, N) =
0 for any finite /N, implying that infinite quantization points
(hence number of bits) are required to encode signals. The
next corollary formalizes this negative result.

Corollary 9 (Converse): The (unbiased, = 0) compres-
sion rule (2) cannot be satisfied using a finite number of
quantization points to quantize signals within a given range
[~8,0]¢, for any finite § > 0. Therefore, the compression
rules in [6], [24], [26]-[33], [36]—-[38] theoretically require
an infinite number of bits to encode quantized signals.

Proof: See Appendix B.3. 0

Note that the index ¢(x) is a sufficient information to
reconstruct the quantization point g, at the receiver. In the
next section, we present a communication-efficient finite bit-
encoding/decoding scheme to transmit ¢(z) over the digital
channel.

B. Adaptive Encoding Scheme

It remains to design an encoding/decoding scheme mapping
the index ¢(z) into a finite-bit representation, to be transmitted
over the digital channel. To do so, we adopt an adaptive
number of bits, based upon the value of ¢(x), as detailed next.

We assume that a constellation S = [S] U {0} of S + 1
symbols is used, with S > 2 (this might be obtained as S =
(g)w by concatenating sequences of w symbols from a smaller
constellation S). We use the symbol 0 to indicate the end of
an information sequence, and the remaining .S symbols in the
set [S] to encode the value of £(x). With £_; = 0, let

ﬁb:{—{%W—kl,...,{%J}, b=0,1,...,

and

Ly=Ly\Ly 1, b=0,1,.... (17)
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It is not difficult to see that {£; : b = 0,1,...} creates a
partition of Z and |Ly| = (S)°. Therefore, a natural way to
encode ¢(x) € L, is to use a unique sequence of b symbols
from [S], followed by O to mark the end of the information
sequence. ¢(z) is then encoded as [s1,.. ., sp, 0] € (S)b*+L.

Upon receiving this sequence, the receiver can detect the
start and end of the information symbols, and decode the
associated ¢(x) by inverting the symbol-mapping. The com-
munication cost to transmit the index ¢(x) € Ly is thus b+ 1
(symbols), which leads to the following upper bound on the
communication cost incurred by each agent ¢ to quantize and
encode a d-dimensional vector x. Again, we focus on the case
when N is odd; the other case is provided in the proof in
Appendix C.4.

Lemma 10: The number of bits C'(x) required by the ANQ
with bias 7 > 0 and compression rate w > 0 and constellation
of S+ 1 symbols to quantize and encode an input signal x €
R? is upper bounded by

(i) Deterministic Quantizer:

(18)

(1 — w)+1In (1+2l2)
1 bits;
In(l1+w) —In(l —w) )

C(x) < 3dlogy(S+1)

+dlogy(S+1) logg <2—|—

(ii) Probabilistic Quantizer With E[Q(x)] = x:

C(x) < 3dlogy (S + 1)+dlogy(S+1) logg

In (14 lxlz
x <2+ ( Vi ) ) bits, a.s.. (19)
21In (\/1+(w)2+w)
Proof: See Appendix C.4. U

Compared with existing deterministic quantizers [21], [22]
that are special cases of the BC-rule (with w = 0), the pro-
posed ANQ adapts the number of bits to the input signal-less
bits for smaller input signals (mapped to smaller ¢) and more
bits for larger ones (mapped to larger ¢)-rather than using
a fixed number of bits determined by the worst-case input
signal [21], [22]. This leads to more communication-efficient
schemes, as will be certified by Theorem 13.

V. COMMUNICATION COMPLEXITY OF (Q-M)
BASED ON THE ANQ RULE

We now study the communication complexity of the distrib-
uted schemes falling within the framework (Q-M) and using
the ANQ to quantize communications. Our results complement
Theorem 6 and are of two types: (i) first, we characterize
the trade-off between the number of bits/agent required by
the ANQ at each iteration and the linear convergence rate
(Theorem 12); (ii) then, we investigate the communication
complexity, characterizing the total number of bits/agent trans-
mitted to achieve an e-solution of (P) (Theorem 13). Since
these results are applicable to any distributed algorithm within
the setting of (Q-M), we finally customize (ii) to some specific
instances (Sec. V-A).

Throughout this section, all the results stated in terms of O-
notation are meant asymptotically when m, d — oo. Also, the
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following additional mild assumption is postulated, which is
satisfied by a variety of existing algorithms, see Appendix D.

Assumption 11: The constants L4, L, Lz, R and the ini-
tial conditions [|C*(2z°,0)||2 and ||z° — z*°|| satisfy

La-Lz=0(1), Lc = O(1), R=0(1),
|12° — 2| = O(V'md)
and [|C*(2°,0)||2 = O(LzVmd), Vs € [R).

Our first result on the number of bits transmitted at each
iteration to sustain linear convergence is summarized next.

Theorem 12: Instate the setting of Theorem 6, under the
additional Assumption 11. Furthermore, suppose that the deter-
ministic ANQ (or probabilistic ANQ with E[Q(x)] = x)
is used to quantize all the communications in (Q-M), with
n’ = O(Lz(c — ) and w such that 1 — w/w(o) = Q(1).
Then, linear convergence \/E[||zF — z*|[2] = O(v/'md- (o)),
k=0,1,...,1is achieved with an average number of bits/agent
at every iteration k of order

o(d-log(uﬁ)).

Proof: See Appendix C.1. |

The following comments are in order.

(i) As expected, the faster the quantized algorithm (smaller
0), the larger the communication cost; in particular, when o —
A, the number of bits required to sustain linear convergence at
rate o grows indefinitely. In other words, an infinite number of
bits is required if a quantized distributed scheme (Q-M) wants
to match the convergence rate of its unquantized counterpart.

(ii) It is interesting to contrast the communication efficiency
(bits transmitted per iteration) of the proposed model (Q-
M) equipped with the ANQ with that of existing schemes
applicable to special instances of (P) or network topologies.
Specifically, [21], [22] study (P) with » # 0 over mesh
networks; the scheme therein convergences linearly (under
suitable tuning/assumptions) while using

O [ dlog (1 + Ld) bits/agent/iteration.
oo —A)

(20)

The algorithm in [22] is also applicable to (P), with » Z 0,
over star-networks; it uses

d
O (dlog (1 + 0(07\/—_)\))> bits/agent/iteration.

Both are less favorable than (20), due to the fact that the
ANQ adapts the number of bits to the input signal rather than
adopting a constant number of bits for any input signal.

(iii) Theorem 12 reveals a tension between convergence rate
(the closer o to A, the faster the algorithm) and number of
transmitted bits per iteration (the larger o, the smaller the
cost). In the following, we provide a favorable choice of o
that resolves this tension by characterizing the communication
complexity, i.e., the total number of bits transmitted per agent
to achieve a target e-accuracy.
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Theorem 13: Instate the setting of Theorem 12, with o
chosen so that

(1-x)7
(1-0)(o—N
Then, the average number of bits transmitted per agent to
achieve (1/m)E[||z* — z>°||3] < ¢ scales as

= 0(1).

1 1 .
(’)(d -log (1 + m) T log(d/e)> bits/agent, (21)

achieved in

(@] (ﬁ . log(d/e)> iterations (22)

and with

(@] (d -log (1 + ﬁ)) bits/agent/iteration.  (23)
Proof: See Appendix C.3. [ |

The following comments are in order.

(i) Intuitively, Theorem 13 provides a range of values
of o to balance the tension between convergence rate and
communication cost per iteration, resulting from too small or
too large values of o. The condition of the theorem can be
satisfied, e.g., by choosing o = (1 4+ \)/2.

(ii) The term d - log(1 + 1/(1 — X)) in (21) represents the
number of bits/iteration/agent under the additional restriction
on o, as postulated by Theorem 13: the faster the unquantized
algorithm (i.e., the smaller \), the less bits are required.

(iii) The second term (1 — X\)~!log(d/c) represents the
total number of iterations required to achieve e accuracy;
remarkably, these are the same (in a O-sense) as the unquan-
tized algorithm, with log(d) capturing the gap of the initial
point from the fixed point. As expected, the number of
iterations increases as the unquantized algorithm slows down
(A increases), the dimension d increases, and/or the target error
€ decreases.

Nest, we customize Theorem 13 to some distributed algo-
rithms within (Q-M).

A. Special Cases of (Q-M) Using the ANQ Rule

1) GD Over Star-Networks: Our first case study is the GD
algorithm solving (P) with » = 0 over star networks. The
unquantized scheme reads

m

K = xb = LN (), (24)
1=1

m <
with v € (0,2/L). This is an instance of the algorithmic
framework (M); therefore, we can employ quantization using
(Q-M). When the ANQ is employed, a direct application of
Theorem 13 leads to the following communication complexity
for the quantized GD (we termed the algorithm ANQ-GD-
star).

Corollary 14 (ANQ-GD-star, see Appendix D.1): Given
(P) over a star-network, where » = 0 and F' is L-smooth and
u-strongly convex, thus with condition number k = L/p,
and unique minimizer x*, consider the ANQ-GD-star with
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stepsize v = 2/(p + L) and tuning for the ANQ as in
Theorem 13. Then, the average number of bits/agent for
| x* — x*||2 < ¢ is of order

o(d log(1 + K)r log (d/s)), (25)
achieved in
O(klog (d/e)) iterations (26)
and with
O(d -log(1 + n)) bits/agent /iteration. (27

This behavior compares favorably with O(dklog(d(1 +
k))log(d/e)) bits/agent obtained in [22] using a deterministic
quantizer, with fixed number of bits among agents and itera-
tions. It also matches O(drlog(l + k)log(d/e)) bits/agent
obtained in [53] using the same deterministic quantizer as
in [22]. However, [53] uses a central coordinator to optimize
the number of bits used by each agent at every iteration. Note
that the lower complexity bound provided in [54] for k = 1
reads: (dlog(d/c)) bits/agent, confirming the tightness of
our result.

2) Distributed Algorithms Employing Gradient Correction:
Our second example deals with distributed algorithms solving
(P) (possibly, with » # 0) over mesh networks. With a
slight abuse of notation, below we denote by x, L and u
the condition number, the smoothness constant and the strong
convexity constant of each f;, respectively. We consider the
most popular schemes, employing gradient correction in the
optimization direction—see Appendix D for a description of
these algorithms. We denote by pz = pa(W) the second
largest eigenvalue of the gossip matrix W used in these
algorithms (note that po = 0 for star-networks or fully-
connected graphs). The communication complexity of these
algorithms when using the ANQ is summarized next—they
follow readily from Theorem 13 and the convergence results
of the unquantized algorithms in [50].

Corollary 15 (ANQ-(Prox-)EXTRA, ANQ-(Prox-)NIDS,
and ANQ-NIDS over mesh networks, see Appendices D.2,
D.3, and D.4): Consider Problem (P) over mesh networks, and
the ANQ-(Prox-)EXTRA and ANQ-(Prox-)NIDS algorithms
with stepsize v = 2/(L + p) and the ANQ-NIDS algorithm
with stepsize v = 1/L, where the ANQ is tuned as in
Theorem 13. Then, the average number of bits/agent for
[ x¥ —x*||3 < ¢ is of the order of

(@) (dmax {Ii, ﬁ} log (max {H—/@, ﬁ}) log(d/s)) ,

achieved in

O(max{n, ]

1

} log(d/a)) iterations
- P2
and with

O(dlog (max{l + K, T L

— P2

}) ) bits/agent /iteration.

Corollary 16 (ANQ-(Prox-)NEXT and ANQ-(Prox-)DIGing
Over Mesh Networks, See Appendices D.5-D.6): Consider
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Problem (P) over mesh networks as described above, and
the ANQ-(Prox-)NEXT and ANQ-(Prox-)DIGing algorithms
with stepsize v = 2/(L + p), where the ANQ is tuned as
in Theorem 13. Then, the average number of bits/agent for
|x* — x*||3 < ¢ is of the order of

@ <dmax {Fa, ﬁ}log(max{l—i—ﬁ, m }) log(d/6)> ,

achieved in

@] ( max {ﬁ, ﬁ } 1og(d/5)) iterations

and with

(’)(dlog (maX {1 + K, m })) bits/agent /iteration.

Corollary 17 (ANQ-Primal-Dual over Mesh Networks, see
Appendix D.7): Consider Problem (P) with » = 0 over
mesh networks as described above, and the ANQ-Primal-Dual
glgorithm with stepsize vy = Mﬁ%, where the ANQ
is tuned as in Theorem 13. Then, the average number of
bits/agent for ||x* — x*||3 < ¢ is of the order of®

K
1—p2

K
(9<d1_p21og(1+

) os(a/=) )

achieved in

O( A log(d/a)> iterations
1-— P2

and with

(@] (d -log (1 + 1 t )) bits/agent/iteration.  (28)
2

It is interesting to compare the ANQ-Primal-Dual (Corol-
lary 17) with  [24], which applies quantization to a
Primal-Dual scheme using the widely adopted compression
rule. The number of iterations required for the Option-D
scheme (the best performing one) in [24] to achieve e-
accuracy, using the rand-K or dit-K compression methods
(see [24, Example 4]), is®

O(%l—ﬂpg

log(d/<)). 29)
Therefore, to achieve the same number of iterations as ANQ-
Primal-Dual (in a O-sense), rand-K in [24] requires K =
O(d), whereas dit-K in [24] requires S = 251 —1 = ©(\/d),

s = 0((1 = p2) ),

%The asymptotic result in [24, Theorem 5] maps to our setting with the
following modifications: p (the ratio between the largest and the second
smallest eigenvalues of L) and poo (the ratio of the largest weight and
the second smallest eigenvalue of L) defined therein are both of order
O(1/(1 — p2)); when adopting the setting on the initial error from our
Assumption 11 and the problem setting of (P), the parameter m therein
becomes 1 and the numerator in the log term becomes d.

5Note that
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with a communication cost of (in bits/agent/iteration)
ofd+ B) (dit-K),

(30)
O(d(B + log d)) (rand-K),

where B is the number of bits used to encode each scalar with
negligible loss in precision.

Comparing the communication costs (28) and (30), the
following remarks are in order: (i) If we neglect the B-
dependence, our scheme has the same scaling behavior as dit-
K and better scaling behavior than rand-K, as the problem
dimension d increases. (ii) It is not clear how the number
of bits B should be chosen to encode scalars in [24] as a
function of the system parameters, in a (J-sense, in order to
make loss in precision truly negligible (a condition required
by the convergence analysis therein). On the other hand, our
communication cost analysis, which focuses on quantization
below machine precision, provides an explicit answer to this
question.

VI. NUMERICAL RESULTS

In this section, we validate numerically our theoretical
findings and compare different distributed algorithms using
quantization. We consider two instances of (P): a linear
regression and a logistic regression problem, both with F
strongly convex. The communication network is modeled as
an undirected graph of m = 20 agents, generated by the
Erdos-Renyi model with edge activation probability of 0.6.
We measure performance of the algorithms using the mean
square error MSE” and the network communication cost
Cem () incurred over the network to reach MSEF < ¢, defined
as
iy I — %13

MSEF2 2

R m
DODBLANNEIN

where k. £ ming>o MSEF < ¢ is the number of iterations
required to achieve e-accuracy, x* is the optimal solution
of (P), and bf’ is the number of bits used by the quan-
tizer to encode the sth transmitted signal by agent ¢ at
iteration k.

mllx*|3

A. Linear Regression Problem

1) Problem Setting: Consider the following linear regres-
sion problem over mesh networks:

0.01
2
where U; € R29%40 and v; € R2°%! are the feature vector
and observation measurements, respectively, accessible only
by agent <. The matrix U, is generated independently across
agents, according to the model in [55], namely: [U;].; ~
N0, ﬁl) (first column), and for the other columns ¢ > 1,
[Ui]ql[Ui]q—l ~ N(ﬁ[Ui]q_l,I), where 8 = 0.3. In this
way, each row of Uj; is a Gaussian random vector with zero
mean and covariance depending on [3: larger ( generates more
ill-conditioned covariance matrices. Then, letting xo € R0 pe
the ground truth vector, generated as a sparse vector with 70%

1
Fi)=5[1Usx = vill5 + == [[x[3 and r(x)=allx]1, (32)
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Linear regression problem (32): MSE versus iterations. Solid curves and markers refer to algorithms implemented using machine precision and

quantized communications, respectively. In the legend, for each scheme, we report the number of bits transmitted, per agent, per dimension, per iteration.

zero entries, and i.i.d. nonzero entries drawn from N(0,1),
we generate v; as v|(U,xo) ~ N (Uxg, 0.04I). We use pu, L
for the strong convexity and smoothness parameters of each
fi, respectively.

We test several distributed algorithms considering either
smooth (o« = 0) or non-smooth (o« > 0) instances of
the least square problem (32). In fact, most of the existing
quantization schemes are applicable only to smooth opti-
mization problems. The free parameters of these algorithms
are optimized based on the recommendations in the original
papers, while optimizing numerical convergence with the
smallest number of bits, unless otherwise stated; the weight
matrix W used to mix the received signals is constructed
according to the Metropolis-Hastings rule [56]; the number
of bits transmitted by each scheme as reported in the figures
is per agent, per dimension, per iteration. For each quantized
algorithm, we choose ¢ = 0.99 - A + 0.01, where A =
(MSE! /MSE®")0-91 is the numerical estimate of the conver-
gence rate of its unquantized counterpart (i.e., implemented at
machine precision). In the simulations, all algorithms except
those using LPQ are evaluated with 1 realization since they
are deterministic algorithms. Those using the probabilistic
quantizer LPQ, i.e., LEAD [25] and COLD [39], are aver-
aged over 10 realizations, with fixed U;, V;,x, and network
topology.

2) Smooth Linear Regression (Fig. 2a): We begin by con-
sidering the smooth linear regression problem. We consider
the following benchmark schemes, using machine precision
(64-bit representation for each scalar):

1) Primal-Dual [42] with step-size v =

2Lp/(pm—1(L) + Lpi(L)) ( [22, Proposition
2]), where L is the graph Laplacian matrix associated
with the graph.

2) NEXT [40], [41], [46] with step-size v = 0.0029,

manually tuned for fastest practical convergence.

3) NIDS [48], [50] with step-size v = LLW and mixing

matrix W = [(1+2)I + (1 — v)W]/2, with v = 0.001.

In addition, we consider the following algorithms, that
implement the above benchmark schemes using quantized
communications:

4) Q-Dual [22] and Q-NEXT [21];

5) ANQ-Dual: this is the Primal-Dual algorithm [42]
equipped with the proposed deterministic ANQ (see
Appendix D.7), with n° = 0.01 and w = ©/2 [recall
that @ is defined in (10)];

6) ANQ-NEXT: this is the NEXT algorithm [40], [41],
[46] quantized using the deterministic ANQ with 10 =
0.029 and w = w/2;

7) ANQ-NIDS: this is an instance of the NIDS algo-
rithm [48], [50] equipped with the deterministic ANQ
(see Appendix D.4) with parameters n° = 0.1 and
w=w/2

8) LEAD [25] and COLD [39], both implemented using the
low-precision quantization (LPQ) [36]: to transmit a
signal x, the amplitude ||x|2 is encoded at machine
precision (64 bits), and 3 bits are adopted to encode
each normalized element z; /||x||2.

In Fig. 2a, we plot the MSE versus iteration index k.
Remarkably, all algorithms, when equipped with the pro-
posed ANQ, incur a negligible loss of convergence speed
with respect to their machine precision counterpart. Compar-
ing ANQ with the compression-based distributed algorithms
LEAD [25] and COLD [39], we infer that the proposed
ANQ-NIDS is faster while using less bits. Comparing ANQ
with the state-of-the-art quantized algorithms, we notice that
ANQ is more communication-efficient than Q-NEXT and Q-
Dual, which instead use deterministic uniform quantizers with
shrinking range: ANQ-NEXT (11.62 bits) and ANQ-Dual
(2.65 bits) use less bits per iteration than Q-NEXT (28 bits)
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Logistic regression problem (33): MSE versus iterations. Solid curves and markers refer to algorithms implemented using machine precision and

quantized communications, respectively. In the legend, for each scheme, we report the number of bits transmitted, per agent, per dimension, per iteration.

and Q-Dual (5 bits), respectively, while converging faster.
Note that, with the parameters chosen as recommended in
Theorem 6, all ANQ-based algorithms shown in the figure
have convergence guarantees, while Q-Dual and Q-NEXT do
not in the simulated setting. In fact, Q-Dual and Q-NEXT use
5 and 28 bits, respectively, which fall below the minimum
number of bits that guarantee linear convergence, calculated
to be 13 from [22, Theorem 1] and 78 from [21, Theorem 4],
respectively.

3) Non-Smooth Linear Regression (Fig. 2b): We now move
to the non-smooth instance of (32), with o« = 10~*. To our
knowledge, there is no existing quantized algorithms solv-
ing such instance of (32). Hence, we tested the following
ANQ-based quantized algorithms:

1) ANQ-Prox-EXTRA: this is an instance of the
Prox-EXTRA algorithm [50] equipped with the deter-
ministic ANQ (see Appendix D.2) with parameters n° =
6.67 x 107* and w = w/2;

2) ANQ-Prox-NEXT: this is the Prox-NEXT algo-
rithm [50] equipped with the deterministic ANQ (see
Appendix D.5) with parameters 7° = 2.34 x 1072 and
w=w/2;

3) ANQ-Prox-DIGing: this is the Prox-DIGing algo-
rithm [50] equipped with the deterministic ANQ (see
Appendix D.6) with parameters 7° = 3.05 x 1072 and
w=w/2;

4) ANQ-Prox-NIDS: this is the Prox-NIDS algorithm
in [50] equipped with the deterministic ANQ (see
Appendix D.3) with parameters 7° = 7.7 x 10~ and
w=u/2.

As benchmark, we also included their unquantized counter-
parts, implemented at machine precision; in all these schemes,
we used the weight matrix W = [(1+ )T+ (1 —v)W]/2 with
v = 0.001; the step-size is chosen according to [50], namely:

2pm (W) 2pm (W )

Y= T (W) for Prox EXTRA, v = T ip (W) for Prox-
DIGing, and v = +5— for Prox-NEXT and Prox-NIDS.

Fig. 2b plots the MSE achieved by all the algorithms versus
the iteration index. As predicted, all four quantized schemes
converge linearly. Remarkably, all of the ANQ-equipped algo-
rithms incur a negligible loss of convergence speed with
respect to their machine precision counterparts, while using
a fraction of the communication budget — only 14 bits per
agent/dimension/iteration.

B. Logistic Regression

We now consider the distributed logistic regression problem
using the MNIST dataset [57]. This is an instance of (P) with
3000

3000 Z In (1 + exp ( Vi pU, x))

(33)

where u;, € R™>! and v;,, € {-1,1} are the feature
vector and labels, respectively, only accessible by agent i
Here we implement the one-vs.-all scheme, i.e., the goal is to
distinguish the data of label *0” from others. To generate u; j,
we first flatten each picture of size 28 x 28 in MNIST into a real
feature vector of length 28 x 28 = 784, and then normalize it to
unit /5 norm. We then allocate equal number of feature vectors
and labels to each agent. In the simulations, all algorithms
except those using LPQ are evaluated with 1 realization since
they are deterministic algorithms. Those using the probabilistic
quantizer LPQ, i.e., LEAD [25] and COLD [39], are averaged
over 10 realizations, with fixed feature/label allocations and
network topology.

1) Smooth Logistic Regression (Fig. 3a): We begin by
considering the smooth logistic regression problem (33), with
o = 0. We tested the same algorithms (with the same tuning)
as described in Sec. VI-A for the smooth linear regression

i) = S el +

and r(x) = allx]1,
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Fig. 4. MSE versus iterations for different quantization rules applied to NIDS [48], [50].

problem. In Fig. 3a, we plot the MSE versus iteration index
k. Consistently with the results in Fig. 2a, we notice the
following facts. ANQ-NIDS achieves the fastest convergence,
followed by ANQ-NEXT, ANQ-Dual, Q-Dual and Q-NEXT.
Comparing our quantization method with existing ones on the
same unquantized algorithm, we notice that the proposed ANQ
is more communication-efficient than Q-NEXT and Q-Dual:
ANQ-NEXT (6.28 bits) and ANQ-Dual (2.7 bits) use less
bits per iteration than Q-NEXT (36 bits) and Q-Dual (5 bits),
respectively, while at the same time converging faster. Compar-
ing with the compression-based algorithms LEAD and COLD,
it is shown that ANQ-NIDS achieves better convergence rate
with less bits.

2) Non-Smooth Logistic Regression (Fig. 3b): We now
consider the non-smooth instance of the logistic regression
problem (33), with a = 10~%. We tested the same algorithms
(with the same tuning) as described in Sec. VI-A for the
non-smooth linear regression problem. Fig. 3b plots the MSE
achieved by all the algorithms versus iterations k. The results
confirm the trends already commented in Fig. 2b.

C. Comparison of Quantization Rules

From the above results, it is clear that ANQ-NIDS outper-
forms existing algorithms using dynamic quantization (DYQ)-
including Q-Dual and Q-NEXT-as well as those employing
low-precision quantization (LPQ)—such as LEAD and COLD.
This advantage may be due to the black-box nature of ANQ: it
can be applied to a variety of distributed algorithms, including
those known in the literature to be the fastest ones. This is a
significant advantage over ad-hoc quantization schemes, which
are limited in their applicability to the specific algorithms
they are designed for. Therefore, an interesting question is
whether the performance superiority comes solely from the
underlying (unquantized) algorithm, i.e., NIDS, or also from
the quantization rule, i.e., ANQ. To answer this question,
we compare the above three quantization rules, DYQ, LPQ,
and ANQ on the same distributed algorithm, NIDS [48], [50].

7% 10’
——ANQ-Prox-EXTRA
4 ANQ-Prox-NEXT
||7==ANQ-Prox-DIGing
-¢ANQ-Prox-NIDS

20 40 60 80 100 120 140 160
d

Fig. 5. Network communication cost evaluation on non-smooth linear
regression problem with o = 10~% versus d, where A remains fixed for
all d in each algorithm.

Fig. 4a and Fig. 4b show the MSE versus iterations for
ANQ-NIDS, LPQ-NIDS, and DYQ-NIDS solving the smooth
linear regression and smooth logistic regression problems
(32) and (33) (r = 0), respectively. The parameters for
DYQ-NIDS and LPQ-NIDS are selected to closely match the
performance of NIDS with machine precision while using
the smallest number of bits, whereas those for ANQ-NIDS
are selected according to our analysis. Both figures show
that ANQ-NIDS consistently requires less bits than the other
quantization schemes. More precisely, ANQ-NIDS uses 25%
less bits than DYQ-NIDS and 44% less then LPQ-NIDS in the
linear regression case, and 50% less bits than DYQ-NIDS and
27% less then LPQ-NIDS in the logistic regression problem.

D. Communication Cost
We now study the effect of the dimension d on the commu-
nication cost for different algorithms solving the non-smooth
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Fig. 6. Network communication cost evaluation of ANQ-NIDS on smooth linear regression problem.

linear regression problem (32), with o = 10~%. Note that
the rate of a machine precision algorithm A depends on
both the weight matrix and the condition number x = L/p,
which depends itself on d. We chose the coefficient of the
lo regularizer so as to make x and thus A\ remain fixed across
different d. The rest of the settings are the same as in Fig. 2b.
Fig. 5 plots the network communication cost Ccp,(g) versus
d as defined in (31), required to reach a target MSE-accuracy
e = 1078, We observe that C.,, scales roughly linearly with
respect to the dimension for all algorithms, which is consistent
with Theorem 13.

Finally, we investigate numerically the effect of ¢ and w
on the network communication cost as defined in (31), for a
target MSE-accuracy € = 10~ !4, We consider the ANQ-NIDS
algorithm with 7° = 0.001, solving the smooth linear regres-
sion problem (32), with @ = 0. Fig. 6a plots the network
communication cost versus o with w = @/2. Note that this
figure justifies the discussion in Sec. V that o should be
chosen away from A and 1 in order to save on communication
cost. Fig. 6a plots the communication cost (31) versus w with
o = 0.99 x A+ 0.01. It can be seen that, by optimizing the
compression rate w, a saving of 15% in communication cost
can be obtained over a quantization scheme that employs no
compression (w = 0). This observation numerically supports
our BC-rule, which generalizes the deterministic/probabilistic
quantizers that have no compression term.

VII. CONCLUSION

In this paper, we propose a black-box model and unified
convergence analysis for a general class of linearly conver-
gent algorithms subject to quantized communications. The
new black-box model encompasses composite optimization
problems and distributed algorithms using historical informa-
tion (e.g., EXTRA [43] and NEXT [40]), thus generalizing
existing algorithmic frameworks, which are not applicable

to these settings. To enable quantization (below machine
precision), we propose a novel biased compression (BC-)rule
that preserves linear convergence of distributed algorithms
while using a finite number of bits in each communication.
As special instance of the BC-rule, we also proposed a new
random or deterministic quantizer, the ANQ, coupled with a
communication-efficient encoding scheme. We analyzed the
communication cost of a gamut of distributed algorithms
equipped with the ANQ (in a unified fashion), showing favor-
able performance analytically and numerically, both in terms
of convergence rate and communication cost, with respect
to state-of-the-art quantization rules (including uniform and
compression-based ones) and ad-hoc distributed algorithms.

APPENDIX A
LINEAR CONVERGE UNDER QUANTIZATION

In this appendix, we prove Theorem 6. We begin by intro-
ducing some preliminary results, whose proofs are deferred
to Appendix A.3. Throughout this section, we make the
blanket assumption that the conditions in Theorem 6 are
satisfied. In particular, 0 € (A, 1) and w € [0,&(0)), with
w(o) defined in (10). Due to the possibly random nature of
the quantizer, {z*,c"* &¥*} ;>0 sc(r) is a stochastic process
defined on a proper probability space; we denote by F*s
the o-algebra generated by {z*',c* " e "}y seim U
{zF, cFs' &b =1} o, (€%* excluded).

1. Preliminaries

The idea of the proof is to show by induction that both the
optimization error ||z* — z°°|| and the input to the quantizer,
||cFs — &*=1:3||y, are linearly convergent (in expectation) at
rate o, i.e.,

VEl|z* — 2|*] < Vg - (0)",

JE[Hc’“’S—é’HvSHi]éFS-(o)’% Vs € [RlU{0}, (35)

(34)

Authorized licensed use limited to: Purdue University. Downloaded on April 29,2023 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.



MICHELUSI et al.: FINITE-BIT QUANTIZATION FOR DISTRIBUTED ALGORITHMS WITH LINEAR CONVERGENCE

where FO = 0, and Vp, F*, s € [R] satisfy

ol Ym dRn® + wF "1
I — )
o

F?% > max {ch* + LevVmdn® + Lo(1+w)Fs
Vmdn®(1+ Leco) + Leo(1 +w)F5™ 1+ Lz(1 + o)V }

Vo > max{”zo (36)

o—w
(37
Vs € [R], and we have defined F £ (F*) ¢(z),
1 R-1
o I, o 1C*(2°,0)l2, La2LaY (Lc)*. (38)
s s=0

The existence of such Vj and F*, s €
following lemma.

Lemma 18: Let w € [0,&(0)). Then, (36) and (37) are
satisfied by

Vo = max {¢, |12° — 2|}
. LaypvmdR*n® 1+ 22[(1+ Leo)y — 1]

[R], is proved in the

o—A 1-w/w » (39)
e — Vmdn®(1+ Leo) + 2Lz Vo(o, w,n°)
N oc—w
s—1 ’
2Lc S
X Z (1 _w/a) s € [R), (40)

where ¥ £ max{1, (2Lc)~1}.

Since the effect of ||cF* — ¢k=15||y on ||z* — z°°|| is
through quantization, we need the following bound on the
quantization error (its proof follows readily by the Cauchy-
Schwarz inequality).

Lemma 19: Let the quantizer Q; used by agent ¢ € [m]
satisfy the BC-rule (5) with bias n > 0 and compression rate

€ [0,w(0)). Then the following holds for the stack Q =
[Ql; e 7Qm]T

VEIQe)—x[2[x] < Vimdn +wlix,

Vx = [x{,...,x]]T € Rm4,

A direct application of Lemma 19 leads to the following
bound on the quantizer’s input, which we use recurrently in
the proofs:

VE[ere — ko 4]
QM \/E[Hgk(ck,s —gk—1s) — (chs — ék—l,s)HiV:’k,s}
(41)
< Vmdn® - (o) + w||c"*
forall s € [R]and k = 0,1, ..., where we used % = 1°-(o)*.
The following lemma bounds the distortion introduced by

quantization in one iteration of (Q-M).
Lemma 20: There holds: for all £ =0,1,...,

VEll+1 — 202 < Ay/E[]J2* — z2<]| |’

R
+LavVmdRn® - (o)*+Law Z \/E[”ck,s
s=1

(41)

_ ékfl,s‘

(42)

gy @S-,

1,
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a.s., where L4 is defined in (38).

We conclude this section of preliminaries with the following
useful result.

Lemma 21: Let {X; : t €
random variables. Then,

[T]} C R be a collection of

T

£[(30)] < 3o vEoe

Proof: Tt can be proved by developing the square within
the expectation on the left hand side expression, and by using

Xu] < VEX?]VEIXZ]. 0
2. Proof of Theorem 6

We prove (34) and (35) by induction. Let Vj and F*, s €
[R], satisfy (36) and (37). Since ||z° — z°|| < V; (see (36))
and c®0 = ¢~ 10 = 0, (34) holds for & = 0 and (35) holds
trivially for £ = 0 and s = 0. We now use induction to prove
that (35) holds for k = 0 and s € [R]. Assume that (35) holds
for k =0 and s < R. Then, it follows that

o e e

(@ 1/,0
< [ert (=2, o),
T ||CS+1(ZO, CO’S)
(8),(38)
<

A_LSHHQ = O7s+1H2

4 Hcs+1 (ZO7 éO,s)
— (2, 0)

cstt (z ¢’ )

I

[

ch*—|—LCH(:O’S—CO’SHQ—|—Lc||co’s—é_1’s a.s.,

I+

where in (a) we used the triangle inequality and c”**! =

CS“(zO,éO’S). Taking the conditional expectation on both
sides and using Lemma 21 yield

\/E[HCO,erl _ éfl,erleL'FO,s]

< Ly +LoJE[[[0 — 0|2 705+ Lol — &1,
(4§2) Lzc* + LeVmdn® + Lo (1 + w)HcO’S — é’1’5||2, a.s..

Taking the unconditional expectation on both sides and using
again Lemma 21 yield

VE[eostt — et |2

< Lzc* + LeVmdn® + Lo(1 + w) \/IE |c0’5 —é’l’st]

35) 3
< LZc + Lovm 77 —|—Lc(1+w)F8

which completes the induction proof of (35) for £k = 0 and
s € [R].

Now, let us assume that (34) and (35) hold for a generic
k = 0.1,...; we prove that they hold at k£ + 1. We begin
with (34). Invoking Lemmas 20, 21, and using the induction
hypotheses (34) and (35) at k, yield

s+1
% ;

VBT — 22 < AVh - (0)"

+ L, (VmdRn® + wFTl) (o) < V- (0)F
where the last inequality follows from the definition of 1} in
(36), which concludes the induction argument for (34).

We now prove that (35) holds for k£ + 1, by induction over
s € [R]. First, note that (35) holds trivially for & + 1 and
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s =0, since cFt1:0 = k0 = 0. Now, assume that (35) holds
at iteration k + 1 for s < R. Then,

k+1,s+1 ék’,s-i-l |2

QM) ||Cs+1(zk+lvék+1,s) . Cs+1(zk+lvck+1,s)

le

+Cs+1 (Zk+1, ck-l—l,s) _Cs+1 (Zk, ék,s)+ck,s+1_ék,s+1 HQ

(%) ||Cs+1(zk+17 ék+1,s) B Cs+1(zk+1’ck+1,s) H2
+ ||Cs+1<zk+l7 ckJrl,s) _ CSJrl(Zk, ék,s) HQ

(8) )

+||Ck,s+1 Ak 9+1|| LC ék+1,s_ck+1,s||2

FLeflebt - &, o Ll - 2

Lol -2 e - b s

Then, taking the  expectation conditional on
Fk+1s and invoking Lemma 21 and (42) to bound

\/E[HéHLS — cktLs|[2|FR+1s], yield

\/E[HckJrl,erl _ ék,s+1||§|}'k+1,s] < LevVmdn® - (o)
F Lo+ ) — &b, + Lokt — 2,

+LZ||zk —ZOOH2 ¢hstl —ck’SHHQ, a.s..

Now,
}'k+1 5’

taking the expectation conditional on FFstl C
invoking Lemma 21, and (42) to bound

\/E[Hék,s-i-l _ ck,s+1H§|}‘k,s+1]7 yield

\/E[Hck+1,s+1 _ ék,s+1||§|]:k,s+1]§, /mdno(l + ch).(g)k

+ Lo(1+w)yJEfct+1s ]

+ LZ\/IE[HZICJrl - z°°H§|.7-'kv5+1]

T L\ JE[ |k~ |2 ekt ek

a.s.. Taking the unconditional expectation and invoking
Lemma 21 again yield

VE[|ekt 1o+t — ebat1|2) < Vimdn® (1 + Leo) - (0)F
+ Lo(+w)\El[ e+ —&ks |21+ Lo\El| 25+ =2 ]

+ Loyl — o]+ wy Bl et

(a)
< Vmdn®(1 4 Loo) - (0)F + Lo(1 +w)F* - (o)
37
+wFt () L1+ 0)Vo - (0)F < F5HL (o)

where in (a) we used the induction hypotheses (35) (applied
to the second and last terms) and (34) (applied to the third
and fourth terms). This proves the induction for (35), and the
theorem.

3. Proof of Auxiliary Lemmas for Theorem 6

1) Proof of Lemma 18: 1t is not difficult to check that
conditions (36) and (37) can be satisfied by choosing
oy VmdRn® + wFT1 -
||a LA};
o—A
7> vVmdn®(1+Lco)+Loo(14+w)F* =+ Lz (1+0)Vo

g —w

Vo > max {c*, |2° — =
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Vs € [R], where c*, L 4 are defined in (38). Moreover, since
w < o < 1, it is sufficient to choose

1 vVmdn®(14+Lco) + 2LcoFS~142L 2V,

Fo=
o 1l-w/o

, Vs € [R].

Solving this expression recursively yields (40).
We now prove (39). We begin noting that F° is a
non-decreasing function of s, hence F'* < F. Moreover, F T

is an affine function of V;. Using the facts that ( 2€ﬁ ) <

¥(1 —w/o)~*, where ¥ = max{1, (2L¢c)%~1}, and
(1 —w/o)™* < (1—w/a)(1—Rw/o)"L, Vs € [R—1] U {0},

and w < @(0) < o/R, we can upper bound F'® as

F* < FR <ay+ Voag & FF, (43)
where
a; £ v mdno(l + Leo) - 7R/U (44)
1—Rw/o’
R/o
Lo ) —L— 4
@2 7¥ 1—Rw/o 43)

Furthermore since F'1 < RFT < R(a; + Vpas) and La=
La Zg 0 (Lc) < LayR, to satisfy (36), it is sufficient to
choose V) as

z°||, LayR?

Vmdn® + w(a;+Voaz) }

o— A '
Using © > max{c,a + bz} < = > max{c,a/(1 — b)}, under
b < 1, the above condition is equivalent to

2| LAy R?(vVmdn®+way)
"o — ALy R2was

as long as Lty R%*was /(o — \) < 1. Solving with respect to
w (note that ay is a function of w), this condition is equivalent
to w € [0,w(0)) with w(o) given by (10), hence it holds by
assumption. Substituting the values of a1, as in (46) and using

Vo> max {c*, |z° —

Vo > max {c*, l|z° — }7 (46)

max{a,b} < a+b (for a,b > 0), yields (39). 0.
2) Proof of Lemma 20: At iteration k, let (; be defined as
¢ =A(ZF e ek et el
where
¢S =¢M and &t &t (zk,ée) Ve > s,

In other words, &, ¢ are the communication signals at round
¢ and the updated computation state, respectively, obtained by
applying the unquantized communication mapping after round
s and the quantized one before round s. Clearly, z**! =
A(zF ekl ... &) = ¢ and A(zF) = ¢° (unquantized
update of the computation state). It then follows that

+Z

Invoking the triangle inequality yields

zk+1

CSl

R
2+ 31, as.. @7)

s=1

||Zk+1_

2| < [|A@")
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We now study the second term. From the Lipschitz continuity
of A (Assumption 4) and the definition of ¢*, it holds that

R
¢ = ¢ < La )y l&E =& ]2 as..

l=s
Furthermore,
&5 = & lle = 6 — (s, &5 | = & — ¢ o
a.s., and, for ¢ > s,
lef — e 1||2—HC€( . 1) Ch(z, &)l
< Lellef !t =il < - - < (L) 0)|eRs = g, aus.,

where the last step follows from induction over ¢. Replacing
these bounds in (47), we finally obtain

[
~ R R-s
< |A@E) = 22|+ Lad Y (Lo)[[eh =Bl
s=1 =0
< /\sz a.s.,

ZooH + I~/A Z ”ék,s _ Ck’,sH27
s=1

where L 4 is defined in (38) and we used Assumption 1. Taking
the expectation conditional on the filtration F** while apply-
ing Lemma 21 and (42), starting from s = R, R—1,...,1, it
follows that

\/E[Hz’”l—zoouﬂf’“!l}§>\||zk—z°°H+EA\/deno (o)*

R
+Lawy " \JE[fleke — Lo FR1], as..
s=1
Finally, taking unconditional expectation and using Lemma 21
concludes the proof.

APPENDIX B
DETERMINISTIC AND RANDOM QUANTIZER’S DESIGN

1. Proof of Lemma 7

Let Q(e) : [—6,6]¢ — Q7 be a component-wise quantizer,
with the nth component quantizer Q,,(e) mapping points in
the interval [—J, d] to discrete points in the set Q. We assume
that the same quantizer is applied across all n, since each
component is optimized with the same range and number of
quantization points. The goal is to define a quantizer Q which
satisfies the BC-rule within x € [—4, 6]% with maximal range

0. To this end, a necessary and sufficient condition is
|On () — 2| <n+wl|z|, Vo €[—-0,d], Vn e [d. (48)

The sufficiency can be proved using Cauchy-Schwarz inequal-
ity. To prove the necessity, assume that (48) is violated for
some = € [—0,4], i.e., |Qpn(z)—2x| > n+w|z|, and let x = x1.
It follows that

19(x) = x||2 = Vd|Qu () — 2| > Vedn +wVd|a]
= Vdn +w|x|2,

implying the BC-rule is not satisfied at x.
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Hence, we now focus on the design of a component-wise
quantizer Q,, satisfying (48) with maximal range J. In the
following, we omit the dependence on n for convenience.

Assume that N = |Q| is odd (the case N even can be
studied in a similar fashion, and is pr0v1ded at the end of this
proof for completeness), and let Q £ U(N 1)/2{(]4, —qr} be
the set of quantization points, with 0 = gp < ¢1 < ..., <
Ge+1 < .... Note that we restrict to a symmetric quantizer
since the error metric is symmetric around O (the detailed proof
on the optimality of symmetric quantizers is omitted due to
space constraints). We then aim to solve

max )
6>0,Q

s.t. |Q(z) — x| <n+wzx, Yzelld],

where the constraint (48) is imposed only to = € [0, d] since
the quantizer is symmetric around 0. Since the quantization
error in (49) is measured in Euclidean distance, it is optimal
to restrict the quantization points to Q C [—4d, ] and to map
the input to the nearest quantization point (ties may be resolved
arbitrarily). Then, letting Xy = ((Ge—1+ q¢)/2, (Ge + Ge+1)/2),
with ¢_1 = 0 and G(n11)/2 = 20 — G(n—1)/2, it follows that
[0,0] = U(N V2%, and Q(x) = qv,Vr € Xy. Therefore, the
optimization problem (49) can be expressed equivalently as

(49)

max )
6>0,9
~ 2 2 N—-1

s.t. (Ge — 2)*<(n + wx)~, VmeXg,VE:O,l,...,T,

0=qo < - <qn+1)/2 =20 — GN-1)/2
Equivalently,

max 1)

6>0,9

s.t max (G, — ) — (n + wr)? < 0,¥/=0, 1 N1

.. xEXZ q[ "7 — ) Y yr 2 b
0=qo < - < qn+1)/2 =20 — G(N-1)/25

and solving the maximization with respect to x € Xy (note that
the quadratic function is convex in z, hence it is maximized
at the boundaries of A}), we obtain

i q(N-1)/2 T 4(N+1)/2
5>0,9 2

. - 14w 2
st @< () + —" Ve e [(N +1)/2),
1—w 1-—
O=dgo<q < <qvt1)/2-
Solving this problem with respect to q yields ¢go = 0 and
14w 2
%Zfﬂq( )+_77’ V> 1.
1—w 1l-w

Solving by induction, we obtain ¢, as in (12), 6(n,w, N) as
in (11), and

() = sign(e) -min {¢ > 0: LI > g},

yielding (13) after solving with the expression of ¢,. A similar
technique can be proved for the case when N is even, yielding
quantization points

" { (1+w) }
o —1], w1
and §(n,w, N)= 7%/24_”/2“ , which concludes the proof.
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2. Proof of Lemma 8

Using a similar technique as in Appendix B.1 when N is
odd, using the fact that [0,6] = Upernv—1)/2)[G¢—1,Ge] and
d = (ny2 it suffices to solve

g%ﬁ AqN-1)/2
2 2 - . N-1
st E[|Q(z)-af]<(ntwz)”, Ve €lde-1, Gl VEE€ | —— |,
E[Q(z)] = =, < qN-1)/2 = 0.

0=4qo=-
]

Furthermore, since « € [G¢—1, §¢] is mapped to G¢—1 w.p. (Ge—
)/(Ge = qe—1) and to G¢ W.p. (x —Ge—1)/(qe — Ge—1) to satisfy
E[Q(x)] = «, the problem can be expressed equivalently as

max q(N-1)/2
>0,
s.t. (=Ge) (2—=Ge—1)+(n+wz)*>0, V2€[Ge-1, G,
N—-1 - -
Vie {T} , 0=q¢ < - <qun-1)2 =0,
or equivalently
ggiﬁl d(N-1)/2
. N N ) N-1
s.t. min  (x—q¢)(z—Ge—1)+(n+wz) >0,Vle | —— |,
2€([Ge—1,Gr] 2

0=qg < < qn-1)/2=0.
Solving the minimization over = € [¢s—1, ¢;| and solving with
respect to q yields the following optimal quantization points:
qo = 0 and
w=q-1(vV1+ W2 +w)?+2n(y/14 )2 +w), V=1

Solving by induction, we obtain g, as in (15), é(n,w, N) as
in (14), and the probabilistic quantization rule as in (16), with
¢ given by

¢ = sign(z) - min{€ >0:qe> |x|},

yielding (16) after solving with the expression of g¢y.
A similar technique can be proved for the case when N is
even, yielding the quantization points
(V14 (w)?+w)?!
1+ (w)?

_n
qe = —
w

- 11 Ve 1.
and 0(n,w, N') = qn/2, which concludes the proof.

1. Proof of Corollary 9

Let Q(x) be a generic deterministic or probabilistic quan-
tizer with domain [—§,d]? and codomain Q € R? with
|Q| < oo, that satisfies the BC-rule with n = 0. It follows

that
wlxll2 > \/E[[|Q(x) — x|[3] > min [lq — x]|2
qeQ

= || Qaet(x) — x|z, Vx € [-4,0]°, (50)

where the lower bound is achievable by a deterministic quan-
tizer that maps x to the nearest quantization point, denoted
as Qqet(x). Let Q,(z) = e,] Qqet(ze,,) be the projection of
Qget on its nth element, where e,, is the nth canonical vector.
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Since || Qqet (e, ) —zen |2 > |Qn(x)—z|, from (50) it follows
that

WHJ?enHQ = W|J)| > HQdet(l‘en) - xenHQ > |Qn($) - J)l,

Vx € [—0,0], hence Q,, satisfies the BC-rule with n = 0 as
well. Note that Q,, is a scalar quantizer with N,, < |Q]
quantization points. However, Lemma 7 dictates that § =
0 for this quantizer, hence the contradiction. We have thus
proved the statement of Corollary 9 for both deterministic and
probabilistic compression rules.

APPENDIX C
COMMUNICATION COST ANALYSIS

1. Proof of Theorem 12

We first present some preliminary results instrumental in
proving Theorem 12, whose proofs are deferred to Appen-
dix C.2. The idea of the proof is to study the asymptotic
behavior of an upper bound on the number of bits required
per iteration, provided in the following lemma.

Lemma 22: Under the same setting as Theorem 6, and the
proposed ANQ satisfying the BC rule, the average number
of bits required per agent at the kth iteration, B¥, is upper
bounded as

k FR(anano))]
E[B"] <logy(S +1) [3dR+ dRlogg (3 + Vi
bits, Yk > 0, where F'%(o,w,n°) is defined in (43).

In addition, we need the following lemma to connect the
asymptotic results of the logarithmic function and its argu-
ment.

Lemma 23: For positive functions f, g, it holds: In f(x) =
O(lng(z)) as x — o if liminf, ., g(z) > 1, and f(x) =
O(g(x)) as © — wxo.

We are now ready to prove the main theorem. From
Lemma 22, the average number of bits per agent per iteration
is upper bounded by

FR(anO)>}
E[By] <log,(5+1)|3dR + dRlogg [ 3+ —==""2 |,
(Bl <logs(5+1) | g (34 s

Vk =0,1,..., where

F‘R(U7W7n0) =a; + a2V07

with a1, as and V| defined in (44), (45) and (39), respectively.
We want to prove that this is E[By] = O(dIn(1 + ﬁ))
under Assumption 11 and conditions

1 = O(Lalo — N), 1 - w/lo) = 1),
Using the fact that F®(o,w,n°)/n° = a1/n° + a2Vo/n°,
it is sufficient to show that a;/(v/mdn®) = O(1 + 1) and
azVo/(vVmdn®) = O(1 + ﬁ) In fact, using R/o <
1/@(o), we can bound

R

! (1 + Lca) max{l, (2L0)R71}m,

a

<

vV'mdn®

2L
as < &z max{1, (2L¢c)* 1} i
o

1-w/e(0)’

Authorized licensed use limited to: Purdue University. Downloaded on April 29,2023 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.



MICHELUSI et al.: FINITE-BIT QUANTIZATION FOR DISTRIBUTED ALGORITHMS WITH LINEAR CONVERGENCE

Clearly, ai/(vVmdn®) = O(1 + 1) and ay = O(£2) since
Ley,R=0(1) and 1 — w/@(0) = Q(1). We next study Vj.
From its expression in (39), we notice that V[, = O(\/@)
since w/o < 1, max{c*, [|z° — z°|2} = O(Vmd), n° =
O(Lz(c—N),La-Lz,Lc,R=0(1),and 1 —w/w = Q(1).
Therefore it follows that asVo/(vVmdn®) = Olow) =

/\) , and the proof is completed by invoking
Lemma 2%

2. Auxiliary Results for Theorem 12
~k—1,s
C; be

3) Proof of Lemma 22: Let Aci® 2 c&* — &l
the input to the quantizer for agent ¢, at iteration k and
communication round s. We now study the average number
of bits required for i) the deterministic quantizer, and ii) the
probabilistic quantizer with E[Q(z)] = x.

i) Deterministic Quantizer: The average number of bits
required is bounded as (see (18), one can also verify that the
following also holds for even N)

7).

bits. We now upper bound the argument inside the second log-
arithm. Since it is a decreasing function of w, it is maximized
in the limit w — 0, yielding

wlAck ||2)
VP @)
—In(1 -

In (H-
In(1 + w)

bE* <log,(S+1) {Sd—i—d logg (2-1—

wllAcy |12
(U + Varmr)  __lAck
In(1+w) —In(1-w) = 2/dnO - (o)k

With this upper bound, we can then upper bound the average

number of bits per agent at communication round s, iteration
k, as

1 m
B £ — S B[]
i=1

(@ Elllck:s — ¢k—1.5]|2
< 1og2<5+1>[3d+d10gs <2+ VE[[eFr =& ||21)]

2vmdnO - (o)
® FS(‘L%UO))]
<1 S+1)|3d+dl 24 ——
s 0t o+ Elo
© L Fiow,n’)
< logy(S +1 [Sd—f—dlog ( ﬂ,

J(S+1) s+ e

where (a) follows from Cauchy-Schwarz inequality, Jensen’s
inequality, and the definition of Ac**; (b) follows from (35);
and (c) follows from F* < FF (see (43)).

ii) Probabilistic Quantizer With E[Q(z)] = x: Using the
same technique as in i), along with the inequality 1 — 1/z <
In(x) < 2 —1 for z > 1 to bound the argument inside the
second logarithm of (19), we find the bound

FR(U,w,no)ﬂ
vV'mdn® .
One can also verify that it also holds for even V.

Finally, for both the deterministic and probabilistic cases,
the proof is completed by summing over s € [R] to get the
average communication cost per agent at iteration k.

E[0"*] < log,(S + 1) [3d +dlogg (3 +
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4) Proof of Lemma 23: If f(z) =
liminf,_ ., g(z) > 1, then

O(g(x)) as & — xp and

In(f(x)/g9(x))
Ing(z)

‘_1+hms up

T—T0

(2 1+ hrnsu-pg,:?gcO |In(f(z)/g(x))]
= [liminf, ., Ing(x)]

lim sup ‘
T—xT0 hl

)

where (a) follows from liminf, ., g(«) > 1. This completes
the proof.

3. Proof of Theorem 13

Since /E[|z* — z=||2] < V; - (0)* (cf. Theorem 6), the
g-accuracy is achieved if k[—In(o)] > In(V,/y/me), which
yields k(1—o0) > In(Vy/y/me) since — In(o) > 1—0. Hence,
e-accuracy is achieved if all conditions in Theorem 6 hold

and k > k. £ [% In \/VO—] Hence, to compute the upper

bound of the communication cost Zka 1IE[B’“], we need
the upper bounds for E[B*], -1~ and V4. In the proof of
Theorem 12, we found that, under Assumption 11 and the
conditions 1—w/w(o) = Q(1),7° = O(Lz(c — ),

E[B*] = (’)(dlog2 (1 + ﬁ)) Vo = O(Vmd).

Moreover, it can be shown that 1/0 < % for o €

(A, 1), and therefore

)2 .
a(al—x) = (13) [(1 fl@(?-mﬁ-xzo(%)’

where we used the assumption in Theorem 13 that

% = O(1). It then follows from Lemma 23 that
E[B*] = O(dlogy(1 + ﬁ)) On the other hand, we can
bound k. as
1 . Vo 1 d
k:<—(1—)\ & ): (—1 (—))
-1 T 5 %% o \/me o 1-A 082 €

since =2 = O(1) and Vy =
communication cost satisfies

O(v'md), Therefore, the

ke—1

> E[B*) = O(dk. log, (1+ ﬁ))

k=0
Sxion (£) 0w (1475

—O(

which completes the proof.

4. Proof of Lemma 10

Consider ¢ > 0. Using (17), the number of information
symbols required to encode / is

()"

)

(S)bJrl _

bz—min{bZO:Zg {
Similarly, for ¢ < 0,

bz—min{b>0:—£<[
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- s S)Ptt— 5)b+t
Since L(st 5 1> ! zS 1)1] -1> (225771) 1, we can
then upper bound be,l € Z, as
by <min{b>1:14+2(S—1)(1+1¢]) < (5)"}

=min{b>1:b>logg(2—-1/S+2(1—-1/9)|4])}
~ [logs(2— 1/ +2(1 - 1/S)l)].
Using [z] < 2+ 1 We can then further upper bound
by <1+41logg(2—1/S+2(1—1/8)[¢]) <logg(2S + 25|¢|)
< 2+ logg(1+ |4]).

This yields the upper bound to the communication cost
(including the termination symbol)

Ccorrxm(g) <3+ 10g5(1 + |€|) Symbols. (29

Let x = (7,)%_,. Note that for both the deterministic and
probabilistic quantizers, we can express ¢(z) as

[0@)| < 1+ eoln (14 %m)],

for some ¢1 <0, ¢z > 0 (see (13) and (16) for a closed-form
expression of ¢; and c¢2). Invoking (51) and Ceomm(x) =

Zf}:l ccomm (En) yields

C(x) < 3d+ Z]Ogs (1—1—’7014-62111(14- |$n|)—‘>

n=1
m)) symbols

Vin
= log,(S+1) {Sd +dlogg <2 +e+eln (1+M)>}
Vn
bits, where (a) follows from [z] < z+ 1, Jensen’s inequality
and Cauchy-Schwarz inequality, in order. Invoking the expres-
sions of ¢; and ¢y from (13) and (16), respectively, yield the
result for the deterministic and probabilistic quantizers with

odd N. Similar techniques can be used to find ¢(z) and thus
the result for quantizers with even N.

(a)
< 3d + dlogg (2+cl—|—021n (1—|—

APPENDIX D
EXAMPLES OF (M)

In this section, we will show that (M) contains a gamut
of distributed algorithms, corresponding to different choices
of R,C?, and A;. Given (P), we will assume that each
fi is L-smooth and p-strongly convex, and define X; =
arg miny, f;(x;).

Every distributed algorithm on mesh networks we will
describe below alternates one step of optimization with pos-
sibly multiple rounds of communications. In each commu-
nication round, every agent ¢ combines linearly the signals
received by its neighbors using weights (w;;)jen;; let W =
(wij)i% . Consistently with the undirected graph G, we will
tacitly assume that W is symmetric and doubly stochastic,
ie, W=WT' and W1 = 1, with w;; > 0if (j,i) € &,
and w;; = 0 otherwise. We assume that the eigenvalues of
W are in [v, 1], with v > 0.7 Note that this condition can be

"This assumption is also required in [50] for prox-EXTRA, prox-NEXT,
prox-DIGing, and prox-NIDS to achieve ||z* — z°|| = O(Vmd(\)¥).
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achieved by design: in fact, given a doubly stochastic weight
matrix W, one can choose

(1+1/)I+ (1 —I/)W’
2 2
for any given v € (0,1]. Note that, for any given z° and z*
with bounded entries, it holds [|z° — z*°||s = O(v/md).
Finally, in the rest of this section, we will adopt the
following notations: x* = (x¥)m, y*¥ = (yF)m, wk =
(Wi, x = (xi)it,y = (vi)iZy, w = (wy)iZ; and
X* = (x5, W =W @1, and G' is the pseudo-inverse
of matrix G. Given x* = (x¥)™ |, we also define Vf(x*) £
(V filx}

¥))™ . For any function g : R — R and positive
semi-definite matrix G, define ||x||¢ £ vx ' Gx and

W =

(52)

proxg ,(x) £ argmin g(z) +

2
=l

1. GD Over Star Networks [51]
Consider Problem (P) with » = 0 over a master/workers

system. The GD update

X = x ——Zm : (53)

with x° € R4, is implemented at the master node as follows:
at iteration k, the server broadcasts x* to the m agents; each
agent i then computes its own gradient V f;(x*) and sends
it back to the master; upon collecting all local gradients, the
server updates the variable xh+1 according to (53).

The GD (53) can be cast as (M) with R = 1 round of
communications, using the following:

zZ = 1m R X,

e =l at.0) = V5 (). o

2 = A(, L) = 1, 0 xk - J Z1m®é’“. (55)
i—l

We now show that the above instance of (M) satisfies Assump-
tions 1, 4, 5, and 11.

e On Assumption 1: Using [51] it is not difficult to check
that, if v = 2/( + L), then GD over star networks satisfies

Assumption 1 with
-1
A= r <1,
K41

and the norm || e || defined as

Izl = vmllx]2.

Note that ||z|| = ||z]|2.
e On Assumptions 4, 5, and 11: Based on (54) and (55),
the mappings A and C read

.A(Z,C =7z — —Zlm ® ¢4, (ZaO) ZVf(Z),

respectively; and Z = {1,, ®x: x € Rd}. Since

m
,CI):—%Zlm@)(ci—c;),
i=1

A(z,c) — A(z
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we have

H.Azc

Hence, Assumption 4 holds with L4 = 7.
We now derive Lo and L. Note that

IC*(2,0) = C'(2', 0)||l2 < L ||z — 2],

which implies that Assumption 5 holds with Lo = 0 and
Ly = L. Since v < 2/L, it follows that L4 - Ly = O(1)
and [|CY(z°,0)|2 < L||z° — x*||s = O(LzV'md). Hence,
Assumption 11 holds.

2. (Prox-)EXTRA [50]
The update of prox-EXTRA solving (P) reads

I,T(Wk)v
wh = Wxk — 4V f(xF) - y*,
gl = gk 4 (I B W)warl’
with y° = 0 and w € R™¢,

Prox-EXTRA can be cast as (M) with R = 2 rounds of
communications with

k _
X" = prox,

z' =[y ,w'],

et =l (zF,0) = prox ;. (w ’?’), (56)
ef?=C2(2F, el )= > wyeht — Vel —yF, (57)

JEN;

Zi T = Ay (2f, el )

k2 Ak2

i+ Rens éﬁf%(c —&7) ] . (58)

)

We now show that the above instance of (M) satisfies
Assumptions 1, 4, 5, and 11.
then

difficult to check that, if v = T (W) and v =

prox-EXTRA satisfies Assumption 1 with

Kk
r+1°

)\_max{Z—i—ZZEzg pr:(W)’ pg(W)}
<max{l€l€1 ,5&—:12);2’ PQ(W)}
§max{ﬁj_ pg(W)}<1,

1’
(note that p,, (W) > v) and the norm || e || defined as
y (I-

2] = W)y +w W lw,
Note that ||z||? > ||z||3, due to p;(W) € [v,1], i € [m].
e On Assumptions 4, 5, and 11: Based on (56), (57) and
(58), the mappings A and C read
YW\ e2
Az, ct,e?)=| YT (I 2W>C ,

C

Cl(z, 0)=prox,; (W), and C%(z,¢) = We—qVf(c) —

7275

respectively; and Z = span(I — W) x R™, where we
defined (with a slight abuse of notation) prox.,j,.(w) =
(prox,y,.(w;))i%;. Note that

||A(z c',c) — Az, c1 c’) ||2 = [[VW~1l(c—c)|?

—|—H\/I— c—c

(note that =1 =1 + /@_1 < 2) and A (z,c!,c?) is constant
with respect to c!, hence Assumption 4 holds with L 4 = V3.

We next derive Lo and Lz. Since the proximal mapping is
non-expansive [58], it follows that

Ic* (=, 0) 1 (W)
<lw w2 < |z — 2|2,

||C2(z, c) —C*(7, c’)||2
=||[W(c—c)—(VF(e)-V f(c)~(y—¥)|,
< lle—¢'llz +7Llle = €/l2 + [z — 2|2

(1 + v e=c'[3 < 3le—¢'|I3,

Dll2

(& 0)||, = [[prox, . (w) — prox,p,, (w

Hence, Assumption 5 holds with L =1+ ~L and Lz = 1.

Since v < 2/L, it follows that Lc = O(1). For the initial

conditions, we have
IC(2°,0)]l2 = [[prox,q (W

(a)
< ||prOX'yI,r (WO) -

®)
< w? = w2 + %2 = O(Vmad),

1C*(2°,0) |2 = ly® + vV £(0)]|2
<y° = y™=llz + ly>®ll2 + IV (0)]2
<y = y=llz + [ly=llz + LXK |2 =

)l

prOX'yI,r(w OO)||2

")z + [[prox, g, (w

O(Vmd),

where (a) follows from the triangle inequality; and (b) follows
from the non-expansive property of the proximal mapping, and
x* = prox. 1 .(w>) at the fixed point.

Therefore, L4 - Ly = O(1),Lc = O(1), ||C1(z°,0)|2 =
O(LzvVmd) and ||C?(z°,0)||s = O(Ly \/_) hence
Assumption 11 holds.

3. (Prox-)NIDS [50]
The update of prox-NIDS solving (P), reads

xF = Prox.p , (w’C ),

k+1 _ W(Xk _ ’ny(Xk))
Y =yt (- W)wht,
with y° = 0 and w € R™¢,
Prox-NIDS can be cast as (M) with R =
communications, using the following:

k
w -y,

2 rounds of

z' =[y",w']
C (2, 0) = prox,; (W) =7V fi(prox, . (w})), (59
C2 k. Ak 1 Z w”Aj 1 —yh (60)
JEN;
2t = A (28, e )
Pt ien, Wij (ék’2 — él?’Q)
yi+ Liens A 1)
K3
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‘We now show that the above instance of (M) satisfies Assump-
tions 1, 4, 5, and 11.

e On Assumption 1: Using [50, Theorem 18] it is not
difficult to check that, if v = 2/(u + L), then prox-NIDS
satisfies Assumption 1 with

k—1

k41

and the norm || e || defined as
2> =y "W I - W)W ly t w Wlw.

Note that HZH2 > ||Z||§
e On Assumptions 4, 5, and 11: Based on (59), (60), and
(61), the mappings A and C read

X 2
Azt e?) = | YT IS Wiet |

C
I,r(w)

:WC_Y7

)\:max{ pg(W)}<1,

C'(z,0) = prox,
C*(z,c)

— 7V f(prox,;,.(w)), and

respectively; and Z = span(I — W) x R™4. Note that
[A(z,e1,¢) = Az, c1.¢) | = W (e — )2

<vie—dl,

and A(z, ¢!, c?) is constant with respect to c!. It follows that
Assumption 4 holds with L = v~ 1.

We next derive Lo and Lz. Using the non-expansive
property of the proximal mapping, it holds

IC*(2,0) — C' (2, 0)||2 = [|(prox,y (W) — prox,y .(w'))
— (V[ (prox,y . (w)) = Vf(prox,y . (w)))|2
< (L4 yL)[prox,y . (w) — prox,y . (w')[|2
< (I+yL)w = w2 < (L+7L)]z — 2|2,

IC*(z,¢) = C*(2, &)l = [W(c —¢) = (y = ¥)|2

<[ W(e =+ lly = ¥'ll2 < lle = ||z + ||z — 2|12,
which implies that Assumption 5 holds with Lo = 1 and
Lz =1+ ~L. Since v < 2/L, it follows that Ly = O(1).
For the initial conditions, using x> = prox,y,.(w*) for the
fixed point, we have
||C1 (Z070)||2 < ||pr0X'yI,7"(VVO)_pI‘OX’yI,r(VVOO)—’—Xoo||2
=+ rYHVf(prOX'yI,T(WO)) - Vf(pI‘OX,YLT(WOO)) + vf(xoo
< W = w4 x|z + Y LlIW = w5
O(vVmd)
and [C2(a,0)2 < [ly° ~ 32 + [y |2 = O(v/md).
Therefore, L4 - Ly = O(1),Lc = O(1),]CL(z°,0)|]2 =

O(Lzvmd), and [|C%(z°,0)|2 = O(Lzvmd); hence
Assumption 11 holds.

M2

+L)x° = x"||2 =

4. NIDS [48]
The update of NIDS solving (P) with r» = 0, reads
X = xF V()
— [y"’ + eI - W) (x" =7V f(xF) - vyk)} :

k+1 _ W) (Xk _ ’ny(Xk)

yE = yF 4 eI — "),
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with x° € R4 and y" = 0, where the step-size satisfies 7 <
2/L, W=Wg I, W is a doubly stochastic weight matrix
satisfying the communication topology, and ¢ > 0 satisfies
ey(I-W) <L

NIDS [48] can be cast as (M) with R = 1 round of
communications, using the following:
z' =[x",yy'],
Ci (2;,0) = x; =V fi(xi) =7, (62)

Zi'CJrl =A; (va 6,1;\[1)

- X? _'vai(xi) _'YYz 'Yczje,/\[ w”(ckl éf’l)
B VYE e en, i€ — &) '
(63)
We now show that the above instance of (M) satisfies
Assumptions 1, 4, 5, and 11.
e On Assumption 1: Using [48] it is not difficult to check
that,ify =1/L and c = %, then NIDS satisfies Assumption 1
with

5= max{1/7 M}

and the norm || e || defined as

=]

= HXHg _”'YYHC LI-W)t>

which satisfies ||z[|? > ||z|%. Note that, with W defined as in
(52), we can further bound

A< max{\/l —m—l,\/m} <1.

e On Assumptions 4, 5, and 11: Based on (62) and (63),
the mappings A and C read

X — X) — — ve(I— W)c!
Al e) = { VV;E, J)r %7&’_ ngcl ! } and
C'(2,0) = x =V f(x) — 7y,
respectively; and Z = R™? x span(I — W). Note that
| A(z,c)— A(z,c H (e7)?(c =) (I-W)?*(c—-c)

+erle— )T (I-W)(e - ) < 2[le - <[5

It follows that Assumption 4 holds with L4 = v/2.
We next derive Lo and Lz. Using the non-expansive
property of the proximal mapping, it holds

Ic*(z,0) — C' (2, 0)]2

=[x = x') =9[Vf(x) = VFE)] =7y =¥l

< x = x'll2 + vy = 7¥'ll2 + 7 LlIx = x']|2

< (V2+9L)||z~ 2'|l2,
which implies that Assumption 5 holds with Lo = 1 and
Lz = /2 + L. Since v = 1/L, it follows that Lz = O(1).
For the initial conditions, we have
1C7(2°, 0|2 <[|x” — x> +x>[2 + 9|V f(x) — V[ (%

< x” = %2 + [|x%l2 + VL[ X" =% []2 = O(Vmad).

Therefore, Ls - Ly = O(1),Lc = O(1),]|C}(z°,0)|2 =
O(Lzv'md); hence Assumption 11 holds.

2
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5. (Prox-)NEXT [50]
The update of prox-NEXT solving (P) reads

I,r(wk)a
whtl — W2 (Xk _ ’)/Vf(Xk))
v = yh 4 (1 - W)Rwh
with y° = 0 and w® € R™¢,

Prox-NEXT can be cast as (M) with R =
communications, using the following definitions:

k _
X" = prox,

_ykv

4 rounds of

2 =[y",w'],
Cl(z O) prox wi)— ’Ysz(PYOXWI (wr)), (64)
BT S 5
JEN;
C3 Zf,é.]f\/? Z wz] - yfﬂ (66)
JEN;
A =eiChel) = w0, @
JEN;
2t = Ai(al ey el e )
k4 k4
.+ w;i(C.’ —cC’
Y+ en é’?’%’ (& —¢) ] (68)

We now show that the above instance of (M) satisfies Assump-
tions 1, 4, 5, and 11.

e On Assumption 1: Using [50, Theorem 18] it is not
difficult to check that, if v = 2/(x + L), then prox-NEXT
satisfies Assumption 1 with

A= max{— V1=

and the norm || e || defined as

1—p2

))2} <1,

2] = yW2((T = W)2) ' W2y + [W 2w} e

Note that ||z||? > ||z||3.
e On Assumptions 4, 5, and 11: Based on (64)-(68), the
mappings A and C read

y + (I— W)c
c? ’

LT(W)—')/Vf(pI'OX,YLT(W)), CQ(Z’
=Wc—y, and C*(z,c)=(I-W)c,

A(z,c',c? ¢ ct) =

C'(z,0)=prox, c)=Wec,

C3(z,c¢)

respectively; and Z = span(I — W) x R™<. Note that

| A(z, c*, 2, c, c4) — A(z,c', e, ch)?

=(c—¢) W?22W! —I(c - ¢
<v2 @ =1)lle = <vTHe - clI3
and

||A(Z,CI,C2,03,C) - A(Z,Cl,CQ,Cg,C,) ||

= W (e = d)ll2 < vl = ¢||2.
Moreover, A(z,c',c?,c® c*) is constant with respect to

cl, c2. Therefore, Assumption 4 holds with L4 = v2,

7277

We next derive Lo and Lz. Using the non-expansive
property of the proximal operator, it follows that

Ic* (2, 0)
—7(Vf(prox,;
< (1 +7L)llprox, g (W) —
< (1 +9L)[lw = w2 < (1 +9L)|z — 2|2,

IC%(e,2) — C*(c,2")[|l2 = [ W(c — &)z < [le = |2,

IC%(e,2) — C*(c' 2|2 < [[W(e =)z + [ly —¥'ll2

<lle=cll2+ Iz — 22,

Ic*(e,2) — C* (' 2)||2 = |1 - W

which implies that Assumption 5 holds with Lo = 1 and

Ly = 1+ ~L. Since v < 2/L, it follows that Ly =

O(1). For the initial conditions, using the fixed point x> =
prox,p (W), we have

= C(2,0)]2 = ||(prox, (W) 1 (W)
+(W)) =V f(prox,y . (w)))]l2

prOX'yI r( /)”2

— prox

)e =z < lle =<2,

IC1(2°,0)]|2 < [[prox . (W®) — prox,p . (w™) +x%||2
IV f (prox, . (w?) =V f (prox, 1 . (w™))+V f (%)l
<(UHAL) W= w™ |2+ x% |2+ L[ x> =% [ ;=0 (Vmd)

and [|C*(z°,0)]|2 = [|C*(2°,0) 2 = [|C*(2°, 0)||2 = 0.

Therefore, L - Lz = O(1), Lc = O(1), ||C(z°,0)||2 =

O(Lzvmd),¥i=1,...,4; hence Assumption 11 holds.

6. (Prox-)DIGing [50]
The update of prox-DIGing solving (P), reads
xF = proxﬂ’r(wk),
Wi = WixF — 4V F(x*) — 5",

Y = gk (1 W)ka-i-l’

with y* = 0 and w® € R™9,
Prox-DIGing can be cast as (M) with R = 4 rounds of
communications, using the following definitions:

ZT = [yTaWT]v
éf’l =} (zf,O) = prox 1 (W 5, (69)
bt b k) = Y e 70
JEN;
e =P (df, éﬁf’)
= Z wijC]’ nyfl(prOXVI (wi)) _Yfa (71)
JEN;
S Ciah ) = Y wlelt ), )
JEN;
. k1 Ak,2 ~k3 Ak,
A R CHLA Ay
kA k4
kS~ (et — e
Yi E]eMLAkfé( i J ) (73)

i
‘We now show that the above instance of (M) satisfies Assump-
tions 1, 4, 5, and 11.

e On Assumption 1: Using [50, Theorem 18] and following
similar derivations as for (Prox-)EXTRA, it is not difficult
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to check that, if v = % and v =

prox-DIGing satisfies Assumption 1 with

N + , then

( m(W))? 1
W) \/pm 2 _pm(vv))7

V1 1—P2(W)) }
<max{— \/ ))2}<1,

(note that p,,(W) > v) and the norm || e || defined as

)\zmax{

1—p2

1 .
22 = o= (v T (A= W)y + Wl 1 e )-

Note that ||z]|? > ||z]|3.
e On Assumptions 4, 5, and 11: Based on (69)-(73), the
mappings .4 and C read

YR 4
Az, c',c? ¢ ') = { v+ (103W)c } :
Cl(ZaO) = pl"OX,YI’T(W), CQ(zvc) = WC;
C3(z,¢) = We — /Y f(prox,y, (w) =y, and
C4(z,¢c) = (I - W)c,

respectively; and Z = span(I — W) x R™4. Note that

A (z,c1,¢2,¢,¢") — A(z,¢1,¢2,c, c*) H2

1 NT 712 / ||C_C/H%
=g, pe—¢) I-I-W)(e-c) s T—5,
and
c— <3
A ) ’ ) ) _A ) ) ’ al 2:”72'
|| (z,c1,c,c3,C) (z,c1,¢2,C3 c)H I

Moreover, A(z,ct,c?,c® ct) is constant with respect to
c',c?. Therefore, Assumption 4 holds with L a=1//v<2'/4,
We next derive Lo and L. We have

IC*(2,0) = C'(2', 0)]|2 < [[w = W'[l2 < [z — 2']|2,
IC%(z,¢) = C*(2, ¢)l|l2 = [W(e = &)[|2 < [le = |12,
1C%(z, ) = C3(2',&/)[|2 < [le — /[l + yLl|w — W'[2

+ly =y'llz < lle = clla+ 1+ (7L)?[z = 2|2,

Ict(z, ) = C* (2, )2 = (T = W)(c — &)z < Jle = /||,

which implies that Assumption 5 holds with Lo = 1 and

Ly = /14 (yL)2. Since v < 2/L, it follows that Ly =
O(1). For the initial conditions, using prox. p .(w>) = x>
for the fixed point, we have

lc* (z°
Ic?(2°

0)fl2 < [[W” = w2 + [[x*[|l2 = O(Vmd),
0)fl2 < VL([W’ =W [2+[x>*=%"[[2) = O(Vmd),
and [|C%(z",0)|]2 = ||C*(2z° 0)|] = 0. Therefore, L4 -

Lz = O(1),Lc = O(1), ||C(2°,0)|2 = O(Lzvmd),Vi =
.,4; hence Assumption 11 holds.
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7. Primal-Dual Algorithm [22], [42]

Let L = (1;;){"—; be the Laplacian matrix associated with
the 0-1 adjacency matrix of G, i.e., l;; = |N; \ {i}],7 € [m];
and l;; = —1{(i,j) €E},i#j€ m)and L=L®1,.

The Primal-Dual algorithm
0 reads [22], [42]

solving (P) with r» =

Xf = argmin f;(x;) +X1Ty;‘€a

X

k+1 k k

Y’L+ _y'i +'Y Z li]Xja
JEN;

with y¥ = 0.
The Primal-Dual algorithm can be cast in the form (M),
with R = 1 round of communications, using the following:

z=Y,
Ci1 (zf, O) = arg min fi(xi) + xjyf, (74)
Zi T = A, (Zf,cﬁfl) =yl+7- Z lijé?’l. (75)

JEN;
We now show that the above instance of (M) satisfies Assump-
tions 1, 4, 5, and 11.

e On Assumption 1: Define M = \/_Q where L =
Q' XQ is the eigenvalue decomposition of L, with = being
diagonal with elements sorted in descending order; and let M
be the matrix containing the non-zero rows of M. Using [22]
it is not difficult to check that, if v = WM the
Primal-Dual algorithm satisfies Assumption 1 with

pr(L) 1

prm—1(L) K
== <1
p1 (L) 1 ’

pm—1(L) + %

and the norm || e || defined as

Izl = V/ou (T || (vaw ) e |

Note that ||z|| > ||z]|2.
e On Assumptions 4, 5, and 11: Based on (74) and (75),
the mappings A and C read

argmin f1 (x)+x ' z
A(z,c)=z+~ - Le, C'(z,0)= : ,

argmin f,,, (x)+x ' 2,
X

respectively; and Z = span(L). Note that

A(z,¢) — A(z,¢/) =yL(c—c/).
It follows that
| A(z,¢)—A(z,c) H:'y\/pl(L) |M (c—c’)”2

<p1 (L) fle =<5,

which implies that Assumption 4 holds with Ly =
vp1(L). We now derive Lo and Lyz. Since C}(z;,0) =
argmin f;(x;) +x; z;, it follows that z; = —V f;(C} (zi, O)),
and 7Strong convexity of f; implies

2} — zi|l2 > p||C} (25,0) — C} (z:,0)]|2.
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It readily follows that Assumption 5 holds with Lo = 0 and
Lz = 1/p. For the initial conditions, since z = 0 we have
C'(2°,0) = x* and [|C'(2°,0)[|2 = [[x*]2 = O(V'md).

From the expression of +, it is straightforward to see

that v <

so that Ly - Ly = O(1),Lc = O(1).

2/
1(L)°?

Furthermore, for all the objective functions of (P) such that

M:

O(1), we also have ||C1(z",0)||2 = O(Lzvmd), hence

Assumption 11 holds. For instance, this is the typical case in
machine learning problems where a regularization z1/2[|x||? is
added to the objective function to enforce strong convexity,
with = O(1).
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