

1 **Female preferences for the spectral content of advertisement calls in Cope's gray**
2 **treefrog (*Hyla chrysoscelis*)**

3
4 Saumya Gupta¹ and Mark A. Bee^{*,1,2}

5
6 ¹Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, 1479
7 Gortner Ave, Saint Paul, MN 55108, USA

8
9 ²Graduate Program in Neuroscience, University of Minnesota – Twin Cities, 321 Church Street
10 SE Minneapolis, MN 55455, USA

11
12 *Correspondence: mbee@umn.edu, ORCID: 0000-0002-6770-9730

13
14
15
16
17 Note: Saumya Gupta is now at the Department of Biology, University of Washington, Box
18 351800, Seattle, WA 98195-1800, USA

19 **Abstract**

20

21 Amphibians have inner ears with two sensory papillae tuned to different frequency ranges of
22 airborne sounds. In frogs, male advertisement calls possess distinct spectral components that
23 match the tuning of one or both sensory papillae. Female preferences for the spectral content of
24 advertisement calls can depend on signal amplitude and can vary among closely related
25 lineages. In this study of Cope's gray tree frog (*Hyla chrysoscelis*), we investigated the
26 amplitude dependence of female preferences for the spectral content of male advertisement
27 calls, which have a "bimodal" spectrum with separate low-frequency (1.25 kHz) and high-
28 frequency (2.5 kHz) components. In two-alternative choice tests, females generally preferred
29 synthetic calls with bimodal spectra over "unimodal" calls having only one of the two spectral
30 components. They also preferred unimodal calls with a high-frequency component over one with
31 the low-frequency component. With few exceptions, preferences were largely independent of
32 amplitude across both a 30 dB range of overall signal amplitude and an 11 dB range in the
33 relative amplitudes of the two spectral components. We discuss these results in the context of
34 evolutionary lability in female preferences for the spectral content of advertisement calls in North
35 American treefrogs in the genus *Hyla*.

36

37

38

39 **Keywords** Acoustic communication, Sensory perception, Signal recognition, Spectral
40 processing, Vocal communication

41 **Introduction**

42

43 Anuran amphibians (frogs and toads) are important neuroethological study systems for
44 elucidating how natural sounds, particularly vocalizations, are processed by the auditory system
45 to guide behavioral decisions (Feng and Ratnam 2000; Feng and Schul 2007). In most anuran
46 species, males produce simple vocalizations that have stereotyped and species-specific
47 spectral and temporal properties and that elicit robust behavioral responses in both male and
48 female conspecifics (Gerhardt 1994a; Gerhardt and Huber 2002; Gerhardt and Bee 2007; Wells
49 and Schwartz 2007; Bee et al. 2016). The advertisement calls that males produce to attract
50 gravid females and repel rival males play key roles in species recognition and sexual selection.
51 Identifying how behaviorally relevant acoustic features of advertisement calls and other vocal
52 signals are processed by the anuran auditory nervous system has been a key focus of
53 neuroethological research for decades (Fritzsch et al. 1988; Feng et al. 1990; Gerhardt and
54 Huber 2002; Narins et al. 2007; Rose 2014; Ponnath et al. 2022). One of the pioneers and
55 leaders in research on the neural basis of sound pattern recognition in anurans, and in particular
56 the neural coding of an advertisement call's spectral content, was Dr. Albert Feng, to whom this
57 article is dedicated.

58 The anuran peripheral auditory system is specialized for encoding the frequency
59 spectrum of species-specific vocalizations (Capranica 1965, 1966; Frishkopf et al. 1968; Feng
60 et al. 1975). Anurans have two sensory organs in their inner ear — the amphibian papilla and
61 the basilar papilla — that encode different ranges of airborne sound frequencies (Lewis and
62 Lombard 1988; Zakon and Wilczynski 1988; Lewis and Narins 1999; Simmons et al. 2007). The
63 frequency tuning of one or both papillae typically matches frequencies emphasized in the
64 advertisement calls produced by conspecific males (i.e., a peripheral matched filter) (Gerhardt
65 and Schwartz 2001; Simmons 2013). The amphibian papilla is tonotopically organized and
66 tuned to low and intermediate frequencies, whereas the basilar papilla is broadly tuned to higher
67 and similar frequencies (Moffat and Capranica 1974; Capranica and Moffat 1975; Feng et al.
68 1975; Zakon and Wilczynski 1988). Early studies of North American bullfrogs (*Rana*
69 *catesbeiana*) by Capranica (1965, 1966) revealed that spectral content is an important cue for
70 call recognition in this species. Males produce advertisement calls with a “bimodal” frequency
71 spectrum having simultaneous low-frequency and high-frequency acoustic energy occurring in
72 the ranges of the amphibian and basilar papillae, respectively. The evoked vocal responses of
73 males were more robust when both spectral components were present in calls and call-like
74 stimuli. More recent studies of several species of treefrog in the genus *Hyla* (Hylidae) have

75 shown broadly similar results. In species with calls having bimodal spectra, females typically
76 prefer bimodal calls with both spectral components over bimodal calls having one spectral peak
77 attenuated or “unimodal” calls having only one spectral peak (Gerhardt 1974, 1981a, b, 2005;
78 Gerhardt et al. 2007; Bee 2010; Lee et al. 2017).

79 As in other vertebrates, auditory nerve afferents from both the amphibian and basilar
80 papillae exhibit simple, V-shaped frequency tuning curves (e.g., Feng et al. 1975), whereas
81 auditory neurons in the central auditory system can exhibit much greater complexity in their
82 spectral tuning (e.g., Feng et al. 1990). Extensive work by Albert Feng and his colleagues aimed
83 to discover how the frequency tuning evident at the periphery is modified centrally along
84 ascending stages of the auditory system (Fuzessery and Feng 1981, 1982, 1983a, b; Gooler et
85 al. 1993, 1996; Xu et al. 1994; Zhang and Feng 1998; Zhang et al. 1999; Goense and Feng
86 2005). This body of work, and in particular a key series of studies by Fuzessery and Feng
87 (1981, 1982, 1983a, b), helped elucidate how neural selectivity for the spectral content of
88 conspecific calls increases at each successive level of the ascending auditory system (reviewed
89 in Feng et al. 1990; Hall 1994). For example, in the dorsal medullary nucleus (DMN) and
90 superior olivary nucleus (SON) most neurons exhibit unimodal, V-shaped excitatory tuning
91 curves similar to those of auditory nerve fibers, whereas some SON neurons, but not DMN
92 neurons, exhibit bimodal, W-shaped tuning curves with enhanced sensitivity in two distinct
93 frequency regions (Fuzessery and Feng 1983a). The inferior colliculus (IC) exhibits a much
94 wider range of tuning curve shapes, including a higher proportion of bimodal, W-shaped tuning
95 curves with two separate regions of increased sensitivity at frequencies near those emphasized
96 in conspecific advertisement calls, with such neurons becoming more frequent and having more
97 complex tuning in the auditory thalamus (Fuzessery and Feng 1982, 1983b). Combination-
98 sensitive auditory neurons, found first in the inferior colliculus and becoming more prominent in
99 the thalamus, often fire only or maximally when presented with separate low-frequency and
100 high-frequency spectral components that match the spectral components emphasized in the
101 species’ advertisement calls (Fuzessery and Feng 1982, 1983b; see also Megela 1983; Mudry
102 and Capranica 1987a, b; Lee et al. 2017).

103 According to Hall (1994), combination-sensitive neurons exhibit characteristics of the
104 neuronal “mating call detector” originally envisioned by Frishkopf et al. (1968), though such an
105 interpretation has been questioned (Simmons 2013) and is too simple to be entirely consistent
106 with results from some behavioral studies. For example, in some hylid treefrog species a
107 bimodal frequency spectrum is not required for call recognition, as females respond readily to
108 synthetic unimodal calls lacking the species-typical bimodal frequency spectrum, even at low

109 signal amplitudes, for example less than 50 dB (Gerhardt 1974, 2008; Nityananda and Bee
110 2011, 2012). Moreover, preferences for spectral content can be nonlinear and vary as a function
111 of both overall signal amplitude as well as the relative amplitudes of different spectral
112 components (Gerhardt 1974, 1981a, b, 2005; Gerhardt et al. 2007). Some level-dependent
113 nonlinearity in preferences probably results from overlap in frequency tuning between the
114 amphibian and basilar papillae that occurs at high sound amplitudes (Gerhardt and Schul 1999;
115 Gerhardt 2005; Schrode et al. 2014). Lastly, between closely related species in the same
116 genus, and even between genetically distinct lineages within a single species, females can
117 exhibit divergent preferences for the spectral content of advertisement calls (Gerhardt 1974,
118 1981a, b, 2005; Gerhardt et al. 2007; Bee 2010). The evolutionary basis for this diversity in
119 signal recognition and preferences, and its underlying divergent mechanisms, remain unknown.
120 Thus, while considerable progress has been made in understanding neural adaptations that
121 give rise to a general behavioral selectivity for the spectral features of conspecific advertisement
122 calls in anurans, this understanding remains inadequate to fully explain intra- and interspecific
123 differences in the preferences females exhibit for spectral content.

124 As Gerhardt (2008, p. 2610) noted in a study of spectrally dependent preferences in
125 treefrogs, “quantitative behavioral experiments, which explore the multi-variate acoustic space
126 of signals that best elicit responses from the whole animal, are an important complementary
127 step to understanding how auditory systems recognize biologically significant signals.” In this
128 vein, we investigated female preferences in Cope’s gray treefrog (*H. chrysoscelis*) for the
129 spectral content of male advertisement calls and the extent to which spectral preferences vary
130 as a function of sound amplitude. Male Cope’s gray treefrogs produce advertisement calls that
131 consist of a train of about 30 pulses having a species-specific pulse rate near 50 pulses/s (Ward
132 et al. 2013). Each pulse in a natural call has a bimodal frequency spectrum consisting of two
133 harmonically related spectral components centered close to 1.25 kHz and 2.5 kHz, with the low-
134 frequency spectral component having an average amplitude of -11 dB (range: -1.7 to -24.2 dB)
135 relative to the high-frequency spectral component (Ward et al. 2013). Audiograms based on
136 multiunit recordings from the inferior colliculus (Hillery 1984) and the auditory brainstem
137 response (Schrode et al. 2014) have the expected W-shape indicative of the joint tuning of the
138 amphibian and basilar papillae, which are tuned to the low-frequency and high-frequency
139 spectral components of the advertisement call, respectively. Females prefer calls having both
140 frequency components, but readily respond to synthetic calls having one or the other
141 component (Gerhardt and Doherty 1988; Gerhardt 2005; Gerhardt et al. 2007; Bee 2010;
142 Nityananda and Bee 2011, 2012). In the Western clade of *H. chrysoscelis* (Booker et al. 2022),

143 females also prefer high-frequency unimodal calls over low-frequency unimodal calls (Bee
144 2010). However, the extent to which female preferences for bimodal over unimodal calls, and for
145 calls with the high versus the low spectral component, depend on sound amplitude has not been
146 investigated in depth. Therefore, we used female phonotaxis in two-alternative choice tests to
147 investigate amplitude-dependent preferences for calls with the species typical bimodal spectrum
148 versus calls with a unimodal spectrum (Experiment 1) and for unimodal calls with a high-
149 frequency versus a low-frequency spectral component (Experiment 2).

150

151 **Methods**

152

153 **Subjects**

154 We used 75 gravid females of the Western clade of *H. chrysoscelis* (Booker et al. 2022) as
155 subjects for this study. We collected subjects in amplexus between 2100 h and 0100 h during
156 the 2018 and 2019 breeding seasons (May – June) from wetlands at the Carver Park Reserve
157 (Carver County, MN, USA) and the Hyland Lake Park Reserve (Hennepin County, MN, USA).
158 Populations of *H. chrysoscelis* within these wetlands are in allopatry with a visually
159 indistinguishable sister species, the eastern gray treefrog *Hyla versicolor*. Each pair was
160 collected in a separate small plastic container and transported back to the laboratory on the St.
161 Paul campus of the University of Minnesota – Twin Cities. All animals were provided with aged
162 tap water and they were maintained at approximately 4°C until testing to delay egg-laying and
163 extend the window during which females are behaviorally responsive to acoustic stimuli
164 (Gerhardt 1995). Prior to testing, pairs were transferred to a temperature-controlled incubator so
165 that their body temperature could reach $20 \pm 1^\circ\text{C}$ over the course of a 30 to 40 min
166 acclimatization period. All experiments were conducted at $20 \pm 1^\circ\text{C}$ because female responses
167 to calls are temperature-dependent (Gerhardt 1978), and 20°C is close to the average nighttime
168 temperature recorded during active choruses in local populations. Subjects were released at
169 their site of capture after testing was completed (usually within 24-48 hours of capture).

170

171 **Acoustic stimuli**

172 We generated synthetic acoustic stimuli (44.1 kHz, 16 bit) using custom scripts written in
173 MATLAB version 2016b (MathWorks, Natick, MA, USA). Acoustic stimuli were modeled after the
174 natural advertisement calls and calling behavior of *H. chrysoscelis* recorded from our study
175 population, after adjusting values to a common temperature of 20°C using linear regression
176 (Ward et al. 2013). All stimuli generated for this study consisted of a sequence of synthetic calls

177 presented at a constant call rate of 11 calls/min to simulate a naturally calling *H. chrysoscelis*
178 male. Each call consisted of 30, 10-ms pulses repeated at a species-specific pulse rate of 50
179 pulses/s and with a pulse duty cycle of 50%. The amplitude envelope of each pulse was shaped
180 with species-typical rise and fall times (3.1-ms inverse exponential rise time; 5.4-ms exponential
181 fall time). Across stimuli, we manipulated whether the pulses were bimodal in having two phase-
182 locked spectral components (1.25 kHz and 2.5 kHz) or unimodal in having just one of the two
183 spectral components as the sole carrier frequency (1.25 kHz or 2.5 kHz). We created three
184 versions of the bimodal stimulus that differed in the amplitude of the low-frequency component
185 relative to that of the high-frequency component (0 dB, -5 dB, and -11 dB; Table 1). During any
186 given two-alternative choice test, the two stimulus sequences were broadcast in an alternating
187 fashion such that there were equal intervals of silence before and after each call. We also
188 created two separate versions of every set of paired stimuli in which we varied which stimulus
189 sequence initiated stimulus broadcasts.

190

191 **Testing apparatus**

192 Phonotaxis experiments were conducted in an acoustically transparent circular arena (2-m
193 diameter, 60-cm height) located inside a temperature-controlled hemi-anechoic sound chamber
194 (length x width x height: 2.8 x 2.3 x 2.1 m; Industrial Acoustics Company, IAC, North Aurora, IL,
195 USA). The inside walls and ceiling of the sound were covered in dark gray, perforated acoustic
196 absorber panels and the floor was covered with dark gray carpet. The acoustically transparent
197 arena wall was constructed from hardware mesh covered with black fabric. On the floor of the
198 carpeted arena, just outside the arena wall, two speakers facing the center of the arena were
199 positioned at an angular separation of 90°. A response zone consisting of a 10-cm semicircle
200 was marked on the arena floor in front of each speaker. At the center of the arena floor a small,
201 acoustically transparent release cage (9-cm diameter, 2-cm height) was located where subjects
202 were placed at the beginning of each test. During tests, the arena was illuminated only with an
203 overhead infrared (IR) light source (Tracksys Ltd, Nottingham, UK).

204 Stimuli were broadcast through two Mod1 Orb speakers (Orb Audio, New York, USA)
205 using Adobe Audition 3.0 (Adobe Systems Inc., San Jose, CA, USA) interfaced with a MOTU
206 model 16A sound card (MOTU, Inc., Cambridge, MA, USA), and Crown XLS 1000 High-Density
207 Power Amplifiers (Crown International, Los Angeles, CA, USA). The frequency response of this
208 system was flat (± 2.5 dB) within the frequency range of interest. At the start of each day, each
209 stimulus to be presented from the two speakers was calibrated by placing a Type 4950
210 microphone connected to a Type 2250-L sound level meter (Bruël and Kjær, Nærum, Denmark)

211 at the center of the arena floor (1 m from the speakers) such that it pointed directly towards the
212 speaker to be calibrated. In four separate replicates of each test (Table 1), the overall playback
213 level of each of the two paired stimuli was calibrated to an overall amplitude of either 85, 75, 65,
214 or 55 dB SPL (re 20 μ Pa, fast, C-weighted).

215

216 **Experimental design and protocol**

217 We conducted two separate phonotaxis experiments to evaluate female preferences for the
218 spectral content of conspecific advertisement calls. In Experiment 1 (see Fig. 1a), we performed
219 a series of two-alternative choice tests to measure relative preferences for a bimodal call (1.25
220 kHz and 2.5 kHz) versus a unimodal call (either 1.25 kHz or 2.5 kHz). We replicated both of
221 these choice tests at 12 factorial combinations of four overall amplitudes (55 dB, 65 dB, 75 dB,
222 and 85 dB SPL) and three relative amplitudes between the two spectral components of the
223 bimodal call (0 dB, -5 dB, and -11 dB). The nominal amplitudes of all stimuli are listed in Table
224 1. Note that because *overall* amplitude was held constant for both the bimodal and unimodal
225 stimuli in a choice test, the *relative* amplitudes of 0 dB, -5 dB, and -11 dB instantiated between
226 the two components within the bimodal call created *realized* amplitude differences of
227 approximately -3.0 dB, -1.2 dB, and -0.3 dB, respectively, for the high-frequency component of
228 the bimodal call relative to the high-frequency unimodal call (Table 1). Each subject's ($n = 47$)
229 preference was measured in both choice tests (bimodal vs. low-frequency unimodal and
230 bimodal vs. high-frequency unimodal), but not across all 12 factorial combinations of overall and
231 relative amplitudes. One group of subjects ($n = 25$) experienced both choice tests at relative
232 amplitudes of -11 dB and -5 dB, and a second group of subjects ($n = 22$) experienced both
233 choice tests at the relative amplitude of 0 dB. The order in which the replicates of the two choice
234 tests were presented was randomized for each subject. In Experiment 2 (see Fig. 2a), we
235 performed a second series of two-alternative choice tests to measure preferences for low-
236 frequency versus high-frequency unimodal calls across a range of overall sound amplitudes. We
237 gave subjects ($n = 28$) a choice between two unimodal calls that differed only in their carrier
238 frequency (1.25 kHz vs. 2.5 kHz; see Fig. 2a) at each of the four overall amplitudes (55 dB, 65
239 dB, 75 dB, and 85 dB SPL) in random order. Most subjects completed this choice test at all four
240 overall amplitudes.

241 For both experiments, our procedures for conducting two-alternative choice tests were
242 similar to those reported in previous studies (Bee 2010; Tanner et al. 2017; Gupta and Bee
243 2020; LaBarbera et al. 2020). Briefly, at the start of each test, a subject was separated from her
244 mate and placed in a small acoustically transparent cage at the center of the test arena floor.

245 The subject was allowed to acclimate in silence in the release cage for 60 s, after which we
246 started broadcasting the two alternating stimuli. For every choice test, the stimulus sequence
247 initiating the alternating broadcasts was randomly selected at the start of each day. After the
248 first two repetitions of calls from each speaker, the lid of the release cage was lifted remotely via
249 a rope and pulley system, and the subject was allowed to move freely in the arena. Movements
250 of subjects were observed on a video monitor connected to an IR-sensitive camera (Panasonic
251 WV-BP334; Panasonic Corporation of North America, Secaucus, NJ, USA) and responses were
252 scored in real-time. We recorded a response if a subject entered the response zone in front of
253 an active speaker within 5 minutes of its release (subjects typically responded in under 2 min).
254 The choice was scored as binary based on which stimulus was chosen. A score of 'no
255 response' was recorded when the subject met any of the following criteria: it did not exit the
256 release cage within 3 min; its first physical contact with the arena wall was in the quadrant
257 opposite that spanning the wall between the two speakers; or it did not enter a response zone
258 within 5 min. Preference was measured as the proportion of subjects choosing one stimulus
259 over the other. Tests in which subjects did not respond were excluded from consideration (47 of
260 620 tests), yielding final sample sizes in each two-alternative choice test of between $n = 16$ and
261 $n = 28$, with most tests having sample sizes of $n \geq 20$.

262

263 **Statistical analyses**

264 Statistical analysis was conducted in R version 4.2.0 (R core team) and $\alpha = 0.05$ was used for
265 hypothesis testing. For each choice test, we conducted a one-tailed binomial test to evaluate the
266 null hypothesis that subjects would choose both stimuli in equal proportions (i.e., null proportion
267 = 0.50). Following an earlier study by Bee (2010), the alternative hypotheses were that females
268 would prefer a bimodal call over a low-frequency unimodal call (Experiment 1), a bimodal call
269 over a high-frequency unimodal call (Experiment 1), and a high-frequency unimodal call over a
270 low-frequency unimodal call (Experiment 2). We followed the Holm-Šidák procedure to correct
271 for multiple comparisons in tests of each of these alternative hypotheses across combinations of
272 overall level and relative level. Because only one response per subject was used for any given
273 binomial test, every data point was independent, meeting the assumptions of the binomial test.
274 To evaluate the effect of overall amplitude (Experiments 1 and 2) and relative amplitude
275 (Experiment 1) on the proportions of subjects choosing one stimulus over the other, we fitted
276 generalized estimating equations (GEE) with logit link functions and exchangeable correlation
277 structures using the *geepack* package (Højsgaard et al. 2016). For Experiment 1, we assessed
278 the effect of overall and relative amplitudes on the proportions of subjects choosing the bimodal

279 over the unimodal call by fitting a GEE model that included the unimodal alternative to the
280 bimodal call (i.e., the low-frequency unimodal call or the high-frequency unimodal call), overall
281 amplitude (55, 65, 75, or 85 dB SPL), relative amplitude (0, -5, or -11 dB), and their two-way
282 interactions as predictor variables. Because this model contained six different main effects, we
283 fitted seven additional models that systematically excluded the interaction terms (see
284 Supplementary Information). Using a model selection method based on quasi-likelihood
285 information criterion (QIC), which is an analog of AIC used for GEE and other models that use a
286 quasi-likelihood method (Pan 2001), we selected the most parsimonious model that best fit the
287 data (see Supplementary Information). We analyzed the main effects of the selected model by
288 comparing it with other models without each main effect as a predictor variable. For Experiment
289 2, we assessed the effect of overall amplitude on the proportion of subjects choosing one
290 unimodal call over the other by comparing two GEE models with and without overall amplitude
291 as a predictor variable. In all statistical models, subject ID was used for clustering to account for
292 repeated tests within subjects.

293

294 **Results**

295

296 **Experiment 1 – bimodal vs. unimodal**

297 Across all overall amplitudes and relative amplitudes, the proportion of subjects ($n = 16$ to 21)
298 choosing the bimodal call over a unimodal call ranged between 0.34 and 1.00, with the
299 proportion favoring the bimodal call at or above 0.75 in most choice tests (Figs. 1c, 1d; Table 2).
300 Out of the 12 factorial combinations of overall and relative amplitudes, the proportion of subjects
301 choosing the bimodal call over the low-frequency unimodal call was greater than 0.5 and
302 associated with a p -value less than $\alpha = 0.05$ in 10 of 12 combinations, all of which remained
303 significantly different from chance expectation after correction for multiple comparisons (Table
304 2). Preferences were not observed when the overall amplitude was 55 dB SPL and the relative
305 amplitude was -5 dB or -11 dB (Table 2). In contrast, the proportion of subjects choosing the
306 bimodal call over the high-frequency unimodal call was greater than 0.5 and associated with a
307 p -value less than $\alpha = 0.05$ in six of the 12 combinations of overall and relative amplitudes but
308 remained significantly different from chance expectation at only one combination after correction
309 for multiple comparisons (65 dB and -5 dB; Table 2). Consistent with this overall pattern of
310 outcomes from binomial tests, the proportion of subjects choosing the bimodal call was
311 significantly higher when the alternative was the low-frequency unimodal call compared with the
312 high-frequency unimodal call ($\chi^2 = 19.60$, $p < 0.001$; Figs. 1c, 1d). Averaged across overall and

313 relative amplitudes, subjects chose the bimodal call over the low-frequency unimodal call in
314 86.5% of tests (205 of 237), whereas they chose the bimodal call over the high-frequency
315 unimodal call in 66.0% of tests (157 of 238).

316 The proportion of subjects choosing the bimodal call over a unimodal alternative did not
317 differ significantly as a function of overall amplitude ($\chi^2 = 4.27, p = 0.230$) or relative amplitude
318 ($\chi^2 = 0.35, p = 0.840$) after averaging responses across the two choice tests (bimodal vs.
319 unimodal hi-frequency and bimodal vs. unimodal low frequency). However, there was a
320 significant interaction between relative amplitude and which unimodal call (low frequency vs.
321 high frequency) served as the alternative to the bimodal call ($\chi^2 = 8.23, p = 0.016$; Fig. 1e).
322 Averaged over all four overall amplitudes, the proportion of subjects choosing the bimodal call
323 increased as a function of increasing relative amplitude when the alternative was the low-
324 frequency unimodal call (Fig. 1e, open symbols), but this same proportion decreased with
325 increasing relative amplitude when the alternative was the high-frequency unimodal call (Fig.
326 1e, closed symbols). In addition, there was a significant interaction between overall amplitude
327 and relative amplitude ($\chi^2 = 12.9, p = 0.045$; Fig. 1f). This outcome reflects the opposing trends
328 observed at a relative amplitude of 0 dB compared with -5 dB and -11 dB. At relative amplitudes
329 of -5 dB and -11 dB, the proportion of subjects choosing the bimodal call over the high-
330 frequency unimodal call *increased* as a function of increasing overall amplitude (Fig. 1f, blue
331 and orange symbols and lines), whereas at the relative amplitude of 0 dB, the proportion of
332 subjects choosing the bimodal call *decreased* with increasing amplitude (Fig. 1f, black symbols
333 and lines). This two-way interaction was likely driven by a spectrum-dependent influence on
334 how overall amplitude impacted preferences for the bimodal call when the relative amplitude of
335 its two components was 0 dB (cf. Figs. 1c, 1d, diamond symbols, dashed black lines, and gray-
336 shaded areas). When the alternative was the low-frequency unimodal call (Fig. 1c), the
337 proportion of subjects choosing the bimodal call (with 0 dB relative amplitude) was consistently
338 high (≥ 0.90 , Table 2) across all overall amplitudes tested. But when the alternative was the
339 high-frequency unimodal call (Fig. 1d), the proportion of subjects choosing the bimodal call (with
340 0 dB relative amplitude) decreased monotonically from 0.79 at 55 dB to 0.38 at 85 dB (Table 2).
341

342 **Experiment 2 – high vs. low frequency**

343 Across four overall amplitudes ranging between 55 dB and 85 dB SPL, the proportion of
344 subjects ($n = 22$ to 28) that chose the high-frequency unimodal call over the low-frequency
345 unimodal call ranged between 0.80 and 0.89 (Fig. 2b; Table 3). The proportions of subjects
346 choosing the high-frequency call were significantly higher than expected by chance at all overall

347 amplitudes (Table 3). The proportion of subjects choosing the high-frequency call did not differ
348 significantly as a function of overall amplitude (Fig. 2b; $\chi^2 = 1.18$, $p = 0.758$). Averaged across
349 all overall amplitudes, subjects chose the high-frequency call over the low-frequency call in
350 84.7% of tests (83 of 98).

351

352 Discussion

353 The main results of this study of female preferences for the spectral content of male
354 advertisement calls can be summarized as follows. First, at most the combinations of overall
355 and relative amplitude tested, more females chose calls with the species typical bimodal
356 spectrum (i.e., 1.25 kHz *and* 2.5 kHz) over calls having just one spectral component (i.e., 1.25
357 kHz *or* 2.5 kHz). Second, preference for a bimodal spectrum was more pronounced when the
358 alternative unimodal call consisted of the low-frequency spectral component. For example, at an
359 overall amplitude of 65 dB SPL and higher, there was a significant preference for a bimodal call
360 over a unimodal low-frequency call at all relative amplitudes tested. When the alternative was
361 the unimodal high-frequency call, however, preferences for the bimodal call were more variable
362 and dependent on relative amplitude, and a significant preference was found only at an overall
363 amplitude of 65 dB SPL and relative amplitude of -5 dB. At no combination of spectral content,
364 overall amplitude, and relative amplitude did females have a significant preference for a
365 unimodal call over the bimodal alternative. Third, preferences for bimodal calls *increased*, albeit
366 modestly, as a function of overall amplitude at most of the relative amplitudes tested for both
367 unimodal alternative calls with one notable exception: when the unimodal call had only the high-
368 frequency spectral component, preferences for the bimodal call *decreased* as a function of
369 increasing overall level when its two spectral components had the same relative amplitude (i.e.,
370 relative amplitude of 0 dB). Finally, females exhibited significant and level-independent
371 preferences for unimodal calls having just the high-frequency spectral component over one
372 having just the low-frequency spectral component.

373 There is increasing awareness of the value of replicated studies in behavioral biology
374 and related disciplines (Palmer 2000; Kelly 2006, 2019; Fraser et al. 2020). The present study
375 of the Western clade of *H. chrysoscelis* was a “partial replication” (sensu Kelly 2006), as well as
376 an extension, of an earlier study of the same clade by Bee (2010). That study used two-
377 alternative choice tests conducted at a single overall amplitude (75 dB SPL) to examine female
378 preferences for a bimodal call (1.1 kHz [-6 dB] *and* 2.2 kHz [0 dB] versus unimodal calls (1.1
379 kHz *or* 2.2 kHz) as well as preferences for a high-frequency (2.2 kHz) unimodal call versus a
380 low-frequency (1.1 kHz) unimodal call. Females unanimously chose the bimodal call over the

381 low-frequency unimodal alternative (1.1 kHz), but a somewhat lower proportion of females
382 (67%) chose the bimodal call over the high-frequency unimodal alternative. When the amplitude
383 of the unimodal alternative was adjusted so that it was equivalent to that of the same spectral
384 component in the bimodal call (instead of the same overall amplitude of 75 dB SPL), females
385 preferred the bimodal call over both unimodal alternatives, and again, the preference for
386 bimodal calls over a unimodal alternative was somewhat greater when the alternative was the
387 low-frequency unimodal call. In separate tests, females unanimously chose the high-frequency
388 unimodal call over a low-frequency unimodal alternative. The overall pattern of results reported
389 in the present study corroborates those reported in the earlier study by Bee (2010): females
390 preferred bimodal calls over unimodal calls; this preference was more pronounced when the
391 alternative was a low-frequency unimodal call; and females preferred high-frequency unimodal
392 calls over low-frequency unimodal calls. The present study extends the earlier one by
393 generalizing these broad patterns of preference over a 30-dB range of overall amplitudes and
394 an 11-dB range of relative amplitudes in the bimodal call. Across most conditions, sound
395 amplitude had modest or negligible impacts on female choice: preferences for the bimodal call
396 over a unimodal alternative were similar or *increased* nominally as overall amplitude increased
397 and they were also broadly similar across relative amplitudes, and preferences for a unimodal
398 high-frequency call over a unimodal low-frequency call were independent of overall amplitude.

399 The combination of conditions tested in the present study that diverged from the overall
400 pattern described above is when the two components in the bimodal call had a relative
401 amplitude of 0 dB and the alternative was the high-frequency unimodal call. In these conditions,
402 the proportion of subjects choosing the bimodal call *declined* with increasing overall amplitude,
403 from 0.79 at 55 dB SPL to 0.38 at 85 dB SPL. The opposite trend was observed at relative
404 amplitudes of -5 dB and -11 dB (Fig. 1d). We believe a consideration of several factors together
405 potentially explain this divergent pattern. First, because overall amplitude was held constant
406 across both alternatives in a choice test, *relative* amplitudes of 0 dB, -5 dB, and -11 dB in the
407 bimodal call created *realized* amplitude differences of approximately 3.0 dB, 1.2 dB, and 0.3 dB,
408 respectively, favoring the high-frequency unimodal call over the high-frequency component of
409 the bimodal call (Table 1). Thus, at an overall amplitude of, say, 65 dB SPL, the amplitude of the
410 high-frequency spectral peak was 65 dB in the unimodal call and approximately 62.0 dB, 63.8
411 dB, and 64.7 dB in the bimodal call at relative amplitudes of 0 dB, -5 dB, and -11 dB,
412 respectively (Table 1). Second, previous studies of frogs (Fellers 1979; Arak 1983; Gerhardt
413 1987), including the Western clade of Cope's gray treefrog (Bee et al. 2012), suggest females
414 probably do not behaviorally discriminate differences in amplitude much less than about 2 dB.

415 Third, at high overall amplitudes (e.g., 85 dB SPL), the low-frequency spectral peak of a bimodal
416 call can have marked influences on preferences for bimodal calls over unimodal high-frequency
417 calls even at very low relative amplitudes (e.g., -30 dB; Gerhardt 2005). However, at lower
418 overall amplitudes (e.g., 55 dB SPL), the realized amplitude of the low-frequency spectral
419 component at relative amplitudes of -5 dB and -11 dB is probably at or below the threshold
420 sound level required to elicit a behavioral response from a large proportion of females
421 (Nityananda and Bee 2012). Finally, given overlap in the tuning of auditory nerve fibers
422 originating in the amphibian and basilar papillae at high sound amplitudes (e.g., Feng et al.
423 1975), a single high-frequency spectral component presented at high overall amplitudes (e.g.,
424 85 dB SPL) would stimulate not only the basilar papilla, as it also would at lower overall
425 amplitudes, but also the amphibian papilla, which is tuned to lower frequencies (Gerhardt and
426 Schul 1999; Gerhardt 2005; Schrode et al. 2014). Together, these previous findings suggest the
427 following interpretation of the present results. At the low (-11 dB) and intermediate (-5 dB)
428 relative amplitudes, the realized amplitude differences between the high-frequency peaks in the
429 bimodal and unimodal calls were less than 2 dB and thus unlikely to be behaviorally salient
430 (Fellers 1979; Arak 1983; Gerhardt 1987; Bee et al. 2012). Consequently, the modest increase
431 in preferences for the bimodal call observed as a function increasing overall level was likely
432 driven by an increase in the behavioral salience of bimodal calls due to greater stimulation of
433 the amphibian papillae by the low-frequency spectral component as overall level increased
434 (Gerhardt and Schul 1999; Gerhardt 2005). In contrast, at the highest relative amplitude (0 dB),
435 the realized amplitude difference between the high-frequency peaks in the bimodal and
436 unimodal calls was 3 dB in favor of the unimodal call. Thus, we might have expected a slight
437 preference for unimodal over bimodal calls if preferences were determined solely by differences
438 in the realized amplitudes of the preferred high-frequency spectral component. Instead, females
439 preferred the bimodal call at lower overall amplitudes (e.g., 55 dB SPL and 65 dB SPL; Fig. 1d)
440 but not higher overall amplitudes (e.g., 75 dB SPL and 85 dB SPL; Fig. 1d). At lower overall
441 amplitudes, the expected advantage of the high-frequency unimodal call was presumably offset
442 due to sufficient stimulation of the amphibian papillae by the low-frequency spectral component
443 at a relative amplitude of 0 dB. We hypothesize that the relative influence of the low-frequency
444 spectral peak of the bimodal call on female responses was diminished at higher overall
445 amplitudes (75 dB SPL and 85 dB SPL) because the high-frequency unimodal call by itself
446 sufficiently stimulated both sensory papillae in the inner ear to offset any bimodal advantage
447 (Gerhardt and Schul 1999; Gerhardt 2005; Schrode et al. 2014). These considerations are
448 important because they highlight the number of factors that potentially impact the attractiveness

449 of bimodal calls and hence patterns of intraspecific mate choice in natural populations where the
450 relative amplitude of the low-frequency spectral peak can range from -1.7 dB to -24.2 dB (Ward
451 et al. 2013).

452 The present study extends earlier work by Gerhardt and his colleagues (Gerhardt 1981a;
453 b, 2005; Gerhardt and Doherty 1988; Gerhardt et al. 2007) investigating the role of spectral
454 content in advertisement call recognition and female preferences in North American hylids. The
455 subject of the present study, *H. chrysoscelis* (Cope's gray treefrog), is the diploid member of a
456 cryptic diploid-tetraploid species complex in which *H. versicolor* (eastern gray treefrog) is the
457 tetraploid. Extant populations of *H. chrysoscelis* can be divided into two geographically and
458 genetically distinct lineages, a Western clade and an Eastern + Central clade, with the
459 monophyletic Eastern clade nested within the Central lineage (Ptacek et al. 1994; Holloway et
460 al. 2006; Booker et al. 2022). The Western clade extends from southern Canada to the U.S.
461 Gulf Coast along the eastern boarder of the Great Plains. The Eastern + Central clade is found
462 throughout the southern Midwest, the South, and along the southern East Coast of the U.S.
463 (see maps in Booker et al. 2022). Genetic evidence suggests *H. versicolor* first arose through a
464 single autopolyploid whole-genome duplication event within a now-extinct Northeastern clade of
465 *H. chrysoscelis*, and that distinct extant lineages of *H. versicolor* have resulted from repeated
466 hybridization with extant and extinct lineages of the diploid *H. chrysoscelis* (Bogart et al. 2020;
467 Booker et al. 2022). The bird-voiced treefrog, *Hyla avivoca*, is the closely related sister species
468 to the gray treefrog complex, and together with *H. chrysoscelis* and *H. versicolor* compose the
469 *H. versicolor* species group (Faivovich et al. 2005; Hua et al. 2009).

470 Males in all lineages of *H. chrysoscelis* and *H. versicolor* produce calls with bimodal
471 spectra, as do males of *Hyla arenicolor* (the canyon treefrog), a member of the closely related
472 *Hyla eximia* species group (Gerhardt et al. 2007). In contrast, males of *H. avivoca* (in the *H.*
473 *versicolor* group) produce an advertisement call with a unimodal spectrum consisting of a high-
474 frequency spectral component (Gerhardt et al. 2007). Behavioral experiments with these
475 species provide broad general support for a matched filter hypothesis, but also indicate
476 considerable evolutionary lability in receiver mechanisms for processing spectral content
477 (Gerhardt et al. 2007). As illustrated in Figure 3, females in species that produce advertisement
478 calls with bimodal spectra (*H. chrysoscelis*, *H. versicolor*, and *H. arenicolor*) prefer bimodal calls
479 over at least one or both unimodal alternatives (high-frequency or low-frequency), whereas in
480 the single species that produces a unimodal high-frequency call (*H. avivoca*), females prefer
481 calls with this spectrum versus a bimodal alternative but reject unimodal low-frequency calls in
482 favor of a bimodal call that includes the high-frequency spectral component (Fig. 3). Similar

483 female preferences for bimodal over unimodal calls, at least at high overall amplitudes, have
484 also been reported for both species of the closely related *Hyla cinerea* species group (*Hyla*
485 *cinerea* and *Hyla gratiosa*), in which males also produce advertisement calls with bimodal
486 spectra (Gerhardt 1981a, b; Lee et al. 2017). Together, these studies suggest a prominent role
487 for parallel co-evolution between signals and receiver mechanisms when it comes to processing
488 spectral content.

489 However, comparisons between cryptic sister species and between different genetic
490 clades within a species also reveal that signal structure and the mechanisms underlying signal
491 recognition and preferences are not always constrained by co-evolutionary processes (Schul
492 and Bush 2002; Gerhardt et al. 2007). This is evident in comparing our results to those of
493 Gerhardt et al. (2007). In females of the Western clade of *H. chrysoscelis* from Minnesota (this
494 study), a bimodal call was strongly preferred over a low-frequency unimodal call across nearly
495 all overall and relative amplitudes (Figs. 1c, 3a). In contrast, preferences for a bimodal call over
496 a high-frequency unimodal call were weaker and more variable across overall and relative
497 amplitudes (Figs. 1d, 3a). These data suggest the high-frequency spectral component has
498 greater behavioral salience for females from the Western clade populations in Minnesota.
499 Consistent with this interpretation was the robust and amplitude-independent female
500 preferences observed for a high-frequency unimodal call over a low-frequency alternative (Figs.
501 2, 3b). These findings from the Western clade of *H. chrysoscelis* reveal stark differences in
502 spectral preferences compared with *H. chrysoscelis* females from the Central and Eastern
503 clades (Fig. 3; Gerhardt et al. 2007). In females from the Central clade in Missouri, bimodal calls
504 were preferred over a high-frequency unimodal call to a greater extent than they were preferred
505 over a low-frequency unimodal call (i.e., the opposite trend from Western-clade females; Fig.
506 3a). Moreover, Central-clade females from Missouri, and Eastern-clade females from North
507 Carolina, were more likely to choose a low-frequency unimodal call paired against a high-
508 frequency unimodal call (i.e., the opposite trend from Western-clade females; Fig. 3b). Likewise,
509 in *H. versicolor*, Gerhardt et al. (2007) reported that females of both the Northwestern and
510 Eastern lineages preferred bimodal calls over unimodal alternatives (Fig. 3a); however, females
511 of the Northwestern lineage preferred high-frequency over low-frequency unimodal calls (as did
512 females from a Southwestern lineage) while females of the Eastern lineage showed no
513 preference (Fig. 3b). Thus, while females of all lineages of both *H. chrysoscelis* and *H.*
514 *versicolor* tested to date prefer bimodal calls over a unimodal alternative, there is marked
515 diversity across lineages in the relative behavioral salience of the high-frequency and low-
516 frequency spectral components. At present, the mechanistic differences in spectral coding

517 across lineages that underlies differences in how behavioral salience is assigned to different
518 spectral peaks remains completely unknown.

519 In the first chapter of their co-edited volume on *Hearing and Sound Communication in*
520 *Amphibians*, Narins and Feng (2007; p. 7) posed the following question: "The matched filter
521 hypothesis—alive or dead?" The best answer that can be offered up from studies of spectral
522 preferences in female treefrogs, albeit one that is somewhat of a cliché, is that "it's
523 complicated." At a gross level, hylid treefrogs provide support for a role of matched filtering in
524 call recognition. Across species, spectral preferences for bimodal over unimodal calls map
525 directly onto species differences in the spectral content of advertisement calls (Gerhardt et al.
526 2007; Bee 2010; this study), suggesting a history of parallel co-evolution between signal
527 structure and receiver mechanisms, as expected under a matched filter hypothesis. However,
528 the observed diversity in spectral preferences within a cryptic species complex serves to
529 highlight that even in taxonomic groups where signal structure is generally conserved and there
530 is evidence of parallel co-evolution between signal structure and signal processing, there
531 remains considerable potential for divergence in receiver mechanisms among closely related
532 lineages and species, and potentially within lineages as well. The matched filter hypothesis
533 would seem to be a poor explanation for intraspecific variation and intra-species-complex
534 variation in spectral preferences, which instead speak to evolutionary lability in spectral
535 preferences. The species and lineage differences in preferences for spectral content reported
536 here and by Gerhardt et al. (2007) also build on other reports of within-species and between-
537 species differences in the mechanisms of pulse rate processing and preferences for call
538 duration and call rate in *H. chrysoscelis* and *H. versicolor* (Gerhardt 1994b; Schul and Bush
539 2002; Ward et al. 2013), as well as across-lineage but within-species differences in female
540 preferences for spectral cues related to body-size in *H. chrysoscelis* (Morris 1989; Morris and
541 Yoon 1989; Schrode et al. 2012). The unique evolutionary history of the *H. versicolor* species
542 group, combined with its tractability for detailed quantitative behavioral, anatomical,
543 biomechanical, and neurophysiological studies, makes this cryptic species complex an attractive
544 one for future comparative neuroethological studies that aim to jointly test proximate and
545 ultimate hypotheses about sound pattern recognition. Future studies in these systems,
546 particularly those on spectral processing, could have no better guide in the literature for how to
547 conduct robust experiments on sound pattern recognition than the groundbreaking contributions
548 of Albert Feng.

549

550 **Acknowledgements**

551 We honor the memory Albert Feng for the inspiration his rich contributions to anuran auditory
552 neuroethology has been to both of us. We thank A. Averbeck, A. Baugh, X. Blanks, M. Dahl, A.
553 Dick, C. Fouilloux, Z. Fu, G. Gallo, S. Gray-Gaillard, O. Groth, A. Hartman, D. Hechter, R.
554 Hoffer, K. Hoiseth, C. Jensen, L. Kalra, K. LaBarbera, N. Lee, H. Li, C. Liu, A. Lockhart, S.
555 Maddox, B. Marshall, J. Massop, E. Mueller, M. Paruzynski, J. Rieck, A. Ruppert, S. Silver, A.
556 Stockstad, Y-F. Tan, C. Thom, M. Vellicolungara, M. Vipond, and J. Wu for their help collecting
557 and testing frogs, and J. Moriarty from the Three Rivers Park District and M. Goodnature from
558 Ramsey County Parks and Recreation for generous access to collection sites

559

560 **Author contributions** SG and MAB: designed the study. SG: conducted experiments and
561 analyzed data. SG and MAB: prepared the manuscript.

562

563 **Funding** This research was funded in part by grants to MAB from the National Science
564 Foundation (IOS-1452831 and IOS-2022253) and by grants and fellowships to SG from the
565 University of Minnesota Graduate Program in Ecology, Evolution, and Behavior, the Bell
566 Museum of Natural History, and the University of Minnesota Graduate School.

567

568 **Declarations**

569

570 **Conflicts of interest** The authors declare no competing or financial interests.

571

572 **Ethical approval** This research was approved by the University of Minnesota Institutional
573 Animal Care and Use Committee (#1401-31258A and #1701-34456A).

574 **References**

575

576 Arak A (1983) Sexual selection by male-male competition in natterjack toad choruses. *Nature*
577 306 (5940):261-262. doi:<https://doi.org/10.1038/306261a0>

578 Bee MA (2010) Spectral preferences and the role of spatial coherence in simultaneous
579 integration in gray treefrogs (*Hyla chrysoscelis*). *J Comp Psych* 124 (4):412-424.
580 doi:<https://doi.org/10.1037/a0020307>

581 Bee MA, Reichert MS, Tumulty JP (2016) Assessment and recognition of rivals in anuran
582 contests. *Adv Stud Behav* 48:161-249. doi:<https://doi.org/10.1016/bs.asb.2016.01.001>

583 Bee MA, Vélez A, Forester JD (2012) Sound level discrimination by gray treefrogs in the
584 presence and absence of chorus-shaped noise. *J Acoust Soc Am* 131 (5):4188-4195.
585 doi:<https://doi.org/10.1121/1.3699271>

586 Bogart JP, Burgess P, Fu J (2020) Revisiting the evolution of the North American tetraploid
587 treefrog (*Hyla versicolor*). *Genome* 63 (11):547-560. doi:<https://doi.org/10.1139/gen-2020-0031>

588

589 Booker WW, Gerhardt HC, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Lemmon EM
590 (2022) The complex history of genome duplication and hybridization in North American
591 gray treefrogs. *Mol Biol Evol* 39 (2):msab316. doi:<https://doi.org/10.1093/molbev/msab316>

592 Capranica RR (1965) The evoked vocal response of the bullfrog: A study of communication by
593 sound. M.I.T. Press, Cambridge, MA

594 Capranica RR (1966) Vocal response of the bullfrog to natural and synthetic mating calls. *J*
595 *Acoust Soc Am* 40 (5):1131-1139. doi:<https://doi.org/10.1121/1.1910198>

596 Capranica RR, Moffat AJM (1975) Selectivity of the peripheral auditory system of spadefoot
597 toads (*Scaphiopus couchi*) for sounds of biological significance. *J Comp Physiol* 100
598 (3):231-249. doi:<https://doi.org/10.1007/BF00614533>

599 Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC (2005) Systematic
600 review of the frog family hylidae, with special reference to hylinae: phylogenetic analysis
601 and taxonomic revision. *Bull Am Mus Nat Hist* 294 (1):6-228.
602 doi:[https://doi.org/10.1206/0003-0090\(2005\)294\[0001:SROTFF\]2.0.CO;2](https://doi.org/10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2)

603 Fellers GM (1979) Aggression, territoriality, and mating behaviour in North American treefrogs.
604 *Anim Behav* 27:107-119. doi:[https://doi.org/10.1016/0003-3472\(79\)90131-3](https://doi.org/10.1016/0003-3472(79)90131-3)

605 Feng AS, Hall JC, Gooler DM (1990) Neural basis of sound pattern recognition in anurans. *Prog*
606 *Neurobiol* 34 (4):313-329. doi:[https://doi.org/10.1016/0301-0082\(90\)90008-5](https://doi.org/10.1016/0301-0082(90)90008-5)

607 Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the
608 bullfrog (*Rana catesbeiana*): Their peripheral origins and frequency sensitivities. J Comp
609 Physiol A 100 (3):221-229. doi:<https://doi.org/10.1007/BF00614532>

610 Feng AS, Ratnam R (2000) Neural basis of hearing in real-world situations. Annu Rev Psychol
611 51:699-725. doi:<https://doi.org/10.1146/annurev.psych.51.1.699>

612 Feng AS, Schul J (2007) Sound processing in real-world environments. In: Narins PA, Feng AS,
613 Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer,
614 New York, pp 323-350. doi:https://doi.org/10.1007/978-0-387-47796-1_11

615 Fraser H, Barnett A, Parker TH, Fidler F (2020) The role of replication studies in ecology. Ecol
616 Evol 10 (12):5197-5207. doi:<https://doi.org/10.1002/ece3.6330>

617 Frishkopf LS, Capranica RR, Goldstein MH, Jr. (1968) Neural coding in the bullfrog's auditory
618 system a teleological approach. Proc IEEE 56 (6):969-980.
619 doi:<https://doi.org/10.1109/proc.1968.6448>

620 Fritzsch B, Wolkowiak W, Ryan MJ, Wilczynski W, Hetherington T (1988) The evolution of the
621 amphibian auditory system. Wiley, New York

622 Fuzessery ZM, Feng AS (1981) Frequency representation in the dorsal medullary nucleus of the
623 leopard frog, *Rana pipiens*. J Comp Physiol 143 (3):339-347.
624 doi:<https://doi.org/10.1007/BF00611171>

625 Fuzessery ZM, Feng AS (1982) Frequency selectivity in the anuran auditory midbrain: Single
626 unit responses to single and multiple tone stimulation. J Comp Physiol 146 (4):471-484.
627 doi:<https://doi.org/10.1007/BF00609443>

628 Fuzessery ZM, Feng AS (1983a) Frequency-selectivity in the anuran medulla: Excitatory and
629 inhibitory tuning properties of single neurons in the dorsal medullary and superior olfactory
630 nuclei. J Comp Physiol 150 (1):107-119. doi:<https://doi.org/10.1007/BF00605294>

631 Fuzessery ZM, Feng AS (1983b) Mating call selectivity in the thalamus and midbrain of the
632 leopard frog (*Rana p. pipiens*): Single and multiunit analyses. J Comp Physiol 150
633 (3):333-344. doi:<https://doi.org/10.1007/BF00605023>

634 Gerhardt HC (1974) The significance of some spectral features in mating call recognition in the
635 green treefrog (*Hyla cinerea*). J Exp Biol 61 (1):229-241.
636 doi:<https://doi.org/10.1242/jeb.61.1.229>

637 Gerhardt HC (1978) Temperature coupling in the vocal communication system of the gray tree
638 frog, *Hyla versicolor*. Science 199 (4332):992-994.
639 doi:<https://doi.org/10.1126/science.199.4332.992>

640 Gerhardt HC (1981a) Mating call recognition in the barking treefrog (*Hyla gratiosa*): Responses
641 to synthetic calls and comparisons with the green treefrog (*Hyla cinerea*). *J Comp*
642 *Physiol* 144 (1):17-25. doi:<https://doi.org/10.1007/BF00612793>

643 Gerhardt HC (1981b) Mating call recognition in the green treefrog (*Hyla cinerea*): Importance of
644 two frequency bands as a function of sound pressure level. *J Comp Physiol* 144 (1):9-
645 16. doi:<https://doi.org/10.1007/BF00612792>

646 Gerhardt HC (1987) Evolutionary and neurobiological implications of selective phonotaxis in the
647 green treefrog, *Hyla cinerea*. *Anim Behav* 35:1479-1489.
648 doi:[https://doi.org/10.1016/S0003-3472\(87\)80020-9](https://doi.org/10.1016/S0003-3472(87)80020-9)

649 Gerhardt HC (1994a) The evolution of vocalization in frogs and toads. *Annu Rev Ecol Syst*
650 25:293-324. doi:<https://www.jstor.org/stable/2097314>

651 Gerhardt HC (1994b) Reproductive character displacement of female mate choice in the grey
652 treefrog *Hyla chrysoscelis*. *Anim Behav* 47:959-969.
653 doi:<https://doi.org/10.1006/anbe.1994.1127>

654 Gerhardt HC (1995) Phonotaxis in female frogs and toads: execution and design of
655 experiments. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) *Methods in*
656 *comparative psychoacoustics*. Birkhäuser Verlag, Basel, pp 209-220.
657 doi:https://doi.org/10.1007/978-3-0348-7463-2_18

658 Gerhardt HC (2005) Acoustic spectral preferences in two cryptic species of grey treefrogs:
659 Implications for mate choice and sensory mechanisms. *Anim Behav* 70:39-48.
660 doi:<https://doi.org/10.1016/j.anbehav.2004.09.021>

661 Gerhardt HC (2008) Phonotactic selectivity in two cryptic species of gray treefrogs: effects of
662 differences in pulse rate, carrier frequency and playback level. *J Exp Biol* 211 (16):2609-
663 2616. doi:<https://doi.org/10.1242/jeb.019612>

664 Gerhardt HC, Bee MA (2007) Recognition and localization of acoustic signals. In: Narins PM,
665 Feng AS, Fay RR, Popper AN (eds) *Hearing and sound communication in amphibians*,
666 vol 28. Springer *Handbook of Auditory Research*. Springer, New York, pp 113-146.
667 doi:https://doi.org/10.1007/978-0-387-47796-1_5

668 Gerhardt HC, Doherty JA (1988) Acoustic communication in the gray treefrog, *Hyla versicolor*:
669 evolutionary and neurobiological implications. *J Comp Physiol A* 162 (2):261-278.
670 doi:<https://doi.org/10.1007/BF00606090>

671 Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: Common
672 problems and diverse solutions. Chicago University Press, Chicago

673 Gerhardt HC, Martinez-Rivera CC, Schwartz JJ, Marshall VT, Murphy CG (2007) Preferences
674 based on spectral differences in acoustic signals in four species of treefrogs (Anura:
675 Hylidae). *J Exp Biol* 210 (17):2990-2998. doi:<https://10.1242/jeb.006312>

676 Gerhardt HC, Schul J (1999) A quantitative analysis of behavioral selectivity for pulse rise-time
677 in the gray treefrog, *Hyla versicolor*. *J Comp Physiol A* 185 (1):33-40.
678 doi:<https://10.1007/s003590050363>

679 Gerhardt HC, Schwartz JJ (2001) Auditory tuning, frequency preferences and mate choice in
680 anurans. In: Ryan MJ (ed) *Anuran communication*. Smithsonian Institution Press,
681 Washington DC, pp 73-85

682 Goense JBM, Feng AS (2005) Seasonal changes in frequency tuning and temporal processing
683 in single neurons in the frog auditory midbrain. *J Neurobiol* 65 (1):22-36.
684 doi:<https://10.1002/neu.20172>

685 Gooler DM, Condon CJ, Xu JH, Feng AS (1993) Sound direction influences the frequency-
686 tuning characteristics of neurons in the frog inferior colliculus. *J Neurophysiol* 69
687 (4):1018-1030. doi:<https://10.1152/jn.1993.69.4.1018>

688 Gooler DM, Xu JH, Feng AS (1996) Binaural inhibition is important in shaping the free-field
689 frequency selectivity of single neurons in the inferior colliculus. *J Neurophysiol* 76
690 (4):2580-2594. doi:<https://doi.org/10.1152/jn.1996.76.4.2580>

691 Gupta S, Bee MA (2020) Treefrogs exploit temporal coherence to form perceptual objects of
692 communication signals. *Biol Lett* 16 (9):20200573. doi:<https://10.1098/rsbl.2020.0573>

693 Hall JC (1994) Central processing of communication sounds in the anuran auditory system. *Am
694 Zool* 34 (6):670-684. doi:<https://doi.org/10.1093/icb/34.6.670>

695 Hillary CM (1984) Seasonality of two midbrain auditory responses in the treefrog, *Hyla
696 chrysoscelis*. *Copeia* 1984 (4):844-852. doi:<https://doi.org/10.2307/1445327>

697 Højsgaard S, Halekoh U, Yan J, Højsgaard MS (2016) Package 'geepack'.

698 Holloway AK, Cannatella DC, Gerhardt HC, Hillis DM (2006) Polyploids with different origins
699 and ancestors form a single sexual polyploid species. *Am Nat* 167 (4):E88-E101.
700 doi:<https://10.1086/501079>

701 Hua X, Fu CZ, Li JT, de Oca ANM, Wiens JJ (2009) A revised phylogeny of holarctic treefrogs
702 (genus *Hyla*) based on nuclear and mitochondrial DNA sequences. *Herpetologica* 65
703 (3):246-259. doi:<https://doi.org/10.1655/08-058R1.1>

704 Kelly CD (2006) Replicating empirical research in behavioral ecology: How and why it should be
705 done but rarely ever is. *Q Rev Biol* 81 (3):221-236. doi:<http://10.1086/506236>

706 Kelly CD (2019) Rate and success of study replication in ecology and evolution. PeerJ 7:e7654.
707 doi:<http://10.7717/peerj.7654>

708 LaBarbera K, Nelson PB, Bee MA (2020) Mate choice and the 'opposite miss' to Weber's law:
709 proportional processing governs signal preferences in a treefrog. Anim Behav 168:199-
710 209. doi:<https://doi.org/10.1016/j.anbehav.2020.08.014>

711 Lee N, Schrude KM, Bee MA (2017) Nonlinear processing of a multicomponent communication
712 signal by combination-sensitive neurons in the anuran inferior colliculus. J Comp Physiol
713 A 203 (9):749-772. doi:<https://10.1007/s00359-017-1195-3>

714 Lewis ER, Lombard RE (1988) The amphibian inner ear. In: Fritzsch B, Wolkowiak W, Ryan MJ,
715 Wilczynski W, Hetherington T (eds) The evolution of the amphibian auditory system.
716 Wiley, New York, pp 93-123

717 Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: Anatomy and physiology.
718 In: Fay RR, Popper AN (eds) Comparative hearing: Fish and amphibians, vol 11.
719 Springer Handbook of Auditory Research. Springer, New York, pp 101-154.
720 doi:https://doi.org/10.1007/978-1-4612-0533-3_4

721 Megela AL (1983) Auditory response properties of the anuran thalamus: Nonlinear facilitation.
722 In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology.
723 Plenum Press, New York, pp 895-899. doi:https://doi.org/10.1007/978-1-4684-4412-4_44

725 Moffat AJM, Capranica RR (1974) Sensory processing in the peripheral auditory system of
726 treefrogs (*Hyla*). J Acoust Soc Am 55 (2):480-480. doi:<https://doi.org/10.1121/1.3438013>

727 Morris MR (1989) Female choice of large males in the treefrog *Hyla chrysoscelis*: The
728 importance of identifying the scale of choice. Behav Ecol Sociobiol 25 (4):275-281.
729 doi:<https://doi.org/10.1007/BF00300054>

730 Morris MR, Yoon SL (1989) A mechanism for female choice of large males in the treefrog *Hyla*
731 *chrysoscelis*. Behav Ecol Sociobiol 25 (1):65-71. doi:<https://doi.org/10.1007/BF00299712>

732 Mudry KM, Capranica RR (1987a) Correlation between auditory evoked responses in the
733 thalamus and species-specific call characteristics I. *Rana catesbeiana* (Anura, Ranidae).
734 J Comp Physiol A 160 (4):477-489. doi:<https://doi.org/10.1007/BF00615081>

735 Mudry KM, Capranica RR (1987b) Correlation between auditory thalamic area evoked
736 responses and species-specific call characteristics II. *Hyla cinerea* (Anura: Hylidae). J
737 Comp Physiol A 161 (3):407-416. doi:<https://doi.org/10.1007/BF00603966>

738 Narins PM, Feng AS (2007) Hearing and sound communication in amphibians: Prologue and
739 prognostication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound

740 communication in amphibians. Springer, New York, pp 1-11.
741 doi:https://doi.org/10.1007/978-0-387-47796-1_1

742 Narins PM, Feng AS, Fay RR, Popper AN (2007) Hearing and sound communication in
743 amphibians, vol 28. Springer Handbook of Auditory Research. Springer, New York.
744 doi:<https://doi.org/10.1007/978-0-387-47796-1>

745 Nityananda V, Bee MA (2011) Finding your mate at a cocktail party: Frequency separation
746 promotes auditory stream segregation of concurrent voices in multi-species frog
747 choruses. PLoS ONE 6 (6):e21191. doi:<https://doi.org/10.1371/journal.pone.0021191>

748 Nityananda V, Bee MA (2012) Spatial release from masking in a free-field source identification
749 task by gray treefrogs. Hear Res 285 (1-2):86-97.
750 doi:<https://doi.org/10.1016/j.heares.2012.01.003>

751 Palmer AR (2000) Quasireplication and the contract of error: Lessons from sex ratios,
752 heritabilities and fluctuating asymmetry. Annu Rev Ecol Syst 31:441-480.
753 doi:<https://www.jstor.org/stable/221740>

754 Pan W (2001) Akaike's information criterion in generalized estimating equations. Biometrics 57
755 (1):120-125. doi:<https://doi.org/10.1111/j.0006-341x.2001.00120.x>

756 Ponnath A, Ryan MJ, Fang Z, Farris HE (2022) Tuned in to communication sounds: Neuronal
757 sensitivity in the túngara frog midbrain to frequency modulated signals. PLoS ONE 17
758 (5):e0268383. doi:[10.1371/journal.pone.0268383](https://doi.org/10.1371/journal.pone.0268383)

759 Ptacek MB, Gerhardt HC, Sage RD (1994) Speciation by polyploidy in treefrogs: Multiple origins
760 of the tetraploid, *Hyla versicolor*. Evolution 48 (3):898-908. doi:<https://doi.org/10.1111/j.1558-5646.1994.tb01370.x>

761 Rose GJ (2014) Time computations in anuran auditory systems. Front Physiol 5:1-7.
762 doi:<https://doi.org/10.3389/fphys.2014.00206>

763 Schrode K, Ward JL, Vélez A, Bee MA (2012) Female preferences for spectral call properties in
764 the western genetic lineage of Cope's gray treefrog (*Hyla chrysoscelis*). Behav Ecol
765 Sociobiol 66 (12):1595-1606. doi:<https://doi.org/10.1007/s00265-012-1413-5>

766 Schrode KM, Buerkle NP, Brittan-Powell EF, Bee MA (2014) Auditory brainstem responses in
767 Cope's gray treefrog (*Hyla chrysoscelis*): Effects of frequency, level, sex and size. J
768 Comp Physiol A 200 (3):221-238. doi:<https://doi.org/10.1007/s00359-014-0880-8>

769 Schul J, Bush SL (2002) Non-parallel coevolution of sender and receiver in the acoustic
770 communication system of treefrogs. Proc Roy Soc Ser B 269 (1502):1847-1852.
771 doi:<https://doi.org/10.1098/rspb.2002.2092>

773 Simmons AM (2013) "To Ear is Human, to Frogive is Divine": Bob Capranica's legacy to
774 auditory neuroethology. *J Comp Physiol A* 199 (3):169-182.
775 doi:<https://doi.org/10.1007/s00359-012-0786-2>

776 Simmons DD, Meenderink SWF, Vassilakis PN (2007) Anatomy, physiology, and function of the
777 auditory end-organs in the frog inner ear. In: Narins PA, Feng AS, Fay RR, Popper AN
778 (eds) *Hearing and sound communication in amphibians*, vol 29. Springer Handbook of
779 *Auditory Research*. Springer, New York, pp 184-220. doi:https://doi.org/10.1007/978-0-387-47796-1_7

780 Tanner JC, Ward JL, Shaw RG, Bee MA (2017) Multivariate phenotypic selection on a complex
781 sexual signal. *Evolution* 71 (7):1742-1754. doi:<https://doi.org/10.1111/evo.13264>

782 Ward JL, Love EK, Vélez A, Buerkle NP, O'Bryan LR, Bee MA (2013) Multitasking males and
783 multiplicative females: dynamic signalling and receiver preferences in Cope's grey
784 treefrog. *Anim Behav* 86 (2):231-243. doi:<https://doi.org/10.1016/j.anbehav.2013.05.016>

785 Wells KD, Schwartz JJ (2007) The behavioral ecology of anuran communication. In: Narins PM,
786 Feng AS, Fay RR, Popper AN (eds) *Hearing and sound communication in amphibians*,
787 vol 28. Springer Handbook of Auditory Research. Springer, New York, pp 44-86.
788 doi:https://doi.org/10.1007/978-0-387-47796-1_3

789 Xu JH, Gooler DM, Feng AS (1994) Single neurons in the frog inferior colliculus exhibit
790 direction-dependent frequency-selectivity to isointensity tone bursts. *J Acoust Soc Am*
791 95 (4):2160-2170. doi:<https://doi.org/10.1121/1.408677>

792 Zakon HH, Wilczynski W (1988) The physiology of the anuran eighth nerve. In: Fritzsch B,
793 Wolkowiak W, Ryan MJ, Wilczynski W, Hetherington T (eds) *The evolution of the*
794 *amphibian auditory system*. Wiley, New York, pp 125-155

795 Zhang H, Feng AS (1998) Sound direction modifies the inhibitory as well as the excitatory
796 frequency tuning characteristics of single neurons in the frog torus semicircularis (inferior
797 colliculus). *J Comp Physiol A* 182 (6):725-735.
798 doi:<https://doi.org/10.1007/s003590050217>

799 Zhang H, Xu J, Feng AS (1999) Effects of GABA mediated inhibition on direction-dependent
800 frequency tuning in the frog inferior colliculus. *J Comp Physiol A* 184 (1):85-98.
801 doi:<https://doi.org/10.1007/s003590050308>

802

803

804 **Figure Legends**

805

806 **Fig. 1** Acoustic stimuli and results of Experiment 1. **a, b** Spectrograms illustrating a synthetic
807 bimodal advertisement call paired against a low-frequency and a high-frequency unimodal call,
808 respectively. **c** Proportion of subjects choosing the bimodal call as a function of overall and
809 relative amplitudes when the alternative stimulus was the low-frequency unimodal call. **d**
810 Proportion of subjects choosing the bimodal call as a function of overall and relative amplitudes
811 when the alternative stimulus was the high-frequency unimodal call. **e** Proportion of subjects
812 choosing the bimodal call, averaged across overall amplitudes, as a function of relative amplitude
813 and the spectral component present in the unimodal alternative. **f** Proportion of subjects choosing
814 the bimodal call, averaged across tests with the two unimodal calls, as functions of overall
815 amplitude and relative amplitude. Error bars depict exact 95% binomial confidence intervals (CIs).
816 Colored lines and shaded areas around the lines indicate the least squares fit lines and 95% CIs,
817 respectively, from GEE analyses. A horizontal dashed line indicates the expected null proportion
818 of 0.50 in a two-alternative choice test. Fractions show the number of subjects choosing the
819 bimodal call (numerator) and the number of subjects tested (denominator).

820

821 **Fig. 2** Acoustic stimuli and results for Experiment 2. **a** Spectrogram illustrating the spectral
822 content of the two synthetic unimodal calls having a single carrier frequency of either 1.25 kHz
823 or 2.5 kHz. **b** Proportions of subjects choosing the high-frequency unimodal call over the low-
824 frequency unimodal call as a function of overall amplitude. Error bars depict exact 95% binomial
825 confidence intervals (CIs). The solid black line and the shaded gray area around the line indicate
826 the least squares fit line and 95% CI, respectively, from a GEE analysis. A horizontal dashed
827 line illustrates the expected null proportion of 0.50 in a two-alternative choice test. Fractions
828 show the number of subjects choosing the high-frequency unimodal call (numerator) and the
829 number of subjects tested (denominator).

830

831 **Fig. 3** Female preferences for spectral content across four species of *Hyla*. **a** Percentages of
832 females choosing a bimodal call over either a high-frequency unimodal call (closed symbols) or
833 a low-frequency unimodal call (open symbols). Dotted lines connect tests conducted within the
834 same genetically distinct clade. **b** Percentages of females choosing a high-frequency unimodal
835 call over a low-frequency unimodal call. Data from this study of *H. chrysoscelis* (square
836 symbols) are taken from tests conducted at an overall amplitude of 85 dB SPL (in **a** and **b**) and
837 at a species-typical relative amplitude of -11 dB (in **a**). Data for other clades and species are

838 redrawn from Gerhardt et al. (2007) and represent data from tests conducted at or close to an
839 overall amplitude 85 dB SPL and with species-typical relative amplitudes (except for *H. avivoca*,
840 which does not produce a bimodal call). A stylized spectrum under each species' name depicts
841 the natural spectral content of its advertisement calls. For *H. chrysoscelis*, the separate genetic
842 clades indicated are the Western (W), Central (C), and Eastern clades following Booker et al.
843 (2022). For *H. versicolor*, different Eastern (E), Northwestern (NW), and Southwestern (SW)
844 clade designations follow Gerhardt et al. (2007). Error bars depict exact 95% binomial
845 confidence intervals. Asterisks indicate significant preferences ($p < 0.05$) in two-tailed binomial
846 tests (to facilitate comparison between studies) and horizontal dashed bars indicate the null
847 expectation of 50% in a two-alternative choice test. See Gerhardt et al. (2007) for additional
848 details.

Table 1 Nominal amplitudes of unimodal calls (both high-frequency and low-frequency calls) and each spectral peak of the bimodal call as functions of the experimentally determined relative amplitude and overall amplitude of each stimulus.

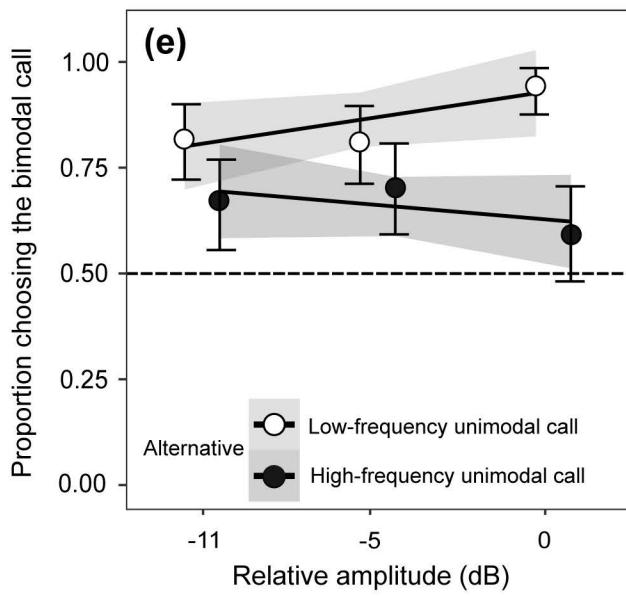
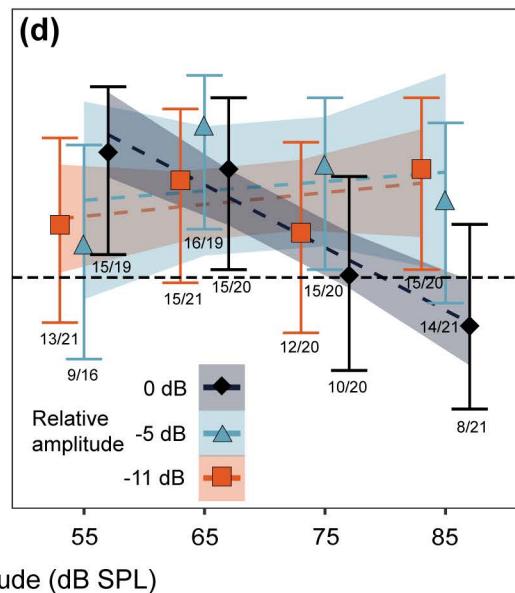
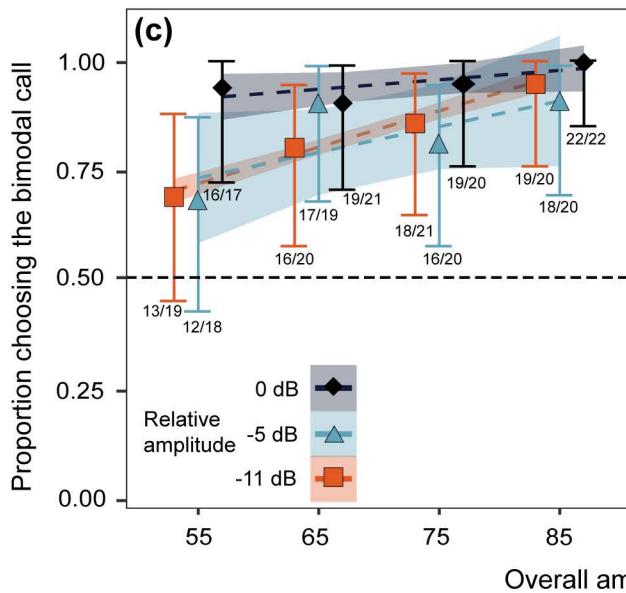
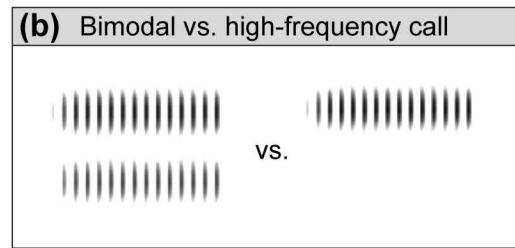
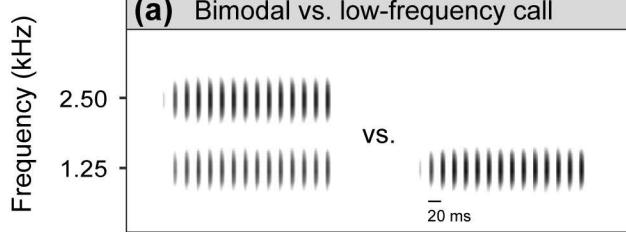





Relative amplitude (dB)	Overall amplitude (dB SPL)	Unimodal call (dB SPL)	Bimodal call	
			High-frequency component (dB SPL)	Low-frequency component (dB SPL)
0	55	55.0	52.0	52.0
	65	65.0	62.0	62.0
	75	75.0	72.0	72.0
	85	85.0	82.0	82.0
-5	55	55.0	53.8	48.8
	65	65.0	63.8	58.8
	75	75.0	73.8	68.8
	85	85.0	83.8	78.8
-11	55	55.0	54.7	43.7
	65	65.0	64.7	53.7
	75	75.0	74.7	63.7
	85	85.0	84.7	73.7

Table 2 Results of two-alternative choice tests from Experiment 1 indicating the sample sizes (n) and proportions of subjects choosing the bimodal call over the low-frequency and high-frequency unimodal calls in tests conducted at different combinations of overall amplitude (dB SPL) and relative amplitude (dB). Also shown are the 95% exact binomial confidence intervals (CI) around the observed proportions and the outcomes (p values) of one-tailed binomial tests (null proportion = 0.50). P -values less than $\alpha = 0.05$ are highlighted in **bold text**, and significant outcomes following correction for multiple comparisons are indicated with an asterisk (*).

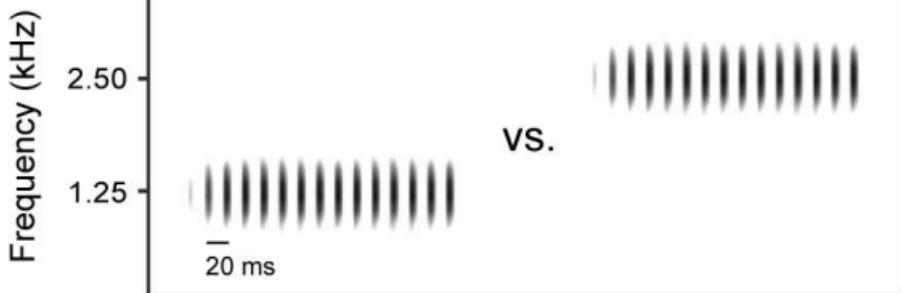
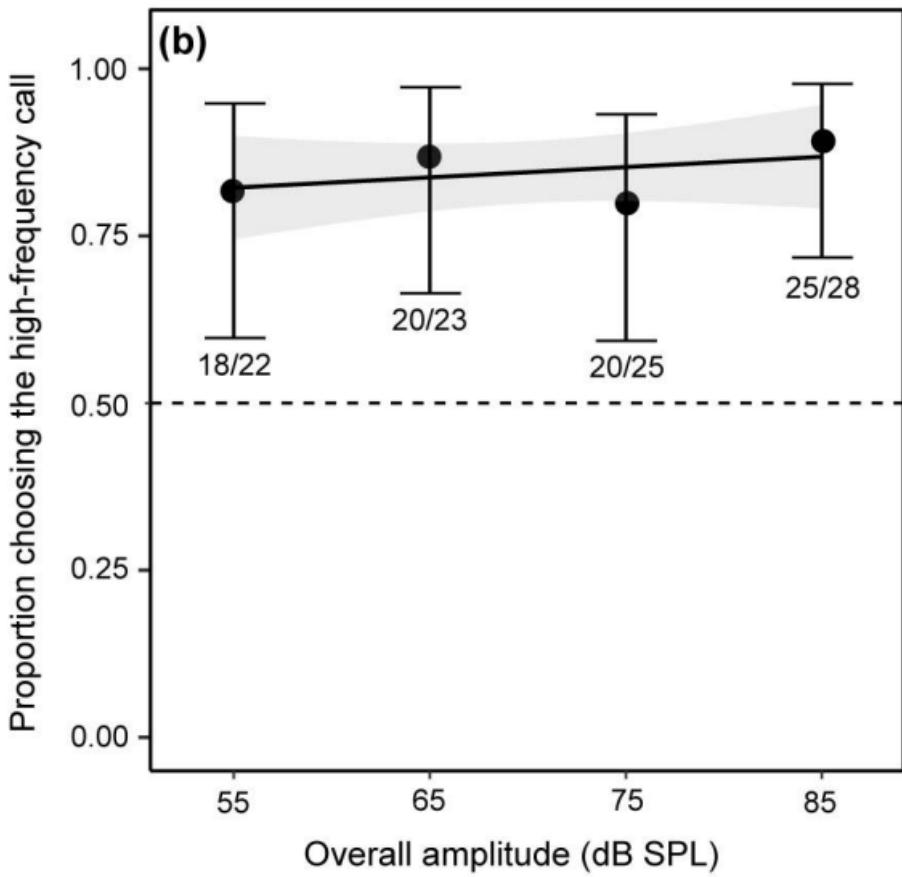
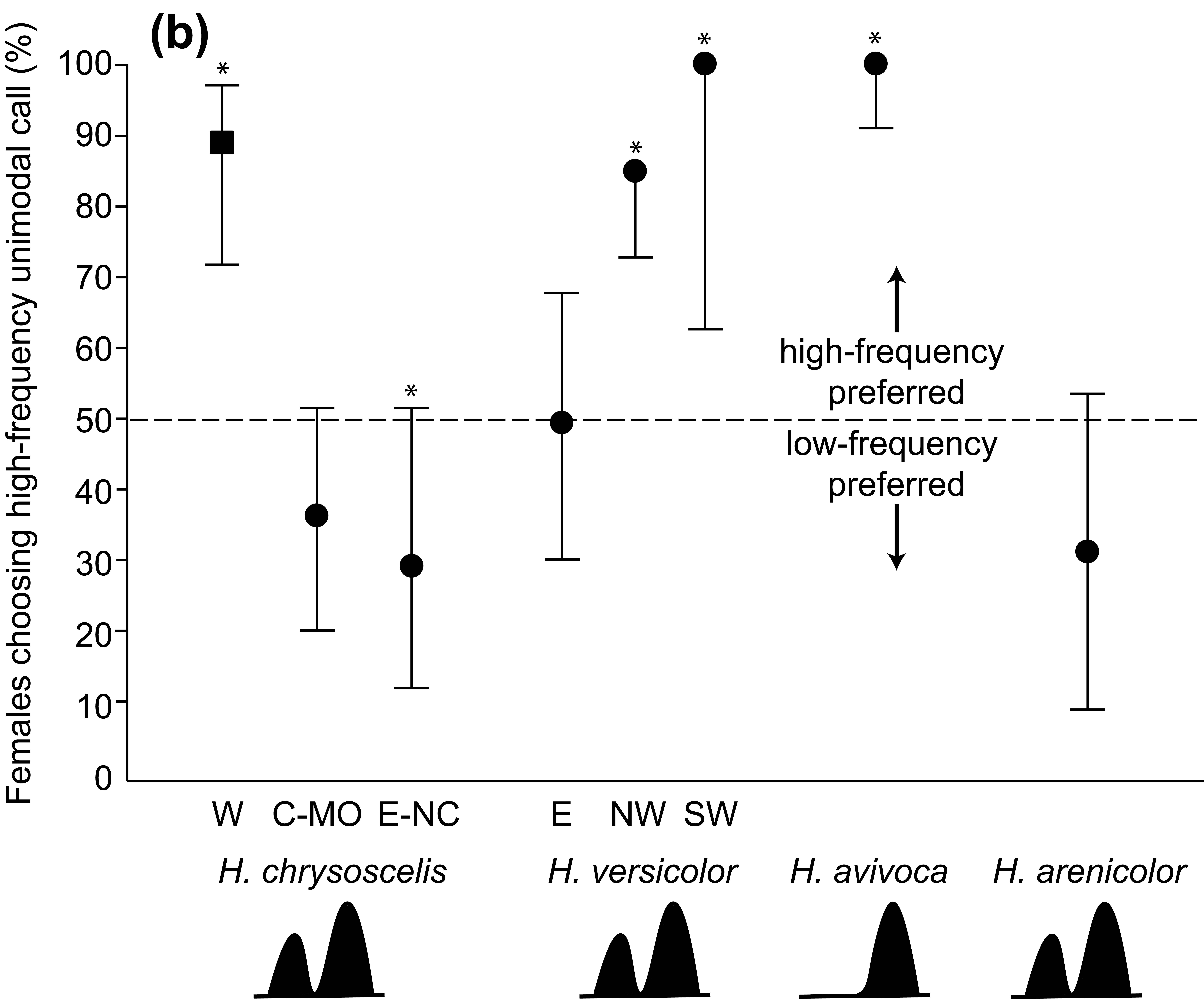
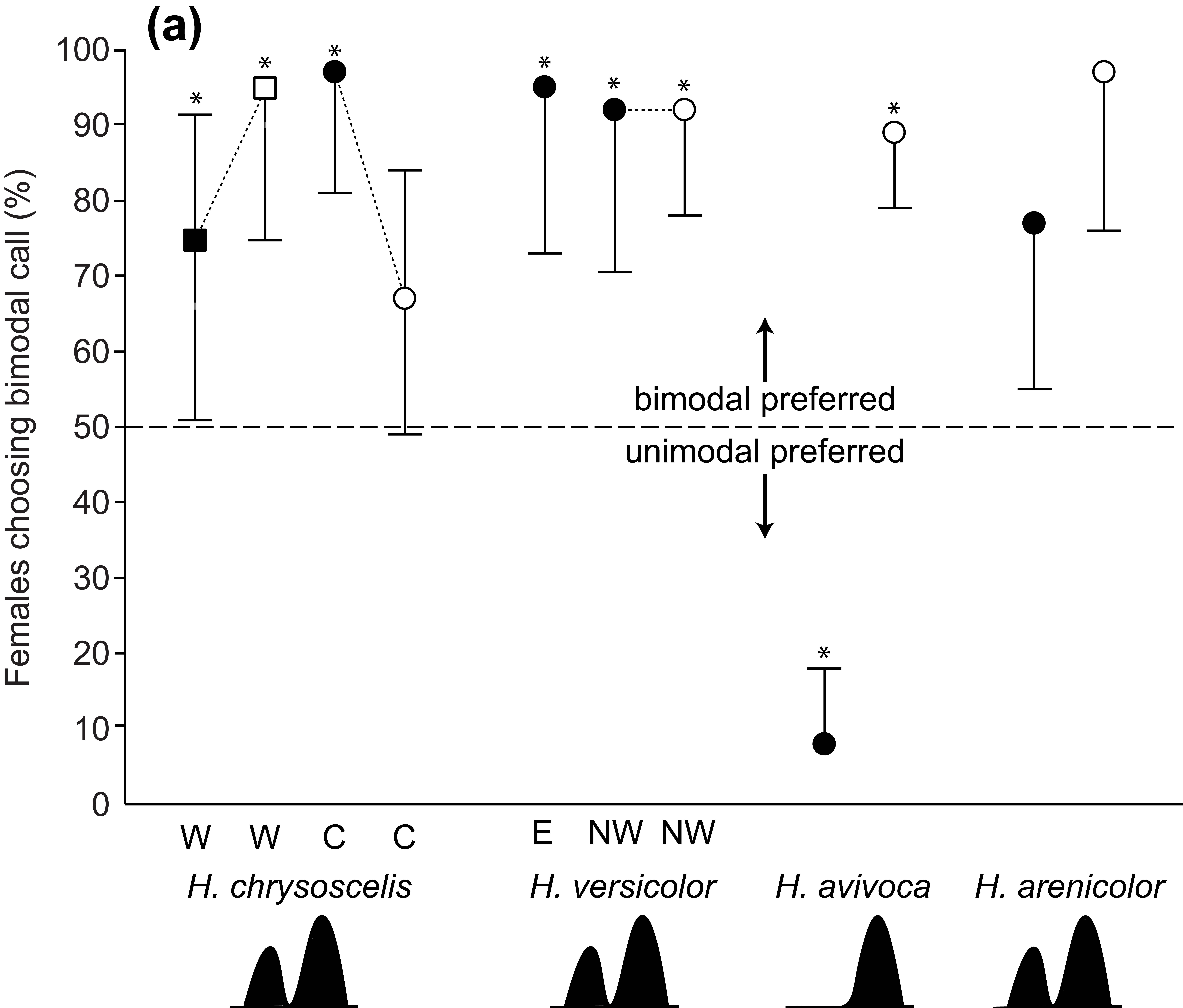

Choice Test	Overall amplitude	Relative amplitude	n	Proportion	95% CI	p
Bimodal vs low-frequency unimodal	55 dB	0 dB	17	0.94	0.71 – 1.00	< 0.001*
		-5 dB	18	0.67	0.41 – 0.87	0.119
		-11 dB	19	0.68	0.43 – 0.87	0.084
	65 dB	0 dB	21	0.90	0.70 – 0.99	< 0.001*
		-5 dB	19	0.89	0.67 – 0.99	< 0.001*
		-11 dB	20	0.80	0.56 – 0.94	0.006*
	75 dB	0 dB	20	0.95	0.75 – 1.00	< 0.001*
		-5 dB	20	0.80	0.56 – 0.94	0.006*
		-11 dB	21	0.86	0.63 – 0.97	0.001*
	85 dB	0 dB	22	1.00	0.85 – 1.00	< 0.001*
		-5 dB	20	0.90	0.68 – 0.99	< 0.001*
		-11 dB	20	0.95	0.75 – 1.00	< 0.001*
Bimodal vs high-frequency unimodal	55 dB	0 dB	19	0.79	0.54 – 0.94	0.010
		-5 dB	16	0.56	0.30 – 0.80	0.402
		-11 dB	21	0.62	0.38 – 0.82	0.192
	65 dB	0 dB	20	0.75	0.51 – 0.91	0.021
		-5 dB	19	0.84	0.60 – 0.97	0.002*
		-11 dB	21	0.71	0.48 – 0.89	0.039
	75 dB	0 dB	20	0.50	0.27 – 0.73	0.588
		-5 dB	20	0.75	0.50 – 0.91	0.021
		-11 dB	20	0.60	0.36 – 0.81	0.252
	85 dB	0 dB	21	0.38	0.18 – 0.62	0.192
		-5 dB	21	0.67	0.43 – 0.85	0.095
		-11 dB	20	0.75	0.51 – 0.91	0.021

Table 3 Results of two-alternative choice tests from Experiment 2 indicating the sample sizes (n) and the proportions of subjects choosing the high-frequency unimodal call over the low-frequency unimodal call in tests conducted at different overall amplitudes (dB SPL). Also shown are the 95% exact binomial confidence intervals (CI) around the observed proportions and the outcomes (p values) of one-tailed binomial tests (null proportion = 0.50). P -values less than $q = 0.05$ are highlighted in **bold text**, and significant outcomes following correction for multiple comparisons are indicated with an asterisk (*).


Overall amplitude	n	Proportion	95% CI	p
55 dB	22	0.82	0.60 – 0.95	0.002*
65 dB	23	0.87	0.66 – 0.97	< 0.001*
75 dB	25	0.80	0.59 – 0.93	0.002*
85 dB	28	0.89	0.72 – 0.98	< 0.001*

(a) Low-frequency vs. high-frequency call

(b)

Supplementary Information

**Female preferences for the spectral content of advertisement calls in Cope's gray treefrog
(*Hyla chrysoscelis*)**

Saumya Gupta and Mark A. Bee

Supplementary Table 1: Results of model selection from Experiment 1 indicating the quasi-likelihood values, quasi-likelihood information criterion (QIC) values, delta, and QIC weights. The model highlighted in bold had the lowest QIC value. Across models the predictor variables considered included the unimodal alternative to the bimodal call (i.e., the low-frequency unimodal call or the high-frequency unimodal call), overall amplitude (55, 65, 75, or 85 dB SPL), relative amplitude (0, -5, or -11 dB), and their two-way interactions.

Model	Quasi-			
	likelihood	QIC	Delta	Weight
unimodal alternative + overall amplitude + relative amplitude + unimodal alternative:overall amplitude + unimodal alternative:relative amplitude + overall amplitude:relative amplitude	-228.969	495.6	2.03	0.168
unimodal alternative + overall amplitude + relative amplitude + unimodal alternative:overall amplitude + unimodal alternative:relative amplitude	-233.936	494.9	1.30	0.242
unimodal alternative + overall amplitude + relative amplitude + unimodal alternative:overall amplitude + overall amplitude:relative amplitude	-232.996	498.5	4.89	0.040
unimodal alternative + overall amplitude + relative amplitude + unimodal alternative:relative amplitude + overall amplitude:relative amplitude	-232.588	493.6	0.00	0.464
unimodal alternative + overall amplitude + relative amplitude + unimodal alternative:overall amplitude	-239.131	501.4	7.81	0.009
unimodal alternative + overall amplitude + relative amplitude + unimodal alternative:relative amplitude	-239.011	497.4	3.78	0.070
unimodal alternative + overall amplitude + relative amplitude + overall amplitude:relative amplitude	-237.995	502.9	9.25	0.005
unimodal alternative + overall amplitude + relative amplitude	-244.182	504.7	11.11	0.002