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ABSTRACT
The increase of computer processing speed is significantly outpac-

ing improvements in network and storage bandwidth, leading to the

big data challenge in modern science, where scientific applications

can quickly generate much more data than that can be transferred

and stored. As a result, big scientific data must be reduced by a few

orders of magnitude while the accuracy of the reduced data needs

to be guaranteed for further scientific explorations. Moreover, scien-

tists are often interested in some specific spatial/temporal regions

in their data, where higher accuracy is required. The locations of

the regions requiring high accuracy can sometimes be prescribed

based on application knowledge, while other times they must be

estimated based on general spatial/temporal variation. In this pa-

per, we develop a novel multilevel approach which allows users

to impose region-wise compression error bounds. Our method uti-

lizes the byproduct of a multilevel compressor to detect regions

where details are rich and we provide the theoretical underpin-

ning for region-wise error control. With spatially varying precision

preservation, our approach can achieve significantly higher com-

pression ratios than single-error bounded compression approaches

and control errors in the regions of interest.

We conduct the evaluations on two climate use cases – one tar-

geting small-scale, node features and the other focusing on long,

areal features. For both use cases, the locations of the features were

unknown ahead of the compression. By selecting approximately
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16% of the data based on multi-scale spatial variations and com-

pressing those regions with smaller error tolerances than the rest,

our approach improves the accuracy of post-analysis by approxi-

mately 2× compared to single-error-bounded compression at the

same compression ratio. Using the same error bound for the region

of interest, our approach can achieve an increase of more than 50%

in overall compression ratio.
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1 INTRODUCTION
Compression serves an important role in data transmission, archiv-

ing, analysis, and visualization. This is especially true for data gen-

erated by large-scale scientific simulations as the number of cores

in supercomputers continues to increase more rapidly than stor-

age and network bandwidths [34]. Lossless compression [9, 12, 14,

15, 23], though desirable, only achieves limited compression ratios

due to random mantissas in the floating-point scientific representa-

tion [26]. Error-controlled lossy compressors such as MGARD [4],

SZ [16], ZFP [29], and FPZIP [30] have recently received a great

https://doi.org/10.1145/3538712.3538717
https://doi.org/10.1145/3538712.3538717
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deal of attention as they provide high compression ratios along

with insights on the extent to which the data has been modified.

The goal of compression is to control not only errors in the raw data

but also errors in derived quantities of interest (QoI). Data points

collected from experiments or simulation do not always impose

equal contribution to the outcome of analysis pipeline. For example,

it’s critically important for the gyrokinetic particle simulation code

XGC [24] to preserve the particle interaction around the edge of

tokamak plasmas. These types of requirements motivate the design

of a compression strategy with region-adaptive error bounds to

better preserve data in the regions of interest (RoI) and/or further

reduce the storage cost by compressing the less important regions

more significantly. The goal of this paper is to introduce an adaptive

lossy compressor that can detect critical regions and apply various

error bounds on data at different regions. Unlike compressors that

are customized to preserve certain specific features in specific data

types [10, 22, 27, 33, 35, 40], our technique generally focuses on

regions where the data are more turbulent than the average level.

This choice has been made due to the fact that the features are

variously defined for different tasks and applications. For exam-

ple, climate events analysis code [38] may require compressors

to better preserve topological features, whereas the analysis code

for wind turbine simulation may focus on quantities near airfoil

blades [17]. By focusing on regions where features are likely to

be present rather than features themselves, we provide a general-

ized compression pipeline suitable for data which will be used for

unspecified scientific tasks.

Our adaptive compression pipeline automatically determines

RoIs utilizing the decomposed coefficients produced by a multilevel

lossy compressor, MGARD, during its execution. Drawn from the

multigrid linear solver and finite element methods, MGARD de-

fines data in a nested grid structure. Data are decomposed into a

collection of coefficients, which are then quantized to meet user-

prescribed error bounds through rigorous mathematical analy-

sis [28]. MGARD uses a multilinear interpolation operator with 𝐿2

projection for data decomposition and implements the procedure

iteratively in a set of nested grids. The coefficients output from the

decomposition capture spatial variations in different scales defined

by the grid resolutions. Next, inspired by the Adaptive Mesh Re-

finement (AMR) [7] used in numerical analysis, we partition the

coefficients into grid cells, selecting and recursively refining the

cells whose coefficients’ magnitudes are considerably large. Then,

for each coefficient in the refined meshes, we draw a blob around

it with the radius determined by the level of the selected coeffi-

cient in the pyramid of grids. These blobs are then merged together,

transforming them into large, continuous RoIs.

In general, the shapes of detected RoIs are irregular and can-

not be easily segmented using bounding box approaches [6]. In

addition, data segmentation adds additional storage cost as the

coordinates of RoIs and non-RoIs must be recorded so they can be

put back together after reconstruction. Our approach implements

point-wise error-control and encodes error bounds in the quantized

coefficients, so that RoIs and non-RoIs can be compressed and de-

compressed together. This strategy, however, imposes challenges in

managing errors. In particular, due to the 𝐿2 projection used in the

multilevel recomposition, error at one data-point propagates to the

entire coordinate space. Therefore, a simple strategy that varies the

quantization error bounds per region/data-point will not guarantee

that data in different regions are reconstructed to the prescribed

accuracy. We present mathematical analysis for the error propa-

gation during multilevel recomposition and provide a strategy to

ensure that the accumulated errors in the selected regions do not

exceed the prescribed bounds.

In summary, the main contributions of this paper are:

• A region-adaptive compression method which can compress

data using regional varying error bounds. The compression

does not rely on region segmentation and the decompression

does not require RoI masks.

• Mathematical studies on the cross-region error propagation

during the multilevel recomposition.

• Amethod to detect candidate critical regions using the byprod-

uct of compression and mesh refinement.

• Evaluations using two climate use cases show improved

data compression ratios and lower errors in post-analysis

compared to single-error-bounded approaches.

2 PROBLEM AND RELATEDWORKS
2.1 Region-of-Interest based compression
Conventional compressors reduce every data point using a single

error bound. However, important information does not scatter the

entire space uniformly for most cases of scientific data. The moti-

vation behind RoI-based compression counts on the non-uniform

distribution of information. The goal is to maintain certain key

regions with high quality and compress other regions with lower

quality, so that larger compression ratios can be achieved and mean-

while task-interested information are preserved.

RoI-based compressors can be divided into static and dynamic

categories depending on the availability of prior knowledge. Static

approaches set RoIs at constant locations and assume their locations

remain unchanged in the same scene across different timesteps. For

example, tokamak plasma studies are particularly interested in

particles hitting the divertor and magnetic X-point regions [18].

Dynamic RoI-based approaches, in comparison, require region de-

tection before compression. For example, Liang et al. [27] derive

local error bounds and leverage them for error-controlled compres-

sion to retain critical points in 2d/3d vector fields based on the

underlying feature extraction algorithm. Xu et al. [40] create a hier-

archical perception model to track face features and a weight-based

rate-quantization scheme to improve the visual quality of the RoI.

Machine learning techniques have also been applied to RoI-based

compression. Cai et al. [10] transform input images into multiscale

representations and train encoder and decoder networks to predict

RoIs in a supervised manner. Song et al. [35] build a spatial feature

transform network to produce task-aware feature maps, and com-

bine it with a variable-rate bit allocation algorithm to compress

images with spatially-varying quality.

In general, RoI-based compressors need to store the coordinates

of features and background so they can be put back together after

reconstruction. Commonly used approaches for coordinate registra-

tion include pixel-wise maps [27, 40] and bounding boxes [1, 6, 32].

Generally speaking, pixel-wise maps lead to higher efficiency when

the RoI shapes are irregular while bounding boxes could be better

choices when RoI points are heavily clustered.
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Compressors also use hierarchical data formats to achieve adap-

tive compression quality in different regions. Octrees and AMR

are the most-used formats for hierarchical data representation. For

instance, Skylar et al. [39] leverage an octree-based structure to rep-

resent data in hierarchical super resolution using neural networks.

Bhatia et al. [8] introduce an AMR-based data structure, namely

Adaptive Multilinear Meshes (AMM), to allow for incremental up-

dates in both spatial resolution and numerical precision using the

basis functions of tensor products of linear B-spline wavelets. How-

ever, these existing hierarchical data representation-based compres-

sion techniques implement spatial refinement primarily on raw

data. In comparison, our critical region detection method imple-

mentsmesh refinement on the compressor-decomposed coefficients,

which is a multiscale vector capturing local data variation.

2.2 Error-bounded lossy compression
Error-controlled compression has been proposed to reduce scientific

data while providing quantifiable error bounds toward user’s re-

quirements. These compressors can be classified as prediction-based

or transform-based in general, depending on how they decorrelate

the data. Prediction-based compressors, such as ISABELA [25],

SZ [36, 42], and FPZIP [30], rely on various predictors to exploit

the inherent correlation in data. In contrast, transform-based com-

pressors such as ZFP [29] and MGARD [2] decorrelate data via

specific transforms, where data are transformed into formats which

are amenable to compression. These transformed data are then

quantized and encoded into reduced representations.

Error-controlled lossy compressors have proven to be useful

for applications that are strict on how much error can be toler-

ated [11]. Nevertheless, similar to most lossless compressors, they

a use single error bound, which may lead to sub-optimal compres-

sion ratios when the requested accuracy is defined on QoIs. In this

work, we expand the multilevel compressor MGARD to perform

region-adaptive, multi-error-bounded compression. We focus on

MGARD because its multilevel decomposition captures multi-scale

features, which can be used for identifying regions where details

are rich, and can be applied to non-uniform and unstructured grids

as well [5]. This is a significant departure from the current design

of MGARD, which is RoI-agnostic.

3 BACKGROUND OF MULTILEVEL LOSSY
COMPRESSION

Our work on RoI detection and region-wise error control is built

upon the MGARD compression algorithm. In this section, we de-

scribe MGARD’s compression, decompression, and error control

mechanisms. This description focuses on the decomposition stage,

as we will use its byproduct for RoI detection. The decompression

is an invertible operation.

MGARD is a multilevel decomposition-based compressor. The

goal of the decomposition is to transform input data into coeffi-

cients amenable to compression. MGARD interprets an input array

u in 𝑑 dimensions as the values taken by a continuous function 𝑢

on a grid N𝐿 having the same grid structure as u. This grid can be

downsampled into a hierarchy of subgrids N𝐿−1, . . . ,N0. The ratio

between the number of nodes on N𝑙−1 and N𝑙 is approximately

Correction

Correction

Correction

Coefficient

Coefficient

Figure 1: MGARD implements data reduction based on amul-
tilevel decomposition. The transform coefficients in MGARD
are residues frommultilinear interpolation of 𝐿2 projections.

1/2𝑑 . We denote the node set N𝑙 \ N𝑙−1 by N∗
𝑙
. MGARD’s decom-

position starts from level 𝐿, the finest grid, and stops at level 0, the

coarsest grid. The decomposition is achieved using two operations:

𝐿2 projection, denoted 𝑄𝑙 for level 𝑙 , and multilinear interpolation,

denoted Π𝑙 for level 𝑙 . An example is illustrated in Fig. 1, which was

originally presented in [13]. As shown in the figure, the multilevel

coefficients on N∗
𝑙
are obtained by subtracting from the projection

𝑄𝑙𝑢 to the current grid its interpolationΠ𝑙−1𝑄𝑙𝑢 on the next coarser

grid N𝑙−1. These coefficient are then projected to N𝑙−1 to obtain a

correction used to transform Π𝑙−1𝑄𝑙𝑢 to 𝑄𝑙−1𝑢. 𝑄𝑙−1𝑢 is then used

to compute the coefficients at the next coarser level N∗
𝑙−1, and the

procedure repeats.

We summarize the decomposition procedure as follows:

(1) The decomposition starts with 𝑄𝐿𝑢 = 𝑢.

(2) Compute the piecewise linear interpolant Π𝑙−1𝑄𝑙𝑢 and sub-

tract it from 𝑄𝑙𝑢 to get the multilevel coefficients u_mc at

level 𝑙 . These coefficients encode (𝐼 − Π𝑙−1)𝑄𝑙𝑢.

(3) Project the multilevel coefficients to the next coarser level to

obtain the correction and add it to the interpolant Π𝑙−1𝑄𝑙𝑢

to obtain 𝑄𝑙−1𝑢, the 𝐿
2
projection to the next coarser level.

(4) Repeat the above process until 𝑙 = 0.

The original input u is transformed into a set of multilevel co-

efficients u_mc after decomposition. Next, given a user-prescribed

𝐿2 error bound 𝜏 , MGARD quantizes each coefficient u_mc[𝑥] into

ũ_mc[𝑥] such that

∥𝑢 − 𝑢̃∥𝐿2 ≤
( 𝐿∑︁
𝑙=0

∑︁
𝑥 ∈N∗

𝑙

vol(𝑥) |u_mc[𝑥] − ũ_mc[𝑥]|2
)
1/2

≤ 𝜏, (1)

where 𝑢̃ is a reduced representation of 𝑢 after quantization and

vol(𝑥) is the volume of an element centered at 𝑥 measured in the

corresponding grid. For the mathematical details on how to obtain

the relation between ∥𝑢 − 𝑢̃∥𝐿2 and |u_mc[𝑥] − ũ_mc[𝑥]|, please
refer to [2, 3]. MGARD also provides error control on 𝐿∞ [4] and

quantities derived from u through any bounded linear operator [3].

We omit the review on these two as they are not directly related to

the work in this paper.
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(a) Magnitude of coefficients of
random data.

(b) Magnitude of coefficients of
real data.

Figure 2: The multilevel coefficients must be normalized
before mesh refinement to take out the level-wise magni-
tude variation caused by spatial correlation (2b) and lack of
thereof (2a). Level 9 is the finest grid and level 2 is the second
coarsest grid.

4 THEORETICAL FOUNDATION
In this section, we describe how to perform region-wise error con-

trol and critical region detection during compression. We explore

how a point-wise error propagates during the multilevel recompo-

sition and we propose error control methods based on buffer zones

and linear quantization.

4.1 Critical Region Detection
As discussed in Sec. 3, MGARD uses a hierarchy of nested grids to

decompose data u into a collection of multilevel coefficients u_mc.
Each multilevel coefficient u_mc[𝑥] captures data variations at a
particular location and scale. In this subsection, we explore how to

make use of the multilevel coefficients for critical region detection.

4.1.1 Multilevel coefficient preparation. Due to differing scales

across the grid hierarchy, the magnitudes of coefficients at coarse

and fine levels cannot be directly compared. To understand the

relationship between the level in the hierarchy and the magnitude

of the coefficients, we compute the multilevel coefficients for a

pointwise randomly generated 2d dataset and plot the average mag-

nitude of coefficients by level in Fig. 2a. As seen in the figure, the

average magnitude of the coefficients increases from coarse to fine

levels. This is caused by high-frequency oscillations found in this

random dataset.

Next, we study the multilevel coefficients of real data. The blue

line in Fig. 2b shows the multilevel coefficients of a 2d sea level

pressure (PSL) variable taken from an E3SM [19] climate simulation

dataset. Opposite to the randomly generated data, the magnitude

of level-wised coefficients of real data decreases as the level be-

comes finer. This is because the real data is spatially correlated.This

measure of smoothness results in increasingly small multilevel

coefficients; see [3] for details.

To avoid the bias caused by coefficients at fine levels in weakly

correlated data and coefficients at coarse levels in strongly cor-

related data, we perform data normalization. Specifically, each

multilevel coefficient at level 𝑙 will be normalized by u_mc′[𝑥] =

u_mc[𝑥]/𝛼𝐿−𝑙 before mesh refinement, where 𝛼 is a constant calcu-

lated by curve fitting the multilevel coefficients decomposed from

a sample dataset. For the example of E3SM climate simulation data,

we choose 𝛼 = 2. As shown by the orange line in Fig. 2b, the mag-

nitudes of coefficients at coarse and fine levels are normalized to

the same scale (though a large coefficient at coarser level still mean

data variations in wider expansion).

4.1.2 Mesh refinement on multilevel coefficients. After normaliza-

tion, we propose a mesh refinement approach to identify regions

where large-value coefficients are clustered. These regions are

places where features of interest are likely to be found, and they

will be compressed with small errors. Our mesh refinement-based

region detection algorithm is summarized with the following steps:

(1) Begin with the entire full resolution space 𝑆 .

(2) Partition the original space 𝑆 into a grid𝐷 with 𝑘 the starting

grid spacing.

(3) Aggregate the coefficients in each grid cell and select the

grid cells where the aggregated magnitude is above the 𝑝th

percentile.

(4) Check to see if the stop criteria is met (details in following

paragraphs).

• If not, partition each selected grid cell with 𝑘 ′ the new
grid spacing and recurse step (3).

• If yes, return the selected grid cells from the final level of

refinement.

Our method is similar to adaptive mesh refinement in that we

keep partitioning the mesh grid if the data inside is not sufficiently

smooth. Fig. 3 shows the mesh grids after 3 levels of refinement. We

have two stopping criteria for any grid cell to not be subdivided

further. First, if themesh interval𝑘 is less or equal to a user-specified

hyperparameter 𝑘min or the original data resolution. Second, if the

aggregated magnitude of coefficients in the cell is smaller than

a threshold 𝐴𝑐 , which is derived from the global distribution of

coefficient magnitudes.

In our implementation, the starting grid space 𝑘 , threshold 𝑘min,

𝐴𝑐 used for stopping refinement, the downscaling factor (i.e., 𝑘/𝑘 ′)
used at each refinement step, and the threshold 𝑝th used for select-

ing coefficient after are hyperparameters determined by the features

in post-processing. In general, 𝑘min sets the scale of features to be

captured; 𝐴𝑐 indicates the degree of variations in selected regions

comparing to global histogram; 𝑘 , 𝑘/𝑘 ′ and 𝑝th together determine

the shape of features, i.e., whether the features are clustered in

small-scale, high turbulent regions or expanded in wide, smoothly

varying space.

…

(1) (2) (n)…

Figure 3: An example showing how to selected the most sig-
nificant coefficients (orange cells) by recursively refining
mesh grids based on the encapsulated coefficients.
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The multilevel coefficient at node 𝑥𝑙 represents the changes

between the value 𝑄𝑙𝑢 takes at 𝑥𝑙 and the nodes at a distance ℎ𝑙
to the left and right of 𝑥𝑙 (in 1d), where ℎ𝑙 = 2

𝐿−𝑙 . Thus, for each
coefficient selected by the mesh refinement, we add the data-points

which fall under a radius of ℎ𝑙 in the multidimensional space from

the selected coefficient. The final output RoIs are larger, continuous

regions formed by merging these blobs.

4.2 Error Propagation in Multilevel
Recomposition

The quantization error between u_mc and ũ_mc induces a compres-

sion error between 𝑢 and 𝑢̃. Because the recomposition procedure

is linear, the compression error is obtained by recomposing the

quantization error:

𝑢 − 𝑢̃ =

𝐿∑︁
𝑙=0

∑︁
𝑥 ∈N∗

𝑙

(u_mc[𝑥] − ũ_mc[𝑥]) (𝐼 −𝑄𝑙−1)𝜙𝑙 ( · ;𝑥).

Here {𝜙𝑙 ( · ;𝑥) : 𝑥 ∈ N𝑙 } is the Lagrange basis for the space of

piecewise multilinear functions with knotsN𝑙 . 𝜙𝑙 ( · ;𝑥) is the basis
function that is 1 at 𝑥 and 0 at every other node in N𝑙 . We can

bound the magnitude of the compression error at some point 𝑦 in

the RoI as follows:

| (𝑢 − 𝑢̃) (𝑦) | ≤
𝐿∑︁
𝑙=0

∑︁
𝑥 ∈N∗

𝑙

��u_mc[𝑥] − ũ_mc[𝑥]
��

×
��(𝐼 −𝑄𝑙−1)𝜙𝑙 ( · ;𝑥) (𝑦)

��. (2)

(𝐼 − 𝑄𝑙−1)𝜙𝑙 ( · ;𝑥) is the error incurred by the quantization of

u_mc[𝑥]. See Fig. 4 for an illustration. It is an oscillatory function

which decays with the distance from 𝑥 . To bound the compres-

sion error at 𝑦, we require a bound on the magnitude of each error

(𝐼 −𝑄𝑙−1)𝜙𝑙 ( · ;𝑥) at 𝑦. The page limit precludes the derivation of

this bound in this article. The proof will appear in a forthcoming

article [21], and we will give a brief summary of the main result

here.

Consider first the 1d case. Define a distance function 𝑑𝑙−1 by
𝑑𝑙−1 (𝑥,𝑦) = |𝑥 − 𝑦 |/ℎ𝑙−1. Take 𝑥 ∈ N∗

𝑙
and 𝑦 ∈ N𝑙−1. Let 𝑎 be the

grid endpoint closest to 𝑥 , and let 𝑏 be the grid endpoint closest to

𝑦. It is shown in [4, p. A1300] that, with Λ1 = 2 +
√
3 and 𝐶 some

constant,

��𝑄𝑙−1𝜙𝑙 ( · ;𝑥) (𝑦)
�� = 𝐶

[
Λ
𝑑𝑙−1 (𝑎,𝑥)
1

− Λ
−𝑑𝑙−1 (𝑎,𝑥)
1

]
×
[
Λ
𝑑𝑙−1 (𝑦,𝑏)
1

+ Λ
−𝑑𝑙−1 (𝑦,𝑏)
1

][
Λ
𝑑𝑙−1 (𝑎,𝑏)
1

− Λ
−𝑑𝑙−1 (𝑎,𝑏)
1

] .

Observe that 𝑑𝑙−1 (𝑎, 𝑥) + 𝑑𝑙−1 (𝑥,𝑦) + 𝑑𝑙−1 (𝑦,𝑏) = 𝑑𝑙−1 (𝑎, 𝑏). In the

typical case, where 𝑑𝑙−1 (𝑎, 𝑏) is large and neither 𝑑𝑙−1 (𝑎, 𝑥) nor
𝑑𝑙−1 (𝑦,𝑏) is too small, we have��𝑄𝑙−1𝜙𝑙 ( · ;𝑥) (𝑦)

�� ≈ 𝐶
Λ
𝑑𝑙−1 (𝑎,𝑥)
1

Λ
𝑑𝑙−1 (𝑦,𝑏)
1

Λ
𝑑𝑙−1 (𝑎,𝑏)
1

= 𝐶Λ
−𝑑𝑙−1 (𝑥,𝑦)
1

This approximation can be also be shown to hold when not in

the ‘typical’ case (when any of 𝑑𝑙−1 (𝑎, 𝑏), 𝑑𝑙−1 (𝑎, 𝑥), or 𝑑𝑙−1 (𝑦,𝑏) is
small), and in 2d (with a different constant, and with 𝑑𝑙−1 defined as
in Claim 1). Furthermore, it can be shown that this decay rate also

holds for the values taken by (𝐼 −𝑄𝑙−1)𝜙𝑙 ( · ;𝑥), including at points

in between the nodes of N𝑙−1. See [21] for details. The following
bound is the result.

Claim 1. Let 𝑥 ∈ N∗
𝑙
. For any 𝑦 in the domain,��(𝐼 −𝑄𝑙−1)𝜙𝑙 ( · ;𝑥) (𝑦)

�� ≤ 𝐶 (2 +
√
3)−𝑑𝑙−1 (𝑥,𝑦)

where𝑑𝑙−1 (𝑥,𝑦) = |𝑥−𝑦 |/ℎ𝑙−1 in 1d and𝑑𝑙−1 (𝑥,𝑦) = |𝑥1−𝑦1 |/ℎ𝑙−1+
|𝑥2 − 𝑦2 |/ℎ𝑙−1 in 2d.

Combining Claim 1 with Equation (2), we find that

| (𝑢 − 𝑢̃) (𝑦) | ≤ 𝐶

𝐿∑︁
𝑙=0

∑︁
𝑥 ∈N∗

𝑙

��u_mc[𝑥] − ũ_mc[𝑥]
��(2 + √

3)−𝑑𝑙 (𝑥,𝑦)

in 1- and 2d. This result has three main implications for RoI error

control:

(1) The compression error induced by quantizing a multilevel

coefficient at a node 𝑥 decays exponentially in the distance

from 𝑥 . As a result, the compression error in a region of

interest is chiefly attributable to the quantization of the coef-

ficients in the region itself and in a thin surrounding buffer

zone.

(2) The rate of error decay is scaled by the distance between

the nodes of the level. As a result, the physical width of the

buffer zone scales by the same distance, and the number of

nodes included in it is essentially constant from level to level.

(3) The particular notion of distance that is a scaled Manhattan

metric. As a result, the buffer zone is diamond-shaped.

The pointwise decay rate give in Claim 1 does not immediately

yield an 𝐿2 error estimate, and it also does not account for the pos-

sibility of cancellation between the components of the compression

error, so in the next subsection we augment this theoretical result

with an empirical investigation of the bounds used for region-wise

𝐿2 error control.
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(a) Induced error centered on a
node at level 𝐿.
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(b) Induced error centered on a
node at a level coarser than 𝐿.

Figure 4: The compression error induced by a quantization
error at a node on a coarser level is propagated to a wider
region by the multilevel recomposition procedure. The error
decays exponentially at a rate proportional to the level’s
internode spacing and flips sign from node to node.

4.3 Region-wise Error Control
In the previous section, we show the error is propagated and de-

cayed in a modified distance 𝑑𝑙 (𝑥,𝑦) during the multilevel recom-

position. In this section, we describe the buffer zone and the error

bounds used for region-wise error control.
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4.3.1 Buffer Zone. The compression error in the RoI after recom-

position is attributable to errors incurred quantizing coefficients

both inside and outside the RoI (with outside errors propagating

inward). We focus on 𝐿2 error in this paper, and so errors accu-

mulated from coefficients inside the RoI can be preserved using

MGARD’s error control Equation (1). Next, motivated by the ex-

ponential rate of error decay in Claim 1, we add a buffer zone to

prevent an excessive amount of error propagating from coefficients

outside. By preserving the data in a thin region surrounding the RoI

with high accuracy, we guarantee the quality of the data inside the

RoI and in the meantime can use a larger error bound to compress

data outside the RoI.

RoI

Buffer zone

Non-RoI

Figure 5: Our region-wise error control is implemented using
a buffer zone. A buffer zone (white) consists of nodes which
fall within a certain Manhattan distance of the RoI (red). The
distance varies for nodes at different grid levels.

According to Claim 1, the point-wise compression error decays

exponentially in 𝑑𝑙 (𝑥,𝑦), the distance between 𝑥 and 𝑦 scaled by

the grid spacing at the associated level. Accordingly, the buffer zone

is a discontinuous region filled by nodes at different grid levels. We

define the radius of the buffer zone, 𝑅𝑏𝑧 , as the number of grid

intervals at level 𝑙 − 1 when the quantization error is incurred at a

node at level 𝑙 . Fig. 5 shows an example of the buffer zone nodes

with 𝑅𝑏𝑧 = 2 for a square RoI in 2d space. In real cases, our RoI

is composed by numerous smaller, square RoI-blobs, which are

expanded from coefficients selected by mesh refinement. For each

coefficient 𝑥 at an RoI-blob’s edge, we check whether it overlaps

with another RoI-blob. If not, we use Algorithm 1 to compute a

buffer zone around it. Because the number of coefficients at coarser

levels is few while their error propagation steps are wide (as il-

lustrated in Fig. 4), we accelerate the search by first adding all

coefficients below level 𝑘 into the buffer zone. The search can then

be limited into a smaller region with a maximum distance 𝑅𝑟𝑧ℎ𝑘−1.

We apply the same error bound, 𝜏0, used for compressing the

RoI to compress the buffer zone, and apply a larger error bound,

𝜏1, to compress non-RoI regions. Supposing a quantization error 𝑞

is incurred at node 𝑥 outside the RoI, a buffer zone of radius 𝑅𝑟𝑧
ensures that the compression error propagated from 𝑥 to a node

𝑦 at the edge of the RoI is at most 𝐶𝑞(2 +
√
3)−𝑅𝑟𝑧 , where 𝐶 is

some constant. Increasing 𝑅𝑟𝑧 allows to use a larger error bound

for compressing the non-RoI regions, but in the meantime more

data will be compressed with the low error bound 𝜏0 because of the

increased size of the buffer zone.

Algorithm 1 Create level-wise buffer zone.

Input: coefficient 𝑥 on the boundary of RoI; lookup table 𝑢_𝑙 to find the level of a

coefficient in grid; maximum level 𝐿; maximum searched level 𝑘 ; radius of buffer

zone 𝑅𝑏𝑧 .

1: for 𝑙 = 𝐿 → 𝑘 do
2: ℎ𝑙 = 2

𝐿−𝑙
, 𝑅𝑙 = 𝑅𝑏𝑧 × ℎ𝑙−1 ⊲ radius of searched region at level 𝑙

3: for 𝑦 in [−𝑅𝑙 , 𝑅𝑙 ] do ⊲ centered at 𝑥 in 𝑑-dimensional space

4: if u_l[𝑦 ] == 𝑙 and Manhattan_distance(𝑥, 𝑦) ≤ 𝑅𝑙 then
5: bz_map[𝑦 ] = 1 ⊲ buffer zone points

6: else
7: bz_map[𝑦 ] = 0 ⊲ non-buffer zone, non-RoI points

8: end if
9: end for
10: end for
11: return bz_map

Theories provided in Sec. 4.2 indicate that bounds used for region-

wise error control can be translated into a ratio between the error

bounds used for data inside and outside the RoI. Claim 1 provides the

error bounds when quantization error is incurred at a single node.

To estimate the compression error of a node inside the RoI, we must

accumulate the quantization errors propagated from every node

outside the RoI. Checking the distance between every node inside

and outside the RoIs is computationally prohibitive, considering

that the RoI shapes are irregular and the data size is usually large.

In addition, The error bound derived using the summation formula

with the bound provided in Claim 1 will be extremely pessimistic,

as the quantization error incurred at each node are different and

errors at neighboring nodes may cancel each other out as the error

propagation is an oscillatory function across nodes (shown in Fig. 4).

We therefore estimate the ratio, 𝑅𝜏 = 𝜏1 : 𝜏0, through empirical

studies.

We conduct empirical studies as follows. Given an RoI in a 2d

space, we use Algorithm 1 to build a buffer zone. We set the coeffi-

cients inside the RoI/buffer zone as zeros and the rest as random

numbers between [−1, 1]. Next, we recompose the coefficients and

check the 𝐿2 errors for RoIs with different sizes. We demonstrate

the trade-off between the radius of buffer zone and the maximally

allowed non-RoI error bounds in Figs. 6a and 6b using 𝑅𝑏𝑧 = 1

and 𝑅𝑏𝑧 = 2. For each case, we measure the 𝐿2 error inside the RoI.

Because the “quantization errors” inside the RoI are zeros, errors

measured after the recomposition are purely from the quantiza-

tion errors propagated from coefficients outside. For each RoI size,

we collected measurements from 10,000 trials and plot the mean

and standard deviation in Fig. 6. By using a radius of 2ℎ𝑙−1 instead
of 1ℎ𝑙−1, we could use an error bound approximately 3.5× larger

to compress data in non-RoI. The trade-off indicates that a wider

buffer zone (e.g., 2ℎ𝑙−1) is preferred when the requested RoI size is

small, and vice versa. Error bounds used in the experiments of this

paper are derived from the numbers in Fig. 6b.

4.3.2 Error quantization & RoI map encoding. The error-bounded
quantization is performed using a linear-scaling encoder described

in [36] andMGARD error control Equation (1). Decompressors need

to know the quantization error bounds used at different data points

so they can be appropriately reconstructed. In contrast to conven-

tional RoI-based compression, we don’t physically segment the data.

Instead, we design a metadata-free quantization/dequantization al-

gorithm to manage the varied error bounds. Using a linear-scaling

encoder, an input datum 𝑥 can be encoded into an integer by ⌈ 𝑥
𝑒𝑏
⌉,



Region-adaptive, Error-controlled Scientific Data Compression using Multilevel Decomposition SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

50x50 25x25 12x12 6x6
RoI size

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

ra
tio

: L
2  (

no
n-

Ro
I) 

/ (
Ro

I)

(a) Radius of a buffer zone: 1ℎ𝑙−1.

50x50 25x25 12x12 6x6
RoI size

20

30

40

50

60

70

80

90

ra
tio

: L
2  (

no
n-

Ro
I) 

/ (
Ro

I)

(b) Radius of a buffer zone: 2ℎ𝑙−1.

Figure 6: Empirical studies on the maximal error bound (𝜏1)
allowed for the non-RoI given an error bound 𝜏0 used for the
RoI. The ratio 𝜏1 : 𝜏0 is determined by the size of the RoI and
buffer zone. (a) uses a radius of 1ℎ𝑙−1 and (b) uses a radius
of 2ℎ𝑙−1 for the buffer zone. We show the mean (circle) and
standard deviation over 10,000 trials. A larger buffer zone
radius means smaller sizes for the non -RoI, but data inside
the non-RoI can be compressed more aggressively.

where 𝑒𝑏 is a scaled number originating from the input error bound

𝜏 taking into account the error control. With 𝜏1 = 𝑅𝜏 × 𝜏0, the 𝑒𝑏0
and 𝑒𝑏1 used for data inside and outside the RoI/buffer zone are

subject to the same linear relation. Our metadata-free RoI quantiza-

tion/dequantization algorithm is summarized as the following:

(1) In the quantization stage, if a node 𝑥 is inside the RoI, we

quantize it into 𝑛𝑥 = ⌈ 𝑥
𝑒𝑏0

⌉; otherwise, we quantize it into
𝑛𝑥 = ⌈ 𝑥

𝑒𝑏1
⌉ × 𝑒𝑏1.

(2) In dequantization stage, we convert 𝑛𝑥 back to 𝑥 ′ with 𝑥 ′ =
𝑛𝑥 × 𝑒𝑏0, regardless of which 𝑒𝑏 has been used for 𝑥 in

quantization stage.

We use an example to explain the procedure. For an RoI point

𝑥0 = 100.52 and a non-RoI point 𝑥1 = 100.83, we set 𝜏0 = 0.1 and

𝜏1 = 10 × 𝜏0. After quantization, we get 𝑛0 = ⌈ 100.52
0.1 ⌉ = 1005 and

𝑛1 = ⌈ 100.83
0.1×10 ⌉ × 10 = 1000. Next, for dequantization, 𝑛0 and 𝑛1

are converted back to 𝑥 ′
0
= 100.5 and 𝑥 ′

1
= 100. The quantization

error at 𝑥0 is |𝑥0 − 𝑥 ′
0
| = 0.02 and the quantization error at 𝑥1 is

|𝑥1 − 𝑥 ′
1
| = 0.83, each satisfying the prescribed error bound of 𝜏0

and 𝜏1. With the above algorithm, our compressor only needs to

record the compressed data, not the coordinates of regions. Data

reduced by our region-adaptive compressor can be reconstructed

back using regular, non-adaptive decompressors.

5 REGION-ADAPTIVE COMPRESSION
PIPELINE

In this section, we summarize our region-adaptive compression

procedure. Fig. 7 depicts the pipeline. The original MGARD com-

pression pipeline consists of two steps: decomposition and error-

bounded quantization. Our pipeline detects candidate critical re-

gions, searches the buffer zone, and imposes multi-error-bounded

linear quantization for region-wise error control. The following

summarizes the compression steps:

(1) Begin with the coefficients produced by MGARD multilevel

decomposition.

(2) Normalize the magnitude of the coefficients using the algo-

rithm described in Sec. 4.1.1.

(3) Apply the mesh refinement algorithm described in Sec. 4.1.2

to select sub-regions where large coefficients are clustered.

(4) For each coefficient in the selected sub-region, include coef-

ficients falling within a distance of ℎ𝑙 to form an RoI-blob,

where ℎ𝑙 = 2
𝐿−𝑙

.

(5) For each RoI-blob, check the surrounding coefficients by

level to see if they fall within a buffer zone of a designated

radius 𝑅
bz

using the steps described in Algorithm 1.

(6) Quantize the coefficients in the RoI/buffer zone using the

user-prescribed error bound 𝜏0 and the coefficients in the

non-RoI region using 𝜏1, where 𝜏1 = 𝑅𝜏 ×𝜏0 and 𝑅𝜏 is derived
based on the studies described in Sec. 4.3.

(7) Apply encoding and lossless compression to the quantized

coefficients to obtain the final reduced representation.

Users can control how large a RoI to be retained by tuning the

hyper-parameters in mesh refinement Algorithm described in 4.1.2.

In the case of using different 𝜏𝑖
0
for multiple RoIs, 𝜏1 = 𝑅𝜏 ×min(𝜏𝑖

0
).

6 EXPERIMENTS
We compare our method to three baseline compression approaches

using the atmospheric field output from the Energy Exascale Earth

System Model (E3SM) version 1. We evaluate the 𝐿2 error control

and improvement of compression ratios on the raw data by compar-

ing our approach to MGARD using single error bound and MGARD

usingmultiple error bounds on region-segmented data. As indicated

by the work in [20], the compression ratios of the state-of-the-art

lossy compressors are comparable respect to 𝐿2 error metrics. Next,

we evaluate the improvement of region-adaptive compression on

post-processing with two climate use cases – Tropical Cyclone (TC)

detection and Atmospheric River (AR) tracking. Finally, we profile

the overhead in computation resulted from the region-adaptive

approach. The experiments in this paper were conducted on OLCF

Andes cluster [31], where each node on the system has two 16-core

AMD EPYC 7302 processors and 256GB of memory.

6.1 Datasets
E3SM is a fully coupled Earth system and climate model used

in mission-defined efforts in the U.S. Department of Energy, as
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Figure 7: Region-adaptive compression pipeline. The pipeline is built upon a multilevel compressor, MGARD. We detect critical
regions and compress regions with less details more aggressively using a larger error bound. RoIs are detected by applying
mesh refinement on MGARD decomposed coefficients. To prevent non-RoIs (blue region) errors propagating into RoIs (red
regions) after recomposition, we add buffer zones (white regions) in between. The bound used for error bound is derived from
both theoretical and empirical studies.

well as several international model inter-comparison efforts [19].

Our experiments use the atmospheric data coming from its High-

Resolution (HR) configuration coupled simulation. The atmosphere

grids are based on a cubed-sphere topology. The HR grid configura-

tion is characterized by 120 quadrilateral spectral elements in both

𝑥 and 𝑦 directions of each face of the cube sphere corresponding

to an approximate grid spacing of 25 km and a total of ~800,000

columns per variable per snapshot. Our experiments use a dataset

spanning 5 years at a temporal resolution of 6 hours and stored

in float32 precision. To achieve better compression ratios, for

each snapshot, we transform variables from their original 1d grids

to three 2d snapshots correlated in longitude and latitude on the

cubed sphere. The compression is performed in 2d space for both

region-adaptive and single-error-bounded cases.

6.2 Event analysis codes
To determine whether the data coming out of lossy compression

is acceptable, we evaluate the impact of compression on both the

raw data (i.e., relative 𝐿2 error) and post-analysis statistics. We

evaluate the impact on post-processing with two use cases – TC

tracking and AR detection, and we use TempestExtreme Version

2.1 [38] in both cases. TempestExtreme is a software package which

performs a variety of feature tracking and scientific analysis for

global Earth-system data.

A TC is an intense circular storm that originates over warm trop-

ical oceans. TempestExtreme identifies candidate TC locations first

based on a minimum sea-level pressure, then with the associated

upper-level warm cores. All candidate nodes are stitched together

to form tracks with multiple conditions imposed, such as maximum

distances between any two candidate nodes in one track, minimal

nodes in a track, and minimal wind speed. For the above algorithm,

five 2d variables are required as input: pressure at sea-level (PSL),

temperature at 500 hPa and 200 hPa (T500, T200) to determine the

upper-level warm core, zonal and meridional wind speeds (UBOT,

VBOT) to derive wind speed at the lowest/bottom model level.

Atmospheric rivers (ARs) are thin and long filamentary struc-

tures characterized by high integrated vapor transport (IVT) and

often resulting in intensive rainfall over impacted areas. The Tem-

pestExtreme detection algorithm detects ARs as ridges using the

Laplacian of the IVT field. Only points whose Laplacian is less

than a threshold are retained. And typically, features too near the

Equator and those that are deemed too small filter out TCs. The

final step is to stitch the binary map and labels individual ARs with

different tags. For this algorithm, a 2d variable, magnitude of IVT,

is used as input.

In both use cases, the weather events are characterized by rich

regional features, making them ideal candidates for our region-

adaptive compression algorithm. From the perspective of detection

algorithms, TC tracking focuses on point-wise features (nodes),

whereas AR detection focuses on areal feature (blobs) characterized

by points in a continuous region. We evaluate our region-adaptive

compression on these two distinct features.

6.3 Error control and data reduction evaluation
For TC analysis, we compress the five 2d input variables with a

requested error bound 𝜏0 = 5 × 10
−5

for PSL and 𝜏0 = 1 × 10
−3

for
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T200, T500, UBOT, and VBOT. We choose a smaller error bound

for PSL as the detection thresholds defined on vortex intensity

(i.e., depth of sea level pressure minimum) drive the major TC

output sensitivity [41]. Since TC analysis focuses on small-scale

structures (a radius of 4
◦
–6.5◦ is used bymost detection algorithms),

we choose the starting 𝑘 as 8 and 𝑝th in the range of 10–15% for

mesh refinement. These numbers are chosen by evaluating the

TC analysis results using a sample dataset spanning 1 month. The

resultant thresholds are then applied to the whole dataset spanning

5 years. The selected region accounts for approximately 16% of

the total dataset after the coefficient to RoI-blob expansion. Since

the location of features should not change among 5 TC tracking

variables, we implement region detection only on PSL and use the

obtained RoI map for the other 4 variables at the same snapshot.

For AR analysis, we compress the IVT variable with a requested

error bound 𝜏0 = 2×10
−3
. ARs are long continuous regions filled by

blobs detected using a Laplacian operator, and the fluctuations in

AR regions are less intense than those in TC regions. To cover AR

regions, our region-adaptive method must keep more coefficients

after mesh refinement. An example can be found in Fig. 8, which

shows a snapshot of the IVT field, AR masks detected by Tempes-

tExtreme, and the RoI mask coming out of our region-adaptive

compressor. In this example, we use a starting 𝑘 as 16 and 𝑝th as

17.5 − 50%, resulted in a selection of 33–38% across all 2d IVT

snapshots.

Variable used for 
AR detection

ARs locations from 
analysis code 

RoI from region 
detection

AR locations from 
analysis code

RoI from region 
detection

Variables used for 
AR detection 

Figure 8: ARs show a long, filamentary structure. Since our
region detection is not customized for AR tracking, a large
portion of the total region (≥ 35% in our experiments)must be
preserved to encapsulate the AR locations. Large RoIs limit
the compression ratio achieved by our adaptive method.

Throughout the experiments, we use a buffer zone of radius

𝑅𝑟𝑧 = 2. We choose the ratio between the error bounds used for

the RoI and non-RoI as 𝜏1 : 𝜏0 = 23 by interpolating the bottom

of error bar in Fig. 6b with an RoI size of 8 × 8. We set the ratio

of 𝜏1 : 𝜏0 based on the narrowest island in the detected RoI. We

estimate the values based on the resolution of the finest grid used

in mesh refinement and the average size of RoI-blobs drawn in

the subsequent expansion. Please note the derived error bound is

pessimistic because RoI-blobs may connect to form regions of much

larger size, as shown in Fig. 8, so as can tolerate larger error bounds

with surrounded data points.

We first check whether the proposed error control approach can

guarantee that the compression errors in different regions respect

a user-prescribed error tolerance in the 𝐿2 norm. We compare our

approach to a single-error-bounded compressor, MGARD. The lat-

ter reduces the 5 TC analysis variables using the same error bound

we used for RoI compression. Fig. 9 shows the relative 𝐿2 error

measured in the recomposed RoIs for 5 TC analysis variables. The

errors of our region-adaptive compressed data are indistinguishable

from those measured in data compressed using a single error bound,

and strictly less than the requested error bounds. Meanwhile, the

compression ratio obtained using our region-adaptive approach is

approximately 1.74× better for PSL, 2.05× better for two temper-

ature variables, and 1.87× better for the velocity vector than the

single-error-bounded MGARD.
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Figure 9: Compressed variables used for tropical cyclone (TC)
detection with an input error bound (eb) of 𝜏0. The adaptive
method applies 𝜏0 to RoIs output from its region detection
algorithm, which counts for ~16% of the total region, whereas
uniform compression applies 𝜏0 for the whole region.

Next, we compare the compression ratios of our method to the

standard RoI-based compression procedure. Consider a scenario

where the location of an RoI has been obtained using some feature
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tracking algorithms. The subsequent approach will then extract the

RoI data, separate RoI and non-RoI data into a different sets, and

compress each using different error bounds. This segmentation-

based approach perfectly avoids cross-region error propagation, but

it comes at the cost of extra metadata spent on saving RoI masks.

Bounding box approaches cannot be applied effortlessly for our

case. As an example shown in Fig. 8, RoIs in E3SM atmospheric

field coming out of our detection method have irregular boundaries

because the atmospheric data are captured over a wide span (i.e.,

global earth system) and our detection algorithm is not customized

for capturing specific features. Alternatively, for the experiment

used for comparison, we label points in different regions on a binary

mask and save the mask in bit-format (i.e., 1 byte for 8 grid points).

RoI and non-RoI data are linearized and compressed separately by

single-error-bounded MGARD using error bounds 𝜏0 and 𝜏1. The

compressed data comprises both the quantized bytes and associ-

ated masks. The ratios of 5 TC variables compressed using region-

segmented and our region-adaptive approaches are shown in Fig. 10.

The compression ratios of our approach are approximately 1.36×
better for PSL, 1.8–2.0× better for the two temperature variables,

and 1.43× better for the velocity vector than the region-segmented

approach using the same set of error bounds. Our advantage comes

from two aspects: (1) our approach don’t save region labels, and

(2) data correlations are better exploited by compressing RoI and

non-RoI data together. For example, eliminating the cost of RoI

masks, the compress ratio of our method is still 1.27× better than

region-segmented approach for temperature variable, even though

the data compressed using 𝜏0 is ~50% more in our case than those

in region-segmented approach due to the data in buffer zone.
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Figure 10: Compression ratios obtained on the input vari-
ables used for TC detection with adaptive and segmented
approaches. The segmented approach splits RoI and non-
RoI data using the same RoI mask output from the region-
adaptive method and compresses RoI and non-RoI datasets
separately using two error bounds.

We then evaluate the impact of compression on post-analysis.

For TC analysis, we run TempestExtreme with the 5 input variables

to identify candidate TC nodes in each snapshot and stitch them

across time-series snapshots to form TC tracks. We fix the com-

pression ratio (per-variable compression ratio displayed in Fig. 9a),

and compare changes in TC analysis results caused by our ap-

proach to the ones caused by the single-error-bounded MGARD

compression. Under the same compression ratio, the single-error-

bounded compressor uses 𝜏0 = 3 × 10
−4

for PSL, 𝜏0 = 3.7 × 10
−3

for T200, 𝜏0 = 3.1 × 10
−3

for T500, 𝜏0 = 4.1 × 10
−3

for UBOT, and

𝜏0 = 3.9 × 10
−3

for VBOT. We measure the changes in location at

each step of a TC track after lossy compression. We call TC tracks

found in uncompressed 5-year ensemble {𝑡𝑐}, and tracks found

in lossy compressed and reconstructed ensemble {𝑡𝑐𝑖 }. For every
track 𝑡𝑐𝑖 in the set of {𝑡𝑐}, if there exists an equivalent 𝑡𝑐𝑖 , we pair

the two and compute the great-circle distance (gcd), 𝑟 , between

their nodes using the equation from [37]:

𝑟 (𝜆, 𝜑 ; ˜𝜆, 𝜑̃) = arccos (sin𝜑 sin 𝜑̃ + cos𝜑 cos 𝜑̃ cos (𝜆 − ˜𝜆))

where {𝜆, 𝜑} and { ˜𝜆, 𝜑̃} are latitude-longitude coordinates of a node
in 𝑡𝑐𝑖 and the corresponding node in {𝑡𝑐𝑖 }. Due to the variability of
the detection algorithm, a TC track/step identified in the original

ensemble may not show in the compressed ensemble. In that case,

we use the shortest gcd between {𝜆, 𝜑} and any { ˜𝜆𝑖 , 𝜑𝑖 } found at

the same snapshot. We define the error as the number of grid-points

changed in average for all steps in a TC track with the equation

𝑑TC = 1

0.25𝑁

∑𝑁
𝑖 𝑟 (𝜆𝑖 , 𝜑𝑖 ; ˜𝜆𝑖 , 𝜑𝑖 ), where 𝑁 is the number of nodes in

a TC track and 0.25◦ is the grid spacing in gcd. The average number

of nodes per TC track is 16. We compute 𝑑TC for each individual TC

track and plot the statistical distribution of errors in all TC tracks

found in 5 years. As shown in Fig. 11, 𝑑TC computed from the data

compressed using our region-adaptive method is more than 50%

smaller than the error using the single-error-bounded approach

across the whole distribution range. Moreover, 70% of the TC tracks

computed from data compressed with our method match exactly

with the ones found in uncompressed data, versus 50% with the

single-error-bounded approach.
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Figure 11: Fixing compression ratios (CR), evaluate the shifts
in TC tracks when the detection algorithm uses lossy com-
pressed data. The error is computed for each individual TC
track and we plot the statistical distribution of errors among
all TC tracks found in a dataset simulating 5-year climate.

For AR tracking, we run TempestExtreme with the IVT variable

to detect AR masks in each snapshot and stitch the binary masks

across time-series snapshots to label individual AR events. Similar

to TC analysis, we fix the compression ratio as 16.7× and study
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the impact of lossy compression on the detected AR events. Under

the same compression ratio, our region-adaptive compressor uses

𝜏0 = 2 × 10
−3

for RoI data, and the single-error-bounded MGARD

compressor uses 𝜏0 = 3 × 10
−3
. We evaluate the changes in the

size of a stitched AR event after lossy compression by the inter-

section over union (IoU). We use {𝑀} and {𝑀̃} to designate AR

masks found in the original and compression data. For each AR

event, we compute the intersection𝑀𝑖 ∩ 𝑀̃𝑖 and the union𝑀𝑖 ∪ 𝑀̃𝑖 .

The error is defined as 𝑒AR = (1 − 𝑀𝑖∩𝑀̃𝑖

𝑀𝑖∪𝑀̃𝑖

) ∗ 100%. We plot the

statistical distribution of 𝑒AR in Fig. 12. Errors computed using data

compressed by our region-adaptive approach are approximately

14–16% smaller than those computed by the single-error-bounded

approach. This advantage is weaker compared to the one shown in

TC analysis. As mentioned above, detecting features of blob struc-

ture (i.e., ARs) requires including more data in RoIs than detecing

features of node structures (i.e., TCs), which diminishes the benefit

of using a region-adaptive approach.
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Figure 12: Fixing compression ratios (CR), evaluate how
much the size of an AR changes when the detection algo-
rithm uses lossy compressed data. The error is computed for
each individual AR event using intersection of union (IoU)
and we plot the statistical distribution of errors among all
ARs found in a dataset simulating 5-year climate.

6.4 Throughput overhead
We further evaluate the performance overhead of region-adaptive

compression. Our approach utilizes the decomposed coefficients

from the MGARD compressor. Compared to single-error-bounded

MGARD compression, the overhead mainly comes from mesh re-

finement and buffer zone searching. We use the 2d AR detection

variable as the test data and vary the requested RoI size by tuning

the threshold settings in mesh refinement. We plot the ratio of

the region-adaptive overhead to the cost of the rest of the compu-

tation in Fig. 13. The overhead is observed to be small when the

requested RoI size is small. For example, the overhead of doing

region-adaptive compression for the variables used by TC analysis

is detection is less than 10%. The buffer zone searching will eventu-

ally take almost the same amount of time as the RoI detection as

RoI size grows, due to longer and more irregular boundaries.
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Figure 13: Overhead of region-adaptive compression. The
overhead counts both region detection and buffer zone
searching. We plot the ratio of execution time taken by over-
head and the rest of the implementation; the latter is analo-
gous to the standard, single-error-bounded compression.

7 CONCLUSION AND FUTUREWORK
In this paper, we present a region-adaptive lossy compression frame-

work to tackle the needs of large compression ratios and region-

wise error control by scientific applications. Our framework al-

lows users to impose region-wise error bounds without region

segmentation. Information of varied error bounds is embedded in

the compressed data and the decompression can be performed us-

ing a regular, single-error-bounded compressor. Moreover, we also

provide a method which detects candidate critical regions using

the coefficients of a multilevel compressor in case the locations of

RoIs are unavailable prior to compression. Experimental results

demonstrate that for the 5 variables used for TC analysis, by se-

lecting approximately 16% of the total region, our region-adaptive

method can accurately capture the regions containing TC feature,

and obtains approximately 2× and 1.6× compression ratios compar-

ing to single-error-bounded approach and multiple error bounds,

region-segmented approaches. Under the same compression ratio,

the QoI in TC analysis is 2× accurate and the QoI in AR analysis is

1.15× accurate compared to the single-error-bounded approach.

One limitation of our approach is that in order to capture features

with relatively large, continuous structures (e.g., AR), our method

needs to keep a large region with high accuracy if the mask of RoI is

not available as the input of compression. In future work, we plan to

advance the theories in cross-region error control. In particular, we

will derive bounds which can strictly control the accumulated errors

from data outside the RoIs and eventually eliminate the bounds

derived from empirical studies.
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