

1 **Behind the mask(ing): How frogs cope with noise**

4 **Norman Lee¹ • Alejandro Vélez² • Mark Bee^{3,4}**

7 ¹ Department of Biology, St. Olaf College, 1520 St. Olaf Ave, Northfield, MN, 55057, USA

8 e-mail: lee33@stolaf.edu

9 ORCID: 0000-0001-6198-710X

11 ² Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco,

12 CA 94132, USA

13 e-mail: avelezm@sfsu.edu

14 ORCID: 0000-0002-7636-8405

16 ³ Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, 1479

17 Gortner Ave, St. Paul, MN 55108, USA

18 ⁴ Graduate Program in Neuroscience, University of Minnesota – Twin Cities, 321 Church Street

19 SE, Minneapolis, MN 55455, USA

20 e-mail: mbee@umn.edu

21 ORCID: 0000-0002-6770-9730

24 * Corresponding author: Norman Lee, lee33@stolaf.edu

28 **Abstract**

29 Albert Feng was a pioneer in the field of auditory neuroethology who used frogs to investigate
30 the neural basis of spectral and temporal processing and directional hearing. Among his many
31 contributions was connecting neural mechanisms for sound pattern recognition and localization
32 to the problems of auditory masking that frogs encounter when communicating in noisy, real-
33 world environments. Feng's neurophysiological studies of auditory processing foreshadowed and
34 inspired subsequent behavioral investigations of auditory masking in frogs. For frogs, vocal
35 communication frequently occurs in breeding choruses, where males form dense aggregations
36 and produce loud species specific advertisement calls to attract potential mates and repel
37 competitive rivals. In this review, we aim to highlight how Feng's research advanced our
38 understanding of how frogs cope with noise. We structure our narrative around three themes
39 woven throughout Feng's research – spectral, temporal, and directional processing – to illustrate
40 how frogs can mitigate problems of auditory masking by exploiting frequency separation
41 between signals and noise, temporal fluctuations in noise amplitude, and spatial separation
42 between signals and noise. We conclude by proposing future research that would build on Feng's
43 considerable legacy to advance our understanding of hearing and sound communication in frogs
44 and other vertebrates.

45

46 **Keywords** Auditory scene analysis Comodulation masking release Energetic masking
47 Matched filtering Spatial release from masking

48

49

50 **Introduction**

51

52 Natural acoustic environments are often complex, consisting of multiple sounds that overlap in
53 frequency and time and that are produced by multiple different sources (Bregman 1990; Yost
54 2008). These sound sources can be biotic, which may include conspecific or heterospecific
55 communication signals, or abiotic such as environmental or anthropogenic noise (Brumm and
56 Slabbekoorn 2005; Brumm 2013; Wiley 2015). Listening to a specific source in a complex,
57 multi-source environment presents significant challenges because overlapping sounds and
58 background noise can make it more difficult or even impossible to hear signals of interest, a
59 phenomenon known generally as “auditory masking” (Patterson and Green 2012). For humans,
60 large social gatherings, such as a crowded restaurant or a cocktail party, are one example of a
61 complex acoustic environment where following one conversation among many is made more
62 difficult due to auditory masking. This difficulty is aptly termed the “cocktail party problem”
63 (Cherry 1953; Bronkhorst 2000; McDermott 2009; Middlebrooks et al. 2017). As a general rule,
64 auditory masking is most pronounced when competing sounds are similar in frequency, occur at
65 the same time, and originate from the same location. Intensive studies of human hearing and
66 speech perception have revealed a number of mechanisms that enable us to cope with problems
67 of auditory masking (Moore 2013). Many of these mechanisms, however, are not unique to
68 human hearing (Fay and Popper 2000).

69 In this article, we honor the legacy of Albert Feng by reviewing research he inspired on
70 how frogs cope with problems of auditory masking (Feng and Ratnam 2000; Feng and Schul
71 2007). Like humans, frogs also communicate in noisy social gatherings where they experience
72 problems analogous to the human cocktail party problem. During their breeding season, many
73 frog species form large social aggregations where males call loudly to attract receptive females
74 and repel rival males (Gerhardt and Huber 2002). These aggregations may consist of hundreds of
75 males, often of multiple species, densely packed into aquatic habitats that are suitable for
76 breeding. An individual male’s advertisement calls can reach sound pressure levels (SPLs) as
77 high as 90 to 110 dB SPL (re 20 μ Pa) at a distance of 1 m (Gerhardt 1975), and the sustained
78 background noise level in choruses can easily reach or exceed 80 dB to 90 dB SPL (Narins 1982;
79 Halfwerk et al. 2016; Tanner and Bee 2019). Choruses can be audible to humans from distances
80 of up to 2 km away from the breeding site (Arak 1983). In the environment of a breeding chorus,

81 high levels of background noise and overlapping signals lead to auditory masking that is
82 manifest as impaired signal detection, recognition, discrimination, and localization (Bee 2012,
83 2015; Vélez et al. 2013b).

84 How do frogs cope with the noise they encounter in breeding choruses? Albert Feng took
85 up this question in two important reviews on sound processing in “real-world” environments
86 (Feng and Ratnam 2000; Feng and Schul 2007). He and his co-authors described previous
87 studies on the neural processing of spectral, temporal, and directional information in frogs and
88 discussed (and in some cases speculated) how such processes might contribute to hearing the
89 calls of individual males amid the cacophony of a chorus. It was also recognized, however, that
90 the sensory basis of hearing in complex, multi-source environments was inadequately
91 understood, and that more studies that employed psychoacoustic techniques were needed to
92 further elucidate the perceptual abilities of auditory systems, and the processes and cues that
93 auditory systems utilize in solving the cocktail-party-like problems (Feng and Ratnam 2000;
94 Feng and Schul 2007). In the years following Feng’s two reviews, we have learned a great deal
95 more about the magnitude of the frog’s cocktail-party-like problem and how they cope with it.
96 Here, we review much of this more recent work by reflecting on how Feng’s neurophysiological
97 studies of spectral processing, temporal processing, and directional hearing foreshadowed and
98 inspired subsequent behavioral investigations of auditory masking in frogs.

99

100 **Exploiting frequency differences between signals and noise**

101

102 **Matched spectral filtering**

103

104 Amphibians are unique among vertebrates in having two distinct auditory organs in the inner ear
105 tuned to different frequency ranges of airborne sound. Early work by Feng et al. (1975)
106 demonstrated that auditory fibers innervating the amphibian papilla (AP) are tuned to low and
107 intermediate sound frequencies (e.g., < 1.5 kHz), while auditory fibers innervating the basilar
108 papilla (BP) are tuned to higher sound frequencies. The specific frequencies to which the AP and
109 BP are tuned vary between species, but they are commonly found to be most sensitive to
110 frequency peaks that are emphasized in conspecific advertisement calls (Gerhardt and Schwartz
111 2001). This match in the frequency sensitivity of the auditory periphery to the frequency content

112 of conspecific calls inspired the “matched filter” hypothesis, which posits that the auditory
113 periphery most optimally encodes the frequency content of conspecific advertisement calls, and
114 filters out other sound frequencies (Capranica and Moffat 1983; Simmons 2013). One major
115 theme of Feng’s research program was to discover how central auditory processes sharpen the
116 matched spectral filtering that originates at the periphery. This body of work revealed how the
117 simple, V-shaped tuning curves characteristic of auditory nerve fibers are transformed into much
118 more complex, often bimodal tuning curves that become increasingly selective for frequencies
119 emphasized in conspecific calls along the ascending auditory pathway, such that some neurons in
120 the auditory midbrain and thalamus respond best, or only, to combinations of frequencies present
121 in vocalizations and transduced by the AP and BP (Fuzessery and Feng 1981, 1982, 1983a, b;
122 Gooler et al. 1993, 1996; Zhang and Feng 1998; Zhang et al. 1999; Goense and Feng 2005). A
123 primary function of matched spectral filtering is that it allows a receiver to obtain “the highest
124 signal-to-noise ratio in the frequency domain” for detecting conspecific vocalizations (p. 706;
125 Capranica and Moffat 1983). Thus, matched filtering functions to improve the perception of
126 conspecific vocalizations in the presence of noise, particularly noise that does not overlap the
127 spectrum of conspecific vocalizations (e.g., the calls of other frog species in mixed-species
128 choruses). The matched filter hypothesis predicts the co-evolution of spectral content in
129 vocalizations and spectral tuning in the auditory system, a prediction generally well supported by
130 comparative studies of frogs (Gerhardt and Schwartz 2001). While the vitality of the matched
131 filter hypothesis has been questioned (Narins and Feng 2007), it seems clear that the frog’s
132 peripheral and central auditory systems are adapted to exploit frequency differences between
133 conspecific signals and noise at other frequencies.

134 A recent study of the American green treefrog (*Hyla cinerea*) extends the work of Feng
135 and colleagues in describing a physical mechanism that functions to sharpen matched spectral
136 filtering in an unexpected way, beginning at the tympanum itself (Lee et al. 2021). In this
137 species, males produce advertisement calls with two spectral peaks centered at about 0.8-1.0 and
138 2.7-3.0 kHz (Gerhardt 1974; Lee et al. 2021) (Figs. 1a-b). These two spectral peaks are
139 transduced primarily by the AP and BP, respectively, consistent with matched spectral filtering
140 (Ehret and Capranica 1980). Audiograms based on both behavioral responses (Megela-Simmons
141 et al. 1985) (Fig. 1d) and auditory evoked responses (Buerkle et al. 2014), as well as neural
142 recordings from the auditory nerve and midbrain (Ehret and Capranica 1980; Miranda and

143 Wilczynski 2009a; Gall and Wilczynski 2015; Lee et al. 2017a) (Fig. 1d), demonstrate
144 heightened sensitivity to the spectral peaks of the advertisement call (Figs. 1d-f). The auditory
145 system is also most selective for frequencies at around 0.9 kHz and 3.0 kHz (Moss and
146 Simmons 1986). Not surprisingly, females are generally most attracted to calls with both spectral
147 peaks (Gerhardt 1981; Gerhardt and Höbel 2005; Lee et al. 2017a) (Fig. 1c), and combination
148 sensitive neurons in the central auditory system also show selectivity for call-like sounds with
149 both spectral peaks (Lee et al. 2017a) (Figs. 1e-f).

150 As in other frogs (Narins et al. 1988; Ehret et al. 1990; Jørgensen 1991; Jørgensen and
151 Gerhardt 1991), sound can reach the internal surface of the green treefrog's tympana through the
152 body wall and air-filled lungs via the glottis, mouth cavity, and Eustachian tubes. Lee et al.
153 (2021) discovered that this lung-to-ear sound transmission pathway, unique to amphibians
154 among extant terrestrial vertebrates, contributes to sharpening the peripheral matched filter by
155 improving the signal-to-noise ratio for perceiving conspecific calls within a noisy multi-species
156 breeding chorus (Fig. 2). Recordings with a laser Doppler vibrometer showed that inflated lungs
157 had a peak resonance at a frequency value that fell in a frequency range (1400-2200 Hz) that was
158 between the spectral peaks of conspecific calls and that coincided with a suspected region of
159 frequency overlap between the AP and BP (Fig. 2a). Compared to a lung-deflated condition, lung
160 inflation attenuated the response of the eardrum at this same intermediate frequency range by
161 about 4 dB to 10 dB (Lee et al. 2021) (Fig. 2b). Importantly, changes in lung inflation did not
162 significantly affect the sensitivity of the eardrum to the spectral peaks present in conspecific
163 calls. An analysis of these lung-mediated effects with respect to a physiological model of the
164 peripheral frequency tuning in green treefrogs (Lee et al. 2017b) suggested receivers might
165 benefit from lung-mediated reductions in auditory masking by sound frequencies occurring
166 between the two spectral peaks of the call (Fig. 2c-e). The question remained, however, as to
167 how frequently green treefrog receivers might encounter frequencies in this critical range. A
168 social network analysis of data from the North American Amphibian Monitoring Program
169 (NAAMP) revealed that just 10 heterospecific species accounted for ~80% of the observed
170 instances of “co-calling” between green treefrogs and another frog species. Of the 10
171 heterospecific species, five produce advertisement calls with spectral components that fall within
172 the intermediate frequency range between the spectral peaks of *H. cinerea* calls. Thus, in the
173 real-world environment of a mixed-species chorus, lung inflation could function to mitigate

174 problems of auditory masking from a prominent subset of heterospecific calls by sharpening the
175 tuning of the matched spectral filter in the periphery. That is, inflated lungs may function in
176 enhancing the auditory contrast between conspecific signals and heterospecific noise. It will be
177 important in future studies to test this hypothesis by measuring changes in the frequency tuning
178 of different populations of auditory nerve fibers (e.g., Feng et al. 1975) that are expected to occur
179 with changes in lung inflation.

180

181 **Rising above the noise**

182

183 Feng and his colleagues discovered and investigated a remarkable example of how
184 environmental noise shapes the co-evolution of signalers and receivers, as expected according to
185 the matched filter hypothesis, in this instance by selecting for a shift to using higher frequency
186 signals (Feng et al. 2002; Narins et al. 2004; Suthers et al. 2006; Feng and Schul 2007; Feng and
187 Narins 2008; Arch et al. 2008, 2009, 2011, 2012; Gridi-Papp et al. 2008). Concave-eared torrent
188 frogs (*Odorrana tormota*, formerly *Amolops tormotus*) breed in habitats adjacent to fast-flowing
189 streams and waterfalls. These habitats are characterized by high levels of broadband noise, with
190 most acoustic energy around 100 Hz and extending to frequencies above 20 kHz (Narins et al.
191 2004). *O. tormota* males typically produce two types of calls: two-note calls consisting of two
192 short (~100 ms) pips, and one-note calls of either short (~150 ms) or long (~400 ms) durations
193 (Narins et al. 2004). Both types of calls are frequency modulated and often include sudden onsets
194 and offsets of harmonic and subharmonic components (Narins et al. 2004). Interestingly, the
195 calls of this species include a first formant below ~30 kHz, a second formant at ~60 kHz, and
196 sometimes a third formant at 105 kHz (Narins et al. 2004). Importantly, behavioral and
197 electrophysiological experiments have shown that males can hear the ultrasonic components of
198 the calls and adjust their behavior in response to them (Feng et al. 2006). Compared to
199 spontaneous calling activity, males increased their call rate in response to playbacks of only the
200 audible (< 20 kHz) or only the ultrasonic (> 20 kHz) components of the calls (Feng et al. 2006)
201 (Fig. 3a). Auditory evoked potentials and single unit recordings from the auditory midbrain
202 revealed hearing sensitivity to sounds with frequencies up to 34 kHz (Feng et al. 2006) (Fig. 3b).
203 Furthermore, gravid females also produce calls with ultrasonic elements, and males show
204 remarkably acute phonotaxis in response to playbacks of female calls (Shen et al. 2008). These

205 studies by Feng and colleagues provided the first record of ultrasonic communication in anurans,
206 which has now also been demonstrated in the hole-in-the-head frog (*Huia cavitympanum*) an
207 endemic Bornean frog that also breeds in habitats with high levels of noise (Arch et al. 2008,
208 2009). Together, these studies of ultrasonic signaling in frogs beautifully demonstrate
209 adaptations that facilitate communication in noisy environments based on exploiting separation
210 in frequency between signals and noise. Other articles in this special issue honoring Albert Feng
211 provide more in-depth treatments examining the evolution of high-frequency calls (Xiong &
212 Jiang this volume) and the mechanisms of high-frequency hearing (Cobo-Cuan et al. this
213 volume). Previous reviews provide information on additional ways that frogs behaviorally
214 respond to noise, for example, by altering their vocal behavior with respect to neighboring frogs
215 in a chorus (Gerhardt and Huber 2002; Wells and Schwartz 2007; Schwartz and Bee 2013).

216

217 **A limitation of matched spectral filtering**

218 For many frog species, the main source of auditory masking is not the calls of other species or
219 other sources of environmental noise, but the calling of *conspecific* males (Fig. 4). This is
220 because matched spectral filtering is of limited use in coping with noise generated by conspecific
221 signals that coevolved to pass through the filter. As noted above, problems of auditory masking
222 are most severe when competing sounds have similar spectral content, occur at the same time,
223 and originate from the same location. For any given frog species, the spectral content of
224 vocalizations used for intraspecific communication will generally fall within a restricted
225 frequency range that is audible to all adult members of the species. Moreover, mixed-species
226 choruses often consist of different species whose calls may be well segregated in frequency
227 (Wells 2007; Schwartz and Bee 2013). Although the males of some frog species shift the timing
228 of their calls to avoid overlap with immediately neighboring conspecifics in the chorus
229 (Schwartz and Bee 2013), this behavior is not characteristic of all species (e.g., Schwartz et al.
230 2002) and it does not lead to complete avoidance of call overlap with all neighbors, particularly
231 in dense choruses (e.g., Greenfield and Rand 2000). While calling neighbors usually attempt to
232 maintain some minimum distance from other conspecific males (e.g., Wilczynski and Brenowitz
233 1988), these distances shrink as chorus density increases, and there is evidence of species-
234 specific clustering within mixed-species choruses (Wells 2007). In dense choruses of
235 conspecifics, behaviorally important features of frog calls (e.g., a pulsed structure) can become

236 obscured by the background noise of the chorus and overlapping calls produced by nearby males
237 (Kuczynski et al. 2010). To cope with auditory masking resulting from the calls of conspecifics,
238 frogs must employ mechanisms other than matched spectral filtering, which we discuss in the
239 next two sections.

240

241 **Exploiting temporal fluctuations in noise**

242

243 A second major theme running through Feng's research on frogs was to discover neural
244 mechanisms for processing complex, temporally-patterned sounds, particularly the species-
245 specific temporal properties of conspecific vocalizations (Hall and Feng 1986, 1988; Condon et
246 al. 1991; Feng et al. 1991; Gooler and Feng 1992; Penna et al. 1997, 2001). Later in his career,
247 Feng noted the importance of understanding how chorus noise interferes with the temporal
248 structure of anuran vocalizations and affects communication (Christie et al. 2010, 2019). An
249 important extension of his work on the temporal processing of sounds and on communication in
250 noisy environments was his investigation into how the auditory nervous system detects signals in
251 temporally modulated noise (Goense and Feng 2012).

252 Real-world sounds are amplitude modulated and, often, comodulated. This means that
253 their sound levels fluctuate over time and that amplitude fluctuations are often correlated across
254 different regions of the frequency spectrum (Richards and Wiley 1980; Nelken et al. 1999).
255 Decades of psychophysical studies provide overwhelming evidence that the human auditory
256 system exploits amplitude modulations and comodulation in background noise to solve the
257 cocktail party problem (Verhey et al. 2003). Surprisingly, these well-known features of natural
258 sounds, and how the auditory system may exploit them, are often neglected in studies of animal
259 communication in noise. Feng was among the first neuroethologists to draw attention to this
260 problem and to investigate how the anuran auditory system may exploit amplitude fluctuations in
261 background noise to facilitate signal detection and recognition in real-world environments (Feng
262 and Schul 2007; Goense and Feng 2012).

263

264 **Dip listening**

265

266 Our ability to catch short “acoustic glimpses” of target signals when the amplitude of
267 background noise momentarily drops is known as “dip listening” (Buus 1985; Cooke 2006;
268 Vestergaard et al. 2011). When masker levels fluctuate in time, speech recognition thresholds are
269 usually lower than those in the presence of non-fluctuating maskers (Gustafsson and Arlinger
270 1994; Bacon et al. 1998). Maskers with slow rates of amplitude modulation usually have longer
271 dips in noise levels than those with faster rates, increasing the probability of catching meaningful
272 glimpses of the target signals. Accordingly, masking release by means of dip listening is
273 generally greater in the presence of maskers with slower, compared to faster, fluctuation rates
274 (Gustafsson and Arlinger 1994; Bacon et al. 1998).

275 In breeding choruses of frogs and toads, the noise generated by the aggregation of calling
276 males is amplitude modulated (Vélez and Bee 2010). Importantly, patterns of level fluctuations
277 in chorus noise differ among species, reflecting species-specific properties of the mating call and
278 calling behavior (Vélez and Bee 2010). A series of studies investigated dip listening in Cope’s
279 gray treefrogs (*Hyla chrysoscelis*) and green treefrogs (*H. cinerea*). In the presence of
280 sinusoidally amplitude modulated (SAM) chorus-shaped maskers, green treefrogs did not benefit
281 from dip listening; signal recognition thresholds were similar to those in the presence of a non-
282 fluctuating masker (Vélez et al. 2012). In contrast, Cope’s gray treefrogs experienced a 2-4 dB
283 release from masking when SAM maskers fluctuated at slow rates (e.g., <5 Hz; Fig. 5) (Vélez
284 and Bee 2011). Signal recognition thresholds were not different from those in the non-fluctuating
285 control when SAM maskers fluctuated at intermediate rates (e.g., 5-20 Hz; Fig. 5), and 4-6 dB
286 higher in the presence of maskers with high rates of fluctuation (e.g., 40-80 Hz; Fig. 5) (Vélez
287 and Bee 2011). Dip listening can explain the release from masking observed in slowly
288 fluctuating maskers. In quiet conditions, females respond to calls with at least six to nine pulses,
289 but not to calls with five or fewer pulses (Vélez and Bee 2011; Gupta et al. 2021). At slow rates
290 of fluctuation, dips in masker levels allowed for glimpses of nine or more consecutive pulses of
291 the advertisement call; at intermediate and high rates of fluctuation, dips allowed for glimpses of
292 five or fewer consecutive pulses (Vélez and Bee 2011). Furthermore, the additional masking
293 experienced by females in the presence of SAM maskers with high rates of fluctuation (e.g., 40
294 Hz and 80 Hz; Fig. 5) is consistent with a phenomenon known as modulation masking (Bacon
295 and Grantham 1989; Kwon and Turner 2001). The pulse rate of the call is approximately 40 to
296 60 pulses/s and an important acoustic property used by females for species recognition (Schul

297 and Bush 2002). Hence, the temporal structure of SAM maskers at faster rates may have
298 interfered with processing the temporal structure of the advertisement call (Schwartz and
299 Marshall 2006; Marshall et al. 2006).

300 While Cope's gray treefrog may listen in the dips of slowly fluctuating SAM maskers,
301 this ability may provide limited benefits for communicating in real-world situations. Vélez and
302 Bee (2013) showed that Cope's gray treefrog and green treefrog females do not exploit natural
303 amplitude fluctuations in chorus noise to recognize male mating calls. Furthermore, compared to
304 non-fluctuating maskers, the ability of Cope's gray treefrog females to discriminate between
305 calls varying in duration does not improve in the presence of maskers with natural or sinusoidal
306 amplitude modulations (Vélez et al. 2013a). Interestingly, however, females of the closely-
307 related eastern gray treefrog (*Hyla versicolor*) experienced a ~2-6 dB release from masking in
308 the presence of naturally fluctuating maskers compared to non-fluctuating maskers during call
309 recognition tests (Schwartz et al. 2013). This dip-listening effect was similar for target signals
310 varying in call length (calls of 10, 20, 30, or 40 pulses) with equal or unequal pulse efforts
311 (Schwartz et al. 2013). Additional evidence for dip listening has come from studies of
312 comodulation masking release.

313

314 **Comodulation masking release**

315

316 Studies of comodulation masking release (CMR) reveal that human listeners experience a release
317 from auditory masking when amplitude fluctuations in noise are correlated across the frequency
318 spectrum, compared with conditions lacking fluctuations or when different frequency bands
319 fluctuate independently (reviewed in Verhey et al. 2003). CMR was first attributed to a process
320 by which the auditory system integrates energy across auditory filters to differentiate signals
321 from noise (Hall et al. 1984); however, subsequent studies revealed that CMR also depends on
322 within auditory-filter mechanisms (e.g., Schooneveldt and Moore 1987). In humans, the effect
323 of CMR is usually larger when maskers have (i) large bandwidths, (ii) slow modulation rates,
324 (iii) high modulation depths, (iv) irregular fluctuations, and (v) high levels (reviewed in Verhey
325 et al. 2003).

326 Comodulation is likely a property of many natural sounds (Klump 1996; Nelken et al.
327 1999). In their review on hearing in real-world situations, Feng and Schul (2007) pointed out that

328 CMR should provide an advantage for listening in frog choruses. They suggested that chorus
329 noise should be coherently modulated across the frequency spectrum given the repetitive nature
330 of anuran calls and other biotic sounds, the tendency of males to avoid call overlap with their
331 nearest neighbors, and the modulations imposed by wind. Indeed, Lee et al. (2017b) recently
332 showed that the noise generated in Cope's gray tree frog choruses is comodulated. They
333 developed an anatomical/physiological model of the auditory periphery, based on tuning curves
334 of auditory nerve fibers, that simulated spectral processing by the amphibian and basilar papillae.
335 When recordings of chorus noise were passed through this model, temporal modulations on the
336 output of filters centered around 1.3 and 2.6kHz, which correspond to filters in the AP and BP,
337 respectively, were highly correlated. These results show that temporal fluctuations in chorus
338 noise are correlated across the frequency spectrum, and that the peripheral auditory system of
339 frogs can potentially transduce these comodulations.

340 To date, only one study has investigated neural correlates of CMR in frogs. Goense and
341 Feng (2012) tested the hypothesis that neurons in the auditory midbrain (inferior colliculus) of
342 northern leopard frogs (*Rana pipiens*) contribute to CMR. Using a band-widening paradigm, the
343 bandwidth of unmodulated and sinusoidally amplitude modulated (6.7 Hz modulation rate)
344 maskers was systematically varied between 0.1 and 5 kHz. These masker bandwidths span the
345 hearing range of northern leopard frogs (Mudry et al. 1977) and the range of auditory-filter
346 bandwidths measured behaviorally for other species of frogs (Ehret and Gerhardt 1980; Narins
347 1982; Moss and Simmons 1986). The target signal was a train of pulses resembling the temporal
348 structure of the conspecific advertisement call, centered at the unit's characteristic frequency.
349 Overall, signal detection thresholds were lower in the presence of modulated maskers, compared
350 to unmodulated maskers. In 10% of neurons that exhibit masking release, responses to the target
351 signal were stronger during 'dips' of modulated maskers, providing evidence for neural
352 correlates of dip-listening in frogs. Additionally, masking release was more pronounced at the
353 narrowest and widest masker bandwidths. Importantly, masking release depended on both
354 masker modulation and masker bandwidth for 15% of neurons, providing evidence for neural
355 correlates of CMR in the anuran central auditory system. Goense and Feng (2012) suggested that
356 such neurons may contribute to behavioral CMR in frogs.

357 Recent studies have shown that female Cope's gray treefrogs exploit comodulation in
358 background noise to reduce communication errors in evolutionarily important contexts. In a

359 series of psychophysical experiments, Lee et al. (2017b) tested the extent to which female frogs
360 benefit from CMR in three different contexts: recognizing advertisement calls (Fig. 6a),
361 discriminating between conspecific and heterospecific calls differing in pulse rate (Fig. 6b), and
362 discriminating between conspecific calls differing in call effort, a sexually selected property (Fig.
363 6c). Female frogs were tested in the absence or presence of chorus-shaped maskers constructed
364 by adding two narrow-band noises (400-Hz bandwidth) centered on the two spectral peaks
365 present in advertisement calls (1.3 kHz and 2.6 kHz). In the unmodulated masking condition, no
366 amplitude modulations beyond the inherent fluctuations present in narrow-band noise were
367 imposed on the two narrow-band noises. The envelopes of low-pass filtered noises (12.5 Hz
368 cutoff) were used to impose random amplitude fluctuations on the narrow-band noises and create
369 two amplitude-modulated masking conditions: uncorrelated and comodulated. In the
370 uncorrelated condition, each masker band was modulated with a different envelope, which
371 yielded temporal envelopes that fluctuate independently across bands. In the comodulated
372 condition, both masker bands were modulated with the same envelope, resulting in correlated
373 amplitude fluctuations across frequency. Compared to the unmodulated condition, signal
374 recognition thresholds were lower in both modulated conditions. Importantly, thresholds were
375 2.6 dB lower in the comodulated condition, compared to the uncorrelated condition (Fig. 6a).
376 When given a choice between conspecific and heterospecific calls, females preferred the
377 conspecific call more often than expected by chance in both modulated masking conditions, but
378 not in the unmodulated masking condition (Fig. 6b). Importantly, the proportion of females
379 choosing the conspecific call was significantly higher in the comodulated masking condition,
380 compared to the uncorrelated masking condition. Similarly, the proportion of females choosing
381 high- over low-effort calls was higher in the comodulated condition compared to the
382 uncorrelated and unmodulated masking conditions (Fig. 6c). These results confirmed a role for
383 comodulation masking release in call recognition and discrimination.

384 In a follow-up study, Bee and Vélez (2018) used the same three masking conditions to
385 investigate the effects of masker level on CMR. Signal recognition thresholds were obtained for
386 each of the three maskers broadcast at 53 or 73 dB SPL, and used to compute signal-to-noise
387 ratios at threshold. Overall, signal-to-noise ratios were lower in the comodulated masking
388 condition, and at the high, 73-dB, masker level. These results corroborate those from Lee et al.
389 (2017b) that female frogs experience CMR, and are in line with studies from human listeners

390 showing stronger effects of CMR at higher masker levels (Moore and Shailer 1991; Bacon et al.
391 1997). Together, results from these studies suggest that frogs can exploit comodulations, a
392 natural scene statistic of frog breeding choruses and other natural sounds, to mitigate the impacts
393 of auditory masking in ecologically relevant tasks of call recognition and discrimination.

394 The ability to exploit spectro-temporal correlations in noise to improve signal detection
395 and recognition may have evolved early in vertebrate hearing. In addition to frogs, CMR has
396 been documented through behavioral experiments in goldfish (Fay 2011), European starlings
397 (Klump 2016), mice (Klink et al. 2010), gerbils (Klump et al. 2001), and dolphins (Branstetter
398 and Finneran 2008). Similarly, neural correlates of CMR have also been reported in European
399 starlings (Klump 2016), mice (Sollini and Chadderton 2016), gerbils (Diepenbrock et al. 2017),
400 guinea pigs (Pressnitzer et al. 2001), and cats (Nelken et al. 1999). Whether the underlying
401 mechanisms of CMR are common across vertebrates remains to be determined. CMR likely
402 depends on a combination of within- and across-channel mechanisms (reviewed in Verhey et al.
403 2003). The anuran peripheral auditory system, with two auditory papillae, offers a unique
404 opportunity to investigate the relative contributions of within- and across-channel mechanisms
405 involved in CMR. Future work should integrate behavioral and physiological studies to uncover
406 the underlying mechanisms of CMR that contribute to hearing in real-world situations.

407

408 **Exploiting spatial separation between signals and noise**

409

410 A third major theme in Feng's research on frog hearing – beginning with his dissertation (Feng
411 1975) – aimed to discover the neurosensory mechanisms of sound localization and directional
412 hearing more broadly (Feng and Capranica 1976; Feng et al. 1976; Feng 1980, 1981; Feng and
413 Shofner 1981; Gooler et al. 1993; Xu et al. 1994, 1996; Ratnam and Feng 1998; Lin and Feng
414 2001, 2003). This body of research, which Gerhardt et al. (this volume) review in the context of
415 Feng's work on sound localization in frogs, inspired investigations into how frogs exploit spatial
416 separation between signals and noise as a means of coping with auditory masking.

417 In humans, signal detection and recognition are improved when signals and noise
418 originate from different locations in space compared to conditions in which they come from the
419 same location. This so-called “spatial release from masking” (reviewed in Litovsky 2012) plays
420 important roles in our ability to follow conversations in crowded social environments

421 (Bronkhorst 2000). When sources of speech and speech-like noise are separated in azimuth by
422 90°, for example, listeners often experience improvements in speech recognition thresholds of 6
423 dB to 12 dB or more (Bronkhorst 2000). Spatial release from masking arises when spatial
424 separation between signals and noise creates a monaural cue that improves the signal-to-noise
425 ratio at one ear (the so-called “best ear for listening”) as well as binaural disparities between
426 signal and noise in terms of interaural time and interaural level differences at the two ears.
427 Spatial attention also plays a role in spatial release from masking.

428 Schwartz and Gerhardt (1989), citing the work of Feng and Shofner (1981) on the
429 directional responses of frog auditory nerve fibers, were the first to examine spatial release from
430 masking in frogs. Using a phonotaxis assay, they showed that female green treefrogs (*H.*
431 *cinerea*) experience about 3 dB of masking release when sources of signals (advertisement calls
432 and aggressive calls) and sources of broadband noise were separated by 45° to 90°. Spatial
433 separation, however, did not improve females’ discrimination between advertisement and
434 aggressive calls, a feat they readily perform in quiet. In a subsequent series of
435 electrophysiological studies of the larger northern leopard frog (*R. pipiens*), Feng and colleagues
436 investigated the neural correlates of spatial release from masking in auditory nerve fibers and in
437 the auditory midbrain (Ratnam and Feng 1998; Lin and Feng 2001, 2003). Ratnam and Feng
438 (1998), for example, first showed that the detection thresholds of some frog midbrain neurons
439 decreased when sources of signals and noise were separated in azimuth (see also Schwartz and
440 Gerhardt 1995). Lin and Feng (2001) subsequently showed that auditory nerve fibers exhibit less
441 spatial release from masking (average maximum of 2.9 dB; Fig 7a) compared with midbrain
442 neurons (average maximum of about 9.4 dB; Fig. 7b), although there was considerable overlap in
443 the magnitudes of masking release between both types of cells (Fig. 7). This important result
444 suggested the hypothesis that additional processing by the central nervous system played an
445 important role in exploiting spatial separation between signals and noise. Lin and Feng (2003)
446 confirmed this hypothesis by showing that blocking GABA_A receptors, thereby reducing
447 inhibition, in the midbrain reduced the magnitude of spatial release from masking to a magnitude
448 more typical of auditory nerve fibers. Their interpretation of this result was that abolishing
449 binaural inhibition reduced the sensitivity of midbrain neurons to interaural level differences, and
450 thus to sound direction, thereby reducing the magnitude of neural spatial release from masking
451 (Ling and Feng 2003).

452 More recent behavioral studies of spatial release from masking have been conducted in
453 females of Cope's gray treefrog (*H. chrysoscelis*) using a phonotaxis paradigm. Based on the
454 latency of phonotaxis, Bee (2007) estimated the magnitude of spatial release from masking to be
455 on the order of 6 dB to 12 dB when sources of advertisement calls and chorus-shaped noise were
456 separated by 90° compared with a co-located condition (Fig. 8). In a follow-up study,
457 Nityananda and Bee (2012) used an adaptive tracking procedure (Bee and Schwartz 2009) to
458 measure behavioral recognition thresholds in co-located and 90° separated conditions. On
459 average, females experienced about 4.5 dB of masking release in the separated condition. This
460 magnitude of masking release is smaller than might have been expected based on neural
461 recordings from the leopard frog midbrain (Lin and Feng 2001), but it coincided closely with the
462 magnitude of masking release expected to result solely from the inherent directionality of the
463 gray treefrog's tympanum (Caldwell et al. 2016) and that based on recordings of leopard frog
464 auditory nerve fibers (Lin and Feng 2001). Additional studies have shown that the benefits of
465 spatial separation between signals and noise extend beyond reduced thresholds for detection and
466 recognition to include improvements in sound pattern recognition. For example, spatial
467 separation between signals and noise improved females' ability to discriminate between
468 conspecific calls and those of a closely-related sister species (*H. versicolor*) based on differences
469 in pulse rate (Bee 2008; Ward et al. 2013).

470 Together, results from behavioral and neurophysiological studies of frogs provide robust
471 support for the hypothesis (Fay and Feng 1987; Feng and Ratnam 2000; Feng and Schul 2007)
472 that spatial release from masking facilitates vocal communication in the noisy, real-world
473 environment of a frog breeding chorus. At present, however, we lack a coherent understanding of
474 how mechanisms underlying spatial release from masking produce perceptual benefits for
475 receivers. For example, to what extent is the spatial release from masking demonstrated in
476 behavior created by the inherent directionality of the peripheral auditory system versus
477 augmented by additional processing in the central nervous system. To answer such questions,
478 additional work is needed that examines the neural basis of spatial release from masking in
479 species of frogs where behavioral data are available. It will also be important in future studies to
480 understand the extent to which mechanisms for exploiting spatial separation between signals and
481 noise interact with those that functionally exploit frequency separation between signals and noise
482 as well as temporal fluctuations in noise amplitude.

483

484 **Looking forward**

485

486 In this final section, we discuss a few emerging and future research areas, both conceptual and
487 methodological, that would build on Feng's considerable legacy to better understand the
488 mechanisms and evolution of hearing and sound communication in frogs, particularly in terms of
489 how they cope with noise. The topics discussed here are by no means exhaustive, but represent
490 our suggestions for how forward progress could be made that would significantly enhance
491 knowledge of frogs and their importance as vertebrate research systems in auditory
492 neuroethology.

493

494 **Energetic masking versus informational masking**

495

496 Historically, students of animal communication have tended to use "masking" or "auditory
497 masking" or "masking interference" as convenient catchall terms to describe the negative
498 impacts of noise (Brumm and Slabbekoorn 2005; Barber et al. 2010; Luther and Gentry 2013).
499 Indeed, we have also done so up to this point. This is in contrast to studies of human hearing and
500 speech perception in noise, which often distinguish between the separate effects of two broad
501 types of masking involving different underlying mechanisms, *energetic masking* and
502 *informational masking* (Kidd et al. 2008). Energetic masking typically refers to masking that
503 occurs when signals and noise overlap in time and frequency and are processed by the same
504 auditory filter. Under conditions of energetic masking, excitation patterns caused by the noise
505 plus signal cannot be distinguished from those caused by the noise alone. Quite commonly,
506 energetic masking is viewed as occurring in the peripheral auditory system, for example when
507 noise alone and noise plus signal generate indistinguishable response patterns in auditory nerve
508 fibers, but it can also occur in the central nervous system (Durlach et al. 2003). In contrast to
509 energetic masking, informational masking (Kidd et al. 2008) refers to situations when signals are
510 audible (i.e., detected) but noise interferes with central auditory mechanisms that contribute to
511 processing informative features of the signal. Informational masking is frequently associated
512 with limitations of selective attention (e.g., when noise "distracts" a listener) or breakdowns in
513 auditory grouping (e.g., when signals and noise are perceptually grouped together). Energetic

514 masking and informational masking represent important but mechanistically distinct contributors
515 to the difficulty we humans have following a conversation in social environments where multiple
516 people are talking simultaneously.

517 To achieve a deeper understanding of how animals are adapted to cope with noise, future
518 research on nonhuman animals, including frogs, must distinguish between energetic and
519 informational masking in terms of their proximate causes and ultimate consequences. Presently,
520 few studies of hearing and sound communication in animals properly distinguish between
521 energetic and informational masking, even though the latter may be more pronounced under
522 some circumstances (Rosa and Koper 2018). The available evidence from animal behavior
523 studies conducted outside the context of acoustic communication suggests nonhuman animals
524 also encounter problems of informational masking (e.g., Allen et al. 2021). Some of the results
525 discussed in a previous section hint that acoustic signaling in frogs is also susceptible to
526 informational masking. For example, in the study of dip listening in Cope's gray treefrog by
527 (Vélez and Bee 2011), signal recognition thresholds in the presence of SAM noise were elevated
528 when the modulation rate of the chorus-shaped masker was close to the pulse rate of the target
529 signal (Fig. 5). Similar effects were not observed using spectrally-matched SAM maskers having
530 lower and higher modulation rates. This result is difficult to explain as a function of energetic
531 masking in the periphery. Instead, an informational masking interpretation of this result is that
532 modulations in the SAM noise interfered with the ability of subjects to process the signal's pulse
533 rate, which is an important species recognition cue in this species (Schul and Bush 2002). More
534 recently, Gupta and Bee (2022) directly tested the informational masking hypothesis in the same
535 species. They found that a sequence of slow-rate, random-frequency pulses that were temporally
536 interleaved with those of the target signal but presented in a remote frequency range impaired
537 call recognition relative to quiet and a control condition with a frequency- and level-matched
538 bandlimited noise lacking temporal structure. Importantly, target signals and maskers were
539 delivered in the separate frequency ranges primarily transduced by AP and BP, thereby
540 significantly reducing the potential for energetic masking. The interpretation was that the pulsed
541 structure of the informational masker interfered with processing the pulsed structure of the target
542 signal. Additional studies of informational masking in frogs that integrate behavioral and
543 electrophysiological approaches will be needed to understand how real-world noises interfere
544 with the processing of biologically informative features of communication sounds.

545

546 **Multimodal signaling**

547

548 Over the past two decades, following the seminal paper by Partan and Marler (1999), multimodal
549 signaling has become a hot topic in the study of animal communication (Hebets and Papaj 2005;
550 Partan and Marler 2005; Higham and Hebets 2013; Halfwerk et al. 2019). Multimodal signals
551 have multiple components that are transduced by receivers using more than one sensory
552 modality. A prominent functional hypothesis for the evolution of multimodal signals is that they
553 are favored because different components can convey either multiple messages or redundant
554 messages (Johnstone 1996; Hebets and Papaj 2005; Elias et al. 2006). Multimodal signals may
555 be particularly advantageous when noise in one sensory channel degrades the quality of signal
556 information, but similar information can still be conveyed by redundant signal components
557 transduced by a different sensory modality (Partan 2013, 2017).

558 Beginning with the robotic playback studies of Narins et al. (2003, 2005) and the video
559 playback study by Rosenthal et al. (2004), frogs have featured prominently in studies of
560 multimodal signaling. This work suggests receivers sometimes make different behavioral
561 decisions when they perform “cross-modal integration,” that is, when they integrate acoustic
562 information in advertisement calls with visual cues provided by a synchronously inflating vocal
563 sac (reviewed in Farris and Taylor (2016)). Thus, we might expect reliance on the redundant
564 visual cue of a vocal sac (see Fig. 1a) to help frogs mitigate noise problems in a way analogous
565 to lipreading in humans (Grant and Seitz 2000; Bernstein et al. 2004). So far, however, few
566 studies have investigated whether chorus noise influences the extent to which frogs rely on vocal
567 sacs as redundant cues or signals. Evidence from recent robotic playback studies of túngara frogs
568 (*Physalaemus pustulosus*)(Taylor et al. 2021) and Cope’s gray treefrogs (*H. chrysoscelis*)(Li et
569 al. 2022) suggests visual cues associated with a vocal sac have limited efficacy in soliciting
570 female approaches toward calling males in noisy conditions. In the study by Li et al. (2022), for
571 example, the presence of a robotic calling male with a dynamically inflating vocal sac did not
572 alter responses to acoustic signals with temporal structures degraded by the simulated effects of
573 noise or to those broadcast in the presence of chorus noise. Additional work in more species, and
574 with more realistic robots (Narins and Feng 2007), is needed to determine the extent to which
575 frogs rely on visual cues to overcome cocktail-party-like problems. Much of the previous work

576 on multimodal signaling in the context of mate choice in nocturnal frogs has used potentially
577 problematic methods that should be avoided in future studies (reviewed in Li et al. 2022).

578

579 **Anthropogenic noise**

580

581 Feng emphasized the need to understand sound processing in “real world” environments (Feng
582 and Ratnam 2000; Feng and Schul 2007). Sadly, those environments are changing rapidly. Urban
583 development and the expansion of transportation networks are causing dramatic increases in the
584 levels of human-generated noise that can substantially alter the soundscapes in which animals
585 communicate (Barber et al. 2010; Shannon et al. 2016). Accordingly, the last two decades have
586 seen an explosion of studies on whether and how animals adjust their signals and signaling
587 behaviors in response to anthropogenic noise (Slabbekoorn et al. 2018; Kunc and Schmidt 2021;
588 Gomes et al. 2022), including in frogs (e.g., Sun and Narins 2005). Recordings of anthropogenic
589 noise (e.g., traffic noise; Fig. 9) near wetland breeding sites suggest frogs could be susceptible to
590 human impacts on soundscapes. Compared to other taxa, however, relatively few studies have
591 investigated the potential consequences of anthropogenic noise on frogs (reviewed in Simmons
592 and Narins 2018; Kunc and Schmidt 2021; Gomes et al. 2022; Zaffaroni-Caorsi et al. 2022). As
593 noted by (Narins and Feng 2007), it will be important to assess how the limited plasticity in frog
594 calls and calling behavior allow them to cope with problems of anthropogenic noise. Studies on
595 frogs and toads show mixed results, with strong differences among species in the acoustic
596 properties affected by anthropogenic noise and in the magnitudes of the effect. It is therefore
597 important to continue exploring this issue comparatively, considering ecological and
598 morphological characteristics that may correlate with changes in calls or soundscape properties.
599 Moving forward, we emphasize the need for using appropriate methods when comparing the
600 amplitude and frequency of calls in the presence and absence of noise (Brumm and Zollinger
601 2011; Brumm et al. 2017), as well as adequate experimental designs to avoid problems with
602 pseudoreplication (Kroodsma 1989).

603 Building upon Feng’s research on hearing in real-world situations, future studies should
604 also focus on how the auditory system of receivers adjusts to increasing levels of anthropogenic
605 noise. Despite decades of research on the effects of anthropogenic noise on animal
606 communication, we have very limited knowledge about how receivers from urban populations

607 may cope with this problem (Slabbekoorn et al. 2018; Derryberry and Luther 2021). In frogs,
608 few studies have investigated how anthropogenic noise impairs signal recognition by females
609 (Zaffaroni-Caorsi et al. 2022). Whether receivers from populations exposed to high levels of
610 anthropogenic noise experience similar or less masking than those from more rural areas is still
611 unknown. With an AP that acts as a bank of band-pass filters sensitive to relatively low
612 frequencies, and a BP that acts as one broad auditory filter tuned to higher frequencies (reviewed
613 in Smotherman and Narins 2000), the anuran ear offers a superb opportunity to understand how
614 different auditory systems may respond to human-induced changes to the soundscape.
615 Populations of frogs and toads in small pockets of suitable breeding habitat within cities, with
616 potentially little gene flow between them and with other rural populations, set the stage for
617 comparative studies on evolutionary responses, developmental plasticity, and short-term
618 adjustments of the auditory system to novel soundscapes.

619

620 **Awake-behaving preparations**

621

622 As this review illustrates, numerous behavioral and neurophysiological studies have investigated
623 the impacts of auditory masking in frogs. With a few notable exceptions (e.g., Simmons 1988;
624 Freedman et al. 1988; Schwartz & Gerhardt 1995), however, most of these behavioral and
625 neurophysiological studies have been conducted not only using different individuals as subjects,
626 but more often using individuals of different species. Most behavioral studies of auditory
627 masking have been conducted in hylid treefrogs (*H. chrysoscelis*, *H. versicolor*, *H. cinerea*, and
628 *H. gratiosa*), whereas most neurophysiological studies of auditory masking have used ranid frogs
629 as subjects (e.g., *R. pipiens*, *R. catesbeiana*). To our knowledge, no study of frogs has
630 investigated auditory masking – or any other aspect of hearing – in awake, behaving animals in
631 which neural recordings are made simultaneously from individuals as they perform various tasks
632 involving sound detection, recognition, discrimination, and localization.

633 Elucidating mechanisms that allow frogs to communicate in real-world environments will
634 require overcoming a number of key challenges to enable neural recordings from awake,
635 behaving animals. While frogs have proven suitable subjects in behavioral studies using reflex
636 modification to measure auditory thresholds and critical ratios, this method has not yet been
637 widely adopted, and more traditional psychoacoustic studies based on classical or operant

638 conditioning have proven challenging (Simmons and Moss 1995). Therefore, most masking
639 studies of frogs rely on evoking the animal's natural behaviors, such as evoked calling by males
640 (e.g., Narins 1982) or phonotaxis by females, as reviewed here. Using phonotaxis as a behavioral
641 assay in animals famous for saltatory locomotion presents several technological challenges for
642 making stable neural recordings. Phonotaxis studies frequently require subjects to hop toward
643 playback speakers located a meter or more away from a starting point. Mounting hardware such
644 as microdrives or headstages to the thin skulls of small, jumping frogs poses obvious technical
645 challenges (but see Mohammed et al. 2013). Frog brains are rather pulpous compared with those
646 of birds and mammals, making it difficult to record from single units in behaving animals for any
647 length of time using metal electrodes fixed to the skull. In addition, because phonotaxis requires
648 frogs to move within the sound field, its use complicates experimental studies of some key
649 phenomena of interest, such as spatial release from masking, that depend on manipulating spatial
650 relationships between signals and noise. We suggest one way to potentially overcome these
651 challenges would be to integrate the use of flexible neural probes (e.g., Zhao et al. 2019; Pimenta
652 et al. 2021) to record from animals that are restrained from making large, saltatory movements
653 but are still able to freely exhibit measurable phonotaxis-related behavior (Márquez et al. 2008;
654 Gupta et al. 2020). Technological advances along these lines would, for the first time in frogs,
655 allow researchers to relate auditory-evoked neural responses to the acoustically-guided
656 behavioral decisions of individuals. Using such methods, we believe the field can substantially
657 build upon Albert Feng's legacy by investigating how the frog's brain listens to sounds not only
658 in the real-world but also in real time.

659

660 **Acknowledgements**

661 We thank Peter Narins for inviting us to contribute this article in memory of Albert Feng, whose work on
662 hearing and sound communication in frogs has inspired our careers and research programs.

663

664 **Author contributions** NL, AV, MAB: contributed equally to writing this manuscript.

665

666 **Funding** Much of the original research funding on hylid treefrogs reviewed here was funded by grants
667 to MAB from the National Institute on Deafness and Other Communication Disorders (R03DC008396
668 and R01DC009582) and the National Science Foundation (IOS-0842759, IOS-1452831). Preparation of

669 this article was supported in part by grants to NL (IOS-2144831) and MAB (IOS-2022253) from the
670 National Science Foundation.

671

672 **Declarations**

673

674 **Conflicts of interest** The authors declare no competing or financial interests.

675

676 **Ethical approval** Ethical approval was not required for this article.

677

678 **References**

679

680 Allen LC, Hristov NI, Rubin JJ, et al (2021) Noise distracts foraging bats. *Proc R Soc B Biol Sci*
681 288:20202689. <https://doi.org/10.1098/rspb.2020.2689>

682 Arak A (1983) Sexual selection by male–male competition in natterjack toad choruses. *Nature*
683 306:261–262. <https://doi.org/10.1038/306261a0>

684 Arch V, Burmeister S, Feng A, et al (2011) Ultrasound-evoked immediate early gene expression
685 in the brainstem of the Chinese torrent frog, *Odorrana tormota*. *J Comp Physiol A*
686 *Neuroethol Sens Neural Behav Physiol* 197:667–675. <https://doi.org/10.1007/s00359-011-0626-9>

687 Arch V, Simmons D, Quinones P, et al (2012) Inner ear morphological correlates of ultrasonic
688 hearing in frogs. *Hear Res* 283:70–79. <https://doi.org/10.1016/j.heares.2011.11.006>

689 Arch VS, Grafe TU, Gridi-Papp M, Narins PM (2009) Pure ultrasonic communication in an
690 endemic Bornean frog. *PLOS ONE* 4:e5413.
<https://doi.org/10.1371/journal.pone.0005413>

691 Arch VS, Grafe TU, Narins PM (2008) Ultrasonic signalling by a Bornean frog. *Biol Lett* 4:19–22.
<https://doi.org/10.1098/rsbl.2007.0494>

692 Bacon SP, Grantham DW (1989) Modulation masking: Effects of modulation frequency, depth,
693 and phase. *J Acoust Soc Am* 85:2575–2580. <https://doi.org/10.1121/1.397751>

694 Bacon SP, Lee J, Peterson DN, Rainey D (1997) Masking by modulated and unmodulated
695 noise: Effects of bandwidth, modulation rate, signal frequency, and masker level. *J*
696 *Acoust Soc Am* 101:1600–1610. <https://doi.org/10.1121/1.418175>

697 Bacon SP, Opie JM, Montoya DY (1998) The effects of hearing loss and noise masking on the
698 masking release for speech in temporally complex backgrounds. *J Speech Lang Hear*
699 *Res* 41:549–563. <https://doi.org/10.1044/jslhr.4103.549>

700 Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial
701 organisms. *Trends Ecol Evol* 25:180–189. <https://doi.org/10.1016/j.tree.2009.08.002>

702 Bee MA (2012) Sound source perception in anuran amphibians. *Curr Opin Neurobiol* 22:301–
703 310. <https://doi.org/10.1016/j.conb.2011.12.014>

704 Bee MA (2007) Sound source segregation in grey treefrogs: spatial release from masking by the
705 sound of a chorus. *Anim Behav* 74:549–558.
<https://doi.org/10.1016/j.anbehav.2006.12.012>

706 Bee MA (2008) Finding a mate at a cocktail party: spatial release from masking improves
707 acoustic mate recognition in grey treefrogs. *Anim Behav* 75:1781–1791.
<https://doi.org/10.1016/j.anbehav.2007.10.032>

708 Bee MA (2015) Treefrogs as animal models for research on auditory scene analysis and the

714 cocktail party problem. *Int J Psychophysiol* 95:216–237

715 Bee MA, Schwartz JJ (2009) Behavioral measures of signal recognition thresholds in frogs in
716 the presence and absence of chorus-shaped noise. *J Acoust Soc Am* 126:2788–2801.
717 <https://doi.org/10.1121/1.3224707>

718 Bee MA, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic
719 noise. *Anim Behav* 74:1765–1776. <https://doi.org/10.1016/j.anbehav.2007.03.019>

720 Bee MA, Vélez A (2018) Masking release in temporally fluctuating noise depends on
721 comodulation and overall level in Cope's gray treefrog. *J Acoust Soc Am* 144:2354–
722 2362. <https://doi.org/10.1121/1.5064362>

723 Bernstein LE, Auer ET, Takayanagi S (2004) Auditory speech detection in noise enhanced by
724 lipreading. *Spec Issue Audio Vis Speech Process* 44:5–18.
725 <https://doi.org/10.1016/j.specom.2004.10.011>

726 Branstetter BK, Finneran JJ (2008) Comodulation masking release in bottlenose dolphins
727 (*Tursiops truncatus*). *J Acoust Soc Am* 124:625–633

728 Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. Bradford
729 Books, MIT Press, Cambridge, Mass

730 Bronkhorst AW (2000) The cocktail party phenomenon: A review of research on speech
731 intelligibility in multiple-talker conditions. *Acustica* 86:117–128

732 Brumm H (2013) Animal communication and noise. Springer, New York

733 Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. In: *Advances in the study of*
734 *behavior*. Academic Press, pp 151–209

735 Brumm H, Zollinger SA (2011) The evolution of the Lombard effect: 100 years of
736 psychoacoustic research. *Behaviour* 148:1173–1198.
737 <https://doi.org/10.1163/000579511X605759>

738 Brumm H, Zollinger SA, Niemelä PT, Sprau P (2017) Measurement artefacts lead to false
739 positives in the study of birdsong in noise. *Methods Ecol Evol* 8:1617–1625.
740 <https://doi.org/10.1111/2041-210X.12766>

741 Buerkle NP, Schrode KM, Bee MA (2014) Assessing stimulus and subject influences on
742 auditory evoked potentials and their relation to peripheral physiology in green treefrogs
743 (*Hyla cinerea*). *Comp Biochem Physiol -Mol Integr Physiol* 178:68–81.
744 <https://doi.org/10.1016/j.cbpa.2014.08.005>

745 Buus S (1985) Release from masking caused by envelope fluctuations. *J Acoust Soc Am*
746 78:1958–1965. <https://doi.org/10.1121/1.392652>

747 Caldwell MS, Lee N, Bee MA (2016) Inherent directionality determines spatial release from
748 masking at the tympanum in a vertebrate with internally coupled ears. *J Assoc Res*
749 *Otolaryngol* 17:259–270. <https://doi.org/10.1007/s10162-016-0568-6>

750 Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in
751 anurans. In: Ewert JP, Capranica RR, Ingle DJ (eds) *Advances in Vertebrate*
752 *Neuroethology*. Springer US, Boston, MA, pp 701–730

753 Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears.
754 *J Acoust Soc Am* 25:975–979. <https://doi.org/10.1121/1.1907229>

755 Christie K, Schul J, Feng A (2010) Phonotaxis to male's calls embedded within a chorus by
756 female gray treefrogs, *Hyla versicolor*. *J Comp Physiol A Neuroethol Sens Neural Behav*
757 *Physiol* 196:569–579. <https://doi.org/10.1007/s00359-010-0544-2>

758 Christie K, Schul J, Feng A (2019) Differential effects of sound level and temporal structure of
759 calls on phonotaxis by female gray treefrogs, *Hyla versicolor*. *J Comp Physiol A*
760 *Neuroethol Sens Neural Behav Physiol* 205:223–238. <https://doi.org/10.1007/s00359-019-01325-5>

761 Condon CJ, Chang SH, Feng AS (1991) Processing of behaviorally relevant temporal
762 parameters of acoustic stimuli by single neurons in the superior olivary nucleus of the
763 leopard frog. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* 168:709–725
764

765 Cooke M (2006) A glimpsing model of speech perception in noise. *J Acoust Soc Am* 119:1562–
766 1573. <https://doi.org/10.1121/1.2166600>

767 Derryberry EP, Luther D (2021) What is known—and not known—about acoustic
768 communication in an urban soundscape. *Integr Comp Biol* 61:1783–1794.
769 <https://doi.org/10.1093/icb/icab131>

770 Diepenbrock J-P, Jeschke M, Ohl FW, Verhey JL (2017) Comodulation masking release in the
771 inferior colliculus by combined signal enhancement and masker reduction. *J
772 Neurophysiol* 117:853–867. <https://doi.org/10.1152/jn.00191.2016>

773 Durlach NI, Mason CR, Kidd G, et al (2003) Note on informational masking (L). *J Acoust Soc
774 Am* 113:2984–2987. <https://doi.org/10.1121/1.1570435>

775 Ehret G, Capranica RR (1980) Masking patterns and filter characteristics of auditory nerve
776 fibers in the green treefrog (*Hyla cinerea*). *J Comp Physiol A Neuroethol Sens Neural
777 Behav Physiol* 141:1–12. <https://doi.org/10.1007/bf00611872>

778 Ehret G, Gerhardt HC (1980) Auditory masking and effects of noise on responses of the green
779 treefrog (*Hyla cinerea*) to synthetic mating calls. *J Comp Physiol* 141:13–18.
780 <https://doi.org/10.1007/bf00611873>

781 Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: Lung-eardrum
782 transmission of sound in the frog *Eleutherodactylus coqui*. *Naturwissenschaften* 77:192–
783 194. <https://doi.org/10.1007/bf01131168>

784 Elias DO, Lee N, Hebert EA, Mason AC (2006) Seismic signal production in a wolf spider:
785 parallel versus serial multi-component signals. *J Exp Biol* 209:1074.
786 <https://doi.org/10.1242/jeb.02104>

787 Farris HE, Taylor RC (2016) Mate searching animals as model systems for understanding
788 perceptual grouping. In: Bee MA, Miller CT (eds) *Psychological mechanisms in animal
789 communication*. Springer International Publishing, Cham, pp 89–118

790 Fay RR (2011) Signal-to-noise ratio for source determination and for a comodulated masker in
791 goldfish, *Carassius auratus*. *J Acoust Soc Am* 129:3367–3372.
792 <https://doi.org/10.1121/1.3562179>

793 Fay RR, Feng AS (1987) Mechanisms for directional hearing among nonmammalian
794 vertebrates. In: Yost WA, Gourevitch G (eds) *Directional hearing*. Springer US, New
795 York, NY, pp 179–213

796 Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing.
797 *Hear Res* 149:1–10. [https://doi.org/10.1016/S0378-5955\(00\)00168-4](https://doi.org/10.1016/S0378-5955(00)00168-4)

798 Feng A (1975) Sound localization in anurans : an electrophysiological and behavioral study.
799 Ph.D. Dissertation, Cornell University

800 Feng A (1980) Directional characteristics of the acoustic receiver of the leopard frog (*Rana
801 pipiens*) - A study of 8th nerve auditory responses. *J Acoust Soc Am* 68:1107–1114.
802 <https://doi.org/10.1121/1.384981>

803 Feng A (1981) Directional response characteristics of single neurons in the torus semicircularis
804 of the leopard frog (*Rana pipiens*). *J Comp Physiol* 144:419–428.
805 <https://doi.org/10.1007/BF00612574>

806 Feng A, Capranica R (1976) Sound localization in anurans. 1. Evidence of binaural interaction in
807 dorsal medullary nucleus of bullfrogs (*Rana catesbeiana*). *J Neurophysiol* 39:871–881.
808 <https://doi.org/10.1152/jn.1976.39.4.871>

809 Feng A, Gerhardt H, Capranica R (1976) Sound localization behavior of green treefrog (*Hyla
810 cinerea*) and barking treefrog (*Hyla gratiosa*). *J Comp Physiol* 107:241–252.
811 <https://doi.org/10.1007/BF00656735>

812 Feng A, Narins P (2008) Ultrasonic communication in concave-eared torrent frogs (*Amolops
813 tormotus*). *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* 194:159–167.
814 <https://doi.org/10.1007/s00359-007-0267-1>

815 Feng A, Narins P, Capranica R (1975) Three populations of primary auditory fibers in bullfrog

816 (Rana catesbeiana) - their peripheral origins and frequency sensitivities. J Comp Physiol
817 100:221–229. <https://doi.org/10.1007/BF00614532>

818 Feng A, Narins P, Xu C, et al (2006) Ultrasonic communication in frogs. Nature 440:333–336.
819 <https://doi.org/10.1038/nature04416>

820 Feng A, Narins P, Xu C-H (2002) Vocal acrobatics in a Chinese frog, *Amolops tormotus*.
821 Naturwissenschaften 89:352–356. <https://doi.org/10.1007/s00114-002-0335-x>

822 Feng A, Ratnam R (2000) Neural basis of hearing in real-world situations. Annu Rev Psychol
823 51:699–725. <https://doi.org/10.1146/annurev.psych.51.1.699>

824 Feng AS, Hall JC, Siddique S (1991) Coding of temporal parameters of complex sounds by frog
825 auditory-nerve fibers. J Neurophysiol 65:424–445.
826 <https://doi.org/10.1152/jn.1991.65.3.424>

827 Feng AS, Schul J (2007) Sound processing in real-world environments. In: Narins PM, Feng AS,
828 Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer
829 New York, New York, NY, pp 323–350

830 Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic
831 properties of the frog's ear. Hear Res 5:201–216. [https://doi.org/10.1016/0378-5955\(81\)90046-0](https://doi.org/10.1016/0378-5955(81)90046-0)

833 Fuzessery ZM, Feng AS (1982) Frequency selectivity in the anuran auditory midbrain - single
834 unit responses to single and multiple tone stimulation. J Comp Physiol 146:471–484.
835 <https://doi.org/10.1007/BF00609443>

836 Fuzessery ZM, Feng AS (1983a) Frequency-selectivity in the anuran medulla - excitatory and
837 inhibitory tuning properties of single neurons in the dorsal medullary and superior olfactory
838 nuclei. J Comp Physiol 150:107–119. <https://doi.org/10.1007/BF00605294>

839 Fuzessery ZM, Feng AS (1983b) Mating call selectivity in the thalamus and midbrain of the
840 leopard frog (*Rana p. pipiens* - single and multiunit analyses. J Comp Physiol 150:333–
841 344. <https://doi.org/10.1007/BF00605023>

842 Fuzessery ZM, Feng AS (1981) Frequency representation in the dorsal medullary nucleus of the
843 leopard frog, *Rana p. pipiens*. J Comp Physiol 143:339–347.
844 <https://doi.org/10.1007/BF00611171>

845 Gall MD, Wilczynski W (2015) Hearing conspecific vocal signals alters peripheral auditory
846 sensitivity. Proc R Soc B Biol Sci 282:20150749. <https://doi.org/10.1098/rspb.2015.0749>

847 Gerhardt HC (1974) The significance of some spectral features in mating call recognition in the
848 green treefrog (*Hyla Cinerea*). J Exp Biol 61:229–241

849 Gerhardt HC (1975) Sound pressure levels and radiation patterns of the vocalizations of some
850 North American frogs and toads. J Comp Physiol 102:1–12.
851 <https://doi.org/10.1007/bf00657481>

852 Gerhardt HC (1981) Mating call recognition in the green treefrog (*Hyla cinerea*): Importance of
853 two frequency bands as a function of sound pressure level. J Comp Physiol 144:9–16.
854 <https://doi.org/10.1007/bf00612792>

855 Gerhardt HC, Höbel G (2005) Mid-frequency suppression in the green treefrog (*Hyla cinerea*):
856 mechanisms and implications for the evolution of acoustic communication. J Comp
857 Physiol A 191:707–714. <https://doi.org/10.1007/s00359-005-0626-8>

858 Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: Common
859 problems and diverse solutions. The University of Chicago Press, Chicago

860 Gerhardt HC, Schwartz JJ (2001) Auditory tuning and frequency preferences in anurans. In:
861 Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, D.C.,
862 pp 73–85

863 Goense J, Feng A (2005) Seasonal changes in frequency tuning and temporal processing in
864 single neurons in the frog auditory midbrain. J Neurobiol 65:22–36.
865 <https://doi.org/10.1002/neu.20172>

866 Goense J, Feng A (2012) Effects of noise bandwidth and amplitude modulation on masking in

867 frog auditory midbrain neurons. PLOS ONE 7:.
868 <https://doi.org/10.1371/journal.pone.0031589>

869 Gomes L, Solé M, Sousa-Lima RS, Baumgarten JE (2022) Influence of anthropogenic sounds
870 on insect, anuran and bird acoustic signals: A meta-analysis. *Front Ecol Evol* 10:
871 Gooler DM, Condon CJ, Xu JH, Feng AS (1993) Sound direction influences the frequency-
872 tuning characteristics of neurons in the frog inferior colliculus. *J Neurophysiol* 69:1018–
873 1030. <https://doi.org/10.1152/jn.1993.69.4.1018>
874 Gooler DM, Feng AS (1992) Temporal coding in the frog auditory midbrain: the influence of
875 duration and rise-fall time on the processing of complex amplitude-modulated stimuli. *J*
876 *Neurophysiol* 67:1
877 Gooler DM, Xu JH, Feng AS (1996) Binaural inhibition is important in shaping the free-field
878 frequency selectivity of single neurons in the inferior colliculus. *J Neurophysiol* 76:2580–
879 2594
880 Grant KW, Seitz P-F (2000) The use of visible speech cues for improving auditory detection of
881 spoken sentences. *J Acoust Soc Am* 108:1197–1208. <https://doi.org/10.1121/1.1288668>
882 Greenfield MD, Rand AS (2000) Frogs have rules: selective attention algorithms regulate
883 chorusing in *Physalaemus pustulosus* (Leptodactylidae). *Ethology* 106:331–347.
884 <https://doi.org/10.1046/j.1439-0310.2000.00525.x>
885 Gridi-Papp M, Feng AS, Shen J-X, et al (2008) Active control of ultrasonic hearing in frogs. *Proc*
886 *Natl Acad Sci.* <https://doi.org/10.1073/pnas.0802210105>
887 Gupta S, Alluri RK, Rose GJ, Bee MA (2021) Neural basis of acoustic species recognition in a
888 cryptic species complex. *J Exp Biol* 224:jeb243405. <https://doi.org/10.1242/jeb.243405>
889 Gupta S, Bee MA (2022) Informational masking can constrain acoustically guided mating
890 behavior. *bioRxiv* 2022.03.31.486641. <https://doi.org/10.1101/2022.03.31.486641>
891 Gupta S, Marchetto PM, Bee MA (2020) Customizable recorder of animal kinesis (CRoAK): A
892 multi-axis instrumented enclosure for measuring animal movements. *HardwareX*
893 8:e00116. <https://doi.org/10.1016/j.ohx.2020.e00116>
894 Gustafsson HÅ, Arlinger SD (1994) Masking of speech by amplitude - modulated noise. *J*
895 *Acoust Soc Am* 95:518–529. <https://doi.org/10.1121/1.408346>
896 Halfwerk W, Lea AM, Guerra MA, et al (2016) Vocal responses to noise reveal the presence of
897 the Lombard effect in a frog. *Behav Ecol* 27:669–676.
898 <https://doi.org/10.1093/beheco/arv204>
899 Halfwerk W, Varkevisser J, Simon R, et al (2019) Toward testing for multimodal perception of
900 mating signals. *Front Ecol Evol* 7:
901 Hall J, Feng A (1988) Influence of envelope rise time on neural responses in the auditory
902 system of anurans. *Hear Res* 36:261–276. [https://doi.org/10.1016/0378-5955\(88\)90067-6](https://doi.org/10.1016/0378-5955(88)90067-6)
903 Hall J, Feng AS (1986) Neural analysis of temporally patterned sounds in the frog's thalamus -
904 processing of pulse duration and pulse repetition rate. *Neurosci Lett* 63:215–220.
905 [https://doi.org/10.1016/0304-3940\(86\)90358-7](https://doi.org/10.1016/0304-3940(86)90358-7)
906 Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern
907 analysis. *J Acoust Soc Am* 76:50–56
908 Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable
909 hypotheses. *Behav Ecol Sociobiol* 57:197–214. <https://doi.org/10.1007/s00265-004-0865-7>
910 Higham JP, Hebets EA (2013) An introduction to multimodal communication. *Behav Ecol*
911 *Sociobiol* 67:1381–1388. <https://doi.org/10.1007/s00265-013-1590-x>
912 Johnstone RA (1996) Multiple displays in animal communication: 'backup signals' and 'multiple
913 messages.' *Philos Trans R Soc Lond B Biol Sci* 351:329–338.
914 <https://doi.org/10.1098/rstb.1996.0026>
915 Jørgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. *J*
916 *Neurophysiol* 65:103–114. <https://doi.org/10.1152/jn.1991.65.1.103>

918 Comp Physiol A Neuroethol Sens Neural Behav Physiol 169:591–598.
919 <https://doi.org/10.1007/bf00193548>

920 Jørgensen MB, Gerhardt HC (1991) Directional hearing in the gray treefrog *Hyla versicolor* -
921 eardrum vibrations and phonotaxis. J Comp Physiol -Sens Neural Behav Physiol
922 169:177–183. <https://doi.org/10.1007/bf00215864>

923 Kidd G, Mason CR, Richards VM, et al (2008) Informational masking. In: Yost WA, Popper AN,
924 Fay RR (eds) Auditory perception of sound sources. Springer US, Boston, MA, pp 143–
925 189

926 Klink KB, Dierker H, Beutelmann R, Klump GM (2010) Comodulation masking release
927 determined in the mouse (*Mus musculus*) using a flanking-band paradigm. J Assoc Res
928 Otolaryngol 11:79–88. <https://doi.org/10.1007/s10162-009-0186-7>

929 Klump GM (1996) Bird communication in the noisy world. In: Ecology and evolution of acoustic
930 communication in birds. Cornell University Press, Ithaca, NY, pp 321–338

931 Klump GM (2016) Perceptual and neural mechanisms of auditory scene analysis in the
932 European starling. In: Bee MA, Miller CT (eds) Psychological mechanisms in animal
933 communication. Springer International Publishing, Cham, pp 57–88

934 Klump GM, Kittel MC, Wagner E (2001) Comodulation masking release in the Mongolian gerbil.
935 In: Abstracts of the twenty-fourth midwinter research meeting of the association for
936 research in otolaryngology. St. Petersburg, FL, p 84

937 Kroodsma DE (1989) Suggested experimental designs for song playbacks. Anim Behav
938 37:600–609. [https://doi.org/10.1016/0003-3472\(89\)90039-0](https://doi.org/10.1016/0003-3472(89)90039-0)

939 Kuczynski MC, Velez A, Schwartz JJ, Bee MA (2010) Sound transmission and the recognition of
940 temporally degraded sexual advertisement signals in Cope's gray treefrog (*Hyla*
941 *chrysoscelis*). J Exp Biol 213:2840–2850. <https://doi.org/10.1242/jeb.044628>

942 Kunc HP, Schmidt R (2021) Species sensitivities to a global pollutant: A meta-analysis on
943 acoustic signals in response to anthropogenic noise. Glob Change Biol 27:675–688.
944 <https://doi.org/10.1111/gcb.15428>

945 Kwon BJ, Turner CW (2001) Consonant identification under maskers with sinusoidal
946 modulation: Masking release or modulation interference? J Acoust Soc Am 110:1130–
947 1140. <https://doi.org/10.1121/1.1384909>

948 Lee N, Christensen-Dalsgaard J, White LA, et al (2021) Lung mediated auditory contrast
949 enhancement improves the Signal-to-noise ratio for communication in frogs. Curr Biol
950 31:1488–1498.e4. <https://doi.org/10.1016/j.cub.2021.01.048>

951 Lee N, Schröde KM, Bee MA (2017a) Nonlinear processing of a multicomponent communication
952 signal by combination-sensitive neurons in the anuran inferior colliculus. J Comp Physiol
953 -Neuroethol Sens Neural Behav Physiol 203:749–772. <https://doi.org/10.1007/s00359-017-1195-3>

955 Lee N, Ward JL, Velez A, et al (2017b) Frogs exploit statistical regularities in noisy acoustic
956 scenes to solve cocktail-party-like problems. Curr Biol 27:743–750

957 Li H, Schröde KM, Bee MA (2022) Vocal sacs do not function in multimodal mate attraction
958 under nocturnal illumination in Cope's grey treefrog. Anim Behav 189:127–146.
959 <https://doi.org/10.1016/j.anbehav.2022.05.003>

960 Lin W-Y, Feng A (2001) Free-field unmasking response characteristics of frog auditory nerve
961 fibers: comparison with the responses of midbrain auditory neurons. J Comp Physiol A
962 Neuroethol Sens Neural Behav Physiol 187:699–712. <https://doi.org/10.1007/s00359-001-0241-2>

964 Lin WY, Feng AS (2003) GABA is involved in spatial unmasking in the frog auditory midbrain. J
965 Neurosci 23:8143–8151

966 Litovsky RY (2012) Spatial release from masking. Acoust Today 8:18–25

967 Lombard RE, Straughan IR (1974) Functional aspects of anuran middle ear structures. J Exp
968 Biol 61:71–93. <https://doi.org/10.1242/jeb.61.1.71>

969 Luther D, Gentry K (2013) Sources of background noise and their influence on vertebrate
970 acoustic communication. *Behaviour* 150:1045–1068

971 Márquez R, Bosch J, Eekhout X (2008) Intensity of female preference quantified through
972 playback setpoints: call frequency versus call rate in midwife toads. *Anim Behav* 75:159–
973 166. <https://doi.org/10.1016/j.anbehav.2007.05.003>

974 Marshall VT, Schwartz JJ, Gerhardt HC (2006) Effects of heterospecific call overlap on the
975 phonotactic behaviour of grey treefrogs. *Anim Behav* 72:449–459.
976 <https://doi.org/10.1016/j.anbehav.2006.02.001>

977 McDermott JH (2009) The cocktail party problem. *Curr Biol* 19:R1024–R1027

978 Megela-Simmons A, Moss CF, Daniel KM (1985) Behavioral audiograms of the bullfrog (*Rana*
979 *catesbeiana*) and the green tree frog (*Hyla cinerea*). *J Acoust Soc Am* 78:1236–1244.
980 <https://doi.org/10.1121/1.392892>

981 Middlebrooks JC, Simon JZ, Popper AN, Fay RR (2017) The auditory system at the cocktail
982 party. Springer, Berlin

983 Miranda JA, Wilczynski W (2009a) Female reproductive state influences the auditory midbrain
984 response. *J Comp Physiol A* 195:341–349. <https://doi.org/10.1007/s00359-008-0410-7>

985 Miranda JA, Wilczynski W (2009b) Sex differences and androgen influences on midbrain
986 auditory thresholds in the green treefrog, *Hyla cinerea*. *Hear Res* 252:79–88.
987 <https://doi.org/10.1016/j.heares.2009.04.004>

988 Mohammed HS, Radwan NM, Walkowiak W, Elsayed AA (2013) A miniature microdrive for
989 recording auditory evoked potentials from awake anurans. *Gen Physiol Biophys* 32:381–
990 388. https://doi.org/10.4149/gpb_2013032

991 Moore BCJ (2013) An introduction to the psychology of hearing. Brill

992 Moore BCJ, Shailer MJ (1991) Comodulation masking release as a function of level. *J Acoust
993 Soc Am* 90:829–835. <https://doi.org/10.1121/1.401950>

994 Moss C, Simmons A (1986) Frequency selectivity of hearing in the green treefrog, *Hyla cinerea*.
995 *J Comp Physiol A* 159:257–266. <https://doi.org/10.1007/bf00612308>

996 Mudry KM, Constantine-Paton M, Capranica RR (1977) Auditory sensitivity of the diencephalon
997 of the leopard frog *Rana p. pipiens*. *J Comp Physiol* 114:1–13.
998 <https://doi.org/10.1007/BF00656805>

999 Narins PM (1982) Effects of masking noise on evoked calling in the Puerto Rican Coqui (Anura:
1000 Leptodactylidae). *J Comp Physiol* 147:439–446. <https://doi.org/10.1007/BF00612008>

1001 Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog.
1002 *Proc Natl Acad Sci* 85:1508–1512

1003 Narins PM, Feng AS (2007) Hearing and sound communication in amphibians: prologue and
1004 prognostication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) *Hearing and sound
1005 communication in amphibians*. Springer New York, New York, NY, pp 1–11

1006 Narins PM, Feng AS, Lin W, et al (2004) Old World frog and bird vocalizations contain
1007 prominent ultrasonic harmonics. *J Acoust Soc Am* 115:910–913.
1008 <https://doi.org/10.1121/1.1636851>

1009 Narins PM, Grabul DS, Soma KK, et al (2005) Cross-modal integration in a dart-poison frog.
1010 *Proc Natl Acad Sci* 102:2425–2429. <https://doi.org/10.1073/pnas.0406407102>

1011 Narins PM, Hödl W, Grabul DS (2003) Bimodal signal requisite for agonistic behavior in a dart-
1012 poison frog, *Epipedobates femoralis*. *Proc Natl Acad Sci* 100:577–580.
1013 <https://doi.org/10.1073/pnas.0237165100>

1014 Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural
1015 features of natural sounds. *Nature* 397:154–157

1016 Nityananda V, Bee MA (2012) Spatial release from masking in a free-field source identification
1017 task by gray treefrogs. *Hear Res* 285:86–97.
1018 <https://doi.org/10.1016/j.heares.2012.01.003>

1019 Partan S, Marler P (1999) Communication goes multimodal. *Science* 283:1272–1273.

1020 <https://doi.org/10.1126/science.283.5406.1272>

1021 Partan SR (2013) Ten unanswered questions in multimodal communication. *Behav Ecol Sociobiol* 67:1523–1539. <https://doi.org/10.1007/s00265-013-1565-y>

1022 Partan SR (2017) Multimodal shifts in noise: switching channels to communicate through rapid environmental change. *Anim Behav* 124:325–337. <https://doi.org/10.1016/j.anbehav.2016.08.003>

1023 Partan SR, Marler P (2005) Issues in the classification of multimodal communication signals. *Am Nat* 166:231–245. <https://doi.org/10.1086/431246>

1024 Patterson RD, Green DM (2012) Auditory masking. In: Carterette E (ed) *Handbook of perception*: Vol. IV Hearing. Elsevier, Amsterdam, the Netherlands, pp 337–361

1025 Penna M, Capranica RR, Somers J (1992) Hormone-induced vocal behavior and midbrain auditory sensitivity in the green treefrog, *Hyla cinerea*. *J Comp Physiol A* 170:73–82. <https://doi.org/10.1007/BF00190402>

1026 Penna M, Lin W, Feng A (1997) Temporal selectivity for complex signals by single neurons in the torus semicircularis of *Pleurodema thaul* (Amphibia: Leptodactylidae). *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* 180:313–328. <https://doi.org/10.1007/s003590050051>

1027 Penna M, Lin W, Feng A (2001) Temporal selectivity by single neurons in the torus semicircularis of *Batrachyla antartandica* (Amphibia : Leptodactylidae). *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* 187:901–912. <https://doi.org/10.1007/s00359-001-0263-9>

1028 Pimenta S, Rodrigues JA, Machado F, et al (2021) Double-layer flexible neural probe with closely spaced electrodes for high-density in vivo brain recordings. *Front Neurosci* 15:1

1029 Pressnitzer D, Meddis R, Delahaye R, Winter IM (2001) Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. *J Neurosci* 21:6377–6386

1030 Ratnam R, Feng AS (1998) Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise. *J Neurophysiol* 80:2848–2859

1031 Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. *Am Nat* 115:381–399. <https://doi.org/10.1086/283568>

1032 Rosa P, Koper N (2018) Integrating multiple disciplines to understand effects of anthropogenic noise on animal communication. *Ecosphere* 9:e02127. <https://doi.org/10.1002/ecs2.2127>

1033 Rosenthal GG, Rand AS, Ryan MJ (2004) The vocal sac as a visual cue in anuran communication: an experimental analysis using video playback. *Anim Behav* 68:55–58. <https://doi.org/10.1016/j.anbehav.2003.07.013>

1034 Schooneveldt GP, Moore BCJ (1987) Comodulation masking release (CMR) - effects of signal frequency, flanking-band frequency, masker bandwidth, flanking-band level, and monotic versus dichotic presentation of the flanking band. *J Acoust Soc Am* 82:1944–1956. <https://doi.org/10.1121/1.395639>

1035 Schul J, Bush SL (2002) Non-parallel coevolution of sender and receiver in the acoustic communication system of treefrogs. *Proc R Soc Lond B Biol Sci* 269:1847–1852. <https://doi.org/10.1098/rspb.2002.2092>

1036 Schwartz J, Buchanan B, Gerhardt HG (2002) Acoustic interactions among male gray treefrogs, *Hyla versicolor* , in a chorus setting. *Behav Ecol Sociobiol* 53:9–19. <https://doi.org/10.1007/s00265-002-0542-7>

1037 Schwartz JJ, Bee MA (2013) Anuran acoustic signal production in noisy environments. In: Brumm H (ed) *Animal communication and noise*. Springer, Berlin, Heidelberg, pp 91–132

1038 Schwartz JJ, Crimarco NC, Bregman Y, Umeoji KR (2013) An investigation of the functional significance of responses of the gray treefrog (*Hyla versicolor*) to chorus noise. *J*

1071 Herpetol 47:354–360. <https://doi.org/10.1670/12-027>

1072 Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an
1073 anuran amphibian. J Comp Physiol -Sens Neural Behav Physiol 166:37–41

1074 Schwartz JJ, Gerhardt HC (1995) Directionality of the auditory system and call pattern
1075 recognition during acoustic interference in the gray tree frog, *Hyla versicolor*. Audit
1076 Neurosci 1:195–206

1077 Schwartz JJ, Marshall VT (2006) Forms of call overlap and their impact on advertisement call
1078 attractiveness to females of the gray treefrog, *Hyla versicolor*. Bioacoustics 16:39–56.
1079 <https://doi.org/10.1080/09524622.2006.9753563>

1080 Shannon G, McKenna MF, Angeloni LM, et al (2016) A synthesis of two decades of research
1081 documenting the effects of noise on wildlife. Biol Rev 91:982–1005.
1082 <https://doi.org/10.1111/brv.12207>

1083 Shen J-X, Feng AS, Xu Z-M, et al (2008) Ultrasonic frogs show hyperacute phonotaxis to
1084 female courtship calls. Nature 453:914–916. <https://doi.org/10.1038/nature06719>

1085 Simmons A (2013) “To Ear is Human, to Frogive is Divine”: Bob Capranica’s legacy to auditory
1086 neuroethology. J Comp Physiol A 199:169–182. <https://doi.org/10.1007/s00359-012-0786-2>

1088 Simmons AM, Moss CF (1995) Reflex modification: a tool for assessing basic auditory function
1089 in anuran amphibians. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods
1090 in comparative psychoacoustics. Birkhäuser Basel, Basel, pp 197–208

1091 Simmons AM, Narins PM (2018) Effects of anthropogenic noise on amphibians and reptiles. In:
1092 Slabbekoorn H, Dooling RJ, Popper AN, Fay RR (eds) Effects of anthropogenic noise on
1093 animals. Springer New York, New York, NY, pp 179–208

1094 Slabbekoorn HW, Dooling RJ, Popper AN, Fay RR (2018) Effects of anthropogenic noise on
1095 animals. Springer, Berlin

1096 Smotherman MS, Narins PM (2000) Hair cells, hearing and hopping: a field guide to hair cell
1097 physiology in the frog. J Exp Biol 203:2237–2246

1098 Sollini J, Chadderton P (2016) Comodulation enhances signal detection via priming of auditory
1099 cortical circuits. J Neurosci 36:12299. <https://doi.org/10.1523/JNEUROSCI.0656-16.2016>

1101 Sun JWC, Narins PM (2005) Anthropogenic sounds differentially affect amphibian call rate. Biol
1102 Conserv 121:419–427. <https://doi.org/10.1016/j.biocon.2004.05.017>

1103 Suthers R, Narins P, Lin W, et al (2006) Voices of the dead: complex nonlinear vocal signals
1104 from the larynx of an ultrasonic frog. J Exp Biol 209:4984–4993.
1105 <https://doi.org/10.1242/jeb.02594>

1106 Tanner JC, Bee MA (2019) Within-individual variation in sexual displays: signal or noise? Behav
1107 Ecol 30:80–91. <https://doi.org/10.1093/beheco/ary165>

1108 Taylor RC, Wilhite KO, Ludovici RJ, et al (2021) Complex sensory environments alter mate
1109 choice outcomes. J Exp Biol 224:jeb233288. <https://doi.org/10.1242/jeb.233288>

1110 Vélez A, Bee MA (2010) Signal recognition by frogs in the presence of temporally fluctuating
1111 chorus-shaped noise. Behav Ecol Sociobiol 64:1695–1709.
1112 <https://doi.org/10.1007/s00265-010-0983-3>

1113 Vélez A, Bee MA (2011) Dip listening and the cocktail party problem in grey treefrogs: signal
1114 recognition in temporally fluctuating noise. Anim Behav 82:1319–1327.
1115 <https://doi.org/10.1016/j.anbehav.2011.09.015>

1116 Vélez A, Bee MA (2013) Signal recognition by green treefrogs (*Hyla cinerea*) and cope’s gray
1117 treefrogs (*Hyla chrysoscelis*) in naturally fluctuating noise. J Comp Psychol 127:166–
1118 178. <https://doi.org/10.1037/a0030185>

1119 Vélez A, Höbel G, Gordon NM, Bee MA (2012) Dip listening or modulation masking? Call
1120 recognition by green treefrogs (*Hyla cinerea*) in temporally fluctuating noise. J Comp
1121 Physiol A 198:891–904. <https://doi.org/10.1007/s00359-012-0760-z>

1122 Vélez A, Linehan-Skillings BJ, Gu Y, et al (2013a) Pulse-number discrimination by Cope's gray
1123 treefrog (*Hyla chrysoscelis*) in modulated and unmodulated noise. *J Acoust Soc Am*
1124 134:3079–3089. <https://doi.org/10.1121/1.4820883>

1125 Vélez A, Schwartz JJ, Bee MA (2013b) Anuran acoustic signal perception in noisy
1126 environments. In: Brumm H (ed) *Animal communication and noise*. Springer, New York,
1127 pp 133–185

1128 Verhey JL, Pressnitz D, Winter IM (2003) The psychophysics and physiology of comodulation
1129 masking release. *Exp Brain Res* 153:405–417

1130 Vestergaard MD, Fyson NRC, Patterson RD (2011) The mutual roles of temporal glimpsing and
1131 vocal characteristics in cocktail-party listening. *J Acoust Soc Am* 130:429–439.
1132 <https://doi.org/10.1121/1.3596462>

1133 Ward JL, Buerkle NP, Bee MA (2013) Spatial release from masking improves sound pattern
1134 discrimination along a biologically relevant pulse-rate continuum in gray treefrogs. *Hear
1135 Res* 306:63–75. <https://doi.org/10.1016/j.heares.2013.09.006>

1136 Wells KD (2007) *The ecology and behavior of amphibians*. University of Chicago Press,
1137 Chicago

1138 Wells KD, Schwartz JJ (2007) The Behavioral Ecology of Anuran Communication. In: Narins
1139 PM, Feng AS, Fay RR, Popper AN (eds) *Hearing and Sound Communication in
1140 Amphibians*. Springer New York, New York, NY, pp 44–86

1141 Wilczynski W, Brenowitz EA (1988) Acoustic cues mediate inter-male spacing in a neotropical
1142 frog. *Anim Behav* 36:1054–1063. [https://doi.org/10.1016/S0003-3472\(88\)80065-4](https://doi.org/10.1016/S0003-3472(88)80065-4)

1143 Wiley R (2015) *Noise Matters: The Evolution of Communication*. Harvard University Press,
1144 Cambridge, MA

1145 Xu J, Gooler DM, Feng AS (1996) Effects of sound direction on the processing of amplitude
1146 modulated signals in the frog inferior colliculus. *J Comp Physiol -Sens Neural Behav
1147 Physiol* 178:435–445

1148 Xu JH, Gooler DM, Feng AS (1994) Single neurons in the frog inferior colliculus exhibit
1149 direction-dependent frequency-selectivity to isointensity tone bursts. *J Acoust Soc Am*
1150 95:2160–2170. <https://doi.org/10.1121/1.408677>

1151 Yost WA (2008) Perceiving sound sources. In: Yost WA, Popper AN, Fay RR (eds) *Auditory
1152 perception of sound sources*. Springer US, Boston, MA, pp 1–12

1153 Zaffaroni-Caorsi V, Both C, Márquez R, et al (2022) Effects of anthropogenic noise on anuran
1154 amphibians. *Bioacoustics* 1–31. <https://doi.org/10.1080/09524622.2022.2070543>

1155 Zhang H, Feng AS (1998) Sound direction modifies the inhibitory as well as the excitatory
1156 frequency tuning characteristics of single neurons in the frog torus semicircularis (inferior
1157 colliculus). *J Comp Physiol -Sens Neural Behav Physiol* 182:725–735.
1158 <https://doi.org/10.1007/s003590050217>

1159 Zhang H, Xu J, Feng A (1999) Effects of GABA mediated inhibition on direction-dependent
1160 frequency tuning in the frog inferior colliculus. *J Comp Physiol A Neuroethol Sens Neural
1161 Behav Physiol* 184:85–98. <https://doi.org/10.1007/s003590050308>

1162 Zhao Z, Li X, He F, et al (2019) Parallel, minimally-invasive implantation of ultra-flexible neural
1163 electrode arrays. *J Neural Eng* 16:035001. <https://doi.org/10.1088/1741-2552/ab05b6>

1164

1165

1166

1167

1168

1169 **Figure legends**

1170

1171 **Fig. 1** Matched filtering in the green treefrog *Hyla cinerea*. **a** Male *H. cinerea* producing an
1172 advertisement call. **b** Top - oscillogram of an exemplar single-note call, bottom - spectrogram of
1173 the same single-note exemplar demonstrating a bimodal frequency spectrum. **c** Behavioral
1174 responses of receptive female *H. cinerea* to bimodal and unimodal calls in two-alternative choice
1175 experiments. Bars depict the proportion ($\pm 95\%$ exact binomial confidence intervals) of females
1176 that chose a bimodal call over a unimodal alternative. **d** A comparison of behavioral (red) and
1177 neurophysiological midbrain (blue) audiogram with the frequency spectrum of the *H. cinerea*
1178 advertisement call (black). The behavioral audiogram was computed by averaging data from two
1179 audiograms determined by reflex modification published in Megela-Simmons et al. (1985). The
1180 midbrain audiogram was computed by averaging midbrain audiograms from Lombard and
1181 Straughan (1974), Miranda and Wilczynski (2009), and Penna et al. (1992). To compensate for
1182 different stimulus frequencies used across studies, linear interpolation was used to interpolate
1183 between sampled frequency values. **e** Exemplar single-unit recordings obtained from a
1184 combination-sensitive facilitation neuron in the inferior colliculus. A synthetic single-note call
1185 stimulus is plotted to indicate stimulus timing. This combination-sensitive exemplar responds
1186 with a greater number of spikes when presented with a bimodal call compared to a unimodal call.
1187 **f** Bars depict the median ($\pm \text{IQR}$) number of spikes/stimulus expressed as a percentage of the
1188 maximum stimulus-driven response. Combination-sensitive facilitation units exhibit a heightened
1189 level of activity that is greater than the linear summation of activity in response to both unimodal
1190 stimuli presented in isolation. **c,e, and f** redrawn from Lee et al. (2017a).

1191

1192 **Fig. 2** Lung mediated sharpening of the matched filter reduces masking from heterospecific
1193 calls. **a** A comparison of lung resonance determined from laser Doppler vibrometry (thick blue
1194 line and shaded blue area, mean $\pm 95\%$ CI), and frequency spectrum of the *H. cinerea*
1195 advertisement call (thick black line and shaded gray area, mean ± 1 SD). Peak lung resonance
1196 occurs in between the spectral peaks of the *H. cinerea* advertisement call. **b** Heatmaps depicting
1197 the mean vibration amplitudes of the right eardrum in response to free-field acoustic stimulation
1198 in the deflated (left) and inflated (middle) states of lung inflation across frequency and sound
1199 incidence angle. Subtracting the inflated state heatmap from the deflated state heatmap results in

1200 the difference heatmap (right), which represents the effect of lung inflation on the mechanical
1201 response of the eardrum. The black contour in the difference heatmap encloses frequencies and
1202 angles where attenuation of the eardrum's response equaled or exceeded -4 dB when the lungs
1203 were inflated compared with deflated. The dashed lines indicate the minimum (1400 Hz) and
1204 maximum (2200 Hz) frequencies enclosed by the contour. **c** Physiological model of the
1205 peripheral frequency tuning in *H. cinerea* (colors) compared with the *H. cinerea* advertisement
1206 call spectrum (black), and the frequency region of the lung-mediated reduction in eardrum
1207 sensitivity (shaded gray area). Tuning curves are depicted separately for suppressible low-
1208 frequency and non-suppressible mid-frequency fibers innervating the amphibian papilla (AP) and
1209 for high-frequency fibers innervating the basilar papilla (BP). Neural responses of low-frequency
1210 fibers can be suppressed by frequencies in the range of mid-frequency AP fibers. This
1211 suppression would reduce the ability of low-frequency fibers to encode the lower spectral peak
1212 of *H. cinerea* advertisement calls. Lung-mediated reduction in the eardrum's response to this
1213 mid-frequency region is expected to reduce the activity of mid-frequency non-suppressible units,
1214 thus sharpening the matched filter, and reducing the suppression of low-frequency fibers. **d** and **e**
1215 Top - depicts the frequency spectra of advertisement calls produced by *R. clamitans* and *H.*
1216 *gratiosa*, respectively, both of which are heterospecific species that co-occur with *H. cinerea*.
1217 Bottom - depicts the magnitude of reduction in dB of spectral peaks in these heterospecific
1218 advertisement calls. Thick black lines depict the mean spectra, and thin gray lines depict the
1219 spectra of individual calls. Dotted line and shaded area depict the frequency region of the lung-
1220 mediated reduction in eardrum response. Polar plots depict the mean \pm 95% CI attenuation of the
1221 call spectral peak within the shaded gray area as a function of sound incidence angle. Redrawn
1222 from Lee et al. (2021).

1223

1224 **Fig. 3** Ultrasonic hearing in concave-eared torrent frogs. **a** Median number of calls produced in
1225 by eight male subjects during a 3 minute no-stimulation period and in response to 3 minute
1226 playbacks of a conspecific vocalization that was spectrally filtered to include only the audible
1227 frequencies (< 20 kHz) or only the ultrasonic frequencies (> 20 kHz). **b** Neural recordings from
1228 two representative neurons in the auditory midbrain (inferior colliculus) in response to tone-
1229 burst. The tonic unit responded to 10–27 kHz and had a best frequency of 20 kHz. The phasic
1230 unit responded to 5–30 kHz and had a best frequency of 10 kHz. Redrawn from Feng et al.

1231 (2006).

1232

1233 **Fig. 4** Calling conspecifics represent a potent source of auditory masking in chorusing frogs. **a**
1234 Spectrogram showing a 10-s long recording made from the edge of a pond that contained a
1235 dense, active chorus of Cope's gray treefrog. The nearly continuous bands of noise centered on
1236 the two spectral peaks of the species' advertisement call (approximately 1.3 and 2.6 kHz) depict
1237 the noise of the chorus. **b** A 1-s long recording of a single advertisement call made at close range
1238 (~ 1 m) with a highly directional, shotgun microphone from a spatially isolated male calling on a
1239 different night when chorus activity was low. Note the clear pulsatile structure of the single call.
1240 The single call is shown as an inset for illustrative purposes only.

1241

1242 **Fig. 5** Dip listening in Cope's gray treefrog. Bars depict the means \pm 95% confidence intervals
1243 for the threshold differences in the presence of sinusoidally amplitude modulated (SAM) chorus-
1244 shaped noise relative to a non-fluctuating condition. The horizontal dashed line
1245 represents no difference (i.e. 0 dB) from the non-fluctuating
1246 condition. Values lower than 0 dB represent less masking than in the
1247 non-fluctuating condition, and values greater than 0 dB represent
1248 more masking. Thresholds were significantly lower in slowly
1249 modulated SAM noises (≤ 2.5 Hz) and significantly higher in fast
1250 modulated SAM noises with modulation rates close to the species-
1251 specific pulse rate of advertisement calls. $*p < 0.05$. Redrawn from Vélez and
1252 Bee (2011).

1253

1254 **Fig. 6** Comodulation masking release in Cope's gray treefrog. Shown here is a comparison of
1255 responses to signals presented in quiet and in the presence of chorus-shaped noise that had either
1256 temporally correlated (comodulated) envelope fluctuations, uncorrelated envelope fluctuations,
1257 or no envelope fluctuations (unmodulated). **a** Bars depict the mean \pm s.e.m. signal recognition
1258 thresholds determined using an adaptive tracking procedure. The horizontal dashed line indicates
1259 the level of performance relative to the condition with the highest threshold. **b** Bars depict the
1260 proportion (\pm 95% exact binomial confidence intervals) of subjects choosing stimuli with

1261 conspecific pulse rates, $P(\text{conspecific pulse rate})$. Horizontal dashed line depicts the level of
1262 performance expected by chance (0.5) in a two-alternative choice test. **c** Bars depict the
1263 proportions ($\pm 95\%$ exact binomial confidence intervals) of subjects choosing stimuli with
1264 relatively higher calling efforts, $P(\text{higher calling effort})$. Horizontal dashed line depicts the level
1265 of performance expected by chance (0.5) in a two-alternative choice test. Subjects generally
1266 performed better in comodulated noise compared with uncorrelated and unmodulated noise.
1267 Redrawn from Lee et al. (2017b).

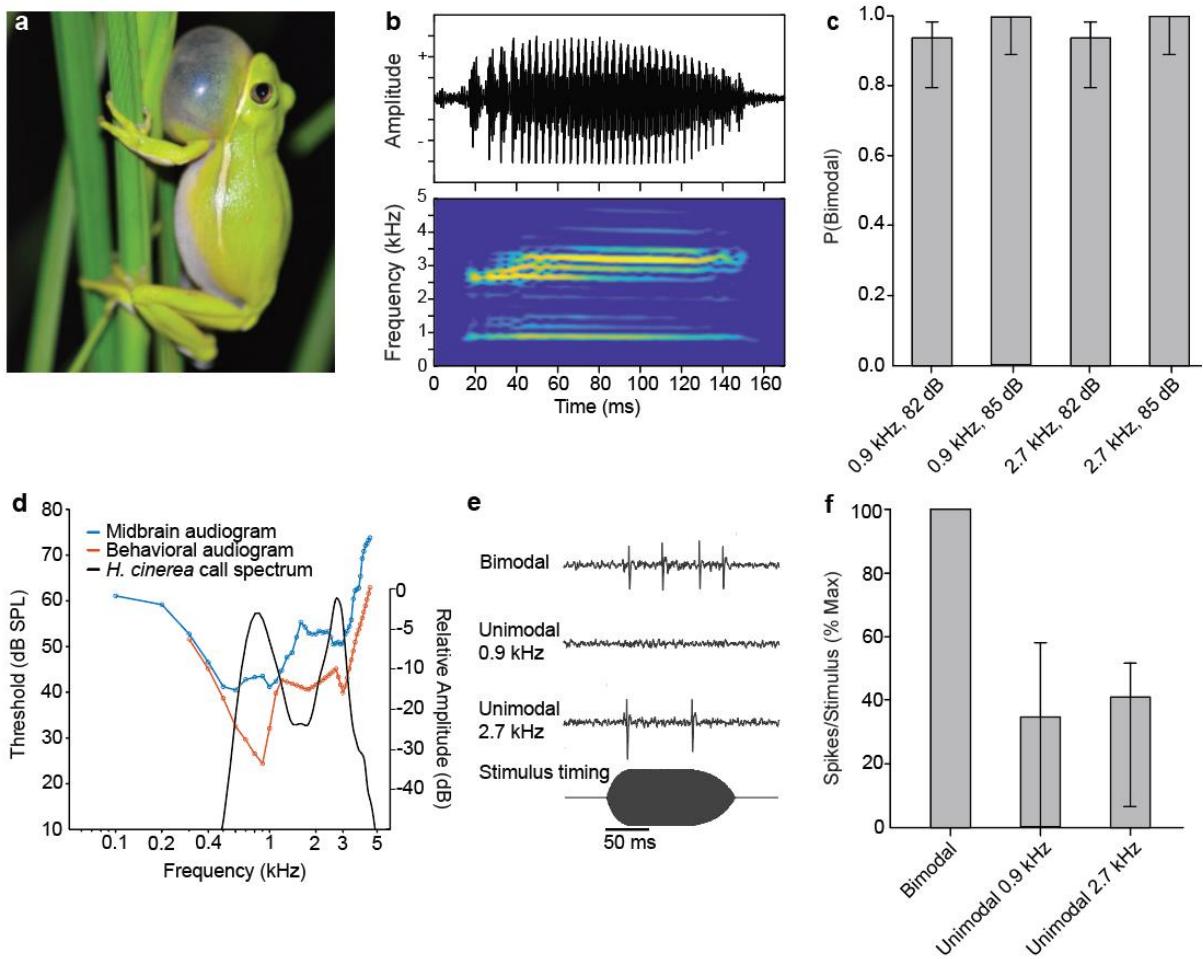
1268

1269 **Fig. 7** Spatial release from masking in the ascending auditory system of the northern leopard
1270 frog. Histograms show the distributions of the amounts of maximum spatial release from
1271 masking resulting from angular separation of signal and noise for **a** auditory nerve fibers and **b**
1272 neurons from the auditory midbrain (inferior colliculus). The means (shown by arrows) and
1273 standard deviations are shown above each graph. The magnitude of neural spatial release from
1274 masking was greater in the midbrain compared with the auditory nerve. Data from Lin and Feng
1275 (2001). Redrawn from Feng and Schul (2007).

1276

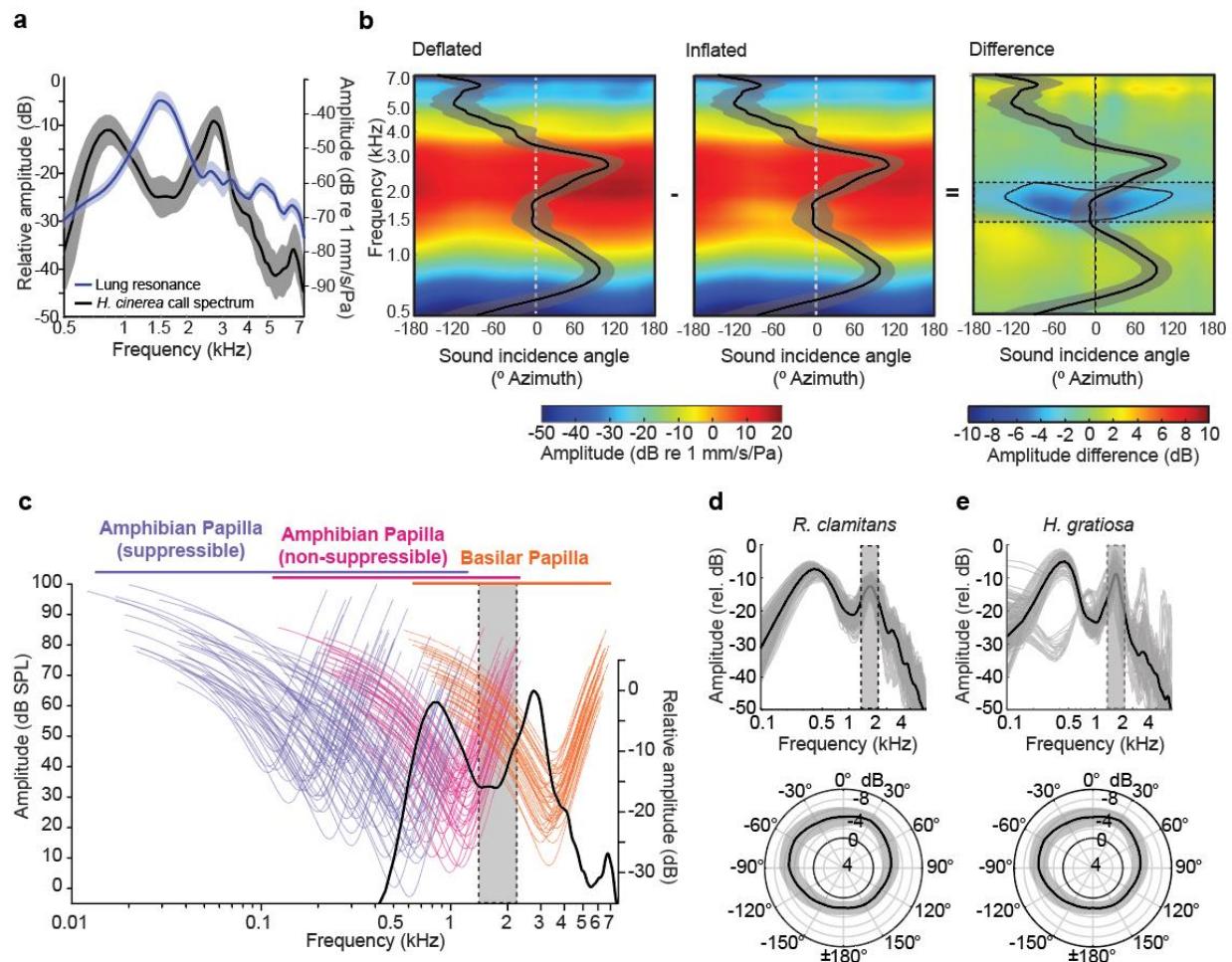
1277 **Fig. 8** Spatial release from masking in Cope's gray treefrog. Bars depict the mean \pm s.e.m.
1278 normalized latency to respond to a synthetic advertisement call in the presence of artificial
1279 chorus-shaped noise (i.e., noise with a frequency spectrum similar to a natural chorus) as a
1280 function of the signal-to-noise ratio. Signal and noise were presented either from adjacent
1281 speakers (co-located condition; gray bars) or from speakers separated by 90° (separated, white
1282 bars). Latencies were normalized to latencies in response to the same call presented in quiet at an
1283 amplitude equivalent to that of the +6 dB condition. Responses were significantly faster in the
1284 separated condition at signal-to-noise ratios of -6 dB and 0 dB. * $p < 0.05$. Redrawn from Bee
1285 (2007).

1286

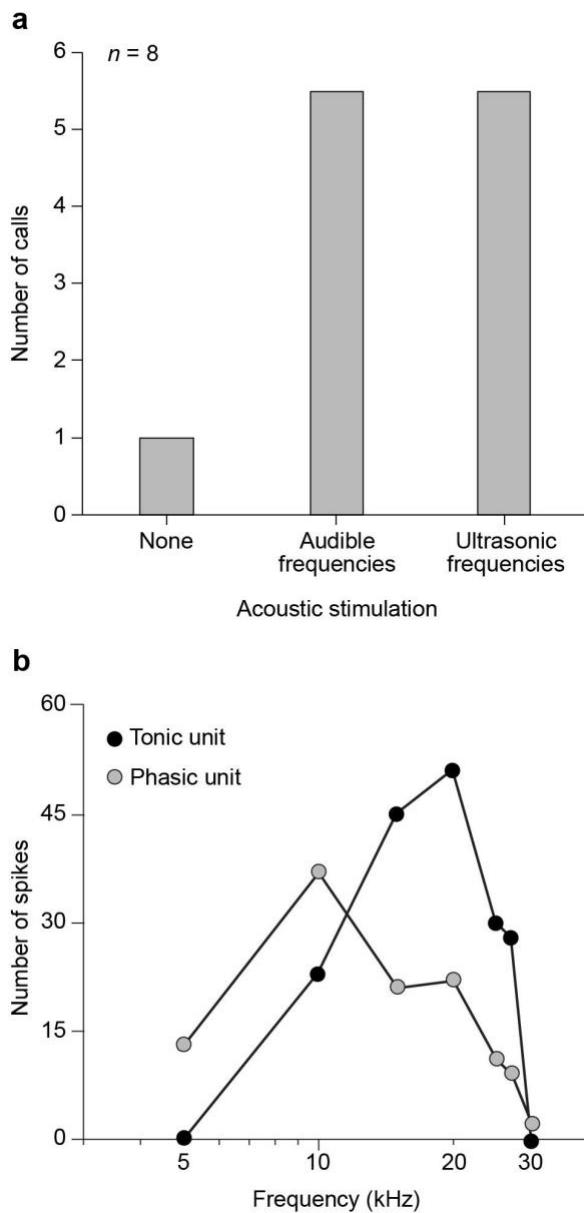

1287 **Fig. 9** Traffic noise overlaps frog calls in frequency and time. Depicted here are the sound
1288 pressure levels of traffic noise recorded at a wetland in the area of Minneapolis/St. Paul, MN,
1289 USA as a function of **a** time of night and **b** frequency. Recordings were made near the water's
1290 edge and from the approximate height of the water's surface every 30 min between 1800 h and
1291 0000 h, which spans the time of evening and night when many frog choruses form. The

1292 recording site was located 15 m from a nearby highway, which was elevated about 5 m above the
1293 surface of the water. Sound pressure levels (LCF_{peak} , LCF_{max} , LC_{eq} , or LCF_{min}) were measured in
1294 $\frac{1}{3}$ -octave bands. Redrawn from Bee and Swanson Bee and Swanson (2007).

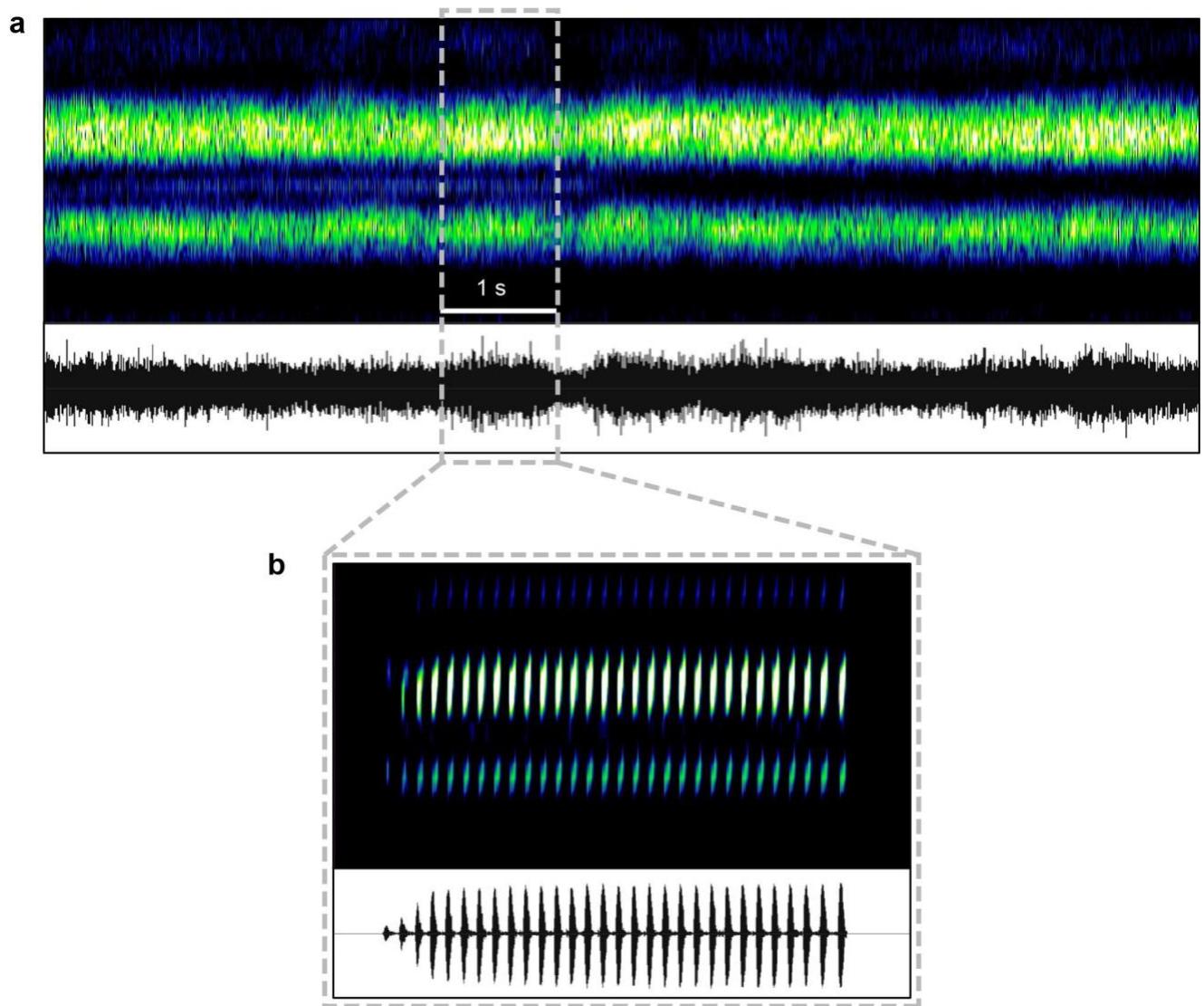
1295


1296

1297 Fig. 1


1298
1299
1300

1301 Fig 2
 1302
 1303


1304

1305 Fig. 3

1306
1307

1308 Fig. 4
1309

1310
1311
1312

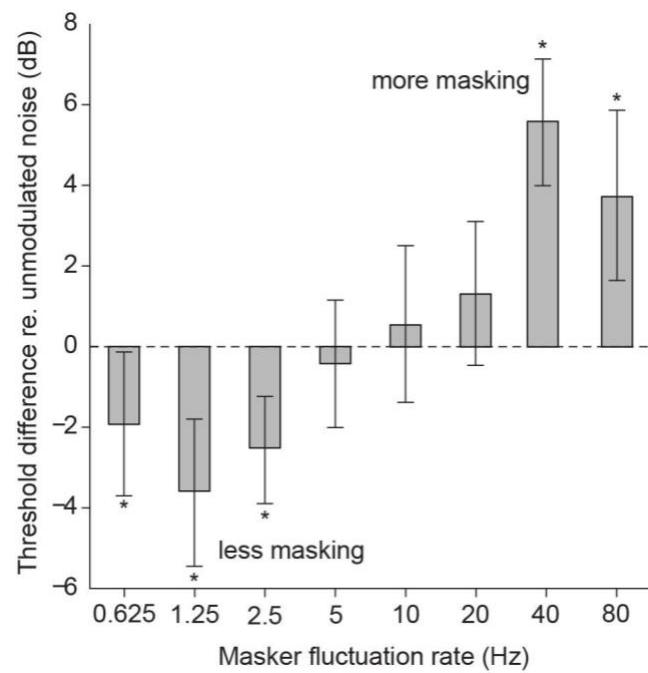
1313 Fig. 5

1314

1315

1316

1317

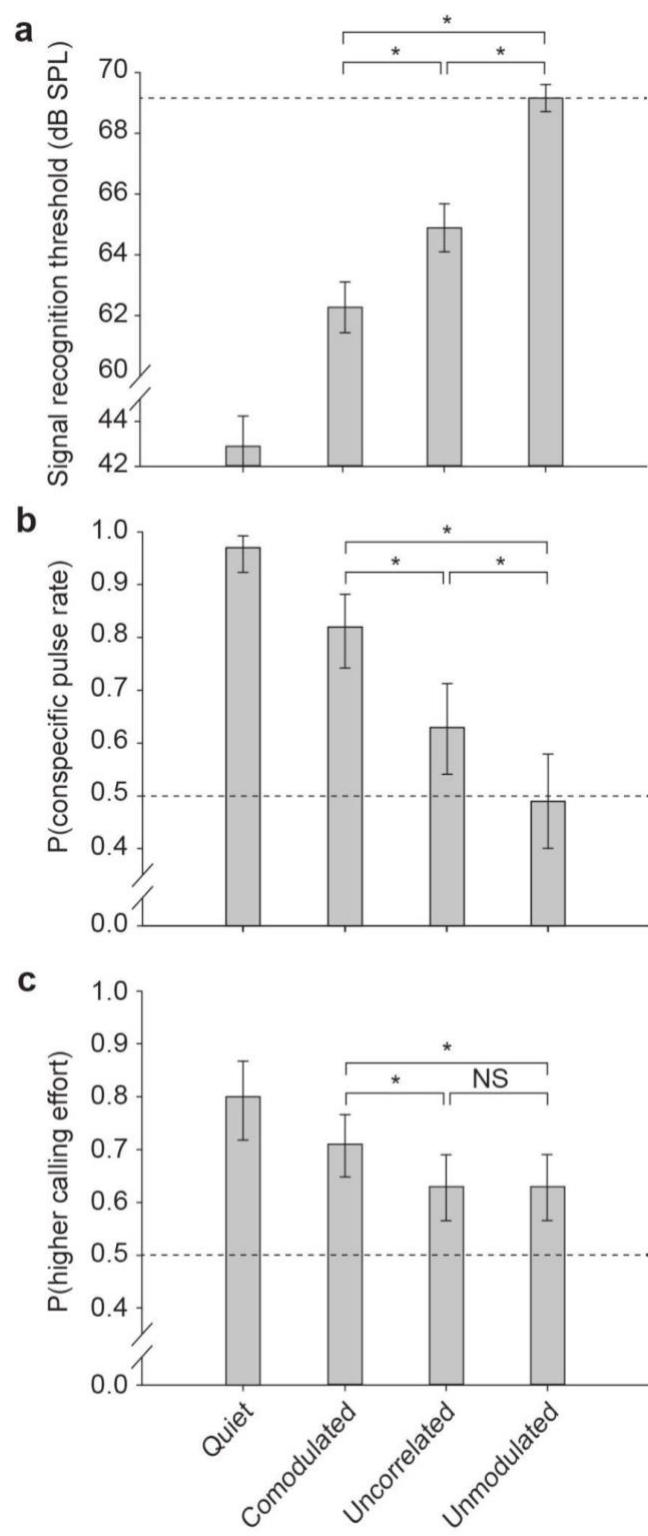

1318

1319

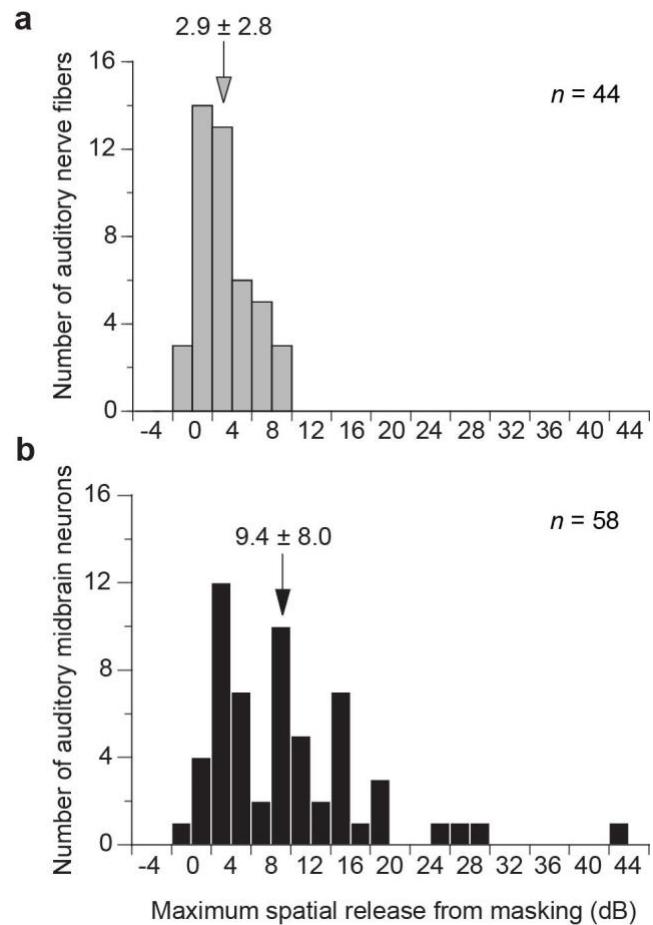
1320

1321

1322



1323 Fig. 6


1324

1325

1326

1327 Fig. 7
1328

1329
1330

1331 Fig. 8

1332

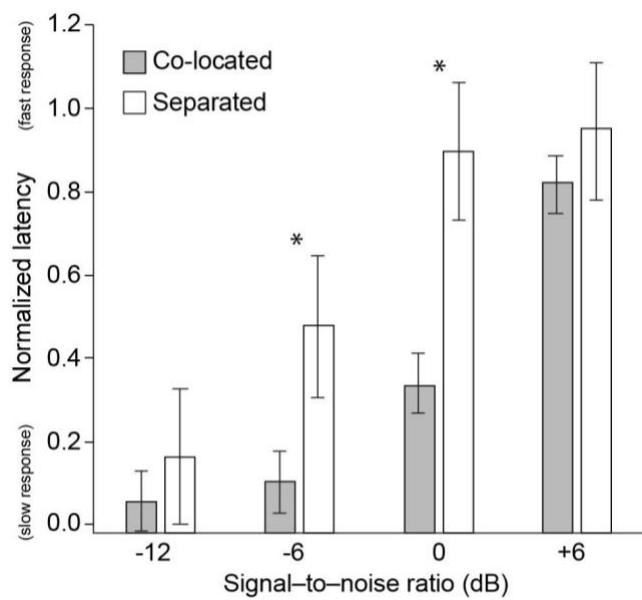
1333

1334

1335

1336

1337

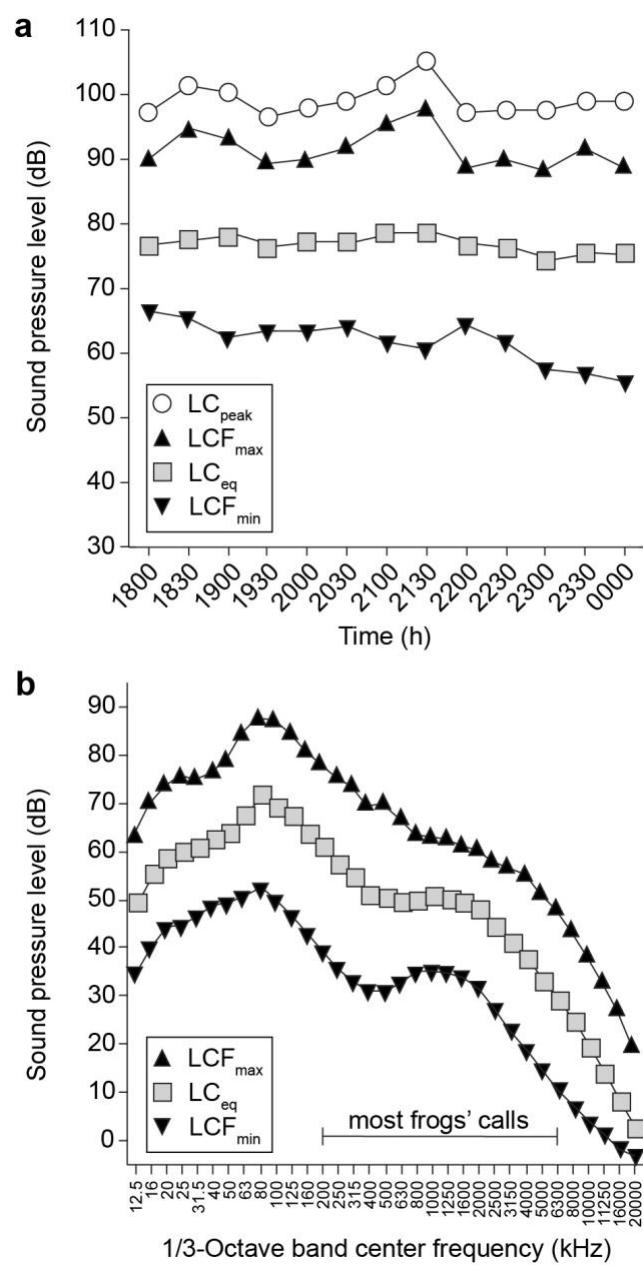

1338

1339

1340

1341

1342



1343 Fig. 9

1344

1345

1346

1347