ﬁ Sensors

Article

Single-Cell Classification Based on Population Nucleus
Size Combining Microwave Impedance Spectroscopy and
Machine Learning

Caroline A. Ferguson !, James C. M. Hwang 2, Yu Zhang ! and Xuanhong Cheng :3:*

check for
updates

Citation: Ferguson, C.A.; Hwang,
J.C.M.; Zhang, Y.; Cheng, X.
Single-Cell Classification Based on
Population Nucleus Size Combining
Microwave Impedance Spectroscopy
and Machine Learning. Sensors 2023,
23, 1001. https://doi.org/10.3390/
523021001

Academic Editor: Eui Chul Lee

Received: 9 December 2022
Revised: 4 January 2023

Accepted: 13 January 2023
Published: 15 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/

4.0/).

Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA

Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
*  Correspondence: xuc207@lehigh.edu

Abstract: Many recent efforts in the diagnostic field address the accessibility of cancer diagnosis.
Typical histological staining methods identify cancer cells visually by a larger nucleus with more
condensed chromatin. Machine learning (ML) has been incorporated into image analysis for im-
proving this process. Recently, impedance spectrometers have been shown to generate all-inclusive
lab-on-a-chip platforms to detect nucleus abnormities. In this paper, a wideband electrical sensor
and data analysis paradigm that can identify nuclear changes shows the realization of a single-
cell microfluidic device to detect nuclei of altered sizes. To model cells of altered nucleus, Jurkat
cells were treated to enlarge or shrink their nucleus followed by broadband sensing to obtain the S-
parameters of single cells. The ability to deduce important frequencies associated with nucleus size is
demonstrated and used to improve classification models in both binary and multiclass scenarios,
despite a heterogeneous and overlapping cell population. The important frequency features match
those predicted in a double-shell circuit model published in prior work, demonstrating a coherent
new analytical technique for electrical data analysis. The electrical sensing platform assisted by ML
with impressive accuracy of cell classification looks forward to a label-free and flexible approach to
cancer diagnosis.

Keywords: broadband impedance; single-cell analysis; machine learning; support vector machine;
microfluidics

1. Introduction

Diagnostic efforts to interrogate intracellular properties at a single-cell level tradi-
tionally require the extraction of intracellular materials like genetic material [1-3] or ex-
tracellular vesicles [4-6]. Other methods introduce stains for the purpose of identifying
intracellular characteristics through fluorescence imaging or flow cytometry [7,8]. While
all these methods boast merits, most are generally incompatible with the analysis of live,
functional cells due to the necessary permeability to introduce stains or collect large quanti-
ties of intracellular material and take considerably longer than electrical analysis. While
electrical measurement is a well-established paradigm for the identification of properties in
both single cells and tissues, limitations exist in the available information electrical sensors
can provide to the internal characteristics of living cells [9,10]. For rapid detection in a
large cell population, impedance cytometry applications are typically limited to frequencies
below the MHz range, limiting the ability to sense intracellular characteristics. This is
because the cell impedance most heavily depends on the size and shape of the cells at
the kHz range, and the cytoplasmic impedance manifests at the MHz or higher frequency
ranges [11]. While several cytometric applications have been shown to identify cell popula-
tion characteristics using M Hz frequencies, these are typically dependent on the physical
location of the cell with respect to the electrodes during measurement [12-14].
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Broadband spectroscopy by contrast relies on cell trapping and positional consis-
tency for the duration of the frequency sweep for accuracy up to GHz frequencies. With
broadband electrical sensor designs and more complex data analysis methods including
our previous work, subcellular features such as the nucleus or ionic property changes
can be interrogated by GHz or microwave range signal measurements [15-18]. These
approaches hold promises in single-cell cancer diagnosis with low resource requirements.
Cancer nuclei are often larger with less chromosomal organization and a denser collec-
tion of chromatin within, properties that are typically determined by histological staining.
However, the infrastructure to perform this procedure makes it difficult to implement in
resource-limited areas [19]. While other cellular changes are associated with tumor cell
expression, nucleus size is one of the most easily distinguishable by dielectric parameters
and broadband spectroscopy, as shown in previous applications. By applying a label-free,
lab-on-a-chip technology based on broadband electrical sensing to this clinical challenge,
this work strives to offer an alternative way to look at nucleus size with fewer requirements
on human operation and infrastructure.

Machine learning (ML) has been applied to clinical cancer identification based on
nucleus properties in both genetic and histological image data to improve the speed and
accuracy of both diagnosis and prognosis [20,21]. ML offers the benefit of incorporating
various techniques to determine the most important features and appropriate diagnosis or
prediction algorithms based on the problem at hand and being adaptable for larger datasets.
For examination of single cells, recent studies have built classification models, such as
support vector machine (SVM), gradient boosting (GB), k-nearest neighbor (KNN), and
random forest (RF) with cell micrographs to identify the differentiation within a population
of cells [22,23]. Similarly, apoptotic cell identification has been applied to single cells using
fluorescence-based flow cytometry employing KNN, RF, SVM, and logistic regression (LR)
classifiers [24]. The use of lab-on-a-chip set-ups combined with ML poses an interesting
solution for examining overlapping populations of single cells which may be difficult to
distinguish using traditional statistical analysis. This combination also promises to improve
system integration, wherein clinical diagnosis could become more rapid, accurate, and
require less resources. In recent years, this combination between ML and electrical data
has been increasingly applied to classification tasks in various cell studies including cell
type identification [25-27], cancer cell typing [28,29], and monitoring cell viability during
treatment [30]. While SVM and LR remain some of the most commonly seen classifiers,
typically a variety is used in each study considering the performance of classifiers is partic-
ularly dataset dependent [31]. Such classifier improvement can also be controlled using
feature selection techniques and tuning parameters such as the regularization parameter
in SVM or LR [32,33]. Especially in cases of high feature dimensionality, several recent
diagnostic sensors using an e-nose paradigm emphasize the importance of feature selection
methods to improve ML classification accuracy to refine the variables collected in future
designs [34,35].

In the reported method, single cells are non-invasively measured using an ultra-
broadband electrical sensor to successfully interrogate chemically induced changes to
simulate both nucleus shrinkage associated with cell apoptosis and enlargement associated
with cancer development. While previous work using broadband spectroscopy has already
established the intracellular properties of apoptotic nuclei using a double-shell model [18],
chemically enlarged nuclei simulating cancer characteristics have not been. Using this
on-chip, broadband sensing approach, a variety of unique spectra obtained serve as the
foundation for the ML approach. The comparison of feature selection methods and classi-
fiers helped us identify patterns and frequencies of note in these varied impedance spectra.
Using both traditional statistics and ML methods for feature reduction, this work examines
the impact of a smaller feature set on classification accuracy using simple classification
schemes. Here, we demonstrate the promising capability of leveraging microwave spec-
troscopy and ML to predict the specific nucleus treatment applied based on the resulting
spectral feature patterns. In this paper, we present a new combination of feature selection,
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machine learning, and wideband spectral data to identify important frequencies between 9
kHz and 9 GHz to classify nucleus size changes. This work is an important step towards a
paradigm for evaluation and analysis of clinical cells to determine label-free disease-related
differences in cell impedance, which could prove especially useful for difficult-to-diagnose
disease states.

2. Materials and Methods

Human lymphocyte cells from the Jurkat line (ATCC TIB-152) were cultured in RPMI
1640 supplemented with 10% FBS and 5% Penicillin/Streptomycin antibiotics. The cells
were kept at 5% CO, and 37 C for the duration of their culture before treatment. Cells
were separated from the culture flask and treated for 1 h using a final concentration of 1
mM Staurosporine (ST, Sigma Aldrich S6942, St. Louis, MO, USA) in cell culture media to
shrink the nucleus. To enlarge the cell nucleus, cells were incubated overnight for 48 h using
Ciprofloxacin (CP, MP Biomedicals 199020, Santa Ana, CA, USA) dissolved into PBS ata
concentration of 10 M. For measurement, cells were moved to an 8.5% sucrose and 0.3%
dextrose solution in DI water to provide a low ionic sensing environment at a
concentration of 1 108 cells/mL. In previous work, we have shown the viability of cellsin
this solution for multiple hours of electrical testing. The nuclear size change was verified
using fluorescence staining the nucleus using Hoechst 33342 (Invitrogen H3570) and
staining the cytoplasm using CalcienAM (Biotium 80011-3) added to general culture media.
From these fluorescence images, FlJI/Imagel) was used to extract both the cell and nucleus
diameter, followed by an analysis of variance statistics to determine significant size
changes.

Cells travel through a PDMS channel to pass directly over the surface of an electrode
series gap where they are electrically trapped and then measured. The electrical sensing
utilizes a 10 m wide series gap between 100 m width flat electrodes deposited in gold on a
patterned coplanar waveguide (CPW). The PDMS channel is designed with two branches
sandwiching the straight channel to provide a sheath force to direct cells to the center of
both the channel and the electrodes. To prepare the entire cell capture device, the PDMS
channel was attached to the CPW by aligning the channel center with the center of the
series gap on the CPW. A sheath flow of 0.25 L/min and a sample flow rate of 0.1 L/min
introduced the cell suspension to the CPW surface and guided them to the center of the
electrode gap. To stop cells within the series gap, a dielectrophoretic signal of 9 dBm ata
frequency of 500 MHz was applied using a Virtual Network Analyzer (Keysight ENA
Network Analyzer E5080A). Following the isolation and stationary position of a single cell
within the gap, a probing signal of 15 dBm sweeping over 201 frequencies from 9 kHz to 9
GHz was passed through the cell while recording the resulting impedance in two ports,
resulting in 402 unique frequency features per cell. Each cell had the consistency of size
and location validated through optical photographs using a microscope (Nikon).

At each frequency, two power ratios were measured, S11 and S21, or power reflection
and power transmission to determine the proportion of power reflected or passing through.
Directly after, the S11 and S21 of the sucrose solution alone were measured for comparison
with the cell-influenced signal. A more universal parameter of DS11 or DS21 was
calculated from subtraction between the two to see the small dB change caused by the cell
presence between the electrodes.

The ML framework was built around a binary classification system examining different
combinations of feature selection strategies and classifiers to identify informative feature
patterns in distinguishing untreated (UNT), ST- and CP-treated populations of Jurkat
cells with normally sized, shrunk, or enlarged nuclei. Initially, the data was normalized
along the 402 frequency features using the electrical spectra for each treatment type. Two
feature selection methods were separately implemented to reduce features based on either a
statistical elimination (SE) scheme or recursive feature elimination (RFE). In the case of
RFE, a minimum of 50 features was set as a parameter for the cross-validated based on
the results of a sweep to optimize this parameter (Figure A1l). For statistical elimination, a
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student’s t-test was used for binary classification pairs and features were removed when
considered insignificant (p > 0.05) when comparing the classes. The reduced feature set was
then split using 10-fold cross-validation for classification. Specifically, all cell samples were
randomly divided into 10 folds, such that each fold was left out and used as a test set once
while the remaining nine folds were used as a training set for the classifier training. In each
run of the cross-validation, z-score normalization was applied to standardize each feature
across samples. The classification was tested and compared using a linear kernel-based
SVM and L2 regularized LR. This cross-validation was repeated 10 times, so each overall
metric of accuracy, sensitivity, and specificity was averaged across 100 runs of a specific
classification scheme for a reliable performance evaluation.

For multiclass classification, the resulting binary classifiers and selected features from
the previous paragraph were each applied to a randomly selected subset of cells. For the
subset of cells, normalization occurred by frequency feature and for each binary pair, the
selected features were used to generate a classification prediction. A major voting strategy
was employed, selecting the final multiclass classification based on which class
received the most votes for that cell out of all three binary classifiers.

3. Results
3.1. Optical Characterization of Cell and Nucleus Size

To verify the treatments with Staurosporine (ST) and Ciprofloxacin (CP), the same
batch of cells was split into groups with either no treatment (UNT) or one type of treatment.
Using FlJI software, the cytoplasm and nucleus diameters were measured using fluorescent
imaging, and the distribution of the cell diameter and the nucleus-to-cell ratio were each
fitted to a normal distribution as visualized in Figure 1. The UNT Jurkat cells exhibited
an average cell size of 10.5 m overall diameter with a nucleus-to-cell-diameter ratio of
0.80 (Figure 2). Based on the measured diameters, analysis of variance (ANOVA) statistical
testing was used to determine a significantly lower nucleus ratio of 0.77 (p = 0.025) without
a significantly lower cell size (p = 0.227) for ST treatment. Similarly, for CP treatment, the
nuclear size ratio was significantly larger at 0.83 (p = 0.0001) without significantly impacting
the cell size (p = 0.494). These results verified that despite comparable cell sizes among
the three populations, the average nucleus characteristics of the populations changed
significantly with treatments. While our previous work has the capability of distinguishing
ST treatment to elicit shrinking reactions in the nucleus [13], this verification of nuclear
size increase using CP treatment created a more radical comparison of how nucleus size
impacts electrical signals without causing cell death.
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Figure 1. Experimental structure overview demonstrating both data collection and application of the
ML paradigm of dual normalization, feature selection, and classification.
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Figure 2. Cell and nucleus diameter measurements from fluorescence imaging. (a) Nucleus/cell
diameter ratios among untreated, staurosporine (ST), and ciprofloxacin (CP) treated Jurkat cells.
(b) Population cell diameter comparison among treatment types. (* p < 0.05, ** p < 0.01) Each
box demonstrates the interquartile range (IQR) for the sample and the whiskers show the
extension to 1.5 * 1QR.

3.2. Visualization of Electrical Spectra

Upon collection of S-parameter spectra from UNT (n = 53), ST (n = 43), and CP-treated
cells (n = 39) using the microfluidic flow device outlined in our earlier work [15-17],
the spectra were compared among the two treatment conditions and the untreated cells.
Figure 3 shows the overlap in the mean spectra (lines) and differences in standard deviation
(shadows) at each frequency between the treated and untreated groups. While there is
a clear population overlap between UNT, ST, and CP-treated cells, there are still certain
characteristics that can be visually identified in the spectra that are specific to treatment.
For example, in ST-treated cells, there is a shift of the peak to a higher frequency around
9 GHz of DS11 along with a decreased slope in the 10-MHz range of DS21, shown in red in
Figure 3a,b, respectively. Alternatively, CP-treated cells show a deeper dip at 1 GHz of DS11
and an increased slope in the 10-MHz range of DS21 appearing blue in Figure 3. Based on
previous circuit modeling focusing on how double-shell model compartment properties can
impact different portions of spectra, these changes are consistent with increased resistance
in the ST-treated cells and decreased resistance in CP-treated cells for both the nucleoplasm
and cytoplasm [18]. For ST-treated cells, the changes are also consistent with the spectra
changes seen in the previous work, and the current work measuring a much larger number
of cells to allow ML-based classification.
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Figure 3. Swept spectra showing mean (lines) and standard deviation (shadows) for (a) DS11 and
(b) DS21. UNT cells are shown using black with a gray shadow, ST treated cells are shown using red
line and shadow, and CP treated cells are shown using a blue line and shadow.
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Looking at the variety of spectra collected, it is obvious that statistical analysis methods
to visually identify distinguishing features would be limited in their ability to accurately
describe the changes associated with different treatments. The individual response to
treatment in the cell populations is heterogeneous: both the nuclear size change seen
during imaging and the impedance spectra of the three groups (UNT, ST, and CP) have
overlapping features. Thus, it is not immediately apparent which frequency measurements
were experiencing either the largest changes or changing most consistently. Although it is
qualitatively apparent that most changes between the treated spectra occur at frequencies
near to and greater than 1 GHz, there are also a variety of peak and valley features in the
MHz frequencies that demand more sophisticated methods of comparison. Using machine
learning classification, the properties of the entire spectra for each treatment label have
been evaluated more comprehensively. Despite the heterogeneous population overlap
masking the classes of treatment, these spectral changes attributing to the nucleus size
change can be used to classify individual cells as belonging to a specific class of treatment,
as described below.

3.3. Binary Feature Selection and Classification

For the purposes of determining the most important features, the DS11 and DS21
parameters were combined for a single feature set consisting of both measurements at
each frequency. One of the unique challenges associated with feature selection in a dataset
containing both DS11 and DS21 spectra is the vast scale differences between the S-parameter
values. As seen in Figure 3, DS21 can range from 1.0 to 0.1 dB at higher frequencies, while
the peak values of DS11 are on the order of 0.001 dB. To combat the tendency to select higher
magnitude DS21 features, normalization across the two distinct parameter feature sets was
applied prior to combination and feature selection, encouraging decisions based on the
difference at each frequency value for either measurement type rather than the overall
signal magnitude. The feature set of cells for each binary treatment class pair was reduced by
either SE or RFE. For SE, traditional methods were used to compare the means of the
populations at each frequency using a student’s t-test to determine a significant difference in
signal mean at each frequency among the classes. Frequencies with a p-value < 0.05 were kept
in the dataset, while the others were removed. RFE made selections by weighting feature
importance and eliminating based on the resulting accuracy from a simplified classifier
model. Either method resulted in a combination of frequencies at which DS11 and DS21
values are most relevant for improved classification accuracy.

The resulting reduced frequency set underwent typical normalization across individ-
ual cells before being classified by both SVM and LR using scikit-learn [36], as demonstrated
in Figure 4a. The frequency weight pattern for each binary pair is consistent with the vi-
sual identifiers discussed previously, especially using recursive feature elimination (RFE)
(Figure 4b,c). From previous knowledge, cytoplasmic properties are easier to identify and
dominate the signal at MHz frequencies, and they often dominate the spectra properties
by order of magnitude [18]. These frequencies also show significant changes in treated
populations in this work as the ratio of cytoplasm to the whole cell is changing with the
nucleus shrinking (ST) or expanding (CP). Based on a heatmap showing the classifier
weights associated with each frequency after RFE feature selection, the DS11 signal has
the most important features in the GHz range, where the peaks are observed (Figure 4b).
Looking more closely, there is a red band used by the SVM classifier around 6 GHz for both
pairs including UNT cells, right around where the peak is typically seen. Similarly, in the
GHz range for pairs including CP weighted by the SVM classifier, there are blue bands
where the dip was seen in many DS11 spectra. For the DS21 spectra, the MHz
frequency measurements were the most heavily weighted in all cases where the slope of
the signal is clearly different based on the sample spectra (Figure 4c). Another notable
distinction in Figure 4c is the high GHz DS21 signal weights selected for pairs including
ST, suggest-ing that although small in magnitude, the change of the DS21 signal in the
GHz range is consistently associated with the nucleus size reduction in the heterogeneous
population.



Sensors 2023, 23, 1001

7 0of 13

Feature Selection

(a)

i
i H
] I:
H Recursive i:
i ———+ Feature
Full Data 1 ' Elimination | 1! Model
Assembly |1,| Normalization i Normalization Evaluation
3 Classes x 402 ] by Feature :: by Sample Frequency List
Feaiures : L 0" Classifier
: Statistical | !
! Elimination |1}
] e .
(b) 4511 (c) AS21
UNT/ST UNT/ST | || [ ”
UNT/CP | I I UNT/CP | | ‘ | |
ST/CR | | ST/CP I
10° 107 10° 107 10" 10° 10’ 10¢ 10° 104
Frequency Frequency
[ B ]
0.20 015 0.10 0.05 0.00 0.05 0.10 015 0.20
(d) Normalized Welght

l sVM LR

Accuracy
o [=] o —
A

[=]
ma
i

MNone SE RFE ! None SE RFE
UNT/ST UNT/CP ST/CP

None SE RFE

Figure 4. Approach and evaluation of cross-validated pairwise binary classifiers. (a) Schematic
describing binary classification paradigm structure. (b) DS11 and (c) DS21 feature weights based
on RFE + SVM classification for each pair. (d) Accuracy for predictions using each feature selection
method and classifier for all binary pairs. The error bar indicates the standard deviation across the
runs of cross-validation.

With the pairwise comparisons of the treatment types, we observed that the overall
highest accuracy without any feature selection was seen for the ST/CP classification due
to the most extreme difference in population nucleus size. The effect of both statistical
difference and feature selection can be seen in the difference exhibited in error bars in
Figure 4d. Here we see that the error bars become smaller as the difference between the
nucleus size groups becomes more distinct, for example, the difference between UNT/CP
was greater than UNT/ST, with the biggest difference being between the two treated
groups. Similarly, the error bar size becomes smaller in the case of feature selection as it
improves both the magnitude and consistency of the prediction.

The overall accuracy success in the ST/CP set is consistent with the largest nuclear size
difference expected between those two populations. Although feature selection improves
the classification accuracy, the most consistently improved classification for each pairwise
comparison was RFE combined with SVM (Figure 4d). The RFE + SVM combo is especially
effective at predicting either ST or CP cell signals from the UNT cell signals, thereby
distinguishing if some type of treatment has taken place in the cell population. The
treatment distinction is especially relevant considering the heterogeneous nature of the
treated cell populations and the tendency of overlapping signal characteristics of single
cells. However, at this point it should be noted for the cancer diagnostic purposes inspiring
this work, the most relevant result is the UNT/CP classification with excellent accuracy
of up to 94% derived using the RFE + SVM combination. Looking at the distribution of
predictions themselves for this binary combination, the analysis further clarifies that SVM
boasts a more balanced and robust prediction set for the UNT/CP classification scenario
(Figure A2). Using the RFE findings, the feature weights for these trained spectra were
examined by pairs to determine which frequencies were most crucial in DS11 and DS21 to
distinguish nucleus size.
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3.4. Multiclass Prediction

To build upon the success of the binary classification schemes, a major voting approach
was developed based on the predictions each binary classifier would produce for each cell
in the dataset. While the same overall structure was maintained, the predictions of each
classifier were considered to generate a final multiclass prediction if each cell was UNT-,
ST-, or CP-treated, as shown in Figure 5a. The prediction process using major voting was
completed for each combination of feature selection method and classifier, showing more
success in the case of RFE than SE (Figure 5b). In this case, the error bars are contingent on
the predictions made by the binary classifiers but the same pattern of reduced error bar
size with feature selection is observed. The multiclass prediction method exemplified that
using feature selection to focus on relevant features as the basis of classification, most of
which occur in the 100-MHz to 9-GHz range, there can be a 96% classification accuracy
among all three classes, especially in identifying ST- or CP-treated cells (Figure 5c). The
major voting approach also showed much higher prediction accuracy when compared to
training a multiclass classifier among the three classes.
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Figure 5. Multiclass classification approach using major voting and previous binary classifier results.
(a) Schematic describing the multiclass voting structure. (b) Final classification accuracy of the
multiclass predictions for 10 randomly selected cells. (c) Confusion matrix describing prediction
percentages for each cell type.

The outlined approach is unique in analyzing the individual spectra over broadband
frequencies, containing information on the membrane, cytoplasm, and nucleus conditions.
Literature reported SVM classifiers using electrical data based on two or three frequency
measurements, typically in the kHz and low MHz ranges, limiting the amount of feature
information distinguishing the classes [37-40]. By collecting 402 features in a broad fre-
quency range and determining informative ones by the classifiers in a data-driven manner,
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the sensing paradigm has the flexibility to function not only in cancer diagnosis but in iden-
tifying properties associated with different tissue and disease types. Traditional techniques
of diagnosis rely on specific biomarkers or optical properties, but a more generalized elec-
trical and feature-tuned classifier approach can be adapted and validated on multivariate
disease-related changes. Going forward, the validation of the system and classifier will
require measurements on both a new and independent dataset of cells with nuclei varying
in size due to other treatments and eventually, application to clinical samples of tumors
with nucleus abnormalities.

4. Discussion

The advantage of broadband sensors in nucleus-based diagnostic applications lies
in the ability to examine larger populations of cells rapidly while parsing individual
properties. This would become particularly useful when both cancerous and noncancerous
cells exist in a collected population. By measuring single cells, the distinction between
two heterogeneous and overlapping cell populations containing distinctly different cells
can be used to fine-tune our understanding of internal compartment electrical properties
however slight the signal change. While similar sensors for rapid quantification and
property interrogation rely on simulation-fitted parameters [28,41], this work shows that
using appropriate feature selection, these results can be matched through raw spectra
analysis in terms of prediction accuracy.

Based on a review of existing literature for stationary cell broadband spectroscopy,
most classification from similar sensors for single cells is done by training the clas-
sifier on modeled parameters of internal cell characteristics like cytoplasm capaci-
tance and permittivity rather than the raw spectra data to improve overall model
accuracy [26,28,29]. Classification then relies on the data collection, initial fitting to
cell parameters using a circuit model, and the classifier accuracy itself, introducing
multiple levels of models needed, potential error, and computational burden. To combat
the need for this multi-step modeling, we compared different combinations of feature
reduction and popularly used classifiers with raw spectra measurements to identify the
best methods using both DS11 and DS21. In this subsection, the classifier combination
frequency feature weights are shown to be comparable to previous circuit fitting results
without requiring them during the analysis itself. This more rapid and circuit-free
approach will be especially translatable when identifying a cell population from clinical
samples containing both cancerous and normal cells, but without previous knowledge of
the cellular changes.

Many other works that apply machine learning to electrical impedance data on single
cells rely on impedance cytometry measurements or impedance spectroscopy on a few
frequencies [42,43]. While these methods typically have the advantages of larger sample
sizes as measurements are faster and in the case of cytometry, the cells move continuously.
However, the method shared shows the application on a larger number of frequencies and
higher broadband frequencies than are shown in other works. By examining the features
as well as classification, the information in this could be applied to further design or tune
devices that rely on a limited number of frequencies for measurement or classification.
The feature selection method helps re-establish the most important frequency features for
determining the difference between the populations using a data-driven method rather than
purely circuit modeling, which could help tune future limited-frequency high-throughput
impedance spectrometry experiments

Similar work completed by Joshi et al. showed the ability of a quadratic discrim-
inant analysis (QDA)-based classification model combined with a microfluidic and
electrical micro-impedance cytometer to differentiate between the healthy breast tissue
and two types of blood cancer cells [28]. Their study trained a classifier using features
of the impedance, current, and phase information fit from a single-shell electrical model,
requiring additional computational steps, and not interrogating any specific properties
to differentiate between the cells. The paradigm in this work can directly correlate our
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classifiers selected features to nucleus size change based on (1) population size measure-
ments and (2) a matching double-shell electrical model with separate compartments
for both the cytoplasm and nucleus size. As mentioned previously, sweeping different
feature selection and classification methods make this set-up adaptable to sense not
just nucleus size but also other associated properties without requiring the additional
computational step of fitting intracellular properties before classification. In contrast,
the system of prediction discussed in this work measures a wide range of frequencies
and information, letting feature selection on training data determine which are optimal
to include for both binary and multiclass classification systems. While circuit modelling
helps determine and explain the internal properties changing, the feature selection can
help guide this process and focus such computationally heavy methods. Although
the presented method is early in development, it shows capability to identify nucleus
enlargement in a single-cell microfluidic device in a way that could be extended to more
extensive clinical phenotyping in the future. There is also ongoing work to extend this
detection system to other diseases.

5. Conclusions

In this study, we examined the combination of microwave impedance spectroscopy
and ML classification to identify the electrical properties of Jurkat cells with different
nuclei-altering treatments. It is shown that these nucleus treatments significantly change
overall nucleus size in a heterogeneous population which is reflected in minute changes to
the high-frequency power spectra of single cells. Using a pairwise binary class combination
of spectra consisting of 402 frequency features, a unique approach is demonstrated showing
feature selection utilization to improve classifier accuracy. The resulting analysis demon-
strates the ability to (1) identify relevant frequencies even in overlapping cell populations
without circuit modeling and (2) train binary classifiers with high accuracy to
improve multiclass prediction. The most successful binary classification scheme shows the
ability to identify nucleus size increases in untreated cells, which is clinically relevant in
diagnosing cancer from healthy tissue. Similarly, an excellent multiclass accuracy was
obtained through a major voting strategy enabling the prediction of treatment for each
sample. Based on the findings in this paper, work moving forward will include trying
similar methods on different nucleus disease models and clinical samples from data
collected on the same electrical device. Expansion to clinical samples of different tumor
phenotypes is expected to show the applicability of this paradigm in identifying
cancerous cells based on multi-variate electrical changes where physical resources or
frequency of symptom presentation are scarce.
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Appendix A

1.2+ —e— SVM

1.0
3 0.8
o
3 0.6
Q
< 0.4

0.2

00 10 25 50 75 100 125 150 200

Min Features in RFECV

Figure Al. Classification accuracy compared with the minimum number of features to select.
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Figure A2. Confusion matrices showing actual (y-axis) with predicted (x-axis) class for each binary
class pair with recursive feature elimination (RFE) combined with either support vector machine
(SVM) or logistic regression (LR) classifiers.
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