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Finite-Bit Quantization for Distributed Algorithms

With Linear Convergence

Nicolò Michelusi , Senior Member, IEEE, Gesualdo Scutari , Fellow, IEEE, and Chang-Shen Lee

Abstract— This paper studies distributed algorithms for
(strongly convex) composite optimization problems over mesh
networks, subject to quantized communications. Instead of focus-
ing on a specific algorithmic design, a black-box model is pro-
posed, casting linearly convergent distributed algorithms in the
form of fixed-point iterates. The algorithmic model is equipped
with a novel random or deterministic Biased Compression (BC)
rule on the quantizer design, and a new Adaptive encoding Non-
uniform Quantizer (ANQ) coupled with a communication-efficient
encoding scheme, which implements the BC-rule using a finite
number of bits (below machine precision). This fills a gap existing
in most state-of-the-art quantization schemes, such as those based
on the popular compression rule, which rely on communication of
some scalar signals with negligible quantization error (in practice
quantized at the machine precision). A unified communication
complexity analysis is developed for the black-box model, deter-
mining the average number of bits required to reach a solution of
the optimization problem within a target accuracy. It is shown
that the proposed BC-rule preserves linear convergence of the
unquantized algorithms, and a trade-off between convergence
rate and communication cost under ANQ-based quantization is
characterized. Numerical results validate our theoretical findings
and show that distributed algorithms equipped with the proposed
ANQ have more favorable communication cost than algorithms
using state-of-the-art quantization rules.

Index Terms— Distributed algorithms, linear convergence,
quantization, optimization methods.

I. INTRODUCTION

WE STUDY distributed optimization over a network

of m agents modeled as an undirected (connected)

graph. We consider mesh networks, that is, arbitrary topologies

with no central hub connected to all the other agents, where
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each agent can communicate with its immediate neighbors

(master/worker architectures can be treated as a special case).

The m agents aim at solving cooperatively the optimization

problem

min
x∈Rd

1

m

mX

i=1

fi(x)

| {z }

=F (x)

+r(x), (P)

where each fi is the local cost function of agent i, assumed

to be smooth, convex, and known only to the agent; r : Rd →
[−∞,∞] is a non-smooth, convex (extended-value) function

known to all agents, which may be used to force shared

constraints or some structure on the solution (e.g., sparsity);

and the global loss F : Rd → R (or in some cases each local

loss fi) is assumed to be strongly convex on the domain of r.

This setting is fairly general and finds applications in several

areas, including network information processing, telecommu-

nications, multi-agent control, and machine learning (e.g., see

[1]–[3]).

Since the functions fi can only be accessed locally and

routing local data to other agents is infeasible or highly

inefficient, solving (P) calls for the design of distributed

algorithms that alternate between a local computation proce-

dure at each agent’s side and some rounds of communication

among neighboring nodes. While most existing works focus

on ad-hoc solution methods, here we consider a general

distributed algorithmic framework, encompassing algorithms

whose dynamics are modeled by the fixed-point iteration

zk+1 = Ã
(
zk
)
, (1)

where zk is the updating variable at iteration k and Ã is a

mapping that embeds the local computation and communica-

tion steps, whose fixed point typically coincides with solutions

of (P). This model encompasses several distributed algorithms

over different network architectures, each one corresponding

to a specific expression of z and Ã–see Sec. II for some

examples.

By assuming that F is strongly convex, we explicitly target

distributed schemes in the form (1) that converge to solutions

of (P) at linear rate. Furthermore, since the cost of communi-

cations is often the bottleneck for distributed computing when

compared with local (possibly parallel) computations (e.g., [4],

[5]), we achieve communication efficiency by embedding the

iterates (1) with quantized communication protocols.

Quantizing communication steps of distributed optimiza-

tion algorithms have received significant attention in recent
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years–see Sec. I-B for a comprehensive overview of the

state-of-the-art. Here we only point out that existing distrib-

uted algorithms over mesh networks are applicable only to

unconstrained instances of (P) and smooth objective functions

(i.e., r 6≡ 0). Furthermore, even in these special instances,

such schemes rely on quantization rules that subsume some

scalar signals to be encoded with negligible error–the typical

example is the renowned compression protocol [6]. While in

practice this is achieved by quantizing at the machine precision

(e.g., 32 or 64 bit floating-point), on the theoretical side,

existing convergence analyses become elusive. In such cases,

the assessment of their convergence is left to simulations.

The goal of this paper is to design a black-box quantization

mechanism for the class of distributed algorithms (1) applica-

ble to Problem (P) over mesh networks that preserves their lin-

ear convergence while employing communications quantized

with finite-bit (below machine precision). As discussed next,

this is an open problem.

A. Summary of Main Contributions

In a nutshell, we summarize our major contributions as

follows.

1) A Black-Box Quantization Model for (1): We propose

a novel black-box model that introduces quantization in the

communication steps of linearly convergent distributed algo-

rithms cast in the form (1). Our approach paves the way

to a unified design of quantization rules and analysis of

their impact on the convergence rate of a gamut of distrib-

uted algorithms. This constitutes a major departure from the

majority of existing studies focusing on ad-hoc algorithms

and quantization rules, which in fact are special instances

of our framework. Furthermore, our model brings for the

first time quantization to distributed algorithms applicable to

composite optimization problems (i.e., (P) with r 6≡ 0). This is

particularly relevant in machine learning applications, where

empirical risk minimization problems call for (non-smooth)

regularizations or constraints to control the complexity of the

solution (e.g., to enforce sparsity or low-rank structure) and

avoid overfitting.

2) Preserving Linear Convergence of (1) Under Quantiza-

tion: To enable quantization below the machine precision,

we provide a novel biased compression rule (the BC-rule)

on the quantizer design equipping the proposed black-box

model, which allows to preserve linear convergence of the

distributed algorithms while using a finite number of bits

(below machine precision) and without altering their original

tuning. Our condition encompasses several deterministic and

random quantization rules as special cases, new and old [7]–

[23].

3) A Novel Finite-Bit Quantizer: To implement the BC-rule,

we also propose a novel finite-bit quantizer (below machine

precision) fulfilling the BC-rule along with a communication-

efficient bit-encoding/decoding rule which enables transmis-

sions on digital channels. The resulting Adaptive encoding

Non-uniform Quantizer (ANQ) adapts the number of bits of

the output (discrete representation) based upon the input sig-

nal. By doing so, it achieves a more communication-efficient

design than existing quantizers that adopt a fixed number of

bits based on a predetermined fixed [7]–[10], [12], [13], [15],

[16], [18], [19], [23] or shrinking range [11], [14], [17], [20]–

[22] of the input signal, or that rely on transmissions of scalar

values at machine precision [6], [24]–[39].

4) Communication Complexity: We derive a unified com-

plexity analysis for any distributed algorithm belonging to our

black-box model, solving (P) (possibly with r 6≡ 0) over mesh

networks. Specifically, we prove that, under suitable conditions

and proper tuning (see Theorem 13), an ε-solution of (P)

(using a suitable optimality measure) is achieved by any of

such distributed algorithms in

O
	 1

1 − λ
log(d/ε)




iterations,

using

O
	

d log
	

1 +
1

1 − λ





bits/agent/iteration,

where λ ∈ (0, 1) is the convergence rate of the distrib-

uted algorithm our quantization method is applied to, which

depends on the condition number of the agents’ function as

well as network parameters. Table I customizes the above

result to a variety of state-of-the-art distributed schemes sub-

ject to quantization, using the explicit expression of λ (see

Table II and Corollaries 14-17). This permits for the first time

to benchmark several distributed algorithms under quantiza-

tion, and compare them with other state-of-the-art quantization

schemes (Table I). Notice that the proposed methods compare

favorably with existing ones and, remarkably, they achieve ε-

accuracy with the same number of iterations (in a O-sense) as

their unquantized counterparts.

5) Numerical Evaluations: Finally, we extensively validate

our theoretical findings on smooth and non-smooth regularized

linear and logistic regression problems. Among others, our

evaluations show that 1) linear convergence of all distributed

algorithms is preserved under finite-bit quantization based

upon the proposed BC-rule; 2) as predicted by our analysis,

the rate approaches that of their unquantized counterpart

(implemented at machine precision) when a sufficient number

of bits is used; 3) the proposed ANQ quantization outper-

forms, in terms of both convergence rate and communication

cost, existing quantization schemes operating below machine

precision–i.e., Q-Dual [22] and Q-NEXT [21]–or at machine

precision–e.g., those relying on the conventional compression

rule, such as LEAD [25] and COLD [39].

B. Related Works

The literature on distributed algorithms is vast; here,

we review relevant works employing some form of quantiza-

tion with linear convergence guarantees [20]–[22], [24], [30],

[33], [36], [38], categorized into those relying on machine

precision quantization and those relying on limited precision

quantization.

1) Machine Precision Quantization Schemes [24], [30],

[33], [36], [38]: Distributed algorithms employing quantiza-

tion in the agents’ communications are proposed in [24], [30],

[33], [36], [38] for special instances of (P) with r ≡ 0 (i.e.,
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TABLE I

COMMUNICATION COMPLEXITY OF THE PROPOSED QUANTIZED DISTRIBUTED ALGORITHMS VS. THE STATE OF THE ART

smooth and unconstrained optimization). In these schemes,

quantization is implemented by compressing the signal x ∈ Rd

through a (random or deterministic1) compression operator

x 7→ Q(x), that satisfies the compression rule

q

E[kQ(x) − xk2
2] ≤ ωkxk2, for some ω > 0. (2)

This rule subsumes the transmission of some scalar sig-

nals with negligible quantization errors, e.g., the norm of

x, requiring thus in theory infinite machine precision (see

Corollary 9 for a formal proof). While quantizing at the

machine precision is a viable strategy in practice, convergence

guarantees of distributed algorithms relying on (2) become

elusive–they are established only under negligible quantization

errors of the transmitted norm signal. By generalizing the

conventional compression rule, the proposed BC-rule over-

comes this theoretical limitation and permits to explicitly

model the communication cost of quantized communications

below machine precision. As we will demonstrate numerically

in Sec.VI, our explicit formulation of the communication cost

allows to define more communication efficient quantization

schemes than state-of-the-art algorithms relying on machine

precision.

2) Limited Precision Quantization Schemes [20]–[22]:

While finite-rate quantization has been extensively studied

for average consensus schemes (e.g., [8], [9], [11], [12],

1We treat compression rules using deterministic mappings Qk as special
cases of the random ones; in this case, the expected value operator will just
return the deterministic value argument.

[14], [17]–[19], [23]), their extension to optimization algo-

rithms over mesh networks is less explored [20]–[22]. Specif-

ically, in our prior work [20], we equipped the NEXT algo-

rithm [40], [41] with a finite-bit deterministic quantization

to solve (P) with r ≡ 0; to preserve linear convergence,

the quantizer shrinks its input range linearly. An expres-

sion of the convergence rate of the scheme in [20] has

been later determined in [21] along with its scaling prop-

erties with respect to problem, network, and quantization

parameters.

The closest paper to our work is [22], where the authors

proposed a finite-bit quantization mechanism preserving linear

convergence of some algorithms cast as (1). Yet, there are

several key differences between [22] and our work. First,

the convergence analysis in [22] is applicable only to algo-

rithms solving smooth, unconstrained optimization problems,

and thus not to Problem (P) with r 6≡ 0. Second, linear

convergence under finite-bit quantization is explicitly proved

in [22] only for schemes whose updates utilize current iterate

information, namely: gradient descent (GD) over star networks

and the Primal-Dual algorithm in [42] over mesh networks.

This leaves open the question of whether distributed algo-

rithms using historical information–e.g., in the form of gra-

dient tracking or dual variables–are linearly convergent under

finite-bit quantization, and under which conditions; renowned

examples include EXTRA [43], AugDGM [44], DIGing [45],

Harnessing [46], and NEXT [40], [41]. Our work provides a

positive answer to these open questions. Third, the commu-

nication complexity of the scheme in [22] is only provided

Authorized licensed use limited to: Purdue University. Downloaded on April 29,2023 at 02:28:20 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Examples of star network (a) versus mesh topology (b).

for star networks, not for mesh networks, which instead is a

novel contribution of this work for a wide class of distributed

algorithms–see Table I and Sec. V. Fourth, [22] proposed an

ad-hoc deterministic quantization rule while the proposed BC-

rule encompasses several deterministic and random quantiza-

tions (including that in [22] as a special case), possibly using

a variable number of bits (adapted to the input signal). As a

result, even when customized to the setting/algorithms in [22],

the BC-rule leads to more communication-efficient schemes,

both analytically (see Sec. V) and numerically (see Sec. VI).

C. Organization and Notation

The remainder of this paper is organized as follows. Sec. II

introduces the proposed black-box model, which casts dis-

tributed algorithms in the form (1). Sec. III embeds quan-

tized communications, introduces the proposed BC-rule, and

analyzes the convergence properties. Sec. IV describes the

proposed quantizer, the ANQ, and studies its communication

cost. Sec. V investigates the communication complexity, and

customizes the proposed framework and convergence guaran-

tees to several existing distributed algorithms, equipping them

with the ANQ rule. Sec. VI provides some numerical results,

while Sec. VII draws concluding remarks. All the proofs of

our results are presented in the appendix.

Notation: Throughout the paper, we will use the following

notation. We denote by Z, R the set of integers and real

numbers, respectively. For any positive integer a, we define

[a] � {1, · · · , a}. We denote by 0,1, and I the vector of all

zeros, the vector of all ones, and the identity matrix, respec-

tively (of appropriate dimension). For vectors c1, · · · , cm and

a set S ⊆ [m], define cS � {ci : i ∈ S}. We use k · k to

denote a norm in the Euclidean space (whose dimension will

be clear from the context); when a specific norm is used, such

as `2 or `∞, we will append the associated subscript to k · k.

The ith eigenvalue of a real, symmetric matrix G is denoted

by ρi(G), ordered in non-increasing order such that ρ1(G) ≥
. . . ρi(G) ≥ ρi+1(G). We will use a superscript to denote

iteration counters of sequences generated by the algorithms,

for instance, xk will denote the value of the x-sequence at

iteration k; we will instead use (x)k for the kth-power of x.

Finally, asymptotic behaviors of functions are captured by the

standard big-O, Θ, and Ω notations: 1) g(x) = O(h(x)) as

x → x0 if and only if lim supx→x0
|g(x)/h(x)| ∈ [0,∞);

2) g(x) = Ω(h(x)) if and only if h(x) = O(g(x)); and 3)

g(x) = Θ(h(x)) if and only if g(x) = O(h(x)) = Ω(h(x)).

We model a network of m agents as a fixed, undirected,

connected graph G = (V , E), where V = [m] is the set of

vertices (agents) and E ⊆ V × V is the set of edges (commu-

nication links); (i, j) ∈ E if there is a link between agents

i and j, so that the two can send information to each other.

We let Ni={j : (i, j) ∈ E} be the set of neighbors of agent

i, and assume that (i, i) ∈ E , i.e., i ∈ Ni. Master/workers

architectures will be considered as special instances–see Fig. 1.

II. A GENERAL DISTRIBUTED ALGORITHMIC

FRAMEWORK: EXACT COMMUNICATIONS

In this section, we cast distributed algorithms to solve (P)

in the form (1). As a warm-up, we begin with schemes

using only current information to produce the next update (cf.

Sec. II-A). We then generalize the model to capture distributed

algorithms using historical information via multiple rounds of

communications between computation steps (cf. Sec. II-B).

A. Warm-Up: A Class of Distributed Algorithms

We cast distributed algorithms in the form (1) by incor-

porating computations and communications as two separate

steps. We use state variable zi to capture local information

owned by agent i (including optimization variables) and ĉi

to denote the signal transmitted by agent i to its neighbors.2

Similarly to [22], the updates of the z, ĉ-variables read: for

agent i ∈ [m],

ĉk
i = Ci

(
zk

i

)
, (communication step)

zk+1
i = Ai

(
zk

i , ĉk
Ni

)
, (computation step) (M0)

where the function zi 7→ Ci(zi) models the processing on the

local information zk
i at the current iterate, generating the signal

ĉk
i transmitted to agent i’s neighbors; the function (zi, ĉNi ) 7→

Ai(zi, ĉNi) produces the update of the agent i’s state variable

zi, based upon the local information at iteration k, and the

signals received by its neighbors in Ni.

Some examples: The algorithmic model (M0) captures a

variety of distributed algorithms that build updates using single

rounds of communications; examples include the renewed

DGD [47], NIDS [48], and the Primal-Dual scheme [42].

To show a concrete example, consider DGD, which aims at

solving a special instance of (P) with r ≡ 0; agents’ updates

read

xk+1
i =

	 mX

j=1

wijx
k
j




− γ∇fi

(
xk

i

)
, i ∈ [m],

where xk
i is the local copy owned by agent i at iteration k of

the optimization variables x, γ is a step-size, and wij ’s are

nonnegative weights properly chosen and compliant with the

graph G (i.e., wij > 0 if (i, j) ∈ E ; and wij = 0 otherwise).

It is not difficult to check that DGD can be cast in the form

(M0) by letting
�

zk
i = ĉk

i = xk
i

Ai(z
k
i , ĉk

Ni
) =

	
Pm

j=1 wij ĉ
k
j




− γ∇fi(z
k
i ).

Despite its generality, model (M0) leaves out several

important distributed algorithms, specifically, the majority of

2Dimensions of these vectors are algorithm-dependent and omitted for
simplicity, and will be clear from the context.
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schemes employing correction of the gradient direction based

on past state information–these are the best performing algo-

rithms to date. Examples include EXTRA [43], DIGing [45]

and their proximal version, NEXT/SONATA [40], [41], [49],

and the ABC framework [50], just to name a few. Consider,

for instance, NEXT/SONATA:
�

xk+1
i =

P

j∈Ni
wij

(
xk

j − γyk
j

)

yk+1
i =

P

j∈Ni
wij

(
yk

j + ∇fj(x
k+1
j ) −∇fj(x

k
j )
)
. (3)

Clearly, these updates do not fit model (M0): the update of the

y-variable uses information from two iterations (k and k +1).

This calls for a more general model, introduced next.

B. Proposed General Model (Using Historical Information)

We generalize the algorithmic model (M0) as follows: for

all i ∈ [m],

ĉ
k,1
i = C1

i

(
zk

i ,0Ni

)
,

...

ĉ
k,R
i = CR

i

(
zk

i , ĉk,R−1
Ni

)
,

⎫





(multiple

communication rounds)

zk+1
i = Ai

(
zk

i , ĉk,1
Ni

, · · · , ĉk,R
Ni

)
, (computation step) (M)

These updates embed R ≥ 1 rounds of local communications,

via the functions (zi, ĉ
s−1
Ni

) 7→ Cs
i (zi, ĉ

s−1
Ni

); the function

(zi, ĉ
1
Ni

, · · · , ĉR
Ni

) 7→ Ai(zi, ĉ
1
Ni

, · · · , ĉR
Ni

) updates the local

state by using the ĉNi signals received from the neighbors

during all R rounds of communications, along with zi. Stack-

ing agents’ state-variables zi, communication signals ĉi, and

mappings Cs
i and Ai into the respective vectors z, ĉ, Cs and

A, we can rewrite (M) in the compact form

ĉk,0 = 0,
ĉk,s =Cs

(
zk, ĉk,s−1

)
, s ∈ [R],

�
(multiple

communication rounds)

zk+1 =A
(
zk, ĉk,1, · · · , ĉk,R

)
. (computation step)

Absorbing the communication signals ĉk,s in the mapping A,

we can finally write the above system as a fixed-point iterate

on the z-variables only:

zk+1 = Ã(zk) � A
	

zk, C1
(
zk,0

)
, · · · ,

CR
(
zk, CR−1

(
zk, · · · C1

(
zk,0

)
· · ·
))


. (M’)

Under suitable conditions, the iterates (M’) convergence to

fixed-points z∞ = Ã(z∞) of the mapping Ã, possibly con-

strained to a set Z 3 z∞. The convergence rate depends on the

properties of Ã; here we focus on linear convergence, which

can be established under the following standard condition.

Assumption 1: Let Ã : Z → Z; the following hold: (i) Ã
admits a fixed-point z∞; and (ii) Ã is λ-pseudo-contractive

on Z w.r.t. some norm k • k, that is, there exists λ ∈ (0, 1)
such that

kÃ(z) − z∞k ≤ λ · kz − z∞k, ∀z ∈ Z.

Without loss of generality, the norm k • k is scaled such that

k • k2 ≤ k • k.3

3This is always possible since ‖•‖ is a norm defined on a finite-dimensional
field.

The following convergence result follows readily from

Assumption 1 and [52, Ch. 3, Prop. 1.2].

Theorem 2: Let Ã : Z → Z satisfy Assumption 1. Then:

i) the fixed point z∞ is unique; and ii) the sequence {zk}
generated by the update (M’) converges Q-linearly to z∞ w.r.t.

the norm k • k at rate λ, i.e.,
�
�zk+1 − z∞

�
� ≤ λ ·

�
�zk − z∞

�
�.

Discussion: Our model treats the underlying unquantized

algorithm as a black-box with convergence rate λ, which

depends on the optimization problem parameters–the smooth-

ness and strong convexity constants L and µ of the agents’

functions (often via the condition number κ)–and the network

connectivity (spectral properties of W). Table II collects some

representative examples.

The algorithmic framework (M) encompasses a variety

of distributed algorithms, while Theorem 2 captures their

convergence properties; in addition to the schemes covered

by (M0) as a special case when R = 1, (M) can also

represent EXTRA [43] and its proximal version [50], NEXT

[40], [41], [49] and its proximal version [50], DIGing [45] and

its proximal version [50], and prox-NIDS [50]. Appendix D

provides specific expressions for the mappings A and Cs for

each of the above algorithms, along with their convergence

properties under Theorem 2; here, we elaborate on the NEXT

algorithm (3) as an example. It can be cast in the form (M)

by using R = 2 rounds of communications and letting

zk
i =

�
xk

i

yk
i

�

, ĉ
k,1
i = xk

i − γyk
i ,

ĉ
k,2
i = yk

i + ∇fi

�
X

j∈Ni

wij ĉ
k,1
j

�

−∇fi(x
k
i ), and

zk+1
i = Ai(z

k
i , ĉk,1

Ni
, ĉk,2

Ni
) =

� P

j∈Ni
wij ĉ

k,1
j

P

j∈Ni
wij ĉ

k,2
j

�

.

III. A GENERAL DISTRIBUTED ALGORITHMIC

FRAMEWORK: QUANTIZED COMMUNICATIONS

In this section, we equip the distributed algorithmic frame-

work (M) with quantized communications. The communi-

cation channel between any two agents is modeled as a

noiseless digital channel: only quantized signals are received

with no errors. This means that, in each of the communication

rounds, the signals ĉ
k,1
j , . . . , ĉk,R

j , j ∈ Ni, received by

agent i may no longer coincide with the intended, unquan-

tized ones C1
j (zk

j ,0Nj ), . . . , CR
j (zk

j , ĉk,R−1
Nj

), generated at the

transmitter side of agents j ∈ Ni. This calls for a proper

encoding/decoding mechanism that transfers, via quantized

communications, the aforementioned unquantized signals at

the receiver sides with limited distortion. Here, we leverage

differential encoding/decoding techniques [11] coupled with

a novel quantization rule.

We begin by recalling the idea of quantized differen-

tial encoding/decoding in the context of a point-to-point

communication–the same mechanism will be then embedded

in the communication of the distributed multi-agent frame-

work (M). Consider a transmitter-receiver pair; let ck be the

unquantized information generated at iteration k, intended to

be transferred to the receiver over the digital channel, and let

ĉk be the estimate of ck, built using quantized information.
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TABLE II

CONVERGENCE RATE OF REPRESENTATIVE LINEARLY CONVERGENT DISTRIBUTED ALGORITHMS CAST IN THE PROPOSED FRAMEWORK (M)

The differential encoding/decoding rule reads: ĉ0 = 0, and for

k ≥ 1,
�

qk = Qk(ck − ĉk−1),

ĉk = ĉk−1 + qk,
(4)

where Qk is the quantization operator (a map from real

vectors to the set of quantized points), possibly dependent on

iteration k. In words, at each iteration, the encoder quantizes

the prediction error ck − ĉk−1 rather than the current esti-

mate ck , generating the quantized signal qk , which is then

transmitted over the digital channel. The estimate ĉk of ck

is then built from qk using a one-step prediction rule. Since

qk is received unaltered, ĉk is identical at the transmitter’s

and receiver’s sides. Note that, when quantization errors are

negligible qk = Qk(ck − ĉk−1) ≈ ck − ĉk−1, the estimate

reads ĉk = ĉk−1 + qk ≈ ĉk−1 + ck − ĉk−1 = ck .

We can now introduce our distributed algorithmic frame-

work using quantized communications, as described in Algo-

rithm 1; it embeds the differential encoding/decoding rule (4)

in each communication round of model (M). The fixed-point

based formulation of Algorithm 1 then reads: for i ∈ [m],

c
k,1
i = C1

i

(
zk

i ,0Ni

)
,

ĉ
k,1
i = ĉ

k−1,1
i + Qk

i

(
c

k,1
i − ĉ

k−1,1
i

)
,

...

c
k,R
i = CR

i

(
zk

i , ĉk,R−1
Ni

)
,

ĉ
k,R
i = ĉ

k−1,R
i + Qk

i

(
c

k,R
i − ĉ

k−1,R
i

)
,

⎫





(multiple

quantized

communication

rounds)

zk+1
i = Ai

(
zk

i , ĉk,1
Ni

, · · · , ĉk,R
Ni

)
, (computation step).

Stacking agents’ state-variables zi, signals ci and ĉi, and

mappings Cs
i , Ai, and Qk

i into the respective vectors z, c, ĉ,

Cs, A, and Qk, we can rewrite the above steps in compact

form as

ĉk,0 = 0,
ck,s = Cs

(
zk, ĉk,s−1

)
,

ĉk,s = ĉk−1,s + Qk
(
ck,s − ĉk−1,s

)
,

s ∈ [R],

⎫





(multiple

quantized

communication

rounds)

zk+1 = A
(
zk, ĉk,1, · · · , ĉk,R

)
. (computation step).

(Q-M)

Algorithm 1 Distributed Algorithmic Framework With Quan-

tized Communications

Initialization: ĉ−1,s � 0, for all s ∈ [R]; and z0 ∈ Z . Set

k = 0;

Iteration k → k + 1
(S.1): Multiple quantized communication

rounds

for s = 1, . . . , R, each agent i:

• Computes c
k,s
i = Cs

i (zk
i , ĉk,s−1

Ni
) [with ĉ

k,0
i � 0];

• Generates q
k,s
i = Qk

i (ck,s
i − ĉ

k−1,s
i ) and broadcasts it

to its neighbors j ∈ Ni;

• Upon receiving the signals q
k,s
j from its neighbors j ∈

Ni, it reconstructs ĉ
k,s
j as

ĉ
k,s
j = ĉ

k−1,s
j + q

k,s
j , j ∈ Ni;

end

(S.2): Computation Step

Each agent i updates its own zk+1
i according to

zk+1
i = Ai(z

k
i , ĉk,1

Ni
, · · · , ĉk,R

Ni
).

Model (Q-M) paves the way to a unified design and

convergence analysis of several distributed algorithms–all the

schemes cast in the form (M)–employing quantization in the

communications, as elaborated next.

A. Convergence Analysis

We begin by establishing sufficient conditions on the quan-

tization mapping Qk and algorithmic functions A and C in (Q-

M) to preserve linear convergence

1) On the Quantization Mapping Qk: A first critical choice

is the quantizer Q (we omit the dependence on k and i for

notation simplicity), including both random and deterministic

quantization rules (the latter as a special cases of the former).

For random quantization, the function Q(x) is a random

variable for any given x ∈ Rd, defined on a suitable probability

space (generally dependent on x). We define the following

novel biased compression rule (BC-rule), for each agent i.
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Definition 3 (Biased Compression Rule): Given x ∈ Rd,

Q(x) (possibly, a random variable defined on a suitable

probability space) satisfies the BC-rule with bias η ≥ 0 and

compression rate ω ∈ [0, 1) if

r

E

h�
�Q(x) − x

�
�

2

2

i

≤
√

d η + ωkxk2, ∀x ∈ Rd. (5)

When Q(x) is a deterministic map, (5) reduces to

�
�Q(x) − x

�
�

2
≤

√
d η + ωkxk2, ∀x ∈ Rd. (6)

Roughly speaking, the bias η determines the basic spacing

between quantization points, uniform across the entire domain.

On the other hand, the compression term ω adds a non-uniform

spacing between quantization points: points farther away from

0 have more separation.

The BC-rule encompasses and generalizes several existing

compression and quantization rules proposed in the literature

for specific algorithms, deterministic [6], [7], [9], [11],

[13], [14], [16], [17], [20]–[22], [27]–[29], [32], [35], [38]

and random [6], [8], [10], [12], [15], [18], [19], [23]–[26],

[29]–[31], [33]–[39]. Specifically, (i) the compression rules

proposed in [6], [24]–[26], [29]–[31], [33]–[39] (resp. [6],

[27]–[29], [32], [35], [38]) can be interpreted as unbiased

instances of (5) [resp. (6)], i.e., corresponding to η = 0. The

proof of Lemma 7 in Sec. IV will show that such special

instances theoretically require an infinite number of bits to

encode quantized signals, even when the input x is bounded.

In practice, they are successfully implemented using finite bits

at the machine precision (e.g., to encode some scalar quan-

tities, such as the norm of the signal to be transmitted [36]).

However, their convergence analyses tacitly assume that errors

at machine precision are negligible. Hence, these schemes have

no performance guarantees when implemented with limited

(below machine) precision quantizations. On the other hand,

as it will be seen in Sec. IV, the bias term η > 0 in the

proposed BC-rule guarantees that quantized signals satisfying

such rule can be encoded using a finite number of bits,

hence can be implemented with limited precision. (ii) The

quantization rules in [8], [10], [12], [15], [18], [19], [23]

(resp. [7], [9], [11], [13], [14], [16], [17], [20]–[22]) are special

instances of the BC-rule (5) [resp. (6)], with ω = 0. While they

can be implemented using a finite number of bits (provided

that the signals to be quantized are uniformly bounded), they

do not take advantage of the degree of freedom offered by

the compression rate ω to improve communication efficiency,

as shown numerically in Sec. VI-D.

2) On the Algorithmic Mappings A and Cs: Our analysis

requires additional standard conditions on the mappings A and

Cs to preserve linear convergence under quantization. Roughly

speaking, the functions A and Cs should vary smoothly with

respect to perturbations in their arguments, so that small quan-

tization errors result in small deviations from the trajectory of

the unquantized algorithm, as postulated next.4

4For the sake of notation, the constants LA, LC and LZ defined in
Assumptions 4 and 5 are assumed to be independent of the index s (commu-
nication round). Our convergence results can be readily extended to constants
dependent on s.

Assumption 4: There exists a constant LA ≥ 0 such that,

for every s ∈ [R], it holds
�
�A(z, c1, · · · , cs, · · · , cR)−A(z, c1, · · · , c̃s, · · · , cR)

�
�

≤ LAkcs − c̃sk2, (7)

for all cs, c̃s ∈ Rmd, uniformly with respect to z ∈ Z , and

c1, . . . , cs−1, cs+1, . . . cR ∈ Rmd.

Assumption 5: There exist constants LC , LZ ≥ 0 such that

kCs(z, c) − Cs(z, c0)k2 ≤ LCkc− c0k2, ∀c, c0 ∈ Rmd, (8)

kCs(z, c) − Cs(z0, c)k2 ≤ LZkz − z0k2, ∀z, z0 ∈ Z, (9)

uniformly with respect to z ∈ Z and c ∈ Rmd, respectively.

These assumptions are quite mild, and satisfied by a variety

of existing distributed algorithms, as shown in Appendix D.

We are now ready to introduce our main convergence result.

Theorem 6: Let {zk} be the sequence generated by Algo-

rithm 1 under Assumptions 1, 4, and 5, with Qk satisfying

the BC-rule (5) with bias η = η0 · (σ)k and compression rate

ω ∈ [0, ω̄(σ)), for some σ ∈ (λ, 1) and η0 > 0, where ω̄(σ)
is defined as

ω̄(σ) �
σ

R
· σ − λ

σ − λ + 2LALZ [R max{1, (2LC)R−1}]2 . (10)

Then,
q

E[kzk − z∞k2
2] ≤ V0 · (σ)k, k = 0, 1, . . . ,

where V0 is a positive constant, whose expression is given in

(39), Appendix A.

Proof: See Appendix A.

Note that, when the deterministic instance of the BC-rule

is used [see (6)], the convergence rate reads kzk − z∞k2 ≤
V0 · (σ)k, for all k = 0, 1, . . ..

Theorem 6 shows that linear convergence is achievable

when communications are quantized in distributed optimiza-

tion, provided that the bias η and compression rate ω of the

BC-rule are chosen suitably. The shrinking requirement on the

bias η (linear at rate σ) is not restrictive, since it is consistent

with the contraction dynamics of the iterates: the range of

inputs to the quantizer vanishes in a similar fashion, a fact

that guarantees that quantized values can be encoded using a

uniformly bounded number of bits (see Theorem 12, Sec. V).

Similarly, the bound on ω guarantees that quantization errors

along the iterates do not accumulate excessively.

Theorem 6 certifies linear convergence in terms of number

of iterations. However, the algorithm that uses quantized com-

munications converges slower (with rate σ) than its unquan-

tized counterpart (rate λ), revealing a tension between the

amount of quantization/compression of the transmitted signals

(measured by η and ω) and the resulting linear convergence

rate σ: as we will see in the forthcoming sections, this tension

entails a trade-off between faster convergence (closer to that of

the unquantized algorithm) and communication cost, which we

aim to characterize. Building on this result, we will also inves-

tigate the communication complexity of the schemes (Q-M)

–the total number of bits needed to reach an ε-solution of

problem (P). Since this analysis depends on the specific

quantizer design, the next section introduces a novel quantizer
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that efficiently implements the BC-rule, and a communication-

efficient bit-encoding/decoding scheme. When embedded in

(Q-M), the proposed quantization leads to linearly convergent

distributed algorithms whose communication complexity com-

pares favorably with that of existing ad-hoc schemes (V).

IV. NON-UNIFORM QUANTIZER WITH ADAPTIVE

ENCODING/DECODING

As discussed in Sec. III, the BC-rule encompasses a

variety of quantizer designs. In this section, we propose a

quantizer that fulfills the BC-rule with minimum number

of quantization points (Sec. IV-A). The quantizer is then

coupled with a communication-efficient bit-encoding/decoding

rule which enables transmission on the digital channel

(Sec. IV-B). We refer to the proposed quantizer coupled with

the encoding/decoding scheme as Adaptive encoding Non-

uniform Quantizer (ANQ).

A. Quantizer Design

Since no information is assumed on the distribution of the

input signal, a natural approach is to quantize each vector

signal component-wise. We design such a scalar quantizer

Q : [−δ, δ] → Q under the BC-rule by minimizing the

number of quantization points |Q| for a fixed input range

[−δ, δ]. Equivalently, we seek Q that maximizes δ under

the BC-rule, for a given number N = |Q| of quantization

points. These designs are provided in Lemmas 7 and 8 for

the deterministic and probabilistic cases, respectively. For

convenience, we focus on the case of N odd; the case of

N even is provided in Appendices B and B. We point out

that the restriction of the input of Q to [−δ, δ], as opposed

to the unconstrained domain in the BC-rule (Definition 3),

is instrumental in formulating the quantizer’s design as an

optimization problem. As shown in Lemmas 7 and 8, the

resulting optimized quantization points are independent of the

specific choice of δ; hence, the proposed quantizer can be used

(component-wise) for input signals in Rd.

Lemma 7 (Deterministic Quantizer): Let Q : [−δ, δ] → Q.

The maximum range δ that can be quantized using |Q| =
N (odd) points under the BC-rule (6) with bias η ≥ 0 and

compression rate ω ∈ [0, 1) is

δ(η, ω, N) =
q(N−1)/2 + q(N+1)/2

2
, (11)

with quantization points

q` = −q−` =
η

ω

�	1 + ω

1 − ω


`

− 1

�

, ` ≥ 0. (12)

The resulting optimal quantization rule reads: x 7→ Q(x) =
q`(x), with

`(x) = sign(x) ·
�

ln(1 − ω) + ln(1 + ω
η |x|)

ln(1 + ω) − ln(1 − ω)

�

. (13)

Proof: See Appendix B.1.

Lemma 8 (Probabilistic Quantizer): For any given x ∈
[−δ, δ], let Q(x) ∈ Q be a random variable defined on a

suitable probability space. The maximum range δ that can be

quantized using |Q| = N (odd) points under the BC-rule (5)

with E[Q(x)] = x, bias η ≥ 0 and compression rate ω ∈ [0, 1)
is

δ(η, ω, N) = q(N−1)/2, (14)

with quantization points

q` = −q−` =
η

ω

h	p

1 + (ω)2 + ω

2`

− 1
i

, ` ≥ 0. (15)

The resulting optimal quantization rule reads: x 7→ Q(x) =
q`(x), with

`(x) =

�

` − 1, w.p. q`−x
q`−q`−1

;

`, w.p.
x−q`−1

q`−q`−1
,

and

` = sign(x)

�
ln(1 + ω

η |x|)
2 ln

	p

1 + (ω)2 + ω



�

. (16)

Proof: See Appendix B.2.

From these lemmas, one infers that quantization points

under the BC-rule should be non-uniformly spaced–hence the

name ANQ. Furthermore, the deterministic quantizer maps

an input x to the nearest q`, whereas the probabilistic one

maps x to one of the two nearest quantization points, selected

randomly such that E[Q(x)] = x.

Note that, when specialized to the conventional compression

rule that uses η = 0, the two lemmas above yield δ(0, ω, N) =
0 for any finite N , implying that infinite quantization points

(hence number of bits) are required to encode signals. The

next corollary formalizes this negative result.

Corollary 9 (Converse): The (unbiased, η = 0) compres-

sion rule (2) cannot be satisfied using a finite number of

quantization points to quantize signals within a given range

[−δ, δ]d, for any finite δ > 0. Therefore, the compression

rules in [6], [24], [26]–[33], [36]–[38] theoretically require

an infinite number of bits to encode quantized signals.

Proof: See Appendix B.3. �

Note that the index `(x) is a sufficient information to

reconstruct the quantization point q`(x) at the receiver. In the

next section, we present a communication-efficient finite bit-

encoding/decoding scheme to transmit `(x) over the digital

channel.

B. Adaptive Encoding Scheme

It remains to design an encoding/decoding scheme mapping

the index `(x) into a finite-bit representation, to be transmitted

over the digital channel. To do so, we adopt an adaptive

number of bits, based upon the value of `(x), as detailed next.

We assume that a constellation S = [S] ∪ {0} of S + 1
symbols is used, with S ≥ 2 (this might be obtained as S ≡
(S̃)w, by concatenating sequences of w symbols from a smaller

constellation S̃). We use the symbol 0 to indicate the end of

an information sequence, and the remaining S symbols in the

set [S] to encode the value of `(x). With L̃−1 ≡ ∅, let

L̃b≡
 

−
�

Sb+1 − 1

2(S − 1)

�

+ 1, . . . ,

!
Sb+1 − 1

2(S − 1)

"�

, b=0, 1, . . . ,

and

Lb = L̃b \ L̃b−1, b = 0, 1, . . . . (17)

Authorized licensed use limited to: Purdue University. Downloaded on April 29,2023 at 02:28:20 UTC from IEEE Xplore.  Restrictions apply. 



7262 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

It is not difficult to see that {Lb : b = 0, 1, . . .} creates a

partition of Z and |Lb| = (S)b. Therefore, a natural way to

encode `(x) ∈ Lb is to use a unique sequence of b symbols

from [S], followed by 0 to mark the end of the information

sequence. `(x) is then encoded as [s1, . . . , sb, 0] ∈ (S)b+1.

Upon receiving this sequence, the receiver can detect the

start and end of the information symbols, and decode the

associated `(x) by inverting the symbol-mapping. The com-

munication cost to transmit the index `(x) ∈ Lb is thus b + 1
(symbols), which leads to the following upper bound on the

communication cost incurred by each agent i to quantize and

encode a d-dimensional vector x. Again, we focus on the case

when N is odd; the other case is provided in the proof in

Appendix C.4.

Lemma 10: The number of bits C(x) required by the ANQ

with bias η ≥ 0 and compression rate ω ≥ 0 and constellation

of S + 1 symbols to quantize and encode an input signal x ∈
Rd is upper bounded by

(i) Deterministic Quantizer:

C(x) ≤ 3d log2(S + 1) (18)

+d log2(S+1) logS

�

2+
ln(1 − ω)+ ln

(
1+ωkxk2√

dη

)

ln(1 + ω) − ln(1 − ω)

�

bits;

(ii) Probabilistic Quantizer With E[Q(x)] = x:

C(x) ≤ 3d log2(S + 1)+d log2(S+1) logS

×
�

2+
ln
	

1+ωkxk2√
dη




2 ln
	p

1+(ω)2+ω



�

bits, a.s.. (19)

Proof: See Appendix C.4. �

Compared with existing deterministic quantizers [21], [22]

that are special cases of the BC-rule (with ω = 0), the pro-

posed ANQ adapts the number of bits to the input signal–less

bits for smaller input signals (mapped to smaller `) and more

bits for larger ones (mapped to larger `)–rather than using

a fixed number of bits determined by the worst-case input

signal [21], [22]. This leads to more communication-efficient

schemes, as will be certified by Theorem 13.

V. COMMUNICATION COMPLEXITY OF (Q-M)

BASED ON THE ANQ RULE

We now study the communication complexity of the distrib-

uted schemes falling within the framework (Q-M) and using

the ANQ to quantize communications. Our results complement

Theorem 6 and are of two types: (i) first, we characterize

the trade-off between the number of bits/agent required by

the ANQ at each iteration and the linear convergence rate

(Theorem 12); (ii) then, we investigate the communication

complexity, characterizing the total number of bits/agent trans-

mitted to achieve an ε-solution of (P) (Theorem 13). Since

these results are applicable to any distributed algorithm within

the setting of (Q-M), we finally customize (ii) to some specific

instances (Sec. V-A).

Throughout this section, all the results stated in terms of O-

notation are meant asymptotically when m, d → ∞. Also, the

following additional mild assumption is postulated, which is

satisfied by a variety of existing algorithms, see Appendix D.

Assumption 11: The constants LA, LC , LZ , R and the ini-

tial conditions kCs(z0,0)k2 and kz0 − z∞k satisfy

LA · LZ = O(1), LC = O(1), R = O(1),

kz0 − z∞k = O(
√

md)

and kCs(z0,0)k2 = O(LZ

√
md), ∀s ∈ [R].

Our first result on the number of bits transmitted at each

iteration to sustain linear convergence is summarized next.

Theorem 12: Instate the setting of Theorem 6, under the

additional Assumption 11. Furthermore, suppose that the deter-

ministic ANQ (or probabilistic ANQ with E[Q(x)] = x)

is used to quantize all the communications in (Q-M), with

η0 = Θ(LZ(σ − λ)) and ω such that 1 − ω/ω̄(σ) = Ω(1).
Then, linear convergence

p

E[kzk − z∞k2
2] = O(

√
md·(σ)k),

k = 0, 1, . . ., is achieved with an average number of bits/agent

at every iteration k of order

O
�

d · log
	

1 +
1

σ(σ − λ)


�

. (20)

Proof: See Appendix C.1.

The following comments are in order.

(i) As expected, the faster the quantized algorithm (smaller

σ), the larger the communication cost; in particular, when σ →
λ, the number of bits required to sustain linear convergence at

rate σ grows indefinitely. In other words, an infinite number of

bits is required if a quantized distributed scheme (Q-M) wants

to match the convergence rate of its unquantized counterpart.

(ii) It is interesting to contrast the communication efficiency

(bits transmitted per iteration) of the proposed model (Q-

M) equipped with the ANQ with that of existing schemes

applicable to special instances of (P) or network topologies.

Specifically, [21], [22] study (P) with r 6≡ 0 over mesh

networks; the scheme therein convergences linearly (under

suitable tuning/assumptions) while using

O
#

d log
	

1 +

√
md

σ(σ − λ)



$

bits/agent/iteration.

The algorithm in [22] is also applicable to (P), with r 6≡ 0,

over star-networks; it uses

O
#

d log
	

1 +

√
d

σ(σ − λ)



$

bits/agent/iteration.

Both are less favorable than (20), due to the fact that the

ANQ adapts the number of bits to the input signal rather than

adopting a constant number of bits for any input signal.

(iii) Theorem 12 reveals a tension between convergence rate

(the closer σ to λ, the faster the algorithm) and number of

transmitted bits per iteration (the larger σ, the smaller the

cost). In the following, we provide a favorable choice of σ
that resolves this tension by characterizing the communication

complexity, i.e., the total number of bits transmitted per agent

to achieve a target ε-accuracy.
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Theorem 13: Instate the setting of Theorem 12, with σ
chosen so that

(1 − λ)2

(1 − σ)(σ − λ)
= O(1).

Then, the average number of bits transmitted per agent to

achieve (1/m)E[kzk − z∞k2
2] ≤ ε scales as

O
�

d · log
	

1 +
1

1 − λ


 1

1 − λ
log(d/ε)

�

bits/agent, (21)

achieved in

O
�

1

1 − λ
· log(d/ε)

�

iterations (22)

and with

O
�

d · log
	

1 +
1

1 − λ


�

bits/agent/iteration. (23)

Proof: See Appendix C.3.

The following comments are in order.

(i) Intuitively, Theorem 13 provides a range of values

of σ to balance the tension between convergence rate and

communication cost per iteration, resulting from too small or

too large values of σ. The condition of the theorem can be

satisfied, e.g., by choosing σ = (1 + λ)/2.

(ii) The term d · log(1 + 1/(1 − λ)) in (21) represents the

number of bits/iteration/agent under the additional restriction

on σ, as postulated by Theorem 13: the faster the unquantized

algorithm (i.e., the smaller λ), the less bits are required.

(iii) The second term (1 − λ)−1 log(d/ε) represents the

total number of iterations required to achieve ε accuracy;

remarkably, these are the same (in a O-sense) as the unquan-

tized algorithm, with log(d) capturing the gap of the initial

point from the fixed point. As expected, the number of

iterations increases as the unquantized algorithm slows down

(λ increases), the dimension d increases, and/or the target error

ε decreases.

Nest, we customize Theorem 13 to some distributed algo-

rithms within (Q-M).

A. Special Cases of (Q-M) Using the ANQ Rule

1) GD Over Star-Networks: Our first case study is the GD

algorithm solving (P) with r ≡ 0 over star networks. The

unquantized scheme reads

xk+1 = xk − γ

m

mX

i=1

∇fi(x
k), (24)

with γ ∈ (0, 2/L). This is an instance of the algorithmic

framework (M); therefore, we can employ quantization using

(Q-M). When the ANQ is employed, a direct application of

Theorem 13 leads to the following communication complexity

for the quantized GD (we termed the algorithm ANQ-GD-

star).

Corollary 14 (ANQ-GD-star, see Appendix D.1): Given

(P) over a star-network, where r ≡ 0 and F is L-smooth and

µ-strongly convex, thus with condition number κ = L/µ,

and unique minimizer x?, consider the ANQ-GD-star with

stepsize γ = 2/(µ + L) and tuning for the ANQ as in

Theorem 13. Then, the average number of bits/agent for

kxk − x∗k2
2 ≤ ε is of order

O
	

d · log(1 + κ)κ log
(
d/ε
)


, (25)

achieved in

O
	

κ log
(
d/ε
)


iterations (26)

and with

O
	

d · log(1 + κ)



bits/agent/iteration. (27)

This behavior compares favorably with O(dκ log(d(1 +
κ)) log(d/ε)) bits/agent obtained in [22] using a deterministic

quantizer, with fixed number of bits among agents and itera-

tions. It also matches O(dκ log(1 + κ) log(d/ε)) bits/agent

obtained in [53] using the same deterministic quantizer as

in [22]. However, [53] uses a central coordinator to optimize

the number of bits used by each agent at every iteration. Note

that the lower complexity bound provided in [54] for κ = 1
reads: Ω

(
d log(d/ε)

)
bits/agent, confirming the tightness of

our result.

2) Distributed Algorithms Employing Gradient Correction:

Our second example deals with distributed algorithms solving

(P) (possibly, with r 6≡ 0) over mesh networks. With a

slight abuse of notation, below we denote by κ, L and µ
the condition number, the smoothness constant and the strong

convexity constant of each fi, respectively. We consider the

most popular schemes, employing gradient correction in the

optimization direction–see Appendix D for a description of

these algorithms. We denote by ρ2 � ρ2(W) the second

largest eigenvalue of the gossip matrix W used in these

algorithms (note that ρ2 = 0 for star-networks or fully-

connected graphs). The communication complexity of these

algorithms when using the ANQ is summarized next–they

follow readily from Theorem 13 and the convergence results

of the unquantized algorithms in [50].

Corollary 15 (ANQ-(Prox-)EXTRA, ANQ-(Prox-)NIDS,

and ANQ-NIDS over mesh networks, see Appendices D.2,

D.3, and D.4): Consider Problem (P) over mesh networks, and

the ANQ-(Prox-)EXTRA and ANQ-(Prox-)NIDS algorithms

with stepsize γ = 2/(L + µ) and the ANQ-NIDS algorithm

with stepsize γ = 1/L, where the ANQ is tuned as in

Theorem 13. Then, the average number of bits/agent for

kxk − x∗k2
2 ≤ ε is of the order of

O
�

d max
n

κ,
1

1−ρ2

o

log
	

max
n

1+κ,
1

1−ρ2

o


log(d/ε)

�

,

achieved in

O
	

max
n

κ,
1

1 − ρ2

o

log(d/ε)



iterations

and with

O
	

d log
	

max
n

1 + κ,
1

1 − ρ2

o



bits/agent/iteration.

Corollary 16 (ANQ-(Prox-)NEXT and ANQ-(Prox-)DIGing

Over Mesh Networks, See Appendices D.5-D.6): Consider
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Problem (P) over mesh networks as described above, and

the ANQ-(Prox-)NEXT and ANQ-(Prox-)DIGing algorithms

with stepsize γ = 2/(L + µ), where the ANQ is tuned as

in Theorem 13. Then, the average number of bits/agent for

kxk − x∗k2
2 ≤ ε is of the order of

O
�

d max
n

κ,
1

(1−ρ2)2

o

log
	

max
n

1+κ,
1

(1−ρ2)2

o


log(d/ε)

�

,

achieved in

O
	

max
n

κ,
1

(1 − ρ2)2

o

log(d/ε)



iterations

and with

O
	

d log
	

max
n

1 + κ,
1

(1 − ρ2)2

o



bits/agent/iteration.

Corollary 17 (ANQ-Primal-Dual over Mesh Networks, see

Appendix D.7): Consider Problem (P) with r ≡ 0 over

mesh networks as described above, and the ANQ-Primal-Dual

algorithm with stepsize γ = 2Lµ
µρm−1(L)+Lρ1(L) , where the ANQ

is tuned as in Theorem 13. Then, the average number of

bits/agent for kxk − x∗k2
2 ≤ ε is of the order of5

O
�

d
κ

1 − ρ2
log
	

1 +
κ

1 − ρ2




log(d/ε)

�

,

achieved in

O
�

κ

1 − ρ2
· log(d/ε)

�

iterations

and with

O
�

d · log
	

1 +
κ

1 − ρ2


�

bits/agent/iteration. (28)

It is interesting to compare the ANQ-Primal-Dual (Corol-

lary 17) with [24], which applies quantization to a

Primal-Dual scheme using the widely adopted compression

rule. The number of iterations required for the Option-D

scheme (the best performing one) in [24] to achieve ε-

accuracy, using the rand-K or dit-K compression methods

(see [24, Example 4]), is6

O
	 d

K

κ

1 − ρ2
log(d/ε)




, (29)

Therefore, to achieve the same number of iterations as ANQ-

Primal-Dual (in a O-sense), rand-K in [24] requires K =
Θ(d), whereas dit-K in [24] requires S = 2K−1−1 = Θ(

√
d),

5Note that
ρ1(L)

ρm−1(L)
= O((1 − ρ2)−1).

6The asymptotic result in [24, Theorem 5] maps to our setting with the
following modifications: ρ (the ratio between the largest and the second
smallest eigenvalues of L) and ρ∞ (the ratio of the largest weight and
the second smallest eigenvalue of L) defined therein are both of order
O(1/(1 − ρ2)); when adopting the setting on the initial error from our
Assumption 11 and the problem setting of (P), the parameter m therein
becomes 1 and the numerator in the log term becomes d.

with a communication cost of (in bits/agent/iteration)
⎧



⎩

O
	

d + B



(dit-K),

O
	

d(B + log d)



(rand-K),
(30)

where B is the number of bits used to encode each scalar with

negligible loss in precision.

Comparing the communication costs (28) and (30), the

following remarks are in order: (i) If we neglect the B-

dependence, our scheme has the same scaling behavior as dit-

K and better scaling behavior than rand-K , as the problem

dimension d increases. (ii) It is not clear how the number

of bits B should be chosen to encode scalars in [24] as a

function of the system parameters, in a O-sense, in order to

make loss in precision truly negligible (a condition required

by the convergence analysis therein). On the other hand, our

communication cost analysis, which focuses on quantization

below machine precision, provides an explicit answer to this

question.

VI. NUMERICAL RESULTS

In this section, we validate numerically our theoretical

findings and compare different distributed algorithms using

quantization. We consider two instances of (P): a linear

regression and a logistic regression problem, both with F
strongly convex. The communication network is modeled as

an undirected graph of m = 20 agents, generated by the

Erdos-Renyi model with edge activation probability of 0.6.

We measure performance of the algorithms using the mean

square error MSEk and the network communication cost

Ccm(ε) incurred over the network to reach MSEk ≤ ε, defined

as

MSEk
�

Pm
i=1 kxk

i − x∗k2
2

mkx∗k2
2

, Ccm(ε)�

kεX

k=0

RX

s=1

mX

i=1

bk,s
i , (31)

where kε � mink≥0 MSEk ≤ ε is the number of iterations

required to achieve ε-accuracy, x∗ is the optimal solution

of (P), and bk,s
i is the number of bits used by the quan-

tizer to encode the sth transmitted signal by agent i at

iteration k.

A. Linear Regression Problem

1) Problem Setting: Consider the following linear regres-

sion problem over mesh networks:

fi(x)=
1

2
kUix − vik2

2 +
0.01

2
kxk2

2 and r(x)=αkxk1, (32)

where Ui ∈ R20×40 and vi ∈ R20×1 are the feature vector

and observation measurements, respectively, accessible only

by agent i. The matrix Ui is generated independently across

agents, according to the model in [55], namely: [Ui]:,1 ∼
N (0, 1

1−β2 I) (first column), and for the other columns q > 1,

[Ui]q|[Ui]q−1 ∼ N (β[Ui]q−1, I), where β = 0.3. In this

way, each row of Ui is a Gaussian random vector with zero

mean and covariance depending on β: larger β generates more

ill-conditioned covariance matrices. Then, letting x0 ∈ R40 be

the ground truth vector, generated as a sparse vector with 70%
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Fig. 2. Linear regression problem (32): MSE versus iterations. Solid curves and markers refer to algorithms implemented using machine precision and
quantized communications, respectively. In the legend, for each scheme, we report the number of bits transmitted, per agent, per dimension, per iteration.

zero entries, and i.i.d. nonzero entries drawn from N (0, 1),
we generate vi as v|(U,x0) ∼ N (Ux0, 0.04I). We use µ, L
for the strong convexity and smoothness parameters of each

fi, respectively.

We test several distributed algorithms considering either

smooth (α = 0) or non-smooth (α > 0) instances of

the least square problem (32). In fact, most of the existing

quantization schemes are applicable only to smooth opti-

mization problems. The free parameters of these algorithms

are optimized based on the recommendations in the original

papers, while optimizing numerical convergence with the

smallest number of bits, unless otherwise stated; the weight

matrix W̃ used to mix the received signals is constructed

according to the Metropolis-Hastings rule [56]; the number

of bits transmitted by each scheme as reported in the figures

is per agent, per dimension, per iteration. For each quantized

algorithm, we choose σ = 0.99 · λ + 0.01, where λ =
(MSE100/MSE50)0.01 is the numerical estimate of the conver-

gence rate of its unquantized counterpart (i.e., implemented at

machine precision). In the simulations, all algorithms except

those using LPQ are evaluated with 1 realization since they

are deterministic algorithms. Those using the probabilistic

quantizer LPQ, i.e., LEAD [25] and COLD [39], are aver-

aged over 10 realizations, with fixed Ui,Vi,x
0, and network

topology.

2) Smooth Linear Regression (Fig. 2a): We begin by con-

sidering the smooth linear regression problem. We consider

the following benchmark schemes, using machine precision

(64-bit representation for each scalar):

1) Primal-Dual [42] with step-size γ =
2Lµ/(µρm−1(L) + Lρ1(L)) ( [22, Proposition

2]), where L is the graph Laplacian matrix associated

with the graph.

2) NEXT [40], [41], [46] with step-size γ = 0.0029,

manually tuned for fastest practical convergence.

3) NIDS [48], [50] with step-size γ = 2
L+µ and mixing

matrix W = [(1 + ν)I+(1− ν)W̃]/2, with ν = 0.001.

In addition, we consider the following algorithms, that

implement the above benchmark schemes using quantized

communications:

4) Q-Dual [22] and Q-NEXT [21];

5) ANQ-Dual: this is the Primal-Dual algorithm [42]

equipped with the proposed deterministic ANQ (see

Appendix D.7), with η0 = 0.01 and ω = ω̄/2 [recall

that ω̄ is defined in (10)];

6) ANQ-NEXT: this is the NEXT algorithm [40], [41],

[46] quantized using the deterministic ANQ with η0 =
0.029 and ω = ω̄/2;

7) ANQ-NIDS: this is an instance of the NIDS algo-

rithm [48], [50] equipped with the deterministic ANQ

(see Appendix D.4) with parameters η0 = 0.1 and

ω = ω̄/2
8) LEAD [25] and COLD [39], both implemented using the

low-precision quantization (LPQ) [36]: to transmit a

signal x, the amplitude kxk2 is encoded at machine

precision (64 bits), and 3 bits are adopted to encode

each normalized element xi/kxk2.

In Fig. 2a, we plot the MSE versus iteration index k.

Remarkably, all algorithms, when equipped with the pro-

posed ANQ, incur a negligible loss of convergence speed

with respect to their machine precision counterpart. Compar-

ing ANQ with the compression-based distributed algorithms

LEAD [25] and COLD [39], we infer that the proposed

ANQ-NIDS is faster while using less bits. Comparing ANQ

with the state-of-the-art quantized algorithms, we notice that

ANQ is more communication-efficient than Q-NEXT and Q-

Dual, which instead use deterministic uniform quantizers with

shrinking range: ANQ-NEXT (11.62 bits) and ANQ-Dual

(2.65 bits) use less bits per iteration than Q-NEXT (28 bits)
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Fig. 3. Logistic regression problem (33): MSE versus iterations. Solid curves and markers refer to algorithms implemented using machine precision and
quantized communications, respectively. In the legend, for each scheme, we report the number of bits transmitted, per agent, per dimension, per iteration.

and Q-Dual (5 bits), respectively, while converging faster.

Note that, with the parameters chosen as recommended in

Theorem 6, all ANQ-based algorithms shown in the figure

have convergence guarantees, while Q-Dual and Q-NEXT do

not in the simulated setting. In fact, Q-Dual and Q-NEXT use

5 and 28 bits, respectively, which fall below the minimum

number of bits that guarantee linear convergence, calculated

to be 13 from [22, Theorem 1] and 78 from [21, Theorem 4],

respectively.

3) Non-Smooth Linear Regression (Fig. 2b): We now move

to the non-smooth instance of (32), with α = 10−4. To our

knowledge, there is no existing quantized algorithms solv-

ing such instance of (32). Hence, we tested the following

ANQ-based quantized algorithms:

1) ANQ-Prox-EXTRA: this is an instance of the

Prox-EXTRA algorithm [50] equipped with the deter-

ministic ANQ (see Appendix D.2) with parameters η0 =
6.67 × 10−4 and ω = ω̄/2;

2) ANQ-Prox-NEXT: this is the Prox-NEXT algo-

rithm [50] equipped with the deterministic ANQ (see

Appendix D.5) with parameters η0 = 2.34 × 10−3 and

ω = ω̄/2;

3) ANQ-Prox-DIGing: this is the Prox-DIGing algo-

rithm [50] equipped with the deterministic ANQ (see

Appendix D.6) with parameters η0 = 3.05 × 10−3 and

ω = ω̄/2;

4) ANQ-Prox-NIDS: this is the Prox-NIDS algorithm

in [50] equipped with the deterministic ANQ (see

Appendix D.3) with parameters η0 = 7.7 × 10−4 and

ω = ω̄/2.

As benchmark, we also included their unquantized counter-

parts, implemented at machine precision; in all these schemes,

we used the weight matrix W = [(1+ν)I+(1−ν)W̃]/2 with

ν = 0.001; the step-size is chosen according to [50], namely:

γ = 2ρm(W)
L+µρm(W) for Prox-EXTRA, γ = 2ρm(W2)

L+µρm(W2) for Prox-

DIGing, and γ = 2
L+µ for Prox-NEXT and Prox-NIDS.

Fig. 2b plots the MSE achieved by all the algorithms versus

the iteration index. As predicted, all four quantized schemes

converge linearly. Remarkably, all of the ANQ-equipped algo-

rithms incur a negligible loss of convergence speed with

respect to their machine precision counterparts, while using

a fraction of the communication budget – only 14 bits per

agent/dimension/iteration.

B. Logistic Regression

We now consider the distributed logistic regression problem

using the MNIST dataset [57]. This is an instance of (P) with

fi(x) =
0.01

2
kxk2

2 +
1

3000

3000X

p=1

ln
	

1 + exp
(
− vi,pu

>
i,px

)


,

and r(x) = αkxk1, (33)

where ui,p ∈ R784×1 and vi,p ∈ {−1, 1} are the feature

vector and labels, respectively, only accessible by agent i.
Here we implement the one-vs.-all scheme, i.e., the goal is to

distinguish the data of label ’0’ from others. To generate ui,p,

we first flatten each picture of size 28×28 in MNIST into a real

feature vector of length 28×28 = 784, and then normalize it to

unit l2 norm. We then allocate equal number of feature vectors

and labels to each agent. In the simulations, all algorithms

except those using LPQ are evaluated with 1 realization since

they are deterministic algorithms. Those using the probabilistic

quantizer LPQ, i.e., LEAD [25] and COLD [39], are averaged

over 10 realizations, with fixed feature/label allocations and

network topology.

1) Smooth Logistic Regression (Fig. 3a): We begin by

considering the smooth logistic regression problem (33), with

α = 0. We tested the same algorithms (with the same tuning)

as described in Sec. VI-A for the smooth linear regression
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Fig. 4. MSE versus iterations for different quantization rules applied to NIDS [48], [50].

problem. In Fig. 3a, we plot the MSE versus iteration index

k. Consistently with the results in Fig. 2a, we notice the

following facts. ANQ-NIDS achieves the fastest convergence,

followed by ANQ-NEXT, ANQ-Dual, Q-Dual and Q-NEXT.

Comparing our quantization method with existing ones on the

same unquantized algorithm, we notice that the proposed ANQ

is more communication-efficient than Q-NEXT and Q-Dual:

ANQ-NEXT (6.28 bits) and ANQ-Dual (2.7 bits) use less

bits per iteration than Q-NEXT (36 bits) and Q-Dual (5 bits),

respectively, while at the same time converging faster. Compar-

ing with the compression-based algorithms LEAD and COLD,

it is shown that ANQ-NIDS achieves better convergence rate

with less bits.

2) Non-Smooth Logistic Regression (Fig. 3b): We now

consider the non-smooth instance of the logistic regression

problem (33), with α = 10−4. We tested the same algorithms

(with the same tuning) as described in Sec. VI-A for the

non-smooth linear regression problem. Fig. 3b plots the MSE

achieved by all the algorithms versus iterations k. The results

confirm the trends already commented in Fig. 2b.

C. Comparison of Quantization Rules

From the above results, it is clear that ANQ-NIDS outper-

forms existing algorithms using dynamic quantization (DYQ)–

including Q-Dual and Q-NEXT–as well as those employing

low-precision quantization (LPQ)–such as LEAD and COLD.

This advantage may be due to the black-box nature of ANQ: it

can be applied to a variety of distributed algorithms, including

those known in the literature to be the fastest ones. This is a

significant advantage over ad-hoc quantization schemes, which

are limited in their applicability to the specific algorithms

they are designed for. Therefore, an interesting question is

whether the performance superiority comes solely from the

underlying (unquantized) algorithm, i.e., NIDS, or also from

the quantization rule, i.e., ANQ. To answer this question,

we compare the above three quantization rules, DYQ, LPQ,

and ANQ on the same distributed algorithm, NIDS [48], [50].

Fig. 5. Network communication cost evaluation on non-smooth linear
regression problem with α = 10−4 versus d, where λ remains fixed for
all d in each algorithm.

Fig. 4a and Fig. 4b show the MSE versus iterations for

ANQ-NIDS, LPQ-NIDS, and DYQ-NIDS solving the smooth

linear regression and smooth logistic regression problems

(32) and (33) (r ≡ 0), respectively. The parameters for

DYQ-NIDS and LPQ-NIDS are selected to closely match the

performance of NIDS with machine precision while using

the smallest number of bits, whereas those for ANQ-NIDS

are selected according to our analysis. Both figures show

that ANQ-NIDS consistently requires less bits than the other

quantization schemes. More precisely, ANQ-NIDS uses 25%

less bits than DYQ-NIDS and 44% less then LPQ-NIDS in the

linear regression case, and 50% less bits than DYQ-NIDS and

27% less then LPQ-NIDS in the logistic regression problem.

D. Communication Cost

We now study the effect of the dimension d on the commu-

nication cost for different algorithms solving the non-smooth
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Fig. 6. Network communication cost evaluation of ANQ-NIDS on smooth linear regression problem.

linear regression problem (32), with α = 10−4. Note that

the rate of a machine precision algorithm λ depends on

both the weight matrix and the condition number κ = L/µ,

which depends itself on d. We chose the coefficient of the

l2 regularizer so as to make κ and thus λ remain fixed across

different d. The rest of the settings are the same as in Fig. 2b.

Fig. 5 plots the network communication cost Ccm(ε) versus

d as defined in (31), required to reach a target MSE-accuracy

ε = 10−8. We observe that Ccm scales roughly linearly with

respect to the dimension for all algorithms, which is consistent

with Theorem 13.

Finally, we investigate numerically the effect of σ and ω
on the network communication cost as defined in (31), for a

target MSE-accuracy ε = 10−14. We consider the ANQ-NIDS

algorithm with η0 = 0.001, solving the smooth linear regres-

sion problem (32), with α = 0. Fig. 6a plots the network

communication cost versus σ with ω = ω̄/2. Note that this

figure justifies the discussion in Sec. V that σ should be

chosen away from λ and 1 in order to save on communication

cost. Fig. 6a plots the communication cost (31) versus ω with

σ = 0.99 × λ + 0.01. It can be seen that, by optimizing the

compression rate ω, a saving of 15% in communication cost

can be obtained over a quantization scheme that employs no

compression (ω = 0). This observation numerically supports

our BC-rule, which generalizes the deterministic/probabilistic

quantizers that have no compression term.

VII. CONCLUSION

In this paper, we propose a black-box model and unified

convergence analysis for a general class of linearly conver-

gent algorithms subject to quantized communications. The

new black-box model encompasses composite optimization

problems and distributed algorithms using historical informa-

tion (e.g., EXTRA [43] and NEXT [40]), thus generalizing

existing algorithmic frameworks, which are not applicable

to these settings. To enable quantization (below machine

precision), we propose a novel biased compression (BC-)rule

that preserves linear convergence of distributed algorithms

while using a finite number of bits in each communication.

As special instance of the BC-rule, we also proposed a new

random or deterministic quantizer, the ANQ, coupled with a

communication-efficient encoding scheme. We analyzed the

communication cost of a gamut of distributed algorithms

equipped with the ANQ (in a unified fashion), showing favor-

able performance analytically and numerically, both in terms

of convergence rate and communication cost, with respect

to state-of-the-art quantization rules (including uniform and

compression-based ones) and ad-hoc distributed algorithms.

APPENDIX A

LINEAR CONVERGE UNDER QUANTIZATION

In this appendix, we prove Theorem 6. We begin by intro-

ducing some preliminary results, whose proofs are deferred

to Appendix A.3. Throughout this section, we make the

blanket assumption that the conditions in Theorem 6 are

satisfied. In particular, σ ∈ (λ, 1) and ω ∈ [0, ω̄(σ)), with

ω̄(σ) defined in (10). Due to the possibly random nature of

the quantizer, {zk, ck,s, ĉk,s}k≥0,s∈[R] is a stochastic process

defined on a proper probability space; we denote by Fk,s

the σ-algebra generated by {zk′

, ck′,s′

, ĉk′,s′}k′<k,s′∈[R] ∪
{zk, ck,s′

, ĉk,s′−1}s′≤s (ĉk,s excluded).

1. Preliminaries

The idea of the proof is to show by induction that both the

optimization error kzk − z∞k and the input to the quantizer,

kck,s − ĉk−1,sk2, are linearly convergent (in expectation) at

rate σ, i.e.,
q

E[
�
�zk − z∞

�
�

2
] ≤ V0 · (σ)k, (34)

q

E[
�
�ck,s − ĉk−1,s

�
�

2

2
] ≤ F s · (σ)k, ∀s ∈ [R] ∪ {0}, (35)
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where F 0 = 0, and V0, F s, s ∈ [R] satisfy

V0 ≥ max
n

kz0 − z∞k,
√

mdRη0 + ωF>1

σ − λ
L̃A

o

, (36)

F s ≥ max
n

LZc∗ + LC

√
mdη0 + LC(1 + ω)F s−1,

√
mdη0(1 + LCσ) + LCσ(1 + ω)F s−1 + LZ(1 + σ)V0

σ − ω

o

,

(37)

∀s ∈ [R], and we have defined F � (F s)s∈[R],

c∗ �
1

LZ
max
s=[R]

kCs(z0,0)k2, L̃A � LA

R−1X

s=0

(LC)s. (38)

The existence of such V0 and F s, s ∈ [R], is proved in the

following lemma.

Lemma 18: Let ω ∈ [0, ω̄(σ)). Then, (36) and (37) are

satisfied by

V0 = max
n

c∗, kz0 − z∞k
o

+
LAψ

√
mdR2η0

σ − λ
· 1 + Rω

σ [(1 + LCσ)ψ − 1]

1 − ω/ω̄
, (39)

F s =

√
mdη0(1 + LCσ) + 2LZV0(σ, ω, η0)

σ − ω

×
s−1X

s′=0

	 2LC

1 − ω/σ


s′

, s ∈ [R], (40)

where ψ � max{1, (2LC)R−1}.

Since the effect of kck,s − ĉk−1,sk2 on kzk − z∞k is

through quantization, we need the following bound on the

quantization error (its proof follows readily by the Cauchy-

Schwarz inequality).

Lemma 19: Let the quantizer Qi used by agent i ∈ [m]
satisfy the BC-rule (5) with bias η ≥ 0 and compression rate

ω ∈ [0, ω̄(σ)). Then the following holds for the stack Q �

[Q1, . . . , Qm]>:
q

E
*�
�Q(x)−x

�
�

2

2

+
+x
,
≤

√
mdη + ωkxk2, (41)

∀x = [x>
1 , . . . ,x>

m]> ∈ Rmd.
A direct application of Lemma 19 leads to the following

bound on the quantizer’s input, which we use recurrently in

the proofs:
q

E
*�
�ĉk,s − ck,s

�
�

2

2
|Fk,s

,

(Q-M)
=

q

E
*�
�Qk(ck,s − ĉk−1,s) − (ck,s − ĉk−1,s)

�
�

2

2
|Fk,s

,

(41)

≤
√

mdη0 · (σ)k + ω
�
�ck,s − ĉk−1,s

�
�

2
, a.s., (42)

for all s ∈ [R] and k = 0, 1, . . ., where we used ηk = η0 ·(σ)k.

The following lemma bounds the distortion introduced by

quantization in one iteration of (Q-M).

Lemma 20: There holds: for all k = 0, 1, . . . ,
q

E[kzk+1 − z∞k2] ≤ λ

q

E[
�
�zk − z∞

�
�

2
]

+L̃A

√
mdRη0 · (σ)k+L̃Aω

RX

s=1

q

E[kck,s − ĉk−1,sk2
2],

a.s., where L̃A is defined in (38).

We conclude this section of preliminaries with the following

useful result.

Lemma 21: Let {Xt : t ∈ [T ]} ⊂ R be a collection of

random variables. Then,
v
u
u
tE

�	 TX

t=1

Xt


2
�

≤
TX

t=1

q

E[X2
t ].

Proof: It can be proved by developing the square within

the expectation on the left hand side expression, and by using

E[XtXu] ≤
p

E[X2
t ]
p

E[X2
u]. �

2. Proof of Theorem 6

We prove (34) and (35) by induction. Let V0 and F s, s ∈
[R], satisfy (36) and (37). Since kz0 − z∞k ≤ V0 (see (36))

and c0,0 = ĉ−1,0 = 0, (34) holds for k = 0 and (35) holds

trivially for k = 0 and s = 0. We now use induction to prove

that (35) holds for k = 0 and s ∈ [R]. Assume that (35) holds

for k = 0 and s < R. Then, it follows that
�
�c0,s+1 − ĉ−1,s+1

�
�

2
=
�
�c0,s+1

�
�

2

(a)

≤
�
�Cs+1

(
z0,0

)�
�

2
+
�
�Cs+1

(
z0, ĉ0,s

)
− Cs+1

(
z0, c0,s

)�
�

2

+
�
�Cs+1

(
z0, c0,s

)
− Cs+1

(
z0,0

)�
�

2
(8),(38)

≤ LZc∗ + LC

�
�ĉ0,s−c0,s

�
�

2
+ LC

�
�c0,s−ĉ−1,s

�
�

2
, a.s.,

where in (a) we used the triangle inequality and c0,s+1 =
Cs+1

(
z0, ĉ0,s

)
. Taking the conditional expectation on both

sides and using Lemma 21 yield
q

E
*�
�c0,s+1 − ĉ−1,s+1

�
�

2

2
|F0,s

,

≤ LZc∗+LC

q

E
*�
�ĉ0,s − c0,s

�
�

2

2
|F0,s

,
+LC

�
�c0,s − ĉ−1,s

�
�

2

(42)

≤ LZc∗ + LC

√
mdη0 + LC(1 + ω)

�
�c0,s − ĉ−1,s

�
�

2
, a.s..

Taking the unconditional expectation on both sides and using

again Lemma 21 yield
q

E
*�
�c0,s+1 − ĉ−1,s+1

�
�

2

2

,

≤ LZc∗ + LC

√
mdη0 + LC(1 + ω)

q

E[
�
�c0,s − ĉ−1,s

�
�

2

2
]

(35)

≤ LZc∗ + LC

√
mdη0 + LC(1 + ω)F s

(37)

≤ F s+1,

which completes the induction proof of (35) for k = 0 and

s ∈ [R].
Now, let us assume that (34) and (35) hold for a generic

k = 0.1, . . .; we prove that they hold at k + 1. We begin

with (34). Invoking Lemmas 20, 21, and using the induction

hypotheses (34) and (35) at k, yield
q

E[kzk+1 − z∞k2] ≤ λV0 · (σ)k

+ L̃A

(√
mdRη0 + ωF>1

)
· (σ)k ≤ V0 · (σ)k+1,

where the last inequality follows from the definition of V0 in

(36), which concludes the induction argument for (34).

We now prove that (35) holds for k + 1, by induction over

s ∈ [R]. First, note that (35) holds trivially for k + 1 and
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s = 0, since ck+1,0 = ĉk,0 = 0. Now, assume that (35) holds

at iteration k + 1 for s < R. Then,
�
�ck+1,s+1 − ĉk,s+1

�
�

2
(Q-M)
=

�
�Cs+1

(
zk+1, ĉk+1,s

)
− Cs+1

(
zk+1, ck+1,s

)

+Cs+1
(
zk+1, ck+1,s

)
−Cs+1

(
zk, ĉk,s

)
+ck,s+1−ĉk,s+1

�
�

2

(a)

≤
�
�Cs+1

(
zk+1, ĉk+1,s

)
− Cs+1

(
zk+1, ck+1,s

)�
�

2

+
�
�Cs+1

(
zk+1, ck+1,s

)
− Cs+1

(
zk, ĉk,s

)�
�

2

+
�
�ck,s+1 − ĉk,s+1

�
�

2

(8),(9)

≤ LC

�
�ĉk+1,s − ck+1,s

�
�

2

+ LC

�
�ck+1,s − ĉk,s

�
�

2
+ LZ

�
�zk+1 − z∞

�
�

2

+ LZ

�
�zk − z∞

�
�

2
+
�
�ĉk,s+1 − ck,s+1

�
�

2
, a.s..

Then, taking the expectation conditional on

Fk+1,s and invoking Lemma 21 and (42) to boundq

E
*�
�ĉk+1,s − ck+1,s

�
�

2

2
|Fk+1,s

,
, yield

q

E[
�
�ck+1,s+1 − ĉk,s+1

�
�

2

2
|Fk+1,s] ≤ LC

√
mdη0 · (σ)k+1

+ LC(1 + ω)
�
�ck+1,s − ĉk,s

�
�

2
+ LZ

�
�zk+1 − z∞

�
�

2

+ LZ

�
�zk − z∞

�
�

2
+
�
�ĉk,s+1 − ck,s+1

�
�

2
, a.s..

Now, taking the expectation conditional on Fk,s+1 ⊆
Fk+1,s, invoking Lemma 21, and (42) to boundq

E
*�
�ĉk,s+1 − ck,s+1

�
�

2

2
|Fk,s+1

,
, yield

q

E[
�
�ck+1,s+1 − ĉk,s+1

�
�

2

2
|Fk,s+1]≤

√
mdη0(1 + LCσ)·(σ)k

+ LC(1 + ω)
q

E[kck+1,s − ĉk,sk2
2|Fk,s+1]

+ LZ

q

E[
�
�zk+1 − z∞

�
�

2

2
|Fk,s+1]

+ LZ

q

E[
�
�zk−z∞

�
�

2

2
|Fk,s+1]+ω

�
�ck,s+1−ĉk−1,s+1

�
�

2
,

a.s.. Taking the unconditional expectation and invoking

Lemma 21 again yield
q

E[
�
�ck+1,s+1 − ĉk,s+1

�
�

2

2
] ≤

√
mdη0(1 + LCσ) · (σ)k

+ LC(1+ω)

q

E[
�
�ck+1,s−ĉk,s

�
�

2

2
]+LZ

q

E[
�
�zk+1−z∞

�
�

2

2
]

+ LZ

q

E[
�
�zk − z∞

�
�

2

2
] + ω

q

E[
�
�ck,s+1 − ĉk−1,s+1

�
�

2

2
]

(a)

≤
√

mdη0(1 + LCσ) · (σ)k + LC(1 + ω)F s · (σ)k+1

+ ωF s+1 · (σ)k + LZ(1 + σ)V0 · (σ)k
(37)

≤ F s+1 · (σ)k+1,

where in (a) we used the induction hypotheses (35) (applied

to the second and last terms) and (34) (applied to the third

and fourth terms). This proves the induction for (35), and the

theorem.

3. Proof of Auxiliary Lemmas for Theorem 6

1) Proof of Lemma 18: It is not difficult to check that

conditions (36) and (37) can be satisfied by choosing

V0 ≥ max
n

c∗, kz0 − z∞k,
√

mdRη0 + ωF>1

σ − λ
L̃A

o

,

F s ≥
√

mdη0(1+LCσ)+LCσ(1+ω)F s−1+LZ(1+σ)V0

σ − ω
,

∀s ∈ [R], where c∗, L̃A are defined in (38). Moreover, since

ω < σ < 1, it is sufficient to choose

F s =
1

σ

√
mdη0(1+LCσ) + 2LCσF s−1+2LZV0

1 − ω/σ
, ∀s ∈ [R].

Solving this expression recursively yields (40).

We now prove (39). We begin noting that F s is a

non-decreasing function of s, hence F s ≤ FR. Moreover, FR

is an affine function of V0. Using the facts that ( 2LC

1−ω/σ )s ≤
ψ(1 − ω/σ)−s, where ψ � max{1, (2LC)R−1}, and

(1 − ω/σ)−s ≤ (1−ω/σ)(1−Rω/σ)−1, ∀s ∈ [R−1] ∪ {0},
and ω < ω̄(σ) < σ/R, we can upper bound F s as

F s ≤ FR ≤ a1 + V0a2 � F̄R, (43)

where

a1 � ψ
√

mdη0(1 + LCσ) · R/σ

1 − Rω/σ
, (44)

a2 � 2LZψ · R/σ

1 − Rω/σ
. (45)

Furthermore, since F>1 ≤ RFR ≤ R(a1 + V0a2) and L̃A =
LA

PR−1
s=0 (LC)s ≤ LAψR, to satisfy (36), it is sufficient to

choose V0 as

V0≥max
n

c∗, kz0 − z∞k, LAψR2

√
mdη0 + ω(a1+V0a2)

σ − λ

o

.

Using x ≥ max{c, a + bx} ⇔ x ≥ max{c, a/(1 − b)}, under

b < 1, the above condition is equivalent to

V0 ≥ max
n

c∗, kz0 − z∞k, LAψR2(
√

mdη0+ωa1)

σ − λ−LAψR2ωa2

o

, (46)

as long as LAψR2ωa2/(σ − λ) < 1. Solving with respect to

ω (note that a2 is a function of ω), this condition is equivalent

to ω ∈ [0, ω̄(σ)) with ω̄(σ) given by (10), hence it holds by

assumption. Substituting the values of a1, a2 in (46) and using

max{a, b} ≤ a + b (for a, b ≥ 0), yields (39). �.

2) Proof of Lemma 20: At iteration k, let ζs be defined as

ζs = A
(
zk, ĉk,1, . . . , ĉk,s, c̃s+1

s , . . . , c̃R
s

)
,

where

c̃s
s = ĉk,s and c̃`+1

s � C`+1
(
zk, c̃`

s

)
, ∀` ≥ s.

In other words, c̃`
s, ζ

s are the communication signals at round

` and the updated computation state, respectively, obtained by

applying the unquantized communication mapping after round

s and the quantized one before round s. Clearly, zk+1 =
A(zk, ĉk,1, · · · , ĉk,R) = ζR and Ã(zk) = ζ0 (unquantized

update of the computation state). It then follows that

zk+1 = ζR = Ã(zk) +
RX

s=1

(
ζs − ζs−1

)
, a.s..

Invoking the triangle inequality yields

�
�zk+1−z∞

�
� ≤

�
�Ã(zk)−z∞

�
�+

RX

s=1

kζs−ζs−1k, a.s.. (47)

Authorized licensed use limited to: Purdue University. Downloaded on April 29,2023 at 02:28:20 UTC from IEEE Xplore.  Restrictions apply. 



MICHELUSI et al.: FINITE-BIT QUANTIZATION FOR DISTRIBUTED ALGORITHMS WITH LINEAR CONVERGENCE 7271

We now study the second term. From the Lipschitz continuity

of A (Assumption 4) and the definition of ζs, it holds that

kζs − ζs−1k ≤ LA

RX

`=s

kc̃`
s − c̃`

s−1k2, a.s..

Furthermore,

kc̃s
s − c̃s

s−1k2 = kĉk,s − Cs(zk, ĉk,s−1)k2 = kĉk,s − ck,sk2

a.s., and, for ` > s,

kc̃`
s − c̃`

s−1k2 = kC`(zk, c̃`−1
s ) − C`(zk, c̃`−1

s−1)k2

≤ LCkc̃`−1
s − c̃`−1

s−1k2 ≤ · · · ≤ (LC)`−skĉk,s − ck,sk2, a.s.,

where the last step follows from induction over `. Replacing

these bounds in (47), we finally obtain
�
�zk+1 − z∞

�
�

≤
�
�Ã(zk) − z∞

�
�+ LA

RX

s=1

R−sX

`=0

(LC)`kĉk,s − ck,sk2

≤ λ
�
�zk − z∞

�
�+ L̃A

RX

s=1

kĉk,s − ck,sk2, a.s.,

where L̃A is defined in (38) and we used Assumption 1. Taking

the expectation conditional on the filtration Fk,s while apply-

ing Lemma 21 and (42), starting from s = R, R− 1, . . . , 1, it

follows that
q

E
*�
�zk+1−z∞

�
�

2|Fk,1
,
≤λ
�
�zk−z∞

�
�+L̃A

√
mdRη0 · (σ)k

+ L̃Aω
RX

s=1

q

E
*
kck,s − ĉk−1,sk2

2|Fk,1
,
, a.s..

Finally, taking unconditional expectation and using Lemma 21

concludes the proof.

APPENDIX B

DETERMINISTIC AND RANDOM QUANTIZER’S DESIGN

1. Proof of Lemma 7

Let Q(•) : [−δ, δ]d → Qd be a component-wise quantizer,

with the nth component quantizer Qn(•) mapping points in

the interval [−δ, δ] to discrete points in the set Q. We assume

that the same quantizer is applied across all n, since each

component is optimized with the same range and number of

quantization points. The goal is to define a quantizer Q which

satisfies the BC-rule within x ∈ [−δ, δ]d with maximal range

δ. To this end, a necessary and sufficient condition is

|Qn(x) − x| ≤ η + ω|x|, ∀x ∈ [−δ, δ], ∀n ∈ [d]. (48)

The sufficiency can be proved using Cauchy-Schwarz inequal-

ity. To prove the necessity, assume that (48) is violated for

some x ∈ [−δ, δ], i.e., |Qn(x)−x| > η+ω|x|, and let x = x1.

It follows that

kQ(x) − xk2 =
√

d|Qn(x) − x| >
√

dη + ω
√

d|x|
=

√
dη + ωkxk2,

implying the BC-rule is not satisfied at x.

Hence, we now focus on the design of a component-wise

quantizer Qn satisfying (48) with maximal range δ. In the

following, we omit the dependence on n for convenience.

Assume that N = |Q| is odd (the case N even can be

studied in a similar fashion, and is provided at the end of this

proof for completeness), and let Q � ∪(N−1)/2
`=0 {q̃`,−q̃`} be

the set of quantization points, with 0 = q̃0 < q̃1 < . . . , q̃` <
q̃`+1 < . . . . Note that we restrict to a symmetric quantizer

since the error metric is symmetric around 0 (the detailed proof

on the optimality of symmetric quantizers is omitted due to

space constraints). We then aim to solve

max
δ≥0,Q

δ

s.t. |Q(x) − x| ≤ η + ωx, ∀x ∈ [0, δ],
(49)

where the constraint (48) is imposed only to x ∈ [0, δ] since

the quantizer is symmetric around 0. Since the quantization

error in (49) is measured in Euclidean distance, it is optimal

to restrict the quantization points to Q ⊂ [−δ, δ] and to map

the input to the nearest quantization point (ties may be resolved

arbitrarily). Then, letting X` = ((q̃`−1 + q̃`)/2, (q̃` + q̃`+1)/2],
with q̃−1 = 0 and q̃(N+1)/2 = 2δ − q̃(N−1)/2, it follows that

[0, δ] ≡ ∪(N−1)/2
`=0 X` and Q(x) = q̃`, ∀x ∈ X`. Therefore, the

optimization problem (49) can be expressed equivalently as

max
δ≥0,q̃

δ

s.t. (q̃` − x)2≤(η + ωx)2, ∀x ∈ X`, ∀`=0, 1, . . . ,
N−1

2
,

0 = q̃0 ≤ · · · ≤ q̃(N+1)/2 = 2δ − q̃(N−1)/2.

Equivalently,

max
δ≥0,q̃

δ

s.t. max
x∈X`

(q̃` − x)2 − (η + ωx)2 ≤ 0, ∀`=0, 1, . . . ,
N−1

2
,

0 = q̃0 ≤ · · · ≤ q̃(N+1)/2 = 2δ − q̃(N−1)/2,

and solving the maximization with respect to x ∈ X` (note that

the quadratic function is convex in x, hence it is maximized

at the boundaries of X`), we obtain

max
δ≥0,q̃

q̃(N−1)/2 + q̃(N+1)/2

2

s.t. q̃` ≤ q̃`−1

	1 + ω

1 − ω




+
2η

1 − ω
, ∀` ∈ [(N + 1)/2],

0 = q̃0 < q̃1 < · · · < q̃(N+1)/2.

Solving this problem with respect to q̃ yields q0 = 0 and

q` = q`−1

	1 + ω

1 − ω




+
2η

1 − ω
, ∀` ≥ 1.

Solving by induction, we obtain q` as in (12), δ(η, ω, N) as

in (11), and

`(x) = sign(x) · min
n

` ≥ 0 :
q` + q`+1

2
≥ |x|

o

,

yielding (13) after solving with the expression of q`. A similar

technique can be proved for the case when N is even, yielding

quantization points

q` = −q−` =
η

ω

h (1 + ω)`

(1 − ω)`−1
− 1

i

, ∀` ≥ 1

and δ(η, ω, N)=
qN/2+qN/2+1

2 , which concludes the proof.
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2. Proof of Lemma 8

Using a similar technique as in Appendix B.1 when N is

odd, using the fact that [0, δ] = ∪`∈[(N−1)/2][q̃`−1, q̃`] and

δ = q̃N/2 it suffices to solve

max
δ≥0,q̃

q(N−1)/2

s.t. E[|Q(x)−x|2]≤(η+ωx)2, ∀x∈ [q̃`−1, q̃`], ∀`∈
�
N−1

2

�

,

E[Q(x)] = x, 0 = q̃0 ≤ · · · ≤ q̃(N−1)/2 = δ.

Furthermore, since x ∈ [q̃`−1, q̃`] is mapped to q̃`−1 w.p. (q̃`−
x)/(q̃`− q̃`−1) and to q̃` w.p. (x− q̃`−1)/(q̃`− q̃`−1) to satisfy

E[Q(x)] = x, the problem can be expressed equivalently as

max
δ≥0,q̃

q(N−1)/2

s.t. (x−q̃`)(x−q̃`−1)+(η+ωx)2≥0, ∀x∈[q̃`−1, q̃`],

∀`∈
�
N−1

2

�

, 0 = q̃0 ≤ · · · ≤ q̃(N−1)/2 = δ,

or equivalently

max
δ≥0,q̃

q(N−1)/2

s.t. min
x∈[q̃`−1,q̃`]

(x−q̃`)(x−q̃`−1)+(η+ωx)2≥0, ∀`∈
�
N−1

2

�

,

0 = q̃0 ≤ · · · ≤ q̃(N−1)/2 = δ.

Solving the minimization over x ∈ [q̃`−1, q̃`] and solving with

respect to q̃ yields the following optimal quantization points:

q0 = 0 and

q` =q`−1(
p

1 + (ω)2 + ω)2 + 2η(
p

1 + (ω)2 + ω), ∀`≥1.

Solving by induction, we obtain q` as in (15), δ(η, ω, N) as

in (14), and the probabilistic quantization rule as in (16), with

` given by

` = sign(x) · min
n

` ≥ 0 : q` ≥ |x|
o

,

yielding (16) after solving with the expression of q`.

A similar technique can be proved for the case when N is

even, yielding the quantization points

q` =
η

ω

�

(
p

1 + (ω)2 + ω)2`−1

p

1 + (ω)2
− 1

�

, ∀` ≥ 1.

and δ(η, ω, N) = qN/2, which concludes the proof.

1. Proof of Corollary 9

Let Q(x) be a generic deterministic or probabilistic quan-

tizer with domain [−δ, δ]d and codomain Q ∈ Rd with

|Q| < ∞, that satisfies the BC-rule with η = 0. It follows

that

ωkxk2 ≥
q

E[kQ(x) − xk2
2] ≥ min

q∈Q
kq− xk2

= kQdet(x) − xk2, ∀x ∈ [−δ, δ]d, (50)

where the lower bound is achievable by a deterministic quan-

tizer that maps x to the nearest quantization point, denoted

as Qdet(x). Let Qn(x) = e>nQdet(xen) be the projection of

Qdet on its nth element, where en is the nth canonical vector.

Since kQdet(xen)−xenk2 ≥ |Qn(x)−x|, from (50) it follows

that

ωkxenk2 = ω|x| ≥ kQdet(xen) − xenk2 ≥ |Qn(x) − x|,

∀x ∈ [−δ, δ], hence Qn satisfies the BC-rule with η = 0 as

well. Note that Qn is a scalar quantizer with Nn ≤ |Q|
quantization points. However, Lemma 7 dictates that δ =
0 for this quantizer, hence the contradiction. We have thus

proved the statement of Corollary 9 for both deterministic and

probabilistic compression rules.

APPENDIX C

COMMUNICATION COST ANALYSIS

1. Proof of Theorem 12

We first present some preliminary results instrumental in

proving Theorem 12, whose proofs are deferred to Appen-

dix C.2. The idea of the proof is to study the asymptotic

behavior of an upper bound on the number of bits required

per iteration, provided in the following lemma.

Lemma 22: Under the same setting as Theorem 6, and the

proposed ANQ satisfying the BC rule, the average number

of bits required per agent at the kth iteration, Bk, is upper

bounded as

E[Bk] ≤ log2(S + 1)

�

3dR + dR logS

�

3 +
F̄R(σ, ω, η0)√

mdη0

��

bits, ∀k ≥ 0, where F̄R(σ, ω, η0) is defined in (43).

In addition, we need the following lemma to connect the

asymptotic results of the logarithmic function and its argu-

ment.

Lemma 23: For positive functions f, g, it holds: ln f(x) =
O(ln g(x)) as x → x0 if lim infx→x0

g(x) > 1, and f(x) =
O(g(x)) as x → x0.

We are now ready to prove the main theorem. From

Lemma 22, the average number of bits per agent per iteration

is upper bounded by

E[Bk]≤ log2(S+1)

�

3dR + dR logS

�

3 +
F̄R(σ, ω, η0)√

mdη0

��

,

∀k = 0, 1, . . . , where

F̄R(σ, ω, η0) = a1 + a2V0,

with a1, a2 and V0 defined in (44), (45) and (39), respectively.

We want to prove that this is E[Bk] = O(d ln(1 + 1
σ(σ−λ) ))

under Assumption 11 and conditions

η0 = Θ(LZ(σ − λ)), 1 − ω/ω̄(σ) = Ω(1).

Using the fact that F̄R(σ, ω, η0)/η0 = a1/η0 + a2V0/η0,

it is sufficient to show that a1/(
√

mdη0) = O(1 + 1
σ ) and

a2V0/(
√

mdη0) = O(1 + 1
σ(σ−λ) ). In fact, using R/σ ≤

1/ω̄(σ), we can bound

a1√
mdη0

≤ 1

σ
(1 + LCσ)max{1, (2LC)R−1} R

1 − ω/ω̄(σ)
,

a2 ≤ 2LZ

σ
max{1, (2LC)R−1} R

1 − ω/ω̄(σ)
.
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Clearly, a1/(
√

mdη0) = O(1 + 1
σ ) and a2 = O(LZ

σ ) since

LC , R = O(1) and 1 − ω/ω̄(σ) = Ω(1). We next study V0.

From its expression in (39), we notice that V0 = O(
√

md)
since ω/σ ≤ 1, max{c∗, kz0 − z∞k2} = O(

√
md), η0 =

Θ(LZ(σ−λ)), LA ·LZ, LC , R = O(1), and 1−ω/ω̄ = Ω(1).
Therefore, it follows that a2V0/(

√
mdη0) = O( 1

σ(σ−λ) ) =

O(1 + 1
σ(σ−λ) ), and the proof is completed by invoking

Lemma 23.

2. Auxiliary Results for Theorem 12

3) Proof of Lemma 22: Let ∆c
k,s
i � c

k,s
i − ĉ

k−1,s
i be

the input to the quantizer for agent i, at iteration k and

communication round s. We now study the average number

of bits required for i) the deterministic quantizer, and ii) the

probabilistic quantizer with E[Q(x)] = x.

i) Deterministic Quantizer: The average number of bits

required is bounded as (see (18), one can also verify that the

following also holds for even N )

bk,s
i ≤ log2(S+1)

�

3d+d logS

�

2+
ln
(
1+

ωk∆c
k,s
i k2√

dη0·(σ)k

)

ln(1 + ω) − ln(1 − ω)

��

bits. We now upper bound the argument inside the second log-

arithm. Since it is a decreasing function of ω, it is maximized

in the limit ω → 0, yielding

ln
(
1 +

ωk∆c
k,s
i k2√

dη0·(σ)k

)

ln(1 + ω) − ln(1 − ω)
≤ k∆c

k,s
i k2

2
√

dη0 · (σ)k
.

With this upper bound, we can then upper bound the average

number of bits per agent at communication round s, iteration

k, as

E[bk,s] �
1

m

mX

i=1

E[bk,s
i ]

(a)

≤ log2(S + 1)

�

3d + d logS

�

2 +

p

E[kck,s − ĉk−1,sk2
2]

2
√

mdη0 · (σ)k

��

(b)

≤ log2(S + 1)

�

3d + d logS

�

2 +
F s(σ, ω, η0)

2
√

mdη0

��

(c)

≤ log2(S + 1)

�

3d + d logS

�

2 +
F̄R(σ, ω, η0)

2
√

mdη0

��

,

where (a) follows from Cauchy-Schwarz inequality, Jensen’s

inequality, and the definition of ∆ck,s; (b) follows from (35);

and (c) follows from F s ≤ F̄R (see (43)).

ii) Probabilistic Quantizer With E[Q(x)] = x: Using the

same technique as in i), along with the inequality 1 − 1/x ≤
ln(x) ≤ x − 1 for x > 1 to bound the argument inside the

second logarithm of (19), we find the bound

E[bk,s] ≤ log2(S + 1)

�

3d + d logS

�

3 +
F̄R(σ, ω, η0)√

mdη0

��

.

One can also verify that it also holds for even N .

Finally, for both the deterministic and probabilistic cases,

the proof is completed by summing over s ∈ [R] to get the

average communication cost per agent at iteration k.

4) Proof of Lemma 23: If f(x) = O(g(x)) as x → x0 and

lim infx→x0
g(x) > 1, then

lim sup
x→x0

+
+
+
ln f(x)

ln g(x)

+
+
+ ≤ 1 + lim sup

x→x0

+
+
+
ln(f(x)/g(x))

ln g(x)

+
+
+

(a)

≤ 1 +
lim supx→x0

| ln(f(x)/g(x))|
| lim infx→x0

ln g(x)| < ∞,

where (a) follows from lim infx→x0
g(x) > 1. This completes

the proof.

3. Proof of Theorem 13

Since
p

E[kzk − z∞k2] ≤ V0 · (σ)k (cf. Theorem 6), the

ε-accuracy is achieved if k[− ln(σ)] ≥ ln(V0/
√

mε), which

yields k(1−σ) ≥ ln(V0/
√

mε) since − ln(σ) ≥ 1−σ. Hence,

ε-accuracy is achieved if all conditions in Theorem 6 hold

and k ≥ kε �
0

1
1−σ ln V0√

mε

1
. Hence, to compute the upper

bound of the communication cost
Pkε−1

k=0 E[Bk], we need

the upper bounds for E[Bk], 1
1−σ and V0. In the proof of

Theorem 12, we found that, under Assumption 11 and the

conditions 1−ω/ω̄(σ) = Ω(1), η0 = Θ(LZ(σ − λ)),

E[Bk] = O
	

d log2

	

1 +
1

σ(σ − λ)





, V0 = O(
√

md).

Moreover, it can be shown that 1/σ ≤ (1−λ)2

(1−σ)(σ−λ) for σ ∈
(λ, 1), and therefore

1

σ(σ − λ)
≤ 1

(1 − λ)

h (1−λ)2

(1 − σ)(σ − λ)

i2 1 − σ

1 − λ
=O

	 1

1 − λ




,

where we used the assumption in Theorem 13 that
(1−λ)2

(1−σ)(σ−λ) = O(1). It then follows from Lemma 23 that

E[Bk] = O(d log2(1 + 1
1−λ )). On the other hand, we can

bound kε as

kε≤
1

1−λ

	

1 − λ+
1−λ

1 − σ
log2

V0√
mε




=O
	 1

1−λ
log2

	d

ε





,

since 1−λ
1−σ = O(1) and V0 = O(

√
md), Therefore, the

communication cost satisfies

kε−1X

k=0

E[Bk] = O
	

dkε log2

	

1 +
1

1 − λ





= O
	 d

1 − λ
log2

	d

ε




log2

	

1 +
1

1 − λ





,

which completes the proof.

4. Proof of Lemma 10

Consider ` ≥ 0. Using (17), the number of information

symbols required to encode ` is

b∗` = min

 

b ≥ 0 : ` ≤
!

(S)b+1 − 1

2(S − 1)

"�

.

Similarly, for ` < 0,

b∗` = min

 

b ≥ 0 : −` ≤
�

(S)b+1 − 1

2(S − 1)

�

− 1

�

.
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Since b (S)b+1−1
2(S−1) c ≥ d (S)b+1−1

2(S−1) e − 1 ≥ (S)b+1−1
2(S−1) − 1, we can

then upper bound b`, ` ∈ Z, as

b∗` ≤ min{b ≥ 1 : 1 + 2(S − 1)(1 + |`|) ≤ (S)b+1}
= min{b ≥ 1 : b ≥ logS(2 − 1/S + 2(1 − 1/S)|`|)}
= dlogS(2 − 1/S + 2(1 − 1/S)|`|)e.

Using dxe ≤ x + 1 We can then further upper bound

b∗` ≤ 1 + logS(2−1/S+2(1− 1/S)|`|) ≤ logS(2S + 2S|`|)
≤ 2 + logS(1 + |`|).

This yields the upper bound to the communication cost

(including the termination symbol)

C̄comm(`) ≤ 3 + logS(1 + |`|) symbols. (51)

Let x = (xn)d
n=1. Note that for both the deterministic and

probabilistic quantizers, we can express `(x) as

|`(x)| ≤
l

c1 + c2 ln
	

1 +
ω

η
|x|

m

,

for some c1 ≤ 0, c2 > 0 (see (13) and (16) for a closed-form

expression of c1 and c2). Invoking (51) and C̄comm(x) =
Pd

n=1 C̄comm(`n) yields

C(x) ≤ 3d +

dX

n=1

logS

�

1 +
l

c1 + c2 ln
	

1 +
ω

η
|xn|


m�

(a)

≤ 3d + d logS

�

2 + c1 + c2 ln
	

1 +
ωkxk2√

dη


�

symbols

= log2(S+1)

�

3d + d logS

�

2 + c1 + c2 ln
	

1+
ωkxk2√

dη


��

bits, where (a) follows from dxe ≤ x+1, Jensen’s inequality

and Cauchy-Schwarz inequality, in order. Invoking the expres-

sions of c1 and c2 from (13) and (16), respectively, yield the

result for the deterministic and probabilistic quantizers with

odd N . Similar techniques can be used to find `(x) and thus

the result for quantizers with even N .

APPENDIX D

EXAMPLES OF (M)

In this section, we will show that (M) contains a gamut

of distributed algorithms, corresponding to different choices

of R, Cs
i , and Ai. Given (P), we will assume that each

fi is L-smooth and µ-strongly convex, and define x̃∗
i =

arg minxi fi(xi).
Every distributed algorithm on mesh networks we will

describe below alternates one step of optimization with pos-

sibly multiple rounds of communications. In each commu-

nication round, every agent i combines linearly the signals

received by its neighbors using weights (wij)j∈Ni ; let W =
(wij)

m
i,j=1. Consistently with the undirected graph G, we will

tacitly assume that W is symmetric and doubly stochastic,

i.e., W = W> and W · 1 = 1, with wij > 0 if (j, i) ∈ E ,

and wij = 0 otherwise. We assume that the eigenvalues of

W are in [ν, 1], with ν > 0.7 Note that this condition can be

7This assumption is also required in [50] for prox-EXTRA, prox-NEXT,

prox-DIGing, and prox-NIDS to achieve ‖zk − z
∞‖ = O(

√
md(λ)k).

achieved by design: in fact, given a doubly stochastic weight

matrix W̃, one can choose

W =
(1 + ν)

2
I +

(1 − ν)

2
W̃, (52)

for any given ν ∈ (0, 1]. Note that, for any given z0 and z∞

with bounded entries, it holds kz0 − z∞k2 = O(
√

md).
Finally, in the rest of this section, we will adopt the

following notations: xk = (xk
i )m

i=1,y
k = (yk

i )m
i=1,w

k =
(wk

i )m
i=1,x = (xi)

m
i=1,y = (yi)

m
i=1, w = (wi)

m
i=1 and

x̃∗ = (x̃∗
i )

m
i=1; Ŵ = W ⊗ Id, and G† is the pseudo-inverse

of matrix G. Given xk = (xk
i )m

i=1, we also define ∇f(xk) �

(∇fi(x
k
i ))m

i=1. For any function g : Rd → R and positive

semi-definite matrix G, define kxkG �
√

x>Gx and

proxG,g(x) � argmin
z∈Rd

g(z) +
1

2
kz − xk2

G−1 .

1. GD Over Star Networks [51]

Consider Problem (P) with r ≡ 0 over a master/workers

system. The GD update

xk+1 = xk − γ

m

mX

i=1

∇fi

(
xk
)
, (53)

with x0 ∈ Rd, is implemented at the master node as follows:

at iteration k, the server broadcasts xk to the m agents; each

agent i then computes its own gradient ∇fi(x
k) and sends

it back to the master; upon collecting all local gradients, the

server updates the variable xk+1 according to (53).

The GD (53) can be cast as (M) with R = 1 round of

communications, using the following:

z = 1m ⊗ x,

ĉ
k,1
i = C1

i

(
zk

i ,0
)

= ∇fi

(
xk
)
, (54)

zk+1 = A
(
zk, ĉk,1

[m]

)
= 1m ⊗ xk − γ

m

mX

i=1

1m ⊗ ĉ
k,1
i . (55)

We now show that the above instance of (M) satisfies Assump-

tions 1, 4, 5, and 11.

• On Assumption 1: Using [51] it is not difficult to check

that, if γ = 2/(µ + L), then GD over star networks satisfies

Assumption 1 with

λ =
κ − 1

κ + 1
< 1,

and the norm k • k defined as

kzk =
√

mkxk2.

Note that kzk = kzk2.

• On Assumptions 4, 5, and 11: Based on (54) and (55),

the mappings A and C read

A(z, c1) = z− γ

m

mX

i=1

1m ⊗ ci, C1(z,0) = ∇f(z),

respectively; and Z = {1m ⊗ x : x ∈ Rd}. Since

A (z, c) −A (z, c0) = − γ

m

mX

i=1

1m ⊗ (ci − c0i) ,
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we have

�
�A (z, c)−A (z, c0)

�
�=

γ√
m

�
�
�
�
�

mX

i=1

(ci − c0i)

�
�
�
�
�

2

≤γ kc − c0k2 .

Hence, Assumption 4 holds with LA = γ.

We now derive LC and LZ . Note that

kC1(z,0) − C1(z0,0)k2 ≤ L kz − z0k2 ,

which implies that Assumption 5 holds with LC = 0 and

LZ = L. Since γ ≤ 2/L, it follows that LA · LZ = O(1)
and kC1(z0,0)k2 ≤ Lkz0 − x̃∗k2 = O(LZ

√
md). Hence,

Assumption 11 holds.

2. (Prox-)EXTRA [50]

The update of prox-EXTRA solving (P) reads

xk = proxγI,r(w
k),

wk+1 = Ŵxk − γ∇f(xk) − yk,

yk+1 = yk +
(
I − Ŵ

)
wk+1,

with y0 = 0 and w0 ∈ Rmd.

Prox-EXTRA can be cast as (M) with R = 2 rounds of

communications with

z> = [y>,w>],

ĉ
k,1
i = C1

i

(
zk

i ,0
)

= proxγI,r(w
k
i ), (56)

ĉ
k,2
i =C2

i

(
zk

i , ĉk,1
Ni

)
=
X

j∈Ni

wij ĉ
k,1
j − γ∇fi(ĉ

k,1
i ) − yk

i , (57)

zk+1
i = Ai

(
zk

i , ĉk,1
Ni

, ĉk,2
Ni

)

=

�

yk
i +

P

j∈Ni
wij(ĉ

k,2
i − ĉ

k,2
j )

ĉ
k,2
i

�

. (58)

We now show that the above instance of (M) satisfies

Assumptions 1, 4, 5, and 11.

• On Assumption 1: Using [50, Theorem 18] it is not

difficult to check that, if γ = 2ρm(W)
L+µρm(W) and ν = κ

κ+1 , then

prox-EXTRA satisfies Assumption 1 with

λ = max
nκ − ρm(W)

κ + ρm(W)

1
p

ρm(W)
,
q

ρ2

(
W
)o

≤ max
n κ

κ + 1

s

(κ + 1)3

κ(κ + 2)2
,
q

ρ2

(
W
)o

≤ max
n κ

κ + 1
,
q

ρ2

(
W
)o

< 1,

(note that ρm(W) ≥ ν) and the norm k • k defined as

kzk2 = y>(I − Ŵ)†y + w>Ŵ−1w.

Note that kzk2 ≥ kzk2
2, due to ρi(W) ∈ [ν, 1], i ∈ [m].

• On Assumptions 4, 5, and 11: Based on (56), (57) and

(58), the mappings A and C read

A(z, c1, c2) =

�

y + (I − Ŵ)c2

c2

�

,

C1(z,0)=proxγI,r(w), and C2(z, c) = Ŵc−γ∇f(c) − y,

respectively; and Z = span(I − Ŵ) × Rmd, where we

defined (with a slight abuse of notation) proxγI,r(w) =
(proxγI,r(wi))

m
i=1. Note that

�
�A

(
z, c1, c

)
−A

(
z, c1, c0

) �
�

2
= k

p

Ŵ−1(c − c0)k2
2

+
�
�
�

q

I− Ŵ(c − c0)
�
�
�

2

2
≤ (1 + ν−1)kc−c0k2

2 ≤ 3kc−c0k2
2,

(note that ν−1 = 1 + κ−1 ≤ 2) and A
(
z, c1, c2

)
is constant

with respect to c1, hence Assumption 4 holds with LA =
√

3.

We next derive LC and LZ . Since the proximal mapping is

non-expansive [58], it follows that
�
�C1(z,0) − C1(z0,0)

�
�

2
= kproxγI,r(w) − proxγI,r(w

0)k2

≤ kw − w0k2 ≤ kz − z0k2,
�
�C2(z, c) − C2(z0, c0)

�
�

2

=
�
�Ŵ(c−c0)−γ(∇f(c)−∇f(c0))−(y−y0)

�
�

2

≤ kc− c0k2 + γLkc− c0k2 + kz− z0k2.

Hence, Assumption 5 holds with LC = 1 + γL and LZ = 1.

Since γ ≤ 2/L, it follows that LC = O(1). For the initial

conditions, we have

kC1(z0,0)k2 = kproxγI,r(w
0)k2

(a)

≤ kproxγI,r(w
0) − proxγI,r(w

∞)k2 + kproxγI,r(w
∞)k2

(b)

≤ kw0 − w∞k2 + kx∞k2 = O(
√

md),

kC2(z0,0)k2 = ky0 + γ∇f(0)k2

≤ ky0 − y∞k2 + ky∞k2 + γk∇f(0)k2

≤ ky0 − y∞k2 + ky∞k2 + γLkx̃∗k2 = O(
√

md),

where (a) follows from the triangle inequality; and (b) follows

from the non-expansive property of the proximal mapping, and

x∞ = proxγI,r(w
∞) at the fixed point.

Therefore, LA · LZ = O(1), LC = O(1), kC1(z0,0)k2 =
O(LZ

√
md) and kC2(z0,0)k2 = O(LZ

√
md); hence

Assumption 11 holds.

3. (Prox-)NIDS [50]

The update of prox-NIDS solving (P), reads

xk = proxγI,r(w
k),

wk+1 = Ŵ
(
xk − γ∇f(xk)

)
− yk,

yk+1 = yk + (I − Ŵ)wk+1,

with y0 = 0 and w0 ∈ Rmd.

Prox-NIDS can be cast as (M) with R = 2 rounds of

communications, using the following:

z> = [y>,w>],

C1
i

(
zk

i ,0
)

= proxγI,r(w
k
i ) − γ∇fi(proxγI,r(w

k
i )), (59)

C2
i

(
zk

i , ĉk,1
Ni

)
=
X

j∈Ni

wij ĉ
k,1
j − yk

i , (60)

zk+1
i = Ai

(
zk

i , ĉk,1
Ni

, ĉk,2
Ni

)

=

�

yk
i +

P

j∈Ni
wij

	

ĉ
k,2
i − ĉ

k,2
j




ĉ
k,2
i

�

. (61)
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We now show that the above instance of (M) satisfies Assump-

tions 1, 4, 5, and 11.

• On Assumption 1: Using [50, Theorem 18] it is not

difficult to check that, if γ = 2/(µ + L), then prox-NIDS

satisfies Assumption 1 with

λ = max
nκ − 1

κ + 1
,
q

ρ2

(
W
)o

< 1,

and the norm k • k defined as

kzk2 = y>Ŵ−1(I − Ŵ)†Ŵ−1y + w>Ŵ−1w.

Note that kzk2 ≥ kzk2
2.

• On Assumptions 4, 5, and 11: Based on (59), (60), and

(61), the mappings A and C read

A(z, c1, c2) =

�

y + (I− Ŵ)c2

c2

�

,

C1(z,0) = proxγI,r(w) − γ∇f(proxγI,r(w)), and

C2(z, c) = Ŵc − y,

respectively; and Z = span(I − Ŵ) × Rmd. Note that
�
�A (z, c1, c) −A (z, c1, c

0)
�
� = kŴ−1(c − c0)k2

≤ ν−1kc − c0k2,

and A(z, c1, c2) is constant with respect to c1. It follows that

Assumption 4 holds with LA = ν−1.

We next derive LC and LZ . Using the non-expansive

property of the proximal mapping, it holds

kC1(z,0) − C1(z0,0)k2 = k(proxγI,r(w) − proxγI,r(w
0))

− γ(∇f(proxγI,r(w)) −∇f(proxγI,r(w
0)))k2

≤ (1 + γL)kproxγI,r(w) − proxγI,r(w
0)k2

≤ (1 + γL)kw − w0k2 ≤ (1 + γL)kz− z0k2,

kC2(z, c) − C2(z0, c0)k2 = kŴ(c − c0) − (y − y0)k2

≤ kŴ(c − c0)k2 + ky − y0k2 ≤ kc− c0k2 + kz − z0k2,

which implies that Assumption 5 holds with LC = 1 and

LZ = 1 + γL. Since γ ≤ 2/L, it follows that LZ = O(1).
For the initial conditions, using x∞ = proxγI,r(w

∞) for the

fixed point, we have

kC1
(
z0,0

)
k2 ≤ kproxγI,r(w

0)−proxγI,r(w
∞)+x∞k2

+ γk∇f(proxγI,r(w
0)) −∇f(proxγI,r(w

∞)) + ∇f(x∞)k2

≤ kw0 − w∞k2 + kx∞k2 + γLkw0 − w∞k2

+ γLkx0 − x̃∗k2 = O(
√

md)

and kC2(z0,0)k2 ≤ ky0 − y∞k2 + ky∞k2 = O(
√

md).
Therefore, LA · LZ = O(1), LC = O(1), kC1(z0,0)k2 =

O(LZ

√
md), and kC2(z0,0)k2 = O(LZ

√
md); hence

Assumption 11 holds.

4. NIDS [48]

The update of NIDS solving (P) with r ≡ 0, reads

xk+1 = xk − γ∇f(xk)

− γ
h

yk + c(I − W̌)
(
xk − γ∇f(xk) − γyk

)i

,

yk+1 = yk + c(I − W̌)
(
xk − γ∇f(xk) − γyk

)
,

with x0 ∈ Rmd and y0 = 0, where the step-size satisfies γ <
2/L, W̌ = W̃ ⊗ I, W̃ is a doubly stochastic weight matrix

satisfying the communication topology, and c > 0 satisfies

cγ(I− W̃) � I.

NIDS [48] can be cast as (M) with R = 1 round of

communications, using the following:

z> = [x>, γy>],

C1
i (zk

i ,0) = xk
i − γ∇fi(x

k
i ) − γyk

i , (62)

zk+1
i = Ai(z

k
i , ĉk,1

Ni
)

=

�

xk
i − γ∇fi(x

k
i ) − γyk

i − γc
P

j∈Ni
w̃ij(ĉ

k,1
i − ĉ

k,1
j )

γyk
i + γc

P

j∈Ni
w̃ij(ĉ

k,1
i − ĉ

k,1
j )

�

.

(63)

We now show that the above instance of (M) satisfies

Assumptions 1, 4, 5, and 11.

• On Assumption 1: Using [48] it is not difficult to check

that, if γ = 1/L and c = 1
2γ , then NIDS satisfies Assumption 1

with

λ = max
np

1 − κ−1,

s

1 + ρ2(W̃)

2

o

,

and the norm k • k defined as

kzk2 = kxk2
2 +

1

γ
kγyk2

c−1(I−W̌)†
,

which satisfies kzk2 ≥ kzk2
2. Note that, with W defined as in

(52), we can further bound

λ ≤ max
np

1 − κ−1,
p

ρ2(W)
o

< 1.

• On Assumptions 4, 5, and 11: Based on (62) and (63),

the mappings A and C read

A(z, c1) =

�
x− γ∇f(x) − γy − γc(I− W̌)c1

γy + γc(I− W̌)c1

�

and

C1(z,0) = x − γ∇f(x) − γy,

respectively; and Z = Rmd × span(I − W̌). Note that
�
�A (z, c) −A (z, c0)

�
�

2
= (cγ)2(c − c0)>(I − W̌)2(c − c0)

+ cγ(c − c0)>(I − W̌)(c − c0) ≤ 2kc− c0k2
2.

It follows that Assumption 4 holds with LA =
√

2.

We next derive LC and LZ . Using the non-expansive

property of the proximal mapping, it holds

kC1(z,0) − C1(z0,0)k2

= k(x − x0) − γ[∇f(x) −∇f(x0)] − γ(y − y0)k2

≤ kx − x0k2 + kγy − γy0k2 + γLkx− x0k2

≤ (
√

2 + γL)kz− z0k2,

which implies that Assumption 5 holds with LC = 1 and

LZ =
√

2 + γL. Since γ = 1/L, it follows that LZ = O(1).
For the initial conditions, we have

kC1(z0,0)k2≤kx0 − x∞+x∞k2 + γk∇f(x0) −∇f(x̃∗)k2

≤ kx0 − x∞k2 + kx∞k2 + γLkx0−x̃∗k2 =O(
√

md).

Therefore, LA · LZ = O(1), LC = O(1), kC1(z0,0)k2 =
O(LZ

√
md); hence Assumption 11 holds.
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5. (Prox-)NEXT [50]

The update of prox-NEXT solving (P) reads

xk = proxγI,r(w
k),

wk+1 = Ŵ2
(
xk − γ∇f(xk)

)
− yk,

yk+1 = yk + (I − Ŵ)2wk+1,

with y0 = 0 and w0 ∈ Rmd.

Prox-NEXT can be cast as (M) with R = 4 rounds of

communications, using the following definitions:

z> = [y>,w>],

ĉ
k,1
i =C1

i

(
zk

i ,0
)
=proxγI,r(w

k
i )−γ∇fi(proxγI,r(w

k
i )), (64)

ĉ
k,2
i = C2

i

(
zk

i , ĉk,1
Ni

)
=
X

j∈Ni

wij ĉ
k,1
j , (65)

ĉ
k,3
i = C3

i

(
zk

i , ĉk,2
Ni

)
=
X

j∈Ni

wij ĉ
k,2
j − yk

i , (66)

ĉ
k,4
i = C4

i

(
zk

i , ĉk,3
Ni

)
=
X

j∈Ni

wij

(
ĉ

k,3
i − ĉ

k,3
j

)
, (67)

zk+1
i = Ai

(
zk

i , ĉk,1
Ni

, ĉk,2
Ni

, ĉk,3
Ni

, ĉk,4
Ni

)

=

�

yk
i +

P

j∈Ni
wij

(
ĉ

k,4
i − ĉ

k,4
j

)

ĉ
k,3
i

�

. (68)

We now show that the above instance of (M) satisfies Assump-

tions 1, 4, 5, and 11.

• On Assumption 1: Using [50, Theorem 18] it is not

difficult to check that, if γ = 2/(µ + L), then prox-NEXT

satisfies Assumption 1 with

λ = max
nκ − 1

κ + 1
,
q

1 − (1 − ρ2

(
W
)
)2
o

< 1,

and the norm k • k defined as

kzk2 = yŴ−2
(
(I − Ŵ)2

)†
Ŵ−2y +

�
�Ŵ−2w

�
�

2

I−(I−Ŵ)2
.

Note that kzk2 ≥ kzk2
2.

• On Assumptions 4, 5, and 11: Based on (64)-(68), the

mappings A and C read

A(z, c1, c2, c3, c4) =

�

y + (I − Ŵ)c4

c3

�

,

C1(z,0)=proxγI,r(w)−γ∇f(proxγI,r(w)), C2(z, c)=Ŵc,

C3(z, c) = Ŵc − y, and C4(z, c) = (I − Ŵ)c,

respectively; and Z = span(I − Ŵ) × Rmd. Note that

kA(z, c1, c2, c, c4) −A(z, c1, c2, c0, c4)k2

= (c − c0)>Ŵ−2[2Ŵ−1 − I](c − c0)

≤ ν−2(2ν−1 − 1)kc− c0k2
2 ≤ ν−4kc − c0k2

2

and
�
�A (z, c1, c2, c3, c) −A (z, c1, c2, c3, c

0)
�
�

= kŴ−2(c − c0)k2 ≤ ν−2kc− c0k2.

Moreover, A(z, c1, c2, c3, c4) is constant with respect to

c1, c2. Therefore, Assumption 4 holds with LA = ν−2.

We next derive LC and LZ . Using the non-expansive

property of the proximal operator, it follows that

kC1(z,0) − C1(z0,0)k2 = k(proxγI,r(w) − proxγI,r(w
0))

− γ(∇f(proxγI,r(w)) −∇f(proxγI,r(w
0)))k2

≤ (1 + γL)kproxγI,r(w) − proxγI,r(w
0)k2

≤ (1 + γL)kw − w0k2 ≤ (1 + γL)kz− z0k2,

kC2(c, z) − C2(c0, z0)k2 = kŴ(c − c0)k2 ≤ kc − c0k2,

kC3(c, z) − C3(c0, z0)k2 ≤ kŴ(c − c0)k2 + ky − y0k2

≤ kc− c0k2 + kz − z0k2,

kC4(c, z) − C4(c0, z0)k2 = k(I − Ŵ)(c − c0)k2 ≤ kc− c0k2,

which implies that Assumption 5 holds with LC = 1 and

LZ = 1 + γL. Since γ ≤ 2/L, it follows that LZ =
O(1). For the initial conditions, using the fixed point x∞ =
proxγI,r(w

∞), we have

kC1(z0,0)k2 ≤ kproxγI,r(w
0) − proxγI,r(w

∞) + x∞k2

+γk∇f(proxγI,r(w
0))−∇f(proxγI,r(w

∞))+∇f(x∞)k2

≤(1+γL)kw0−w∞k2+kx∞k2+γLkx∞−x̃∗k2=O(
√

md)

and kC2(z0,0)k2 = kC3(z0,0)k2 = kC4(z0,0)k2 = 0.

Therefore, LA · LZ = O(1), LC = O(1), kCi(z0,0)k2 =
O(LZ

√
md), ∀i = 1, . . . , 4; hence Assumption 11 holds.

6. (Prox-)DIGing [50]

The update of prox-DIGing solving (P), reads

xk = proxγI,r(w
k),

wk+1 = Ŵ2xk − γ∇f(xk) − yk,

yk+1 = yk + (I − Ŵ)2wk+1,

with y0 = 0 and w0 ∈ Rmd.

Prox-DIGing can be cast as (M) with R = 4 rounds of

communications, using the following definitions:

z> = [y>,w>],

ĉ
k,1
i = C1

i

(
zk

i ,0
)

= proxγI,r(w
k
i ), (69)

ĉ
k,2
i = C2

i

(
zk

i , ĉk,1
Ni

)
=
X

j∈Ni

wij ĉ
k,1
j , (70)

ĉ
k,3
i = C3

i

(
zk

i , ĉk,2
Ni

)

=
X

j∈Ni

wij ĉ
k,2
j − γ∇fi(proxγI,r(w

k
i )) − yk

i , (71)

ĉ
k,4
i = C4

i

(
zk

i , ĉk,3
Ni

)
=
X

j∈Ni

wij

(
ĉ

k,3
i − ĉ

k,3
j

)
, (72)

zk+1
i = Ai

(
zk

i , ĉk,1
Ni

, ĉk,2
Ni

, ĉk,3
Ni

, ĉk,4
Ni

)

=

�

yk
i +

P

j∈Ni
wij

(
ĉ

k,4
i − ĉ

k,4
j

)

ĉ
k,3
i

�

. (73)

We now show that the above instance of (M) satisfies Assump-

tions 1, 4, 5, and 11.

• On Assumption 1: Using [50, Theorem 18] and following

similar derivations as for (Prox-)EXTRA, it is not difficult
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to check that, if γ = 2(ρm(W))2

L+µ(ρm(W))2 and ν =
q

κ
κ+1 , then

prox-DIGing satisfies Assumption 1 with

λ = max
nκ − (ρm(W))2

κ + (ρm(W))2
1

p

ρm(W)(2 − ρm(W))
,

q

1 − (1 − ρ2

(
W
)
)2
o

≤ max
n κ

κ + 1
,
q

1 − (1 − ρ2

(
W
)
)2
o

< 1,

(note that ρm(W) ≥ ν) and the norm k • k defined as

kzk2 =
1

2ν − ν2

	

y>((I − Ŵ)2
)†

y + kwk2
I−(I−Ŵ)2




.

Note that kzk2 ≥ kzk2
2.

• On Assumptions 4, 5, and 11: Based on (69)-(73), the

mappings A and C read

A(z, c1, c2, c3, c4) =

�

y + (I − Ŵ)c4

c3

�

,

C1(z,0) = proxγI,r(w), C2(z, c) = Ŵc,

C3(z, c) = Ŵc − γ∇f(proxγI,r(w)) − y, and

C4(z, c) = (I − Ŵ)c,

respectively; and Z = span(I − Ŵ) × Rmd. Note that

�
�A

(
z, c1, c2, c, c

4
)
−A

(
z, c1, c2, c

0, c4
) �
�

2

=
1

2ν − ν2
(c − c0)>[I − (I − Ŵ)2](c − c0) ≤ kc− c0k2

2

2ν − ν2
,

and

�
�A (z, c1, c2, c3, c) −A (z, c1, c2, c3, c

0)
�
�

2
=

kc − c0k2
2

2ν − ν2
.

Moreover, A(z, c1, c2, c3, c4) is constant with respect to

c1, c2. Therefore, Assumption 4 holds with LA=1/
√

ν≤21/4.

We next derive LC and LZ . We have

kC1(z,0) − C1(z0,0)k2 ≤ kw − w0k2 ≤ kz − z0k2,

kC2(z, c) − C2(z0, c0)k2 = kŴ(c − c0)k2 ≤ kc− c0k2,

kC3(z, c) − C3(z0, c0)k2 ≤ kc− c0k2 + γLkw− w0k2

+ ky − y0k2 ≤ kc − c0k2 +
p

1 + (γL)2kz− z0k2,

kC4(z, c) − C4(z0, c0)k2 = k(I− Ŵ)(c − c0)k2 ≤ kc− c0k2,

which implies that Assumption 5 holds with LC = 1 and

LZ =
p

1 + (γL)2. Since γ ≤ 2/L, it follows that LZ =
O(1). For the initial conditions, using proxγI,r(w

∞) = x∞

for the fixed point, we have

kC1(z0,0)k2 ≤ kw0 − w∞k2 + kx∞k2 = O(
√

md),

kC3(z0,0)k2 ≤ γL(kw0−w∞k2+kx∞−x̃∗k2) = O(
√

md),

and kC2(z0,0)k2 = kC4(z0,0)k2 = 0. Therefore, LA ·
LZ = O(1), LC = O(1), kCi(z0,0)k2 = O(LZ

√
md), ∀i =

1, . . . , 4; hence Assumption 11 holds.

7. Primal-Dual Algorithm [22], [42]

Let L = (lij)
m
i,j=1 be the Laplacian matrix associated with

the 0-1 adjacency matrix of G, i.e., lii = |Ni \ {i}|, i ∈ [m];
and lij = −�{(i, j) ∈ E}, i 6= j ∈ [m]; and L̂ = L ⊗ Id.

The Primal-Dual algorithm solving (P) with r ≡
0 reads [22], [42]

xk
i = arg min

xi

fi(xi) + x>
i yk

i ,

yk+1
i = yk

i + γ
X

j∈Ni

lijx
k
j ,

with y0
i = 0.

The Primal-Dual algorithm can be cast in the form (M),

with R = 1 round of communications, using the following:

z = y,

C1
i

(
zk

i ,0
)

= argmin
xi

fi(xi) + x>
i yk

i , (74)

zk+1
i = Ai

(
zk

i , ĉk,1
Ni

)
= yk

i + γ ·
X

j∈Ni

lij ĉ
k,1
j . (75)

We now show that the above instance of (M) satisfies Assump-

tions 1, 4, 5, and 11.

• On Assumption 1: Define M =
√

ΣQ, where L̂ =
Q>ΣQ is the eigenvalue decomposition of L̂, with Σ being

diagonal with elements sorted in descending order; and let M̄

be the matrix containing the non-zero rows of M. Using [22]

it is not difficult to check that, if γ = 2Lµ
µρm−1(L)+Lρ1(L) , the

Primal-Dual algorithm satisfies Assumption 1 with

λ =

ρ1(L)
ρm−1(L) − 1

κ

ρ1(L)
ρm−1(L) + 1

κ

< 1,

and the norm k • k defined as

kzk =
p

ρ1(L)
�
�
�

(
M̄M̄>)−1

M̄z

�
�
�

2
.

Note that kzk ≥ kzk2.

• On Assumptions 4, 5, and 11: Based on (74) and (75),

the mappings A and C read

A(z, c)=z+γ · L̂c, C1(z,0)=

⎡

⎢
⎢
⎢
⎣

argmin
x

f1(x)+x>z1

...

arg min
x

fm(x)+x>zm

⎤

⎥
⎥
⎥
⎦
,

respectively; and Z = span(L). Note that

A (z, c) −A (z, c0) = γL̂ (c − c0) .

It follows that
�
�A (z, c)−A (z, c0)

�
�=γ

p

ρ1(L)
�
�M̄ (c−c0)

�
�

2

≤ γρ1 (L) kc − c0k2 ,

which implies that Assumption 4 holds with LA =
γρ1(L). We now derive LC and LZ . Since C1

i

(
zi,0

)
=

argmin
xi

fi(xi)+x>
i zi, it follows that zi = −∇fi(C1

i

(
zi,0

)
),

and strong convexity of fi implies

kz0i − zik2 ≥ µkC1
i

(
z0i,0

)
− C1

i

(
zi,0

)
k2.
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It readily follows that Assumption 5 holds with LC = 0 and

LZ = 1/µ. For the initial conditions, since z0 = 0 we have

C1(z0,0) = x̃∗ and kC1(z0,0)k2 = kx̃∗k2 = O(
√

md).
From the expression of γ, it is straightforward to see

that γ ≤ 2µ
ρ1(L) , so that LA · LZ = O(1), LC = O(1).

Furthermore, for all the objective functions of (P) such that

µ = O(1), we also have kC1(z0,0)k2 = O(LZ

√
md), hence

Assumption 11 holds. For instance, this is the typical case in

machine learning problems where a regularization µ/2kxk2 is

added to the objective function to enforce strong convexity,

with µ = O(1).
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