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ABSTRACT

The increase of computer processing speed is significantly outpac-
ing improvements in network and storage bandwidth, leading to the
big data challenge in modern science, where scientific applications
can quickly generate much more data than that can be transferred
and stored. As a result, big scientific data must be reduced by a few
orders of magnitude while the accuracy of the reduced data needs
to be guaranteed for further scientific explorations. Moreover, scien-
tists are often interested in some specific spatial/temporal regions
in their data, where higher accuracy is required. The locations of
the regions requiring high accuracy can sometimes be prescribed
based on application knowledge, while other times they must be
estimated based on general spatial/temporal variation. In this pa-
per, we develop a novel multilevel approach which allows users
to impose region-wise compression error bounds. Our method uti-
lizes the byproduct of a multilevel compressor to detect regions
where details are rich and we provide the theoretical underpin-
ning for region-wise error control. With spatially varying precision
preservation, our approach can achieve significantly higher com-
pression ratios than single-error bounded compression approaches
and control errors in the regions of interest.

We conduct the evaluations on two climate use cases — one tar-
geting small-scale, node features and the other focusing on long,
areal features. For both use cases, the locations of the features were
unknown ahead of the compression. By selecting approximately
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16% of the data based on multi-scale spatial variations and com-
pressing those regions with smaller error tolerances than the rest,
our approach improves the accuracy of post-analysis by approxi-
mately 2x compared to single-error-bounded compression at the
same compression ratio. Using the same error bound for the region
of interest, our approach can achieve an increase of more than 50%
in overall compression ratio.
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1 INTRODUCTION

Compression serves an important role in data transmission, archiv-
ing, analysis, and visualization. This is especially true for data gen-
erated by large-scale scientific simulations as the number of cores
in supercomputers continues to increase more rapidly than stor-
age and network bandwidths [34]. Lossless compression [9, 12, 14,
15, 23], though desirable, only achieves limited compression ratios
due to random mantissas in the floating-point scientific representa-
tion [26]. Error-controlled lossy compressors such as MGARD [4],
SZ [16], ZFP [29], and FPZIP [30] have recently received a great
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deal of attention as they provide high compression ratios along
with insights on the extent to which the data has been modified.
The goal of compression is to control not only errors in the raw data
but also errors in derived quantities of interest (Qol). Data points
collected from experiments or simulation do not always impose
equal contribution to the outcome of analysis pipeline. For example,
it’s critically important for the gyrokinetic particle simulation code
XGC [24] to preserve the particle interaction around the edge of
tokamak plasmas. These types of requirements motivate the design
of a compression strategy with region-adaptive error bounds to
better preserve data in the regions of interest (Rol) and/or further
reduce the storage cost by compressing the less important regions
more significantly. The goal of this paper is to introduce an adaptive
lossy compressor that can detect critical regions and apply various
error bounds on data at different regions. Unlike compressors that
are customized to preserve certain specific features in specific data
types [10, 22, 27, 33, 35, 40], our technique generally focuses on
regions where the data are more turbulent than the average level.
This choice has been made due to the fact that the features are
variously defined for different tasks and applications. For exam-
ple, climate events analysis code [38] may require compressors
to better preserve topological features, whereas the analysis code
for wind turbine simulation may focus on quantities near airfoil
blades [17]. By focusing on regions where features are likely to
be present rather than features themselves, we provide a general-
ized compression pipeline suitable for data which will be used for
unspecified scientific tasks.

Our adaptive compression pipeline automatically determines
Rols utilizing the decomposed coefficients produced by a multilevel
lossy compressor, MGARD, during its execution. Drawn from the
multigrid linear solver and finite element methods, MGARD de-
fines data in a nested grid structure. Data are decomposed into a
collection of coefficients, which are then quantized to meet user-
prescribed error bounds through rigorous mathematical analy-
sis [28]. MGARD uses a multilinear interpolation operator with L2
projection for data decomposition and implements the procedure
iteratively in a set of nested grids. The coefficients output from the
decomposition capture spatial variations in different scales defined
by the grid resolutions. Next, inspired by the Adaptive Mesh Re-
finement (AMR) [7] used in numerical analysis, we partition the
coeflicients into grid cells, selecting and recursively refining the
cells whose coefficients’ magnitudes are considerably large. Then,
for each coefficient in the refined meshes, we draw a blob around
it with the radius determined by the level of the selected coeffi-
cient in the pyramid of grids. These blobs are then merged together,
transforming them into large, continuous Rols.

In general, the shapes of detected Rols are irregular and can-
not be easily segmented using bounding box approaches [6]. In
addition, data segmentation adds additional storage cost as the
coordinates of Rols and non-Rols must be recorded so they can be
put back together after reconstruction. Our approach implements
point-wise error-control and encodes error bounds in the quantized
coefficients, so that Rols and non-Rols can be compressed and de-
compressed together. This strategy, however, imposes challenges in
managing errors. In particular, due to the L? projection used in the
multilevel recomposition, error at one data-point propagates to the
entire coordinate space. Therefore, a simple strategy that varies the
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quantization error bounds per region/data-point will not guarantee
that data in different regions are reconstructed to the prescribed
accuracy. We present mathematical analysis for the error propa-
gation during multilevel recomposition and provide a strategy to
ensure that the accumulated errors in the selected regions do not
exceed the prescribed bounds.

In summary, the main contributions of this paper are:

e A region-adaptive compression method which can compress
data using regional varying error bounds. The compression
does not rely on region segmentation and the decompression
does not require Rol masks.

e Mathematical studies on the cross-region error propagation
during the multilevel recomposition.

e A method to detect candidate critical regions using the byprod-
uct of compression and mesh refinement.

e Evaluations using two climate use cases show improved
data compression ratios and lower errors in post-analysis
compared to single-error-bounded approaches.

2 PROBLEM AND RELATED WORKS

2.1 Region-of-Interest based compression

Conventional compressors reduce every data point using a single
error bound. However, important information does not scatter the
entire space uniformly for most cases of scientific data. The moti-
vation behind Rol-based compression counts on the non-uniform
distribution of information. The goal is to maintain certain key
regions with high quality and compress other regions with lower
quality, so that larger compression ratios can be achieved and mean-
while task-interested information are preserved.

Rol-based compressors can be divided into static and dynamic
categories depending on the availability of prior knowledge. Static
approaches set Rols at constant locations and assume their locations
remain unchanged in the same scene across different timesteps. For
example, tokamak plasma studies are particularly interested in
particles hitting the divertor and magnetic X-point regions [18].
Dynamic Rol-based approaches, in comparison, require region de-
tection before compression. For example, Liang et al. [27] derive
local error bounds and leverage them for error-controlled compres-
sion to retain critical points in 2p/3D vector fields based on the
underlying feature extraction algorithm. Xu et al. [40] create a hier-
archical perception model to track face features and a weight-based
rate-quantization scheme to improve the visual quality of the Rol.
Machine learning techniques have also been applied to Rol-based
compression. Cai et al. [10] transform input images into multiscale
representations and train encoder and decoder networks to predict
Rols in a supervised manner. Song et al. [35] build a spatial feature
transform network to produce task-aware feature maps, and com-
bine it with a variable-rate bit allocation algorithm to compress
images with spatially-varying quality.

In general, Rol-based compressors need to store the coordinates
of features and background so they can be put back together after
reconstruction. Commonly used approaches for coordinate registra-
tion include pixel-wise maps [27, 40] and bounding boxes [1, 6, 32].
Generally speaking, pixel-wise maps lead to higher efficiency when
the Rol shapes are irregular while bounding boxes could be better
choices when Rol points are heavily clustered.
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Compressors also use hierarchical data formats to achieve adap-
tive compression quality in different regions. Octrees and AMR
are the most-used formats for hierarchical data representation. For
instance, Skylar et al. [39] leverage an octree-based structure to rep-
resent data in hierarchical super resolution using neural networks.
Bhatia et al. [8] introduce an AMR-based data structure, namely
Adaptive Multilinear Meshes (AMM), to allow for incremental up-
dates in both spatial resolution and numerical precision using the
basis functions of tensor products of linear B-spline wavelets. How-
ever, these existing hierarchical data representation-based compres-
sion techniques implement spatial refinement primarily on raw
data. In comparison, our critical region detection method imple-
ments mesh refinement on the compressor-decomposed coefficients,
which is a multiscale vector capturing local data variation.

2.2 Error-bounded lossy compression

Error-controlled compression has been proposed to reduce scientific
data while providing quantifiable error bounds toward user’s re-
quirements. These compressors can be classified as prediction-based
or transform-based in general, depending on how they decorrelate
the data. Prediction-based compressors, such as ISABELA [25],
SZ [36, 42], and FPZIP [30], rely on various predictors to exploit
the inherent correlation in data. In contrast, transform-based com-
pressors such as ZFP [29] and MGARD [2] decorrelate data via
specific transforms, where data are transformed into formats which
are amenable to compression. These transformed data are then
quantized and encoded into reduced representations.

Error-controlled lossy compressors have proven to be useful
for applications that are strict on how much error can be toler-
ated [11]. Nevertheless, similar to most lossless compressors, they
a use single error bound, which may lead to sub-optimal compres-
sion ratios when the requested accuracy is defined on Qols. In this
work, we expand the multilevel compressor MGARD to perform
region-adaptive, multi-error-bounded compression. We focus on
MGARD because its multilevel decomposition captures multi-scale
features, which can be used for identifying regions where details
are rich, and can be applied to non-uniform and unstructured grids
as well [5]. This is a significant departure from the current design
of MGARD, which is Rol-agnostic.

3 BACKGROUND OF MULTILEVEL LOSSY
COMPRESSION

Our work on Rol detection and region-wise error control is built
upon the MGARD compression algorithm. In this section, we de-
scribe MGARD’s compression, decompression, and error control
mechanisms. This description focuses on the decomposition stage,
as we will use its byproduct for Rol detection. The decompression
is an invertible operation.

MGARD is a multilevel decomposition-based compressor. The
goal of the decomposition is to transform input data into coeffi-
cients amenable to compression. MGARD interprets an input array
u in d dimensions as the values taken by a continuous function u
on a grid N7, having the same grid structure as u. This grid can be
downsampled into a hierarchy of subgrids N7_1, ..., Np. The ratio
between the number of nodes on N;_; and N is approximately

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

Correction —— Qu (original data)
--+-- linear interpolation
—e— Q,_1u (after L? projection)
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Figure 1: MGARD implements data reduction based on a mul-
tilevel decomposition. The transform coefficients in MGARD
are residues from multilinear interpolation of L? projections.

1/2%. We denote the node set N\ Nj_1 by Nl* MGARD’s decom-
position starts from level L, the finest grid, and stops at level 0, the
coarsest grid. The decomposition is achieved using two operations:
L? projection, denoted Qj for level I, and multilinear interpolation,
denoted IT; for level I. An example is illustrated in Fig. 1, which was
originally presented in [13]. As shown in the figure, the multilevel
coefficients on Nl* are obtained by subtracting from the projection
Qqu to the current grid its interpolation IT;_; Q;u on the next coarser
grid N;_;. These coefficient are then projected to N;_; to obtain a
correction used to transform IT;_;Qju to Q;_ju. Q;_ju is then used
to compute the coefficients at the next coarser level N}* |, and the
procedure repeats.
We summarize the decomposition procedure as follows:

(1) The decomposition starts with Qru = u.

(2) Compute the piecewise linear interpolant IT;_; Q;u and sub-
tract it from Qju to get the multilevel coefficients u_mc at
level I. These coefficients encode (I — II;_;)Qju.

(3) Project the multilevel coefficients to the next coarser level to
obtain the correction and add it to the interpolant IT;_; Q;u
to obtain Q;_;u, the L? projection to the next coarser level.

(4) Repeat the above process until [ = 0.

The original input u is transformed into a set of multilevel co-
efficients u_mc after decomposition. Next, given a user-prescribed
L? error bound 7, MGARD quantizes each coefficient u_mc[x] into
t_mc[x] such that

L

llu— il > < (Z > vol(x) lu_melx] - G_mc[x]lz)l/z <z (1)

[=0 xe N}

where # is a reduced representation of u after quantization and
vol(x) is the volume of an element centered at x measured in the
corresponding grid. For the mathematical details on how to obtain
the relation between ||lu — i||;2 and |u_mc[x] — G_mc[x]|, please
refer to [2, 3]. MGARD also provides error control on L® [4] and
quantities derived from u through any bounded linear operator [3].
We omit the review on these two as they are not directly related to
the work in this paper.
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Figure 2: The multilevel coefficients must be normalized
before mesh refinement to take out the level-wise magni-
tude variation caused by spatial correlation (2b) and lack of
thereof (2a). Level 9 is the finest grid and level 2 is the second
coarsest grid.

4 THEORETICAL FOUNDATION

In this section, we describe how to perform region-wise error con-
trol and critical region detection during compression. We explore
how a point-wise error propagates during the multilevel recompo-
sition and we propose error control methods based on buffer zones
and linear quantization.

4.1 Critical Region Detection

As discussed in Sec. 3, MGARD uses a hierarchy of nested grids to
decompose data u into a collection of multilevel coefficients u_mc.
Each multilevel coefficient u_mc[x] captures data variations at a
particular location and scale. In this subsection, we explore how to
make use of the multilevel coefficients for critical region detection.

4.1.1  Multilevel coefficient preparation. Due to differing scales
across the grid hierarchy, the magnitudes of coefficients at coarse
and fine levels cannot be directly compared. To understand the
relationship between the level in the hierarchy and the magnitude
of the coefficients, we compute the multilevel coefficients for a
pointwise randomly generated 2D dataset and plot the average mag-
nitude of coefficients by level in Fig. 2a. As seen in the figure, the
average magnitude of the coefficients increases from coarse to fine
levels. This is caused by high-frequency oscillations found in this
random dataset.

Next, we study the multilevel coefficients of real data. The blue
line in Fig. 2b shows the multilevel coefficients of a 2D sea level
pressure (PSL) variable taken from an E3SM [19] climate simulation
dataset. Opposite to the randomly generated data, the magnitude
of level-wised coefficients of real data decreases as the level be-
comes finer. This is because the real data is spatially correlated.This
measure of smoothness results in increasingly small multilevel
coeflicients; see [3] for details.

To avoid the bias caused by coefficients at fine levels in weakly
correlated data and coefficients at coarse levels in strongly cor-
related data, we perform data normalization. Specifically, each
multilevel coefficient at level I will be normalized by u_mc’[x] =
u_mclx]/ al~! before mesh refinement, where « is a constant calcu-
lated by curve fitting the multilevel coefficients decomposed from
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a sample dataset. For the example of E3SM climate simulation data,
we choose a = 2. As shown by the orange line in Fig. 2b, the mag-
nitudes of coefficients at coarse and fine levels are normalized to
the same scale (though a large coefficient at coarser level still mean
data variations in wider expansion).

4.1.2  Mesh refinement on multilevel coefficients. After normaliza-
tion, we propose a mesh refinement approach to identify regions
where large-value coefficients are clustered. These regions are
places where features of interest are likely to be found, and they
will be compressed with small errors. Our mesh refinement-based
region detection algorithm is summarized with the following steps:

(1) Begin with the entire full resolution space S.

(2) Partition the original space S into a grid D with k the starting
grid spacing.

(3) Aggregate the coefficients in each grid cell and select the
grid cells where the aggregated magnitude is above the pt™
percentile.

(4) Check to see if the stop criteria is met (details in following
paragraphs).

e If not, partition each selected grid cell with k’ the new
grid spacing and recurse step (3).

o If yes, return the selected grid cells from the final level of
refinement.

Our method is similar to adaptive mesh refinement in that we
keep partitioning the mesh grid if the data inside is not sufficiently
smooth. Fig. 3 shows the mesh grids after 3 levels of refinement. We
have two stopping criteria for any grid cell to not be subdivided
further. First, if the mesh interval k is less or equal to a user-specified
hyperparameter ky, or the original data resolution. Second, if the
aggregated magnitude of coefficients in the cell is smaller than
a threshold A., which is derived from the global distribution of
coefficient magnitudes.

In our implementation, the starting grid space k, threshold kpjp,
A¢ used for stopping refinement, the downscaling factor (i.e., k/k’)
used at each refinement step, and the threshold pth used for select-
ing coefficient after are hyperparameters determined by the features
in post-processing. In general, ki sets the scale of features to be
captured; A. indicates the degree of variations in selected regions
comparing to global histogram; k, k/k’ and p'? together determine
the shape of features, i.e., whether the features are clustered in
small-scale, high turbulent regions or expanded in wide, smoothly
varying space.

geu

i

.

M ) e )

Figure 3: An example showing how to selected the most sig-
nificant coefficients (orange cells) by recursively refining
mesh grids based on the encapsulated coefficients.
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The multilevel coefficient at node x; represents the changes
between the value Q;u takes at x; and the nodes at a distance h;
to the left and right of x; (in 1p), where h; = 2LL. Thus, for each
coefficient selected by the mesh refinement, we add the data-points
which fall under a radius of A; in the multidimensional space from
the selected coefficient. The final output Rols are larger, continuous
regions formed by merging these blobs.

4.2 Error Propagation in Multilevel
Recomposition

The quantization error between u_mc and {i_mc induces a compres-
sion error between u and i. Because the recomposition procedure
is linear, the compression error is obtained by recomposing the
quantization error:

L

u—1ii= Z Z (u_melx] — d_mclx1)(I — Q—1) ¢ ( - s x).

1=0 xe Ny

Here {¢;(-;x) : x € Nj} is the Lagrange basis for the space of
piecewise multilinear functions with knots A;. ¢;( - ; x) is the basis
function that is 1 at x and 0 at every other node in N;. We can
bound the magnitude of the compression error at some point y in
the Rol as follows:

L

[CERIOIEDY

1=0 xeNy

lu_meLx1 - d_mclx1]
> B)

X |(I= Qi) ( -3 %) ().

(I — Qi_1)¢;(-;x) is the error incurred by the quantization of
u_mc[x]. See Fig. 4 for an illustration. It is an oscillatory function
which decays with the distance from x. To bound the compres-
sion error at y, we require a bound on the magnitude of each error
(I-Qj_1)¢i(-;x) at y. The page limit precludes the derivation of
this bound in this article. The proof will appear in a forthcoming
article [21], and we will give a brief summary of the main result
here.

Consider first the 1D case. Define a distance function dj_; by
di_1(x,y) = |x —y|/hj_;. Take x € Nl* and y € Nj_;. Let a be the
grid endpoint closest to x, and let b be the grid endpoint closest to
y. It is shown in [4, p. A1300] that, with A; = 2 + V3 and C some
constant,

[Aflil—l(a’x) _ A;dl—l(a,x)]
x [Alfl—l(y,b) +A;d171(y,b)]

|0r-141(-:x) ()| =C [ad-r(@b) _ p~din(ad))

1 1
Observe that dj_(a,x) + dj_1(x,y) +d;j_1(y,b) = dj_1(a, b). In the
typical case, where dj_;(a,b) is large and neither d;_;(a, x) nor
dj_1(y, b) is too small, we have

Ad1_1 (a,x) Adl—l (y.b)

01100 = =t —
1

— CAIdlfl (x: y)

This approximation can be also be shown to hold when not in
the ‘typical case (when any of d;_;(a, b), dj_;(a,x), or dj_1(y, b) is
small), and in 2D (with a different constant, and with d;_; defined as
in Claim 1). Furthermore, it can be shown that this decay rate also
holds for the values taken by (I-Qj_;)¢;( - ;x), including at points
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in between the nodes of Nj_;. See [21] for details. The following
bound is the result.

Claim 1. Letx € NI* For any y in the domain,

|- Q1)1 ( -5 %) ()] < C(2+ V3)~H-1xY)

whered;_(x,y) = |x—yl|/hj_y in IDandd;_(x,y) = lx1—y1|/h—1+
|2 = yal/hy—y in 2D.

Combining Claim 1 with Equation (2), we find that

L
(=)@l <> > Jumelx] - tmelx]|(2 + V3) 4 xY)

1=0 xe Ny

in 1- and 2p. This result has three main implications for Rol error
control:

(1) The compression error induced by quantizing a multilevel
coefficient at a node x decays exponentially in the distance
from x. As a result, the compression error in a region of
interest is chiefly attributable to the quantization of the coef-
ficients in the region itself and in a thin surrounding buffer
zone.

(2) The rate of error decay is scaled by the distance between
the nodes of the level. As a result, the physical width of the
buffer zone scales by the same distance, and the number of
nodes included in it is essentially constant from level to level.

(3) The particular notion of distance that is a scaled Manhattan
metric. As a result, the buffer zone is diamond-shaped.

The pointwise decay rate give in Claim 1 does not immediately
yield an L? error estimate, and it also does not account for the pos-
sibility of cancellation between the components of the compression
error, so in the next subsection we augment this theoretical result
with an empirical investigation of the bounds used for region-wise
L? error control.

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
-0.2 -0.2
-0.4 -0.4
0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) Induced error centered on a (b) Induced error centered on a
node at level L. node at a level coarser than L.

Figure 4: The compression error induced by a quantization
error at a node on a coarser level is propagated to a wider
region by the multilevel recomposition procedure. The error
decays exponentially at a rate proportional to the level’s
internode spacing and flips sign from node to node.

4.3 Region-wise Error Control

In the previous section, we show the error is propagated and de-
cayed in a modified distance d;(x, y) during the multilevel recom-
position. In this section, we describe the buffer zone and the error
bounds used for region-wise error control.
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4.3.1 Buffer Zone. The compression error in the Rol after recom-
position is attributable to errors incurred quantizing coefficients
both inside and outside the Rol (with outside errors propagating
inward). We focus on L? error in this paper, and so errors accu-
mulated from coefficients inside the Rol can be preserved using
MGARD’s error control Equation (1). Next, motivated by the ex-
ponential rate of error decay in Claim 1, we add a buffer zone to
prevent an excessive amount of error propagating from coefficients
outside. By preserving the data in a thin region surrounding the Rol
with high accuracy, we guarantee the quality of the data inside the
Rol and in the meantime can use a larger error bound to compress
data outside the Rol.

u Rol
Buffer zone

® Non-Rol

Figure 5: Our region-wise error control is implemented using
a buffer zone. A buffer zone (white) consists of nodes which
fall within a certain Manhattan distance of the Rol (red). The
distance varies for nodes at different grid levels.

According to Claim 1, the point-wise compression error decays
exponentially in dj(x,y), the distance between x and y scaled by
the grid spacing at the associated level. Accordingly, the buffer zone
is a discontinuous region filled by nodes at different grid levels. We
define the radius of the buffer zone, Ry, as the number of grid
intervals at level [ — 1 when the quantization error is incurred at a
node at level . Fig. 5 shows an example of the buffer zone nodes
with Ry, = 2 for a square Rol in 2D space. In real cases, our Rol
is composed by numerous smaller, square Rol-blobs, which are
expanded from coefficients selected by mesh refinement. For each
coeflicient x at an Rol-blob’s edge, we check whether it overlaps
with another Rol-blob. If not, we use Algorithm 1 to compute a
buffer zone around it. Because the number of coefficients at coarser
levels is few while their error propagation steps are wide (as il-
lustrated in Fig. 4), we accelerate the search by first adding all
coefficients below level k into the buffer zone. The search can then
be limited into a smaller region with a maximum distance R,z hj_;.

We apply the same error bound, 79, used for compressing the
Rol to compress the buffer zone, and apply a larger error bound,
71, to compress non-Rol regions. Supposing a quantization error g
is incurred at node x outside the Rol, a buffer zone of radius R,,
ensures that the compression error propagated from x to a node
y at the edge of the Rol is at most Cq(2 + \/g)—er, where C is
some constant. Increasing R, allows to use a larger error bound
for compressing the non-Rol regions, but in the meantime more
data will be compressed with the low error bound 7y because of the
increased size of the buffer zone.
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Algorithm 1 Create level-wise buffer zone.

Input: coefficient x on the boundary of Rol; lookup table u_I to find the level of a
coefficient in grid; maximum level L; maximum searched level k; radius of buffer
zone Rp,,.

1: forl=L — kdo

2: hy =281 Ry =Ry, X by > radius of searched region at level [
3: for yin [-R;, R;] do > centered at x in d-dimensional space
4: if u_l[y] == I and Manhattan_distance(x, y) < R; then
5: bz_map[y] =1 > buffer zone points
6: else
7: bz_map[y] =0 > non-buffer zone, non-Rol points
8: end if
9: end for

10: end for

11: return bz_map

Theories provided in Sec. 4.2 indicate that bounds used for region-
wise error control can be translated into a ratio between the error
bounds used for data inside and outside the Rol. Claim 1 provides the
error bounds when quantization error is incurred at a single node.
To estimate the compression error of a node inside the Rol, we must
accumulate the quantization errors propagated from every node
outside the Rol. Checking the distance between every node inside
and outside the Rols is computationally prohibitive, considering
that the Rol shapes are irregular and the data size is usually large.
In addition, The error bound derived using the summation formula
with the bound provided in Claim 1 will be extremely pessimistic,
as the quantization error incurred at each node are different and
errors at neighboring nodes may cancel each other out as the error
propagation is an oscillatory function across nodes (shown in Fig. 4).
We therefore estimate the ratio, R; = 71 : 79, through empirical
studies.

We conduct empirical studies as follows. Given an Rol in a 2D
space, we use Algorithm 1 to build a buffer zone. We set the coeffi-
cients inside the Rol/buffer zone as zeros and the rest as random
numbers between [—1, 1]. Next, we recompose the coefficients and
check the L? errors for Rols with different sizes. We demonstrate
the trade-off between the radius of buffer zone and the maximally
allowed non-Rol error bounds in Figs. 6a and 6b using Ry, = 1
and Ry, = 2. For each case, we measure the L? error inside the Rol.
Because the “quantization errors” inside the Rol are zeros, errors
measured after the recomposition are purely from the quantiza-
tion errors propagated from coefficients outside. For each Rol size,
we collected measurements from 10,000 trials and plot the mean
and standard deviation in Fig. 6. By using a radius of 2h;_; instead
of 1h;_1, we could use an error bound approximately 3.5 larger
to compress data in non-Rol. The trade-off indicates that a wider
buffer zone (e.g., 2h;_;) is preferred when the requested Rol size is
small, and vice versa. Error bounds used in the experiments of this
paper are derived from the numbers in Fig. 6b.

4.3.2  Error quantization & Rol map encoding. The error-bounded
quantization is performed using a linear-scaling encoder described
in [36] and MGARD error control Equation (1). Decompressors need
to know the quantization error bounds used at different data points
so they can be appropriately reconstructed. In contrast to conven-
tional Rol-based compression, we don’t physically segment the data.
Instead, we design a metadata-free quantization/dequantization al-
gorithm to manage the varied error bounds. Using a linear-scaling
encoder, an input datum x can be encoded into an integer by [ﬁ],
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Figure 6: Empirical studies on the maximal error bound (7;)
allowed for the non-Rol given an error bound 7y used for the
Rol. The ratio 71 : 79 is determined by the size of the Rol and
buffer zone. (a) uses a radius of 1#;_; and (b) uses a radius
of 2h;_; for the buffer zone. We show the mean (circle) and
standard deviation over 10,000 trials. A larger buffer zone
radius means smaller sizes for the non -Rol, but data inside
the non-Rol can be compressed more aggressively.

where eb is a scaled number originating from the input error bound
7 taking into account the error control. With 71 = R; X 19, the ebg
and eb; used for data inside and outside the Rol/buffer zone are
subject to the same linear relation. Our metadata-free Rol quantiza-
tion/dequantization algorithm is summarized as the following:

(1) In the quantization stage, if a node x is inside the Rol, we
quantize it into ny = [eibo] ; otherwise, we quantize it into
Ny = [eibl-' X eby.

(2) In dequantization stage, we convert ny back to x” with x” =
ny X ebg, regardless of which eb has been used for x in
quantization stage.

We use an example to explain the procedure. For an Rol point
Xo = 100.52 and a non-Rol point x; = 100.83, we set 7p = 0.1 and

71 = 10 X 79. After quantization, we get ng = [190:321 = 1005 and

0.1
ny = [%] X 10 = 1000. Next, for dequantization, ny and n;

are converted back to x; = 100.5 and x] = 100. The quantization
error at x is |xg — x6| = 0.02 and the quantization error at x; is
|1 — x{| = 0.83, each satisfying the prescribed error bound of 7o

and 7;. With the above algorithm, our compressor only needs to
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record the compressed data, not the coordinates of regions. Data
reduced by our region-adaptive compressor can be reconstructed
back using regular, non-adaptive decompressors.

5 REGION-ADAPTIVE COMPRESSION
PIPELINE

In this section, we summarize our region-adaptive compression
procedure. Fig. 7 depicts the pipeline. The original MGARD com-
pression pipeline consists of two steps: decomposition and error-
bounded quantization. Our pipeline detects candidate critical re-
gions, searches the buffer zone, and imposes multi-error-bounded
linear quantization for region-wise error control. The following
summarizes the compression steps:

(1) Begin with the coefficients produced by MGARD multilevel
decomposition.

(2) Normalize the magnitude of the coefficients using the algo-
rithm described in Sec. 4.1.1.

(3) Apply the mesh refinement algorithm described in Sec. 4.1.2
to select sub-regions where large coefficients are clustered.

(4) For each coefficient in the selected sub-region, include coef-
ficients falling within a distance of h; to form an Rol-blob,
where h; = ol

(5) For each Rol-blob, check the surrounding coefficients by
level to see if they fall within a buffer zone of a designated
radius R}, using the steps described in Algorithm 1.

(6) Quantize the coefficients in the Rol/buffer zone using the
user-prescribed error bound 7y and the coefficients in the
non-Rol region using 71, where 7; = R; X 79 and R is derived
based on the studies described in Sec. 4.3.

(7) Apply encoding and lossless compression to the quantized
coefficients to obtain the final reduced representation.

Users can control how large a Rol to be retained by tuning the
hyper-parameters in mesh refinement Algorithm described in 4.1.2.
In the case of using different 7, for multiple Rols, 7; = Ry X min(zy).

6 EXPERIMENTS

We compare our method to three baseline compression approaches
using the atmospheric field output from the Energy Exascale Earth
System Model (E3SM) version 1. We evaluate the L? error control
and improvement of compression ratios on the raw data by compar-
ing our approach to MGARD using single error bound and MGARD
using multiple error bounds on region-segmented data. As indicated
by the work in [20], the compression ratios of the state-of-the-art
lossy compressors are comparable respect to L? error metrics. Next,
we evaluate the improvement of region-adaptive compression on
post-processing with two climate use cases — Tropical Cyclone (TC)
detection and Atmospheric River (AR) tracking. Finally, we profile
the overhead in computation resulted from the region-adaptive
approach. The experiments in this paper were conducted on OLCF
Andes cluster [31], where each node on the system has two 16-core
AMD EPYC 7302 processors and 256 GB of memory.

6.1 Datasets

E3SM is a fully coupled Earth system and climate model used
in mission-defined efforts in the U.S. Department of Energy, as
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regions) after recomposition, we add buffer zones (white regions) in between. The bound used for error bound is derived from

both theoretical and empirical studies.

well as several international model inter-comparison efforts [19].
Our experiments use the atmospheric data coming from its High-
Resolution (HR) configuration coupled simulation. The atmosphere
grids are based on a cubed-sphere topology. The HR grid configura-
tion is characterized by 120 quadrilateral spectral elements in both
x and y directions of each face of the cube sphere corresponding
to an approximate grid spacing of 25km and a total of ~800,000
columns per variable per snapshot. Our experiments use a dataset
spanning 5 years at a temporal resolution of 6 hours and stored
in float32 precision. To achieve better compression ratios, for
each snapshot, we transform variables from their original 1p grids
to three 2D snapshots correlated in longitude and latitude on the
cubed sphere. The compression is performed in 2D space for both
region-adaptive and single-error-bounded cases.

6.2 Event analysis codes

To determine whether the data coming out of lossy compression
is acceptable, we evaluate the impact of compression on both the
raw data (i.e., relative L? error) and post-analysis statistics. We
evaluate the impact on post-processing with two use cases - TC
tracking and AR detection, and we use TempestExtreme Version
2.1 [38] in both cases. TempestExtreme is a software package which
performs a variety of feature tracking and scientific analysis for
global Earth-system data.

A TC is an intense circular storm that originates over warm trop-
ical oceans. TempestExtreme identifies candidate TC locations first
based on a minimum sea-level pressure, then with the associated
upper-level warm cores. All candidate nodes are stitched together

to form tracks with multiple conditions imposed, such as maximum
distances between any two candidate nodes in one track, minimal
nodes in a track, and minimal wind speed. For the above algorithm,
five 2D variables are required as input: pressure at sea-level (PSL),
temperature at 500 hPa and 200 hPa (T500, T200) to determine the
upper-level warm core, zonal and meridional wind speeds (UBOT,
VBOT) to derive wind speed at the lowest/bottom model level.

Atmospheric rivers (ARs) are thin and long filamentary struc-
tures characterized by high integrated vapor transport (IVT) and
often resulting in intensive rainfall over impacted areas. The Tem-
pestExtreme detection algorithm detects ARs as ridges using the
Laplacian of the IVT field. Only points whose Laplacian is less
than a threshold are retained. And typically, features too near the
Equator and those that are deemed too small filter out TCs. The
final step is to stitch the binary map and labels individual ARs with
different tags. For this algorithm, a 2p variable, magnitude of IVT,
is used as input.

In both use cases, the weather events are characterized by rich
regional features, making them ideal candidates for our region-
adaptive compression algorithm. From the perspective of detection
algorithms, TC tracking focuses on point-wise features (nodes),
whereas AR detection focuses on areal feature (blobs) characterized
by points in a continuous region. We evaluate our region-adaptive
compression on these two distinct features.

6.3 Error control and data reduction evaluation

For TC analysis, we compress the five 2D input variables with a
requested error bound 7p = 5 x 10~ for PSL and 7o = 1 x 1073 for
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T200, T500, UBOT, and VBOT. We choose a smaller error bound
for PSL as the detection thresholds defined on vortex intensity
(i.e., depth of sea level pressure minimum) drive the major TC
output sensitivity [41]. Since TC analysis focuses on small-scale
structures (a radius of 4°-6.5° is used by most detection algorithms),
we choose the starting k as 8 and p'! in the range of 10-15% for
mesh refinement. These numbers are chosen by evaluating the
TC analysis results using a sample dataset spanning 1 month. The
resultant thresholds are then applied to the whole dataset spanning
5 years. The selected region accounts for approximately 16% of
the total dataset after the coefficient to Rol-blob expansion. Since
the location of features should not change among 5 TC tracking
variables, we implement region detection only on PSL and use the
obtained Rol map for the other 4 variables at the same snapshot.

For AR analysis, we compress the IVT variable with a requested
error bound 79 = 2X 1073, ARs are long continuous regions filled by
blobs detected using a Laplacian operator, and the fluctuations in
AR regions are less intense than those in TC regions. To cover AR
regions, our region-adaptive method must keep more coefficients
after mesh refinement. An example can be found in Fig. 8, which
shows a snapshot of the IVT field, AR masks detected by Tempes-
tExtreme, and the Rol mask coming out of our region-adaptive
compressor. In this example, we use a starting k as 16 and pth as
17.5 — 50%, resulted in a selection of 33-38% across all 2D IVT
snapshots.

Variables used for AR locations from
AR detection analysis code
0

Rol from region

0
200 200 e
400 400
600 600 d v
800
1000

1200

1400

Figure 8: ARs show a long, filamentary structure. Since our
region detection is not customized for AR tracking, a large
portion of the total region (> 35% in our experiments) must be
preserved to encapsulate the AR locations. Large Rols limit
the compression ratio achieved by our adaptive method.

Throughout the experiments, we use a buffer zone of radius
R,, = 2. We choose the ratio between the error bounds used for
the Rol and non-Rol as 771 : 79 = 23 by interpolating the bottom
of error bar in Fig. 6b with an Rol size of 8 x 8. We set the ratio
of 71 : 7y based on the narrowest island in the detected Rol. We
estimate the values based on the resolution of the finest grid used
in mesh refinement and the average size of Rol-blobs drawn in
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the subsequent expansion. Please note the derived error bound is
pessimistic because Rol-blobs may connect to form regions of much
larger size, as shown in Fig. 8, so as can tolerate larger error bounds
with surrounded data points.

We first check whether the proposed error control approach can
guarantee that the compression errors in different regions respect
a user-prescribed error tolerance in the L? norm. We compare our
approach to a single-error-bounded compressor, MGARD. The lat-
ter reduces the 5 TC analysis variables using the same error bound
we used for Rol compression. Fig. 9 shows the relative L? error
measured in the recomposed Rols for 5 TC analysis variables. The
errors of our region-adaptive compressed data are indistinguishable
from those measured in data compressed using a single error bound,
and strictly less than the requested error bounds. Meanwhile, the
compression ratio obtained using our region-adaptive approach is
approximately 1.74X better for PSL, 2.05% better for two temper-
ature variables, and 1.87X better for the velocity vector than the
single-error-bounded MGARD.
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(a) Compression ratios: adaptive vs. single-error-bounded.
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Figure 9: Compressed variables used for tropical cyclone (TC)
detection with an input error bound (eb) of 7. The adaptive
method applies 7 to Rols output from its region detection
algorithm, which counts for ~16% of the total region, whereas
uniform compression applies 7y for the whole region.

Next, we compare the compression ratios of our method to the
standard Rol-based compression procedure. Consider a scenario
where the location of an Rol has been obtained using some feature
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tracking algorithms. The subsequent approach will then extract the
Rol data, separate Rol and non-Rol data into a different sets, and
compress each using different error bounds. This segmentation-
based approach perfectly avoids cross-region error propagation, but
it comes at the cost of extra metadata spent on saving Rol masks.
Bounding box approaches cannot be applied effortlessly for our
case. As an example shown in Fig. 8, Rols in E3SM atmospheric
field coming out of our detection method have irregular boundaries
because the atmospheric data are captured over a wide span (i.e.,
global earth system) and our detection algorithm is not customized
for capturing specific features. Alternatively, for the experiment
used for comparison, we label points in different regions on a binary
mask and save the mask in bit-format (i.e., 1 byte for 8 grid points).
Rol and non-Rol data are linearized and compressed separately by
single-error-bounded MGARD using error bounds 79 and 7y. The
compressed data comprises both the quantized bytes and associ-
ated masks. The ratios of 5 TC variables compressed using region-
segmented and our region-adaptive approaches are shown in Fig. 10.
The compression ratios of our approach are approximately 1.36x
better for PSL, 1.8—2.0x better for the two temperature variables,
and 1.43X better for the velocity vector than the region-segmented
approach using the same set of error bounds. Our advantage comes
from two aspects: (1) our approach don’t save region labels, and
(2) data correlations are better exploited by compressing Rol and
non-Rol data together. For example, eliminating the cost of Rol
masks, the compress ratio of our method is still 1.27X better than
region-segmented approach for temperature variable, even though
the data compressed using 79 is ~50% more in our case than those
in region-segmented approach due to the data in buffer zone.
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Figure 10: Compression ratios obtained on the input vari-
ables used for TC detection with adaptive and segmented
approaches. The segmented approach splits Rol and non-
Rol data using the same Rol mask output from the region-
adaptive method and compresses Rol and non-Rol datasets
separately using two error bounds.

We then evaluate the impact of compression on post-analysis.
For TC analysis, we run TempestExtreme with the 5 input variables
to identify candidate TC nodes in each snapshot and stitch them
across time-series snapshots to form TC tracks. We fix the com-
pression ratio (per-variable compression ratio displayed in Fig. 9a),
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and compare changes in TC analysis results caused by our ap-
proach to the ones caused by the single-error-bounded MGARD
compression. Under the same compression ratio, the single-error-
bounded compressor uses 79 = 3 X 10~ for PSL, 7y = 3.7 X 1073
for T200, 7p = 3.1 X 1073 for T500, 7y = 4.1 X 10~ for UBOT, and
70 = 3.9 x 1073 for VBOT. We measure the changes in location at
each step of a TC track after lossy compression. We call TC tracks
found in uncompressed 5-year ensemble {tc}, and tracks found
in lossy compressed and reconstructed ensemble {Zc;}. For every
track tc; in the set of {tc}, if there exists an equivalent tc;, we pair
the two and compute the great-circle distance (gcd), r, between
their nodes using the equation from [37]:

r(A, @; A, ) = arccos (sin ¢ sin ¢ + cos ¢ cos @ cos (A — 1))

where {A, ¢} and {i, @} are latitude-longitude coordinates of a node
in tc; and the corresponding node in {tc;}. Due to the variability of
the detection algorithm, a TC track/step identified in the original
ensemble may not show in the compressed ensemble. In that case,
we use the shortest gcd between {4, ¢} and any i, ¢;} found at
the same snapshot. We define the error as the number of grid-points
changed in average for all steps in a TC track with the equation
drc = ﬁ va r(Ai, is ii, ¢i), where N is the number of nodes in
a TC track and 0.25° is the grid spacing in gecd. The average number
of nodes per TC track is 16. We compute dyc for each individual TC
track and plot the statistical distribution of errors in all TC tracks
found in 5 years. As shown in Fig. 11, drc computed from the data
compressed using our region-adaptive method is more than 50%
smaller than the error using the single-error-bounded approach
across the whole distribution range. Moreover, 70% of the TC tracks
computed from data compressed with our method match exactly
with the ones found in uncompressed data, versus 50% with the
single-error-bounded approach.

Single error bounded (fix CR) m Adaptive (fix CR)
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0.5
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Figure 11: Fixing compression ratios (CR), evaluate the shifts
in TC tracks when the detection algorithm uses lossy com-
pressed data. The error is computed for each individual TC
track and we plot the statistical distribution of errors among
all TC tracks found in a dataset simulating 5-year climate.

For AR tracking, we run TempestExtreme with the IVT variable
to detect AR masks in each snapshot and stitch the binary masks
across time-series snapshots to label individual AR events. Similar
to TC analysis, we fix the compression ratio as 16.7X and study
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the impact of lossy compression on the detected AR events. Under
the same compression ratio, our region-adaptive compressor uses
To = 2 X 1073 for Rol data, and the single-error-bounded MGARD
compressor uses 79 = 3 X 1073, We evaluate the changes in the
size of a stitched AR event after lossy compression by the inter-
section over union (IoU). We use {M} and {M} to designate AR
masks found in the original and compression data. For each AR
event, we compute the intersection M; N M; and the union M; U M;.
The error is defined as epar = (1 — %) * 100%. We plot the

i

statistical distribution of ea in Fig. 12. Errors computed using data
compressed by our region-adaptive approach are approximately
14-16% smaller than those computed by the single-error-bounded
approach. This advantage is weaker compared to the one shown in
TC analysis. As mentioned above, detecting features of blob struc-
ture (i.e., ARs) requires including more data in Rols than detecing
features of node structures (i.e., TCs), which diminishes the benefit
of using a region-adaptive approach.
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Figure 12: Fixing compression ratios (CR), evaluate how
much the size of an AR changes when the detection algo-
rithm uses lossy compressed data. The error is computed for
each individual AR event using intersection of union (IoU)
and we plot the statistical distribution of errors among all
ARs found in a dataset simulating 5-year climate.

6.4 Throughput overhead

We further evaluate the performance overhead of region-adaptive
compression. Our approach utilizes the decomposed coefficients
from the MGARD compressor. Compared to single-error-bounded
MGARD compression, the overhead mainly comes from mesh re-
finement and buffer zone searching. We use the 2D AR detection
variable as the test data and vary the requested Rol size by tuning
the threshold settings in mesh refinement. We plot the ratio of
the region-adaptive overhead to the cost of the rest of the compu-
tation in Fig. 13. The overhead is observed to be small when the
requested Rol size is small. For example, the overhead of doing
region-adaptive compression for the variables used by TC analysis
is detection is less than 10%. The buffer zone searching will eventu-
ally take almost the same amount of time as the Rol detection as
Rol size grows, due to longer and more irregular boundaries.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

W Mesh refinement  m Buffer zone search

Overhead (%)
BB NN
(63} o wv o w

o

- 0 B I I i

||

5 10 15 20 25 30
share of Rol region (%)

Figure 13: Overhead of region-adaptive compression. The
overhead counts both region detection and buffer zone
searching. We plot the ratio of execution time taken by over-
head and the rest of the implementation; the latter is analo-
gous to the standard, single-error-bounded compression.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a region-adaptive lossy compression frame-
work to tackle the needs of large compression ratios and region-
wise error control by scientific applications. Our framework al-
lows users to impose region-wise error bounds without region
segmentation. Information of varied error bounds is embedded in
the compressed data and the decompression can be performed us-
ing a regular, single-error-bounded compressor. Moreover, we also
provide a method which detects candidate critical regions using
the coeflicients of a multilevel compressor in case the locations of
Rols are unavailable prior to compression. Experimental results
demonstrate that for the 5 variables used for TC analysis, by se-
lecting approximately 16% of the total region, our region-adaptive
method can accurately capture the regions containing TC feature,
and obtains approximately 2X and 1.6X compression ratios compar-
ing to single-error-bounded approach and multiple error bounds,
region-segmented approaches. Under the same compression ratio,
the Qol in TC analysis is 2X accurate and the Qol in AR analysis is
1.15% accurate compared to the single-error-bounded approach.

One limitation of our approach is that in order to capture features
with relatively large, continuous structures (e.g., AR), our method
needs to keep a large region with high accuracy if the mask of Rol is
not available as the input of compression. In future work, we plan to
advance the theories in cross-region error control. In particular, we
will derive bounds which can strictly control the accumulated errors
from data outside the Rols and eventually eliminate the bounds
derived from empirical studies.
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