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ABSTRACT
We introduce a new type of reduction in a free difference module

over a difference field that uses a generalization of the concept of

effective order of a difference polynomial. Then we define the con-

cept of a generalized characteristic set of such a module, establish

some properties of these characteristic sets and use them to prove

the existence, outline a method of computation and find invari-

ants of a dimension polynomial in two variables associated with

a finitely generated difference module. As a consequence of these

results, we obtain a new type of bivariate dimension polynomials

of finitely generated difference field extensions. We also explain the

relationship between these dimension polynomials and the concept

of Einstein’s strength of a system of difference equations.
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1 INTRODUCTION
Difference dimension polynomials play the same role in difference

algebra, as Hilbert polynomials play in commutative algebra and

algebraic geometry. (A similar role in differential algebra is played

by differential dimension polynomials introduced by E. Kolchin

in [4]; see also [5, Chapter 2].) Several applications of difference

dimension polynomials to the study of difference algebraic struc-

tures are based on the fact that if 𝑃 is a prime reflexive difference

ideal in a ring of difference polynomials 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛} over
a difference field 𝐾 , then the quotient field of 𝑅/𝑃 is a difference
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field extension of 𝐾 generated by the images of 𝑦𝑖 in 𝑅/𝑃 . The di-
mension polynomial of this extension, therefore, characterizes the

ideal 𝑃 ; assigning such polynomials to prime reflexive difference

polynomial ideals has led to a number of new results on dimension

of difference varieties (see [3] and [14]) and on the Krull-type di-

mension of difference algebras (see [13], [6, Section 7.2], and [11,

Section 4.6]) and difference field extensions (see [12]). Another im-

portant application of difference dimension polynomials is based

on the fact that the univariate difference dimension polynomial of a

system of algebraic difference equations (defined as the dimension

polynomial of the difference field extension associated with the

system) expresses the A. Einstein’s strength of this system (see [9]

and [11, Chapter 7]). In this connection, the study of difference

dimension polynomials and methods of their computation is of pri-

mary importance for the qualitative theory of difference equations.

One should also mentioned that a number of results on difference

dimension polynomials were generalized to the case of difference

fields and modules where one considers a partition of the basic set

of translations. The corresponding study (see [8] and [10]) resulted

in theorems on multivariate dimension polynomials of difference

modules and difference field extensions that carry more invariants

(i. e., characteristics of a difference module or a difference field

extension that do not depend on the set of generators) than their

univariate counterparts.

In this paper we introduce a reduction in a free difference mod-

ule 𝐹 over a difference field 𝐾 that takes into account the effective

order of elements of the module (we generalize the concept of the

effective order of an ordinary difference polynomial defined in

[1, Chapter 2, Section 4] to the partial case) and consider a new

type of characteristic sets that are associated with this reduction

(they are called E-characteristic sets). Then we use properties of

E-characteristic sets to prove the existence of a bivariate dimen-

sion polynomial of a finitely generated difference 𝐾-module𝑀 that

describes the dimension of intermediate 𝐾-vector spaces generated

by the transforms of the module generators whose orders lie be-

tween two given natural numbers. We also determine invariants of

such dimension polynomials, and apply them to the study of the

isomorphism problem for difference modules. As an application,

we obtain a bivariate dimension polynomial of a finitely generated

difference field extension that describes the transcendence degrees

of intermediate fields obtained by adjoining transforms of the gen-

erators whose orders are bounded above and below. We determine

invariants of these polynomials and discuss their relationship with

the concept of Einstein’s strength of a system of algebraic difference

equations.
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2 PRELIMINARIES
Throughout the paper, N, Z, Q, and R denote the sets of all non-

negative integers, integers, rational numbers, and real numbers,

respectively. If 𝑚 ∈ Z, 𝑚 ≥ 1, then ≤𝑃 will denote the product

order on N𝑚 , that is, a partial order ≤𝑃 such that (𝑎1, . . . , 𝑎𝑚) ≤𝑃
(𝑎′

1
, . . . , 𝑎′𝑚) if and only if 𝑎𝑖 ≤ 𝑎′𝑖 for 𝑖 = 1, . . . ,𝑚.

By a ring we always mean an associative ring with unity. Every

ring homomorphism is unitary (maps unity to unity) and every sub-

ring of a ring contains the unity of the ring. Every field considered

in this paper is supposed to have zero characteristic. Q[𝑡1, . . . , 𝑡𝑝 ]
will denote the ring of polynomials in variables 𝑡1, . . . , 𝑡𝑝 over Q.

By a difference ring we mean a commutative ring 𝑅 considered

together with a finite set 𝜎 = {𝛼1, . . . , 𝛼𝑚} of injective endomor-

phisms of 𝑅 (called translations) such that any two mappings 𝛼𝑖
and 𝛼 𝑗 commute. The set 𝜎 is called the basic set of the difference
ring 𝑅, which is also called a 𝜎-ring. If 𝑅 is a field, it is called a

difference field or a 𝜎-field. (In what follows, we will often use prefix

𝜎- instead of the adjective ”difference”.)

In what follows 𝑇 denotes the free commutative semigroup gen-

erated by the set 𝜎 , that is, the semigroup of all power products

𝜏 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 (𝑘𝑖 ∈ N). The number ord𝜏 =

𝑚∑︁
𝑖=1

𝑘𝑖 is called the

order of 𝜏 . Furthermore, for every 𝑟, 𝑠 ∈ N, 𝑠 < 𝑟 , we set

𝑇 (𝑟 ) = {𝜏 ∈ 𝑇 | ord 𝜏 ≤ 𝑟 } and 𝑇 (𝑟, 𝑠) = {𝜏 ∈ 𝑇 | 𝑠 ≤ ord𝜏 ≤ 𝑟 }.

A subring (respectively, ideal) 𝑅0 of a 𝜎-ring 𝑅 is said to be a differ-

ence (or 𝜎-) subring of 𝑅 (respectively, a difference (or 𝜎-) ideal of

𝑅) if 𝑅0 is closed with respect to the action of any operator in 𝜎 . In

this case the restriction of a mapping in 𝜎 to 𝑅0 is denoted by the

same symbol. If a prime ideal 𝑃 of 𝑅 is closed with respect to the

action of 𝜎 , it is called a prime 𝜎-ideal of 𝑅.
If 𝐿 is a 𝜎-field and 𝐾 a subfield of 𝐿 which is also a 𝜎-subring of

𝐿, then 𝐾 is said to be a 𝜎-subfield of 𝐿; 𝐿, in turn, is called a 𝜎-field

extension or a 𝜎-overfield of 𝐾 (we also say that we have a 𝜎-field

extension 𝐿/𝐾). The maximal number of elements 𝜁1, . . . , 𝜁𝑘 ∈ 𝐿
such that the set {𝜏 (𝜁𝑖 ) | 𝜏 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑘} is algebraically inde-

pendent over 𝐾 is called the 𝜎-transcendence degree of 𝐿 over 𝐾 ;

it is denoted by 𝜎-tr. deg𝐾 𝐿. If 𝑆 ⊆ 𝐿, then the intersection of all

𝜎-subfields of 𝐿 containing 𝐾 and 𝑆 is the unique 𝜎-subfield of 𝐿

containing 𝐾 and 𝑆 and contained in every 𝜎-subfield of 𝐿 con-

taining 𝐾 and 𝑆 . It is denoted by 𝐾 ⟨𝑆⟩. If 𝑆 is a finite subset of 𝐿,

𝑆 = {𝜂1, . . . , 𝜂𝑛}, then 𝐿 is said to be a finitely generated 𝜎-field

extension of 𝐾 with the set of 𝜎-generators {𝜂1, . . . , 𝜂𝑛}. In this

case we write 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩. It is easy to see that 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩
coincides with the field𝐾 ({𝜏𝜂𝑖 | 𝜏 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑛}). (Here and below
we often write 𝜏𝜂 for 𝜏 (𝜂) where 𝜏 ∈ 𝑇 , 𝜂 ∈ 𝐿.)

A difference (𝜎-) field 𝐾 is said to be inversive if the elements

of 𝜎 are automorphisms of 𝐾 . As it is shown in [11, Proposition

2.1.7], any 𝜎-field 𝐾 has an inversive closure, that is, an inversive

𝜎-overfield 𝐾∗
of 𝐾 with the property that for any 𝑎 ∈ 𝐾∗

, there

exists 𝜏 ∈ 𝑇 such that 𝜏 (𝑎) ∈ 𝐾 .
Let𝐾 be a difference field with a basic set 𝜎 = {𝛼1, . . . , 𝛼𝑚}. With

the above notation, an expression of the form

∑
𝜏 ∈𝑇 𝑎𝜏𝜏 , where

𝑎𝜏 ∈ 𝑅 for any 𝜏 ∈ 𝑇 and only finitely many elements 𝑎𝜏 are

different from 0, is called a 𝜎-operator over 𝐾 . Two 𝜎-operators∑
𝜏 ∈𝑇 𝑎𝜏𝜏 and

∑
𝜏 ∈𝑇 𝑏𝜏𝜏 are considered to be equal if and only if

𝑎𝜏 = 𝑏𝜏 for any 𝜏 ∈ 𝑇 . The set of all 𝜎-operators over 𝐾 will be

denoted by𝔇. This set, which has a natural structure of a 𝐾-vector

space with a basis 𝑇 , becomes a ring if one sets 𝜏𝑎 = 𝜏 (𝑎)𝜏 for any
𝑎 ∈ 𝐾 , 𝜏 ∈ 𝑇 and extends this rule to the multiplication of any

two 𝜎-operators by distributivity. The resulting ring𝔇 is called the

ring of 𝜎-operators over 𝐾 . A left𝔇-module is called a difference
𝐾-module or a 𝜎-𝐾-module. In other words, a 𝐾-vector space 𝑀

is a difference (or 𝜎-) 𝐾-module, if the elements of 𝜎 act on 𝑀

in such a way that 𝛼 (𝑥 + 𝑦) = 𝛼 (𝑥) + 𝛼 (𝑦), 𝛼 (𝛽𝑥) = 𝛽 (𝛼𝑥), and
𝛼 (𝑎𝑥) = 𝛼 (𝑎)𝛼 (𝑥) for any 𝑥,𝑦 ∈ 𝑀 ; 𝛼, 𝛽 ∈ 𝜎 ; 𝑎 ∈ 𝐾 .

If 𝑀 is a 𝜎-𝐾-module and 𝑆 ⊆ 𝑀 , then the𝔇-submodule of 𝑀

generated by 𝑆 is denoted by [𝑆]. A 𝜎-𝐾-module is said to be finitely

generated (respectively, free) if it is finitely generated (respectively,

free) as a left𝔇-module. If𝑀 and 𝑁 are two 𝜎-𝐾-modules, then a

homomorphism of𝔇-modules 𝜙 : 𝑀 → 𝑁 is said to be a difference

(or 𝜎-) homomorphism if 𝜙 (𝛼𝑥) = 𝛼𝜙 (𝑥) for any 𝑥 ∈ 𝑀 , 𝛼 ∈ 𝜎 .
If 𝑀 is a 𝜎-𝐾-module, then the maximal number of elements

𝑒1, . . . , 𝑒𝑘 ∈ 𝑀 such that the set {𝜏𝑒𝑖 | 𝜏 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑘} is linearly
independent over 𝐾 is called the difference (or 𝜎-) dimension of𝑀

over 𝐾 ; it is denoted by 𝜎-dim𝐾 𝑀 .

The following theorem proved in [6, Section 6.2] establishes the

existence of a Hilbert-type dimension polynomial associated with

a finite system of generators of a 𝜎-𝐾-module.

Theorem 2.1. Let 𝐾 be a difference field of characteristic zero
with a basic set 𝜎 = {𝛼1, . . . , 𝛼𝑚},𝔇 the ring of 𝜎-operators over 𝐾 ,
and 𝑀 a finitely generated 𝜎-𝐾-module with generators 𝑥1, . . . , 𝑥𝑛

(that is, 𝑀 =

𝑛∑︁
𝑖=1

𝔇𝑥𝑖 ). For any 𝑟 ∈ N, let 𝑀𝑟 denote the 𝐾-vector

space generated by all elements of the form 𝜏𝑥𝑖 (𝜏 ∈ 𝑇 , 1 ≤ 𝑖 ≤ 𝑛)
with ord𝜏 ≤ 𝑟 . Then there exists a polynomial 𝜙 (𝑡) ∈ Q[𝑡] with the
following properties.

(i) 𝜙 (𝑟 ) = dim𝐾 𝑀𝑟 for all sufficiently large 𝑟 ∈ N (that is, there
exists 𝑟0 ∈ N such that the last equality holds for all integers 𝑟 ≥ 𝑟0).

(ii) deg 𝜙 (𝑡) ≤ 𝑚 and the polynomial 𝜙 (𝑡) can be written as

𝜙 (𝑡) =
𝑚∑︁
𝑖=0

𝑐𝑖

(
𝑡 + 𝑖
𝑖

)
where 𝑐0, 𝑐1, . . . , 𝑐𝑚 ∈ Z. (As usual,

(𝑡+𝑖
𝑖

)
denotes

the polynomial (𝑡 + 𝑖) (𝑡 + 𝑖 −1) . . . (𝑡 +1)/𝑖! ∈ Q[𝑡] that takes integer
values for all sufficiently large integer values of 𝑡 .)

(iii) The integers 𝑑 = deg 𝜙 (𝑡), 𝑐𝑚 and 𝑐𝑑 (if 𝑑 < 𝑚) do not
depend on the choice of the system of generators of 𝑀 over 𝔇. Fur-
thermore, 𝑐𝑚 = 𝜎-dim𝐾 𝑀 .

The polynomial 𝜙 (𝑡) is called a 𝜎-dimension polynomial of the 𝜎-
𝐾-module𝑀 associated with the system of 𝜎-generators 𝑥1, . . . , 𝑥𝑛 .

DIMENSION POLYNOMIALS OF SUBSETS OF N𝑚

A polynomial in 𝑝 variables 𝑓 (𝑡1, . . . , 𝑡𝑝 ) ∈ Q[𝑡1, . . . , 𝑡𝑝 ] is called
numerical if 𝑓 (𝑟1, . . . , 𝑟𝑝 ) ∈ Z for all sufficiently large (𝑟1, . . . , 𝑟𝑝 ) ∈
N𝑝 . (It means that there exist 𝑠1, . . . , 𝑠𝑝 ∈ N such that the equality

holds for all (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 with 𝑟1 ≥ 𝑠1, . . . , 𝑟𝑝 ≥ 𝑠𝑝 .).
Of course, every polynomial with integer coefficients is numeri-

cal. As an example of a numerical polynomial in 𝑝 variables with

non-integer coefficients (𝑝 ≥ 1) one can consider

𝑝∏
𝑖=1

(
𝑡𝑖

𝑚𝑖

)
where

𝑚1, . . . ,𝑚𝑝 ∈ N. Note that the 𝜎-dimension polynomial 𝜙 (𝑡) intro-
duced in Theorem 2.1 is a univariate numerical polynomial.



As it is shown in [6, Chapter 2], a numerical polynomial in 𝑝

variables has a ”canonical” representation as

𝑓 (𝑡1, . . . 𝑡𝑝 ) =
𝑚1∑︁
𝑖1=0

. . .

𝑚𝑝∑︁
𝑖𝑝=0

𝑎𝑖1 ...𝑖𝑝

(
𝑡1 + 𝑖1
𝑖1

)
. . .

(
𝑡𝑝 + 𝑖𝑝
𝑖𝑝

)
(1)

with uniquely defined integer coefficients 𝑎𝑖1 ...𝑖𝑝 (𝑚𝑖 is the degree

of this polynomial with respect to 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑝).

In what follows, if 𝐴 is a subset of N𝑚 (𝑚 is a positive integer),

then 𝑉𝐴 will denote the set of all𝑚-tuples 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ N𝑚
such that 𝑎 ≰𝑃 𝑣 for every 𝑎 ∈ 𝐴 (i. e., for any 𝑎 = (𝑎1, . . . , 𝑎𝑚) ∈ 𝐴,
there exists 𝑖, 1 ≤ 𝑖 ≤ 𝑚, such that 𝑎𝑖 > 𝑣𝑖 ). Furthermore, for any

𝑟 ∈ N, we set 𝐴(𝑟 ) = {(𝑎1, . . . , 𝑎𝑚) ∈ 𝐴 |
𝑚∑︁
𝑖=1

𝑎𝑖 ≤ 𝑟 }.

The following theorem about a univariate numerical polynomial

associated with a subset of N𝑚 is due to E. Kolchin, see [5, Chapter

0, Lemma 16].

Theorem 2.2. Let 𝐴 ⊆ N𝑚 . Then there exists a numerical polyno-
mial 𝜔𝐴 (𝑡) such that

(i) 𝜔𝐴 (𝑟 ) = Card 𝑉𝐴 (𝑟 ) for all sufficiently large 𝑟 ∈ N.
(ii) deg 𝜔𝐴 ≤ 𝑚.
(iii) deg 𝜔𝐴 =𝑚 if and only if 𝐴 = ∅. In this case

𝜔𝐴 (𝑡) =
(
𝑡 +𝑚
𝑚

)
.

(iv) 𝜔𝐴 = 0 if and only if (0, . . . , 0) ∈ 𝐴.

The polynomial 𝜔𝐴 (𝑡) is called the Kolchin polynomial of the set
𝐴 ⊆ N𝑚 .

Note that if 𝐴 ⊆ N𝑚 and 𝐴′
is the set of all minimal elements

of 𝐴 with respect to the product order on N𝑚 , then the set 𝐴′
is

finite (it follows from [5, Ch. 0, Lemma 15] that states that for any

infinite set𝐴 ⊆ N𝑚 , there exists an infinite sequence of elements of

𝐴, strictly increasing relative to the product order). The following

theorem proved in [6, Chapter 2] gives an explicit formula for the

Kolchin polynomial of a finite subset of N𝑚 .

Theorem 2.3. Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} be a finite subset of N𝑚 and
let 𝑎𝑘 = (𝑎𝑘1, . . . , 𝑎𝑘𝑚) (1 ≤ 𝑘 ≤ 𝑛). For any 𝑙 ∈ N, 0 ≤ 𝑙 ≤ 𝑛, let
Γ(𝑙, 𝑛) denote the set of all 𝑙-element subsets of the setN𝑛 = {1, . . . , 𝑛}.
Let 𝑎∅ 𝑗 = 0 and for any 𝛾 ∈ Γ(𝑙, 𝑛), 𝛾 ≠ ∅, let 𝑎𝛾 𝑗 = max{𝑎𝑖 𝑗 | 𝑖 ∈ 𝛾}
(1 ≤ 𝑗 ≤ 𝑚). Then

𝜔𝐴 (𝑡) =
𝑛∑︁
𝑙=0

(−1)𝑙
∑︁

𝛾 ∈Γ (𝑙,𝑛)

(
𝑡 +𝑚 −∑𝑚

𝑗=1 𝑎𝛾 𝑗

𝑚

)
(2)

3 E-REDUCTION AND E-GRÖBNER BASES IN
FREE DIFFERENCE MODULES

Let 𝐾 be a difference field with a basic set 𝜎 = {𝛼1, . . . , 𝛼𝑚} and
𝐹 a free 𝜎-𝐾-module with free generators 𝑓1, . . . , 𝑓𝑛 (i. e., these

generators form a basis of the free left module 𝐹 over the ring of

𝜎-operators 𝔇 over 𝐾). Then the elements of the form 𝜏 𝑓𝜈 (𝜏 ∈
𝑇, 1 ≤ 𝜈 ≤ 𝑛) are called terms; the set of all terms is denoted by 𝑇 𝑓 .

It is easy to see that this set is a basis of 𝐹 treated as a vector space

over the field 𝐾 .

The order of a term 𝑢 = 𝜏 𝑓𝑖 (denoted by ord𝑢) is defined as the

order of 𝜏 . As usual, if 𝜏, 𝜏 ′ ∈ 𝑇 , we say that 𝜏 divides 𝜏 ′ (and write

𝜏 | 𝜏 ′) if 𝜏 ′ = 𝜏𝜏 ′′ for some 𝜏 ′′ ∈ 𝑇 . If 𝑢 = 𝜏 𝑓𝑖 and 𝑣 = 𝜏
′𝑓𝑗 are two

terms in𝑇 𝑓 , we say that 𝑢 divides 𝑣 (and write 𝑢 |𝑣) if 𝑖 = 𝑗 and 𝜏 |𝜏 ′.
In this case we also say that 𝑣 is a transform of 𝑢.

By a ranking on 𝑇 𝑓 we mean a well-ordering ≤ of the set of

terms 𝑇 𝑓 that satisfies the following two conditions:

(i) 𝑢 ≤ 𝜏𝑢 for any 𝑢 ∈ 𝑇 𝑓 , 𝜏 ∈ 𝑇 . (We denote the ordering of 𝑇 𝑓

by the usual symbol ≤ and write 𝑢 < 𝑣 or 𝑣 > 𝑢 if 𝑢 ≤ 𝑣 and 𝑢 ≠ 𝑣 .)

(ii) If 𝑢, 𝑣 ∈ 𝑇 𝑓 and 𝑢 ≤ 𝑣 , then 𝜏𝑢 ≤ 𝜏𝑣 for any 𝜏 ∈ 𝑇 .
A ranking is said to be orderly if the inequality ord 𝑢 < ord 𝑣

(𝑢, 𝑣 ∈ 𝑇 𝑓 ) implies 𝑢 < 𝑣 . In what follows, we assume that the fol-

lowing orderly ranking ≤ on 𝑇 𝑓 is fixed: if 𝑢1 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 𝑓𝑖 , 𝑢2 =

𝛼
𝑙1
1
. . . 𝛼

𝑙𝑚
𝑚 𝑓𝑗 ∈ 𝑇 𝑓 , then 𝑢1 ≤ 𝑢2 if and only if

(ord𝑢1, 𝑘1, . . . , 𝑘𝑚, 𝑖) ≤𝑙𝑒𝑥 (ord𝑢2, 𝑙1, . . . , 𝑙𝑚, 𝑗)
(≤𝑙𝑒𝑥 denotes the lexicographic order on N𝑚+2

). In this case we set

𝜇 (𝑢2, 𝑢1) = (ord𝑢2 − ord𝑢1, 𝑙1 −𝑘1, . . . , 𝑙𝑚 −𝑘𝑚, 𝑗 − 𝑖) ∈ N×Z𝑚+1 .

Remark 3.1. Note that for every 𝑟 = 1, . . . ,𝑚, |𝑙𝑟 −𝑘𝑟 | ≤ 𝑙𝑟 +𝑘𝑟 ≤
ord𝑢1 + ord𝑢2. It follows that there is no infinite sequences of terms
𝑢1, 𝑢2, . . . , 𝑣1, 𝑣2, . . . such that 𝜇 (𝑢1, 𝑣1) >𝑙𝑒𝑥 𝜇 (𝑢2, 𝑣2) >𝑙𝑒𝑥 . . . .

Since the set𝑇 𝑓 is a basis of the vector 𝐾-space 𝐹 , every nonzero

element 𝑓 ∈ 𝐹 has a unique (up to the order of the terms in the

sum) representation in the form

𝑔 = 𝑎1𝜏1 𝑓𝑖1 + · · · + 𝑎𝑝𝜏𝑝 𝑓𝑖𝑝 (3)

where 𝜏1 𝑓𝑖1 , . . . , 𝜏𝑝 𝑓𝑖𝑝 are distinct elements of𝑇 𝑓 (1 ≤ 𝑖1, . . . , 𝑖𝑝 ≤ 𝑛)
and 𝑎1, . . . , 𝑎𝑝 are nonzero elements of 𝐾 .

Definition 3.2. Let 𝑔 be an element of the free 𝜎-𝐾-module 𝐹
written in the form (3) and let 𝜏𝑟 𝑓𝑖𝑟 and 𝜏𝑠 𝑓𝑖𝑠 (1 ≤ 𝑟, 𝑠 ≤ 𝑝) be the
greatest and the smallest terms in the set {𝜏1 𝑓𝑖1 , . . . , 𝜏𝑙 𝑓𝑖𝑙 }, respectively,
relative to the introduced order on 𝑇 𝑓 . Then the terms 𝜏𝑟 𝑓𝑖𝑟 and 𝜏𝑠 𝑓𝑖𝑠
are called, respectively, the leader and coleader of the element 𝑔;
they are denoted by 𝑢𝑔 and 𝑣𝑔 , respectively. The coefficient of 𝑢𝑔 is
called the leading coefficient of 𝑔; it is denoted by lc(𝑔).

Definition 3.3. If 0 ≠ 𝑔 ∈ 𝐹 ,𝑢𝑔 = 𝛼𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 𝑓𝑖 , 𝑣𝑔 = 𝛼

𝑙1
1
. . . 𝛼

𝑙𝑚
𝑚 𝑓𝑗 ,

then the nonnegative integer Eord(𝑔) = ord𝑢𝑔 − ord 𝑣𝑔 is called the
effective order of 𝑔. The (𝑚 + 2)-tuple 𝜇 (𝑢𝑔, 𝑣𝑔) ∈ Z𝑚+2 is said to
be the full effective order of 𝑔; it is denoted by E ord(𝑔).

It follows from the last definition that for any 𝑔 ∈ 𝐹 and for any

𝜏 ∈ 𝑇 , Eord(𝜏𝑔) = Eord(𝑔) and E𝑜𝑟𝑑 (𝜏𝑔) = E ord(𝑔). Furthermore,

if 𝑔, ℎ ∈ 𝐹 and Eord(𝑔) < Eord(ℎ), then 𝜇 (𝑢𝑔, 𝑣𝑔) < 𝜇 (𝑢ℎ, 𝑣ℎ) (with
respect to the lexicographic order on Z𝑚+2

), that is, E ord(𝑔) <

E ord(ℎ) (we will always compare the full effective orders of ele-

ments of 𝐹 by the lexicographic order).

Definition 3.4. Let 𝑔, ℎ ∈ 𝐹 . We say that 𝑔 is E-reduced with
respect to ℎ if 𝑔 does not contain any 𝜏𝑢ℎ (𝜏 ∈ 𝑇 ) such that 𝜏𝑣ℎ ≥ 𝑣𝑔 .
If 𝑆 ⊆ 𝐹 , then an element 𝑔 ∈ 𝐹 is said to be E-reduced with respect
to 𝑆 of 𝑔 is E-reduced with respect to every element of 𝑆 .

Definition 3.5. Let 𝑔, ℎ ∈ 𝐹 . Then 𝑔 is said to have lower rank
than ℎ (we write rk𝑔 < rkℎ) if either 𝑔 = 0, ℎ ≠ 0 or

(E ord(𝑔), 𝑢𝑔) <𝑙𝑒𝑥 (E ord(ℎ), 𝑢ℎ).
If the pairs are equal, we say that 𝑔 and ℎ are of the same rank and
write rk𝑔 = rkℎ.



Remark 3.6. If 𝑔, ℎ ∈ 𝐹 and rk𝑔 < rkℎ, then 𝑔 is E-reduced with
respect to ℎ. Indeed, if it is not so, then 𝑔 contains 𝜏𝑢ℎ for some 𝜏 ∈ 𝑇
such that 𝜏𝑣ℎ ≥ 𝑣𝑔 . Since 𝑢𝑔 ≥ 𝜏𝑢ℎ ≥ 𝑢ℎ and E ord(ℎ) = E ord(𝜏ℎ),
we obtain that E ord(𝑔) ≥ E ord(ℎ) and the last inequality becomes
an equality if and only if 𝜏 = 1, 𝑢𝑔 = 𝑢ℎ , and 𝑣𝑔 = 𝑣ℎ , that is,
rk𝑔 = rkℎ, a contradiction.

Definition 3.7. A set of A ⊆ 𝐹 is said to be E-autoreduced if
either it is empty or every element of A is E-reduced with respect to
all other elements of the set A.

Lemma 3.8. Every E-autoreduced set is finite.

Proof. Note first that two elements of an E-autoreduced set

cannot have the same leader (if 𝑢𝑔 = 𝑢ℎ for some 𝑔, ℎ ∈ 𝐹 , then

either 𝑣ℎ ≥ 𝑣𝑔 or 𝑣𝑔 ≥ 𝑣ℎ , so one of these two elements is not

reduced with respect to the other one). Suppose that there is an

infinite E-autoreduced setA. It follows from [5, Chapter 0, Lemma

15] that A contains a sequence of elements {𝑔1, 𝑔2, . . . } such that

𝑢𝑔𝑖 |𝑢𝑔𝑖+1 for 𝑖 = 1, 2, . . . . Let 𝑢𝑔𝑖+1 = 𝜏𝑖𝑢𝑔𝑖 (𝑖 = 1, 2, . . . ). Since the set

A is E-autoreduced, it follows that for every 𝑖 = 1, 2, . . . , 𝑔𝑖+1 is
E-reduced with respect to 𝑔𝑖 , hence 𝜏𝑖𝑣𝑔𝑖 < 𝑣𝑔𝑖+1 and E ord(𝜏𝑔𝑖 ) =
E ord(𝑔𝑖 ) > E ord(𝑔𝑖+1). Thus, we obtain a strictly decreasing se-

quence E ord(𝑔1) > E𝑜𝑟𝑑 (𝑔2) > . . . , a contradiction (see Remark

3.1). □

Example 3.9. Let 𝜎 = {𝛼1, 𝛼2} and 𝐹 a free 𝜎-𝐾-module with

one free generator 𝑓 . Let A = {𝑔1, 𝑔2} ⊆ 𝐹 where

𝑔1 = 𝛼
2

1
𝛼2 𝑓 + 𝛼22 𝑓 , 𝑔2 = 𝛼

2

1
𝑓 + 𝑓 .

Then E𝑜𝑟𝑑 (𝑔1) = (1, 2,−1, 0) <𝑙𝑒𝑥 E𝑜𝑟𝑑 (𝑔2) = (2, 2, 0, 0), hence
rk𝑔1 < rk𝑔2 and therefore 𝑔1 is E-reduced with respect to 𝑔2. Since
𝑔2 contains no transform of 𝑢𝑔1 = 𝛼

2

1
𝛼2𝑦, 𝑔2 is reduced with respect

to 𝑔1, so the set A is E-autoreduced. However, since 𝑔1 contains a
transform of 𝑢𝑔2 , the set A is not autoreduced in the usual sense

(where ℎ is said to be reduced with respect to 𝑔 if ℎ does not contain

any (𝜏𝑢𝑔) (𝜏 ∈ 𝑇 ), see [6, Section 4.1] or [11, Section 2.4]).

In what follows, while considering E-autoreduced sets we always
assume that their elements are arranged in order of increasing rank.

Definition 3.10. Let A = {𝑔1, . . . , 𝑔𝑠 } and B = {ℎ1, . . . , ℎ𝑡 }
be two nonempty E-autoreduced sets in a finitely generated free 𝜎-
𝐾-module 𝐹 . Then A is said to have lower rank than B, written as
rkA < rkB, if one of the following two cases holds:

(1) There exists 𝑘 ∈ N such that 𝑘 ≤ min{𝑠, 𝑡}, rk𝑔𝑖 = rkℎ𝑖 for
𝑖 = 1, . . . , 𝑘 − 1 and rk𝑔𝑘 < rkℎ𝑘 .

(2) 𝑠 > 𝑡 and rk𝑔𝑖 = rkℎ𝑖 for 𝑖 = 1, . . . , 𝑡 .
If 𝑠 = 𝑡 and rk𝑔𝑖 = rkℎ𝑖 for 𝑖 = 1, . . . , 𝑠 , then A is said to have

the same rank as B; in this case we write rkA = rkB. If A ≠ ∅ and
B = ∅, then rkA < rkB.

Proposition 3.11. In every nonempty family of E-autoreduced
sets in a finitely generated free 𝜎-𝐾-module 𝐹 there exists an E-
autoreduced set of lowest rank.

Proof. LetM be a nonempty family of E-autoreduced sets in

𝐹 . Let us inductively define an infinite descending chain of subsets

of M as follows: M0 = M, M1 = {A ∈ M0 | A contains at

least one element and the first element of A is of lowest possible

rank}, . . . ,M𝑘 = {A ∈ M𝑘−1 | A contains at least 𝑘 elements and

the 𝑘th element of A is of lowest possible rank}, . . . . It is clear that
if 𝑓 and 𝑔 are the 𝑖th elements in two E-autoreduced sets in the

same set M𝑘 (1 ≤ 𝑖 ≤ 𝑘), then E ord(𝑓 ) = E ord(𝑔) and 𝑢𝑓 = 𝑢𝑔
(hence 𝑣 𝑓 = 𝑣𝑔). Therefore, if all setsM𝑘 are nonempty, then the

set {𝑓𝑘 | 𝑓𝑘 is the 𝑘th element of some E-autoreduced set in M𝑘 }
would be an infinite E-autoreduced set, and this would contradict

Lemma 3.8. Thus, there is the smallest positive integer 𝑘 such that

M𝑘 = ∅. Clearly, every element ofM𝑘−1 is an E-autoreduced set

of lowest rank in the family M. □

Definition 3.12. Let 𝑁 be any 𝜎-𝐾-submodule of a finitely gen-
erated free 𝜎-𝐾-module 𝐹 (that is, 𝑁 is a left 𝔇-submodule of 𝐹 ).
Since the set of all E-autoreduced subsets of 𝑁 is not empty (if 𝑓 ∈ 𝑁 ,
then {𝑓 } is an E-autoreduced subset of 𝑁 ), the last statement shows
that 𝑁 contains an E-autoreduced subset of lowest rank. Such an
E-autoreduced set is called an E-characteristic set of the 𝜎-𝐾-
submodule 𝑁 .

Proposition 3.13. Let A = {𝑔1, . . . , 𝑔𝑑 } be an E-characteristic
set of a 𝜎-𝐾-submodule 𝑁 of a finitely generated free 𝜎-𝐾-module 𝐹 .
Then an element ℎ ∈ 𝑁 is E-reduced with respect to the set A if and
only if ℎ = 0.

Proof. Suppose that a nonzero elementℎ ∈ 𝑁 is E-reducedwith
respect to A. First of all, note that if rk ℎ < rk 𝑔1, then rk {ℎ} <

rk A that contradicts the fact thatA is an E-characteristic set of 𝑁 .

Let rk ℎ > rk 𝑔1 (if rk ℎ = rk 𝑔1, then ℎ is not reduced with respect

to 𝑔1, contrary to our assumption) and let 𝑔1, . . . , 𝑔 𝑗 (1 ≤ 𝑗 ≤ 𝑑) be
all elements of A whose rank is lower that the rank of ℎ. Then the

setA ′ = {𝑔1, . . . , 𝑔 𝑗 , ℎ} is E-autoreduced. Indeed, since the setA is

E-autoreduced, elements 𝑔1, . . . , 𝑔 𝑗 are E-reduced with respect to

each other, and ℎ is E-reduced with respect to the set {𝑔1, . . . , 𝑔 𝑗 }
by our assumption. Furthermore, each 𝑔𝑖 (1 ≤ 𝑖 ≤ 𝑗 ) is E-reduced
with respect to ℎ because rk 𝑔𝑖 < rk 𝑔. Since rk A ′ < rk A, A is

not an E-characteristic set of 𝑁 , a contradiction. □

Proposition 3.14. Let A = {𝑔1, . . . , 𝑔𝑑 } be a subset of a finitely
generated free𝔇-module 𝐹 and letℎ ∈ 𝐹 . Then there exists an element
ℎ∗ ∈ 𝐹 such that

ℎ − ℎ∗ =
𝑑∑︁
𝑖=1

𝐶𝑖𝑔𝑖

for some 𝐶1, . . . ,𝐶𝑑 ∈ 𝔇 and ℎ∗ is E-reduced with respect to A.

Proof. If ℎ is E-reduced with respect to A, the statement is

obvious (one can set ℎ∗ = ℎ). Suppose that ℎ is not E-reduced with

respect to A. In what follows, a term𝑤𝑡 , that appears in a non-E-
reduced element 𝑡 ∈ 𝐹 , will be called the A-leader of 𝑡 if𝑤𝑡 is the

greatest term among all terms 𝜏𝑢𝑔𝑗 (𝜏 ∈ 𝑇 , 1 ≤ 𝑗 ≤ 𝑑) that appear
in 𝑡 and satisfy the condition 𝜏𝑣𝑔𝑗 ≥ 𝑣𝑡 .

Let𝑤ℎ be the A-leader of the element ℎ and let 𝑐ℎ be the coef-

ficient of 𝑤ℎ in ℎ. Then 𝑤ℎ = 𝜏𝑢𝑔𝑗 for some 𝜏 ∈ 𝑇 and for some

𝑗 (1 ≤ 𝑗 ≤ 𝑑) such that 𝜏𝑣𝑔𝑗 ≥ 𝑣ℎ . Let us choose such 𝑗 that cor-

responds to the maximum leader 𝑢𝑔𝑗 in the set of all leaders of

elements ofA and let us consider the element ℎ′ = ℎ− 𝑐ℎ
𝜏 (lc(𝑔𝑗 )) 𝜏𝑔 𝑗 .

Obviously, ℎ′ does not contain 𝑤ℎ and 𝑢ℎ′ ≤ 𝑢ℎ . Furthermore, ℎ′

cannot contain any term of the form 𝜏 ′𝑢𝑔𝑖 (𝜏
′ ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑑) that

is greater than 𝑤ℎ and satisfies the condition 𝜏 ′𝑣𝑔𝑖 ≥ 𝑣ℎ′ . Indeed,

since 𝑣ℎ′ ≥ 𝑣ℎ , such a term 𝜏 ′𝑢𝑔𝑖 cannot appear in ℎ. Such a term



cannot appear in 𝜏𝑔 𝑗 either, since 𝑢𝜏𝑔𝑗 = 𝜏𝑢𝑔𝑗 = 𝑤ℎ < 𝜏 ′𝑢𝑔𝑖 . Thus,
the A-leader of ℎ′ is strictly less than the A-leader of ℎ. Apply-

ing the same procedure to the element ℎ′ and continuing in the

same way, we obtain an element ℎ∗ ∈ 𝐹 such that ℎ − ℎ∗ is a linear
combination of elements 𝑔1, . . . , 𝑔𝑑 with coefficients in𝔇 and ℎ∗ is
E-reduced with respect to A. □

The process of reduction described in the proof of the last propo-

sition can be realized by the following algorithm.

Algorithm 3.15. (ℎ,𝑑, 𝑔1, . . . , 𝑔𝑑 ; ℎ∗)
Input: ℎ ∈ 𝐹 , a positive integer 𝑑 , A = {𝑔1, . . . , 𝑔𝑑 } ⊆ 𝐹 where

𝑔𝑖 ≠ 0 for 𝑖 = 1, . . . , 𝑑

Output: Element ℎ∗ ∈ 𝐹 and elements 𝐶1, . . . ,𝐶𝑑 ∈ 𝔇 such that

ℎ = 𝐶1𝑔1 + · · · +𝐶𝑑𝑔𝑑 + ℎ∗ and ℎ∗ is E-reduced with respect to A
Begin
𝐶1 := 0, . . . ,𝐶𝑑 := 0, ℎ∗ := ℎ
While there exist 𝑖 , 1 ≤ 𝑖 ≤ 𝑑 , and a term𝑤 , that appears in ℎ∗

with a (nonzero) coefficient 𝑐𝑤 , such that 𝑢𝑔𝑖 |𝑤 and
𝑤
𝑢𝑔𝑖

𝑣𝑔𝑖 ≥ 𝑣ℎ∗

do
𝑧:= the greatest of the terms𝑤 that satisfy the above conditions.

𝑗 := the smallest number 𝑖 for which 𝑢𝑔𝑖 is the greatest leader of

an element of A such that 𝑢𝑔𝑖 |𝑧 and 𝑧
𝑢𝑔𝑖

𝑣𝑔𝑖 ≥ 𝑣ℎ∗
𝜏 := 𝑧

𝑢𝑔𝑗

𝐶 𝑗 := 𝐶 𝑗 + 𝑐𝑧
𝜏 (lc(𝑔𝑗 )) 𝜏 where 𝑐𝑧 is the coefficient of 𝑧 in ℎ∗

ℎ∗ := ℎ∗ − 𝑐𝑧
𝜏 (lc(𝑔𝑗 ))𝑔 𝑗

End

Corollary 3.16. IfA is an E-characteristic set of a𝜎-𝐾-submodule
𝑁 of a finitely generated free 𝜎-𝐾-module 𝐹 , then A generates 𝑁 as
a left𝔇-module.

Proof. By Proposition 3.14, if ℎ ∈ 𝑁 , then there exists an ele-

ment 𝑔 ∈ 𝑁 such that 𝑔 is a linear combination of elements of A
with coefficients in𝔇 and ℎ −𝑔 is E-reduced with respect to A. By

Proposition 3.13, ℎ − 𝑔 = 0, hence ℎ ∈ 𝔇A. □

Proposition 3.17. Let 𝑁 = [𝑔] be a cyclic𝔇-submodule of the
free 𝜎-𝐾-module 𝐹 . Then {𝑔} is an E-characteristic set of 𝑁 .

Proof. Let 0 ≠ ℎ ∈ 𝑁 , so that ℎ can be written as ℎ =
∑𝑠
𝑖=1 𝑐𝑖𝜏𝑖𝑔

where 𝜏1, . . . , 𝜏𝑠 ∈ 𝑇, 𝑐1, . . . , 𝑐𝑠 ∈ 𝐾 , 𝑐𝑖 ≠ 0 (1 ≤ 𝑖 ≤ 𝑠), and 𝜏1 <

· · · < 𝜏𝑠 . Then 𝑢ℎ = 𝜏𝑠𝑢𝑔 and 𝜏𝑠𝑣𝑔 ≥ 𝜏1𝑣𝑔 = 𝑣ℎ . Therefore, ℎ is not

E-reduced with respect to 𝑔. Furthermore, for any 𝑖 = 1, . . . , 𝑠 , 𝑢ℎ =

𝜏𝑠𝑢𝑔 ≥ 𝜏𝑖𝑢𝑔 ≥ 𝑢𝑔 and 𝑣ℎ = 𝜏1𝑣𝑔 ≤ 𝜏𝑖𝑣𝑔 , so E ord(ℎ) ≥ E ord(𝜏𝑖𝑔) =
E ord(𝑔). It follows that 𝑟𝑘 (𝑔) ≤ 𝑟𝑘 (ℎ), and 𝑟𝑘 (𝑔) = 𝑟𝑘 (ℎ) if and
only if 𝜏𝑖 = 1 for 𝑖 = 1, . . . , 𝑠 , that is, ℎ = 𝑐𝑔 for some 𝑐 ∈ 𝐾 . Thus,
𝑁 does not contain elements reduced with respect to 𝑔, and 𝑔 is the

element of the lowest rank in 𝑁 . It follows that ifA = {ℎ1, . . . , ℎ𝑙 }
is an E-characteristic set of 𝑁 , then 𝑟𝑘 (𝑔) = 𝑟𝑘 (ℎ1) and 𝑙 = 1,

whence {𝑔} is also an E-characteristic set of 𝑁 . □

Remark 3.18. The concepts of E-autoreduced and E-characteristic
sets in a finitely generated free 𝜎-𝐾-module with 𝑛 free generators
produce the corresponding notions for linear difference (𝜎-) ideals
in the algebra of difference polynomials 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛} in 𝑛 𝜎-
indeterminates over 𝐾 (see [6, Section 3.3]). If one considers the free
𝜎-𝐾-module 𝐹 generated by𝑦1, . . . , 𝑦𝑛 in 𝑅, then every E-autoreduced
set of 𝐹 will be an autoreduced set (in the sense of [6, Definition 3.3.4])

of the 𝜎-ideal of 𝑅 generated 𝐹 . Therefore, if 𝐹 is a free 𝜎-𝐾-module
with 𝑛 free generators 𝑓1, . . . , 𝑓𝑛 , 𝑁 a 𝜎-𝐾-submodule of 𝐹 and A is
an E-characteristic set of 𝑁 , then one can apply [6, Theorem 6.4.1] to
the factor module 𝐹/𝑁 and obtain that there exists a numerical poly-
nomial 𝜙 (𝑡) of degree at most𝑚 such that 𝜙 (𝑟 ) = dim𝐾 (𝐹𝑟 /𝑁

⋂
𝐹𝑟 )

for all sufficiently large 𝑟 ∈ N. (𝐹𝑟 =
∑𝑛
𝑖=1𝔇𝑟 𝑓𝑖 where 𝔇𝑟 is the

𝐾-vector space generated by 𝑇 (𝑟 ).) Furthermore, this theorem shows
that if 𝐴 𝑗 is the set of all 𝑚-tuples (𝑘1, . . . , 𝑘𝑚) ∈ N𝑚 such that
𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 𝑓𝑗 (1 ≤ 𝑗 ≤ 𝑛) is a leader of an element of A, then

𝜙 (𝑡) =
𝑛∑︁
𝑗=1

𝜔𝐴 𝑗
(𝑡) where 𝜔𝐴 𝑗

(𝑡) is the Kolchin polynomial of the set

𝐴 𝑗 defined in Theorem 2.2.

4 THE MAIN THEOREM AND ITS
APPLICATIONS

The following theorem is the main result of the paper.

Theorem 4.1. Let 𝐾 be a difference field with a basic set 𝜎 =

{𝛼1, . . . , 𝛼𝑚} and𝑀 a finitely generated 𝜎-𝐾-module with generators

𝑥1, . . . , 𝑥𝑛 (that is, 𝑀 =

𝑛∑︁
𝑖=1

𝔇𝑥𝑖 where 𝔇 is the ring of difference

(𝜎-) operators over 𝐾). For any 𝑟, 𝑠 ∈ N, let 𝑀𝑟𝑠 =
𝑛∑︁
𝑖=1

𝔇𝑟𝑠𝑥𝑖 where

𝔇𝑟𝑠 denotes the 𝐾-vector subspace of 𝔇 generated by all elements
𝜏𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛) with 𝜏 ∈ 𝑇 (𝑟, 𝑠). Then there exists a polynomial
𝜓 (𝑡1, 𝑡2) ∈ Q[𝑡1, 𝑡2] and numbers 𝑟0, 𝑠0, 𝑠1 ∈ N with 𝑠1 < 𝑟0−𝑠0 such
that

(i) 𝜓 (𝑟, 𝑠) = dim𝐾 𝑀𝑟𝑠 for all (𝑟, 𝑠) ∈ N2 with 𝑟 ≥ 𝑟0, 𝑠1 ≤ 𝑠 ≤
𝑟 − 𝑠0.

(ii) 𝜓 (𝑡1, 𝑡2) = 𝜓 (1) (𝑡1) − 𝜓 (2) (𝑡2) where deg 𝜓 (𝑖) (𝑡) ≤ 𝑚 (𝑖 =
1, 2), so𝜓 (𝑡1, 𝑡2) can be written as

𝜓 (𝑡1, 𝑡2) =
𝑚∑︁
𝑖=0

𝑎𝑖

(
𝑡1 + 𝑖
𝑖

)
−

𝑚∑︁
𝑗=0

𝑏 𝑗

(
𝑡2 + 𝑗
𝑗

)
(4)

where 𝑎𝑖 , 𝑏 𝑗 ∈ Z.
(iii) For all sufficiently large 𝑟 ∈ N, 𝜓 (1) (𝑟 ) = 𝜙 (𝑟 ) where 𝜙 (𝑡)

is the difference (𝜎-) dimension polynomial of 𝑀 associated with

the filtration (𝑀𝑟 =

𝑛∑︁
𝑖=1

𝔇𝑟𝑥𝑖 )𝑟 ∈Z where 𝔇𝑟 denotes the 𝐾-vector

subspace of𝔇 generated by all elements 𝜏𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛) with 𝜏 ∈ 𝑇 (𝑟 ).
(iv) 𝑎𝑚 = 𝑏𝑚 = 𝜎-dim𝐾 𝑀 . Furthermore, 𝑑 = deg𝑡1

𝜓 , and 𝑎𝑑 are
invariants of the 𝜎-𝐾-module𝑀 , that is, they do not depend on the
finite system of 𝜎-generators of𝑀 over 𝐾 the polynomial𝜓 (𝑡1, 𝑡2) is
associated with.

(v) deg𝜓 (1) ≥ deg𝜓 (2) and if deg𝜓 (1) = deg𝜓 (2) = 𝑒 < 𝑚, then
𝑏𝑒 is also an invariant of𝑀 .

Definition 4.2. The bivariate numerical polynomial 𝜓 (𝑡1, 𝑡2)
whose existence is established by Theorem 4.1 is called a𝜎-𝐸-dimension
polynomial of the 𝜎-𝐾-module𝑀 associated with the system of 𝜎-𝐾-
generators {𝑥1, . . . , 𝑥𝑛}.

We will start the proof of the theorem with the following lemma.



Lemma 4.3. With the above notation, let 𝐹 be a free 𝔇-module
with a basis 𝑓1, . . . , 𝑓𝑛 , and 𝜋 : 𝐹 −→ 𝑀 the natural𝔇-epimorphism
of 𝐹 onto 𝑀 (𝜋 (𝑓𝑖 ) = 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛). Let 𝑁 = Ker 𝜋 and let
A = {𝑔1, . . . , 𝑔𝑝 } be an E-characteristic set of 𝑁 . Let𝑢𝑖 and 𝑣𝑖 denote
the leader and coleader of𝑔𝑖 , respectively (1 ≤ 𝑖 ≤ 𝑝). For any 𝑟, 𝑠 ∈ N
such that 𝑠 ≤ 𝑟 , let
𝑊 (𝑟, 𝑠) = {𝑤 ∈ 𝑇 𝑓 | 𝑠 ≤ ord𝑤 ≤ 𝑟 }, 𝑊𝑀 (𝑟, 𝑠) = 𝜋 (𝑊 (𝑟, 𝑠)),

𝑈 ′(𝑟, 𝑠) = {𝑢 ∈ 𝑇 𝑓 | 𝑠 ≤ ord𝑢 ≤ 𝑟 and 𝑢𝑖 ∤ 𝑢 (𝑖 = 1, . . . , 𝑝)}
𝑈 ′
𝑀 (𝑟, 𝑠) = {𝜋 (𝑢) |𝑢 ∈ 𝑈 ′(𝑟, 𝑠)},

𝑈 ′′(𝑟, 𝑠) = {𝑢 ∈ 𝑇 𝑓 | 𝑠 ≤ ord𝑢 ≤ 𝑟, 𝑢 is divisible by some 𝑢𝑖
(1 ≤ 𝑖 ≤ 𝑝) and whenever 𝑢 = 𝜏𝑢𝑖 for some 𝜏 ∈ 𝑇 , one has
ord(𝜏𝑣𝑖 ) < 𝑠}, and
𝑈 ′′
𝑀 (𝑟, 𝑠) = {𝜋 (𝑢) |𝑢 ∈ 𝑈 ′′(𝑟, 𝑠)}.

Furthermore, let

𝑈 (𝑟, 𝑠) = 𝑈 ′(𝑟, 𝑠)
⋃

𝑈 ′′(𝑟, 𝑠) and 𝑈𝑀 (𝑟, 𝑠) = 𝑈 ′
𝑀 (𝑟, 𝑠)

⋃
𝑈 ′′
𝑀 (𝑟, 𝑠) .

Then for every (𝑟, 𝑠) ∈ N2, 𝑠 < 𝑟 , the set 𝑈𝑀 (𝑟, 𝑠) is a basis of the
𝐾-vector space𝑀𝑟𝑠 .

Proof. First, let us show that the set 𝑈𝑀 (𝑟, 𝑠) is linearly inde-

pendent over 𝐾 . Indeed, suppose that
∑𝑘
𝑖=1 𝑎𝑖𝜋 (𝑢𝑖 ) = 0 for some

𝑢1, . . . , 𝑢𝑘 ∈ 𝑈 (𝑟, 𝑠) and 𝑎1, . . . , 𝑎𝑘 ∈ 𝐾 . Then ℎ =
∑𝑘
𝑖=1 𝑎𝑖𝑢𝑖 is an

element of 𝑁 which is E-reduced with respect to A. Indeed, if a

term 𝑢 = 𝜏 𝑓𝑗 appears in ℎ (so that 𝑢 = 𝑢𝑖 for some 𝑖 , 1 ≤ 𝑖 ≤ 𝑘),

then either 𝑢 is not a transform of any 𝑢𝜈 (1 ≤ 𝜈 ≤ 𝑝) or 𝑢 = 𝜏𝑢𝜈
for some 𝜏 ∈ 𝑇, 1 ≤ 𝜈 ≤ 𝑝 , such that ord(𝜏𝑣𝜈 ) < 𝑠 ≤ ord 𝑣ℎ , hence

𝜏𝑣𝜈 < 𝑣ℎ . Thus, ℎ is E-reduced with respect to the E-characteristic
set A, hence (see Proposition 3.13) ℎ = 0 and 𝑎1 = · · · = 𝑎𝑘 = 0.

Now let us prove that if 𝑠 ∈ N and 𝑠 ≤ 𝑟 − 𝑠0, where 𝑠0 =

max{Eord𝑔𝑖 | 1 ≤ 𝑖 ≤ 𝑝}, then every element 𝜏𝑥 𝑗 ∈ 𝑊𝑀 (𝑟, 𝑠) \
𝑈𝑀 (𝑟, 𝑠) (𝜏 ∈ 𝑇 , 1 ≤ 𝑗 ≤ 𝑛) can be written as a finite linear combi-

nation of elements of 𝑈𝑀 (𝑟, 𝑠) with coefficients in 𝐾 . In this case

𝜏 𝑓𝑗 ∉ 𝑈 (𝑟, 𝑠), hence 𝜏 𝑓𝑗 is equal to some term of the form 𝜏 ′𝑢𝑖
(1 ≤ 𝑖 ≤ 𝑝) where 𝜏 ′ ∈ 𝑇 and ord(𝜏 ′𝑣𝑖 ) ≥ 𝑠 . Let us consider the

element 𝑔𝑖 = 𝑐𝑖𝑢𝑖 + . . . (𝑐𝑖 ∈ 𝐾, 𝑐𝑖 ≠ 0), where dots are placed in-

stead of the linear combination of terms that appear in 𝑔𝑖 and that

are less than 𝑢𝑖 . Since 𝑔𝑖 ∈ 𝑁 = Ker 𝜋 , 𝜋 (𝑔𝑖 ) = 𝑐𝑖𝜋 (𝑢𝑖 ) + · · · = 0,

whence 𝜋 (𝜏 ′𝑔𝑖 ) = 𝑐 𝑗𝜋 (𝜏 ′𝑢𝑖 ) + · · · = 𝑐𝑖𝜋 (𝜏 𝑓𝑗 ) + · · · = 𝑐𝑖𝜏𝑥 𝑗 + · · · = 0,

so that 𝜏𝑥 𝑗 is a finite linear combination with coefficients in 𝐾 of

some elements 𝜏𝑥𝑙 (1 ≤ 𝑙 ≤ 𝑛) such that 𝜏 ∈ 𝑇 (𝑟, 𝑠) and 𝜏 𝑓𝑙 < 𝜏 ′𝑢𝑖 .
Thus, we can apply the induction on the well-ordered set 𝑇 𝑓 and

obtain that every element 𝜏𝑥𝑖 (𝜏 ∈ 𝑇 (𝑟, 𝑠), 1 ≤ 𝑖 ≤ 𝑛) can be written

as a finite linear combination of elements of the set 𝜋 (𝑈 (𝑟, 𝑠)) with
coefficients in 𝐾 . It follows that𝑈𝑀 (𝑟, 𝑠) is a basis of the 𝐾-vector
space𝑀𝑟𝑠 . □

Now we can prove the main theorem.

Proof. As above, let 𝐹 be a free𝔇-module with a basis 𝑓1, . . . , 𝑓𝑛 ,

𝑁 the kernel of the natural 𝜎-epimorphism 𝜋 : 𝐹 → 𝑀 , and

A = {𝑔1, . . . , 𝑔𝑝 } an E-characteristic set of 𝑁 . Furthermore, let

𝑈 (𝑟, 𝑠) and 𝑈𝑀 (𝑟, 𝑠) be the sets defined in the proof of the Lemma

4.3 (𝑠, 𝑟 ∈ N, 𝑠 ≤ 𝑟 ). By this lemma, for any 𝑟, 𝑠 ∈ N, 𝑠 ≤ 𝑟 ,

𝑈𝑀 (𝑟, 𝑠) is a basis of the𝐾-vector space𝑀𝑟𝑠 . Therefore, dim𝐾 𝑀𝑟𝑠 =
Card𝑈𝑀 (𝑟, 𝑠) = Card 𝑈 (𝑟, 𝑠). (It was shown in the second part of

the proof of Lemma 4.3 that the restriction of the mapping 𝜋 on

𝑈 (𝑟, 𝑠) is bijective.)
In order to evaluate the size of𝑈 (𝑟, 𝑠) we are gong to evaluate

the sizes of the sets𝑈 ′(𝑟, 𝑠) and𝑈 ′′(𝑟, 𝑠). For every 𝑘 = 1, . . . , 𝑛, let

𝐴𝑘 = {(𝑖1, . . . , 𝑖𝑚) ∈ N𝑚 | 𝛼𝑖1
1
. . . 𝛼

𝑖𝑚
𝑚 𝑓𝑘 is the leader of some

element of A}.
Applying Theorem 2.2, we obtain that there exists a numerical

polynomial𝜔𝑘 (𝑡) such that𝜔𝑘 (𝑟 ) = Card𝑉𝐴𝑘
(𝑟 ) for all sufficiently

large 𝑟 ∈ N. It follows that if we set 𝜔 (𝑡) =
𝑛∑︁
𝑘=1

𝜔𝑘 (𝑡), then there

exist 𝑟0, 𝑠1 ∈ N such that for all 𝑟, 𝑠 ∈ N with 𝑟 ≥ 𝑟0 and 𝑠1 ≤ 𝑠 ≤
𝑟 − 𝑠0, Card𝑈 ′(𝑟, 𝑠) = 𝜔 (𝑟 ) − 𝜔 (𝑠). Furthermore, deg𝜔 ≤ 𝑚, and

deg𝜔 = 𝑚 if and only if at least one of the sets 𝐴𝑘 (1 ≤ 𝑘 ≤ 𝑛) is

empty.

In order to evaluate Card𝑈 ′′(𝑟, 𝑠) note that this set consists of
all terms 𝜏𝑢𝑖 (𝜏 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑝) such that 𝑠 ≤ ord(𝜏𝑢𝑖 ) ≤ 𝑟 and

ord(𝜏𝑣𝑖 ) < 𝑠 . For every fixed 𝑖 , the number 𝑁𝑖 of such terms is

equal to Card{𝜏 ∈ 𝑇 | 𝑠 − ord𝑢𝑖 − 1 < ord𝜏 ≤ 𝑠 − ord 𝑣𝑖 − 1} =(𝑠 − ord 𝑣𝑖 − 1 +𝑚
𝑚

)
−
(𝑠 − ord𝑢𝑖 − 1 +𝑚

𝑚

)
.

Applying the principle of inclusion and exclusion (taking into ac-

count terms that are multiples of more than one leaders 𝑢𝑖 ), we

obtain that Card𝑈 ′′(𝑟, 𝑠) is an alternating sum of polynomials of

the form

(𝑠 − 𝑎 +𝑚
𝑚

)
−
(𝑠 − 𝑏 +𝑚

𝑚

)
where 𝑎, 𝑏 ∈ N, 𝑎 ≤ 𝑏. It follows

that Card𝑈 ′′(𝑟, 𝑠) is expressed by a numerical polynomial of 𝑠 of

degree at most𝑚 − 1. Denoting this polynomial by 𝜔 ′(𝑠) and set-

ting 𝜓 (1) (𝑡1) = 𝜔 (𝑡1) and 𝜓 (2) (𝑡2) = 𝜔 (𝑡2) − 𝜔 ′(𝑡2), we obtain a

numerical polynomial𝜓 (𝑡1, 𝑡2) = 𝜓 (1) (𝑡1) −𝜓 (2) (𝑡2) that satisfies
conditions (i) and (ii) of our theorem. Furthermore, it follows from

Remark 3.18 that 𝜓 (1) (𝑡1) = 𝜙 (𝑡1) where 𝜙 (𝑡) is the polynomial

described in part (iii) of the theorem.

In order to prove the last two statements of the theorem, sup-

pose that {𝑧1, . . . , 𝑧𝑘 } is another system of generators of𝑀 as a𝔇-

module and let 𝑀̄𝑟𝑠 =

𝑘∑︁
𝑖=1

𝔇𝑟𝑠𝑧𝑖 and 𝑀̄𝑟 =

𝑘∑︁
𝑖=1

𝔇𝑟𝑧𝑖 for any 𝑟, 𝑠 ∈ N.

Then there exists 𝑞 ∈ N such that 𝑥𝑖 ∈ 𝑀̄𝑞 and 𝑧 𝑗 ∈ 𝑀𝑞 (1 ≤ 𝑖 ≤
𝑛, 1 ≤ 𝑗 ≤ 𝑘). It follows that if ¯𝜓 (𝑡1, 𝑡2) is the 𝜎-𝐸-dimension poly-

nomial associated with the system of 𝜎-𝐾-generators {𝑧1, . . . , 𝑧𝑘 },
then for all sufficiently large 𝑟, 𝑠 ∈ Nwith 𝑠1 ≤ 𝑠 ≤ 𝑟 −𝑠0 for certain
𝑠0, 𝑠1 ∈ N, one has

𝜓 (𝑟, 𝑠) ≤ ¯𝜓 (𝑟 + 𝑞, 𝑠) and
¯𝜓 (𝑟, 𝑠) ≤ 𝜓 (𝑟 + 𝑞, 𝑠) . (5)

Furthermore, as we have proved, 𝜓 (1) (𝑡1) = 𝜙 (𝑡1) and ¯𝜓 (1) (𝑡1) =
¯𝜙 (𝑡1) where 𝜙 (𝑡1) and ¯𝜙 (𝑡1) are 𝜎-dimension polynomials of𝑀 as-

sociatedwith filtrations (𝑀𝑟 =
𝑛∑︁
𝑖=1

𝔇𝑟𝑥𝑖 )𝑟 ∈Z and (𝑀̄𝑟 =
𝑘∑︁
𝑗=1

𝔇𝑟𝑧 𝑗 )𝑟 ∈Z,

respectively. It follows from Theorem 2.1 that the coefficients of

𝑡𝑚
1

in the polynomials 𝜓 and
¯𝜓 are equal to 𝜎-dim𝐾 𝑀 , deg𝑡1

𝜓 =

deg𝑡1
¯𝜓 , and if this common degree is denoted by 𝑑 , then 𝜓 and

¯𝜓 have the same coefficient 𝑎𝑑 of the summand

(
𝑡1 + 𝑑
𝑑

)
in the

representation (4).



If deg𝜓 (1) < deg𝜓 (2)
, then setting 𝑠 = 𝑟 − 𝑠0 we would have

𝜓 (𝑟, 𝑟 − 𝑠0) < 0 for sufficiently large 𝑟 , a contradiction. Therefore,

deg𝜓 (1) ≥ deg𝜓 (2)
.

The evaluation of Card𝑈 ′′(𝑟, 𝑠) in the proof of the first part of

the theorem shows that this number is expressed by a polynomial of

𝑠 of degree at most𝑚−1. Suppose that deg𝜓 (1) = deg𝜓 (2) = 𝑒 < 𝑚.

Then setting 𝑡1 = 𝑟 and 𝑡2 = 𝑟 − 𝑠0 in the representations of the

form (4) for𝜓 (𝑡1, 𝑡2) and ¯𝜓 (𝑡1, 𝑡2) and using (5), we obtain that the

coefficients of 𝑟𝑒 in the resulting polynomials of 𝑟 are the same,

𝑎𝑒 − 𝑏𝑒 . Since 𝑎𝑒 is an invariant of the module𝑀 , so is 𝑏𝑒 . □

Example 4.4. Let 𝐾 be a difference field with a basic set 𝜎 =

{𝛼1, 𝛼2} and let𝑀 be a 𝜎-𝐾-module with one generator 𝑥 over the

ring of 𝜎-operators𝔇 and with the defining equation

𝛼𝑎
1
𝛼𝑏
2
𝑥 + 𝛼𝑏

1
𝑥 + 𝛼𝑎

2
𝑥 = 0. (6)

where 𝑎 and 𝑏 are positive integers, 1 ≤ 𝑎 ≤ 𝑏. In other words,

if 𝐹 denotes the free 𝔇-module with free generator 𝑓 and 𝑔 =

𝛼𝑎
1
𝛼𝑏
2
𝑓 + 𝛼𝑏

1
𝑓 + 𝛼𝑎

2
𝑓 ∈ 𝐹 , then 𝑁 = [𝑔] is the kernel of the nat-

ural 𝜎-epimorphism 𝐹 → 𝑀 (𝑓 ↦→ 𝑥). By Proposition 3.17, {𝑔} is
an E-characteristic set of 𝑁 . With the notation of Section 3 we

have 𝑢𝑔 = 𝛼𝑎
1
𝛼𝑏
2
𝑓 , 𝑣𝑔 = 𝛼𝑎

2
𝑓 , Eord(𝑔) = (𝑎 + 𝑏) − 𝑎 = 𝑏, and

E ord(𝑔) = (𝑏, 𝑎, 𝑏 − 𝑎, 0). Furthermore, with the notation of the

proof of Lemma 4.3, if 𝑠 is sufficiently large and 𝑠 ≤ 𝑟 − 𝑏, then

𝑈 ′(𝑟, 𝑠) = {𝛼𝑖
1
𝛼
𝑗

2
𝑓 ∈ 𝑇 𝑓 | 𝑠 ≤ 𝑖 + 𝑗 ≤ 𝑟 and (𝑎, 𝑏) ≰𝑃 (𝑖, 𝑗)}.

Then

Card𝑈 ′(𝑟, 𝑠) =
[(
𝑟 + 2

2

)
−
(
𝑟 + 2 − (𝑎 + 𝑏)

2

)]
−
[(
(𝑠 − 1) + 2

2

)
− //(

(𝑠 − 1) + 2 − (𝑎 + 𝑏)
2

)]
= (𝑎+𝑏)𝑟−(𝑎+𝑏)𝑠+(𝑎+𝑏).

Now,

Card𝑈 ′′(𝑟, 𝑠) = Card{𝛼𝑘1
1
𝛼
𝑘2
1
(𝛼𝑎

1
𝛼𝑏
2
𝑦) | 𝑘1 + 𝑘2 + 𝑎 + 𝑏 ≥ 𝑠 and

𝑘1 +𝑘2 +𝑎 < 𝑠} = Card{(𝑘1, 𝑘2) ∈ N2 | 𝑠 − (𝑎+𝑏) ≤ 𝑘1 +𝑘2 < 𝑠 −𝑎}

=

(
𝑠 − (𝑎 + 1) + 2

2

)
−
(
𝑠 − (𝑎 + 𝑏 + 1) + 2

2

)
= 𝑏𝑠−𝑏 (2𝑎 + 𝑏 − 1)

2

.

We obtain that

Card𝑈 (𝑟, 𝑠) = Card𝑈 ′(𝑟, 𝑠)+Card𝑈 ′′(𝑟, 𝑠) = (𝑎+𝑏)𝑟−𝑎𝑠−
𝑏2 + 2𝑎𝑏 − 3𝑏 − 2𝑎

2

, so that the 𝜎-𝐸-dimension polynomial of𝑀

associated with the generator 𝑥 is as follows:

𝜓 (𝑡1, 𝑡2) = (𝑎+𝑏)𝑡1−𝑎𝑡2−
𝑏2 + 2𝑎𝑏 − 3𝑏 − 2𝑎

2

.

By Remark 3.18, the univariate 𝜎-dimension polynomial 𝜙 (𝑡) of
the 𝜎-𝐾-module𝑀 associated with the generator 𝑥 is equal to the

Kolchin polynomial of the set {(𝑎, 𝑏)} ⊂ N2. By Theorem 2.3,

𝜙 (𝑡) =
(
𝑡 + 2

2

)
−
(
𝑡 + 2 − (𝑎 + 𝑏)

2

)
= (𝑎 + 𝑏)𝑡 − (𝑎 + 𝑏) (𝑎 + 𝑏 − 3)

2

.

Comparing this polynomial with the bivariate 𝜎-𝐸-dimension poly-

nomial 𝜓 (𝑡1, 𝑡2), we see that 𝜙 (𝑡) carries two invariants of the

module 𝑀 , deg𝜙 (𝑡) = 1 and the leading coefficient 𝑎 + 𝑏. At the
same time,𝜓 (𝑡1, 𝑡2) carries three such invariants: deg𝑡1

𝜓 = 1, 𝑎 + 𝑏
(the coefficient of 𝑡1), and −𝑎 (the coefficient of 𝑡2). Thus,𝜓 (𝑡1, 𝑡2)

gives both parameters 𝑎 and 𝑏 of the defining equation (6) while

𝜙 (𝑡) gives just the sum of the parameters.

The last example illustrates an important application of the ob-

tained results to the isomorphism problem for difference modules.

The example shows that it is possible that two non-isomorphic

finitely generated 𝜎-𝐾-modules have the same invariants carried

by the univariate 𝜎-dimension polynomial, but have different invari-

ants carried by their bivariate 𝜎-𝐸-dimension polynomials. There-

fore, the fact that two finitely generated 𝜎-𝐾-modules are not

isomorphic can be proved by comparing the corresponding 𝜎-

𝐸-dimension polynomials computed from the corresponding E-
characteristic sets while the test based on consideration of invari-

ants of univariate 𝜎-dimension polynomials is inconclusive.

To justify the last observation, let us consider a cyclic 𝜎-𝐾-

module𝑀 ′ = 𝔇𝑦 with defining equation

𝛼𝑎
1
𝛼𝑏
2
𝑦 + 𝑦 = 0.

Proceeding as in Example 4.4, we get (with the above notation)

Card𝑈 ′(𝑟, 𝑠) = (𝑎 + 𝑏)𝑟 − (𝑎 + 𝑏)𝑠 + (𝑎 + 𝑏)
(the same as the corresponding value in Example 4.4) and

Card𝑈 ′′(𝑟, 𝑠) = (𝑎 + 𝑏)𝑠 − (𝑎 + 𝑏) (𝑎 + 𝑏 − 1)
2

,

so the univariate 𝜎-dimension and bivariate 𝜎-𝐸-dimension poly-

nomials for𝑀 ′
associated with the generator 𝑦 are

𝜙 ′(𝑡) = (𝑎+𝑏)𝑡− (𝑎 + 𝑏) (𝑎 + 𝑏 − 3)
2

and

𝜓 ′(𝑡1, 𝑡2) = (𝑎+𝑏)𝑡1−
(𝑎 + 𝑏) (𝑎 + 𝑏 − 1)

2

,

respectively. Thus, the 𝜎-dimension polynomials of𝑀 (see Example

4.4) and𝑀 ′
carry the same invariants, deg𝜙 (𝑡) = deg𝜙 ′(𝑡) = 1 and

𝑎 + 𝑏. At the same time, the sets of invariants of the 𝜎-𝐸-dimension

polynomials 𝜓 (𝑡1, 𝑡2) and 𝜓 ′(𝑡1, 𝑡2) are {deg𝑡1 𝜓 = 1, 𝑎 + 𝑏,−𝑎}
and {deg𝑡1 𝜓

′ = 1, 𝑎 + 𝑏, 0}, respectively. Therefore, 𝑀 and 𝑀 ′

are not isomorphic (as𝔇-modules) even though they have the same

invariants carried by their univariate 𝜎-dimension polynomials.

Theorem 4.1 implies the following result about difference fields.

Theorem 4.5. Let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ be a 𝜎-field extension gener-
ated by a set 𝜂 = {𝜂1, . . . , 𝜂𝑛}. (As before, 𝜎 = {𝛼1, . . . , 𝛼𝑚}.) Then
there exists a polynomial 𝜓𝜂 |𝐾 (𝑡1, 𝑡2) ∈ Q[𝑡1, 𝑡2] and 𝑟0, 𝑠0, 𝑠1 ∈ N
with 𝑠1 < 𝑟0 − 𝑠0 such that

(i) 𝜓𝜂 |𝐾 (𝑟, 𝑠) = tr. deg𝐾 𝐾 ({𝜏𝜂 𝑗 | 𝜏 ∈ 𝑇 (𝑟, 𝑠), 1 ≤ 𝑗 ≤ 𝑛}) for all
(𝑟, 𝑠) ∈ N2 with 𝑟 ≥ 𝑟0, 𝑠1 ≤ 𝑠 ≤ 𝑟 − 𝑠0.

(ii) 𝜓𝜂 |𝐾 (𝑡1, 𝑡2) = 𝜓
(1)
𝜂 |𝐾 (𝑡1) − 𝜓

(2)
𝜂 |𝐾 (𝑡2) where deg 𝜓

(𝑖)
𝜂 |𝐾 (𝑡) ≤ 𝑚

(𝑖 = 1, 2), so𝜓𝜂 |𝐾 (𝑡1, 𝑡2) can be written as

𝜓𝜂 |𝐾 (𝑡1, 𝑡2) =
𝑚∑︁
𝑖=0

𝑎𝑖

(
𝑡1 + 𝑖
𝑖

)
−

𝑚∑︁
𝑗=0

𝑏 𝑗

(
𝑡2 + 𝑗
𝑗

)
where 𝑎𝑖 , 𝑏 𝑗 ∈ Z.

(iii) 𝑎𝑚 = 𝑏𝑚 = 𝜎-tr. deg𝐾 𝐿. Furthermore, 𝑑 = deg𝑡1
𝜓𝜂 |𝐾 , and

𝑎𝑑 are also invariants of the extension 𝐿/𝐾 , that is, they do not depend
on the system of 𝜎-generators of 𝐿/𝐾 . Finally, deg𝜓 (1)

𝜂 |𝐾 ≥ deg𝜓
(2)
𝜂 |𝐾

and if deg𝜓 (1)
𝜂 |𝐾 = 𝜓

(2)
𝜂 |𝐾 = 𝑒 < 𝑚, then 𝑏𝑒 is also an invariant of the

extension.



Proof. Let 𝐿∗ be the inversive closure of 𝐿 and let Ω𝐿∗ |𝐾 be

the module of Kähler differentials of the extension 𝐿∗/𝐾 . By [11,

Lemma 4.2.8], Ω𝐿∗ |𝐾 has a natural structure of an inversive differ-

ence (𝜎-) 𝐿∗-module, that is, Ω𝐿∗ |𝐾 is an 𝐿∗-vector space on which

elements of the set 𝜎∗ = {𝛼1, . . . , 𝛼𝑚, 𝛼−1
1
, . . . , 𝛼−1𝑚 } act in such a

way that 𝛼 (𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦, 𝛼 (𝛽𝑥) = 𝛽 (𝛼𝑥), 𝛼 (𝑎𝑥) = 𝛼 (𝑎)𝛼 (𝑥),
and 𝛼 (𝛼−1𝑥) = 𝑥 for any 𝛼, 𝛽 ∈ 𝜎∗; 𝑥,𝑦 ∈ Ω𝐿∗ |𝐾 ; 𝑎 ∈ 𝐿∗. Fur-
thermore, 𝛼 (𝑑𝜁 ) = 𝑑𝛼 (𝜁 ) for any 𝜁 ∈ 𝐿∗ (𝑑 : 𝐿∗ → Ω𝐿∗ |𝐾 is the

universal 𝐾-linear derivation). In particular, Ω𝐿∗ |𝐾 is a𝔇-module,

where 𝔇 is the ring of 𝜎-operators over 𝐿∗, and we can consider

a 𝔇-submodule 𝑀 =

𝑛∑︁
𝑖=1

𝔇𝑑𝜂𝑖 of Ω𝐿∗ |𝐾 . For any 𝑟, 𝑠 ∈ N, let

𝑀𝑟𝑠 =

𝑛∑︁
𝑖=1

𝔇𝑟𝑠𝑑𝜂𝑖 where 𝔇𝑟𝑠 is the 𝐿
∗
-vector subspace of 𝔇 gen-

erated by the set 𝑇 (𝑟, 𝑠). It follows from [11, Proposition 1.7.13]

that dim𝐿∗ 𝑀𝑟𝑠 = tr. deg𝐾 𝐾 ({𝜏𝜂 𝑗 | 𝜏 ∈ 𝑇 (𝑟, 𝑠), 1 ≤ 𝑗 ≤ 𝑛}), so all

statements of our theorem follow from Theorem 4.1. □

The bivariate polynomial𝜓𝜂 |𝐾 (𝑡1, 𝑡2) is called a 𝜎-𝐸-dimension
polynomial of the 𝜎-field extension 𝐿/𝐾 associated with the system

of generators 𝜂.

Note that the last theorem generalizes the theorem on univariate

difference dimension polynomial of a difference field extension

introduced in [7]. (With the notation of Theorem 4.5, this numerical

polynomial gives tr. deg𝐾 𝐾 ({𝜏𝜂 𝑗 | 𝜏 ∈ 𝑇 (𝑟 ), 1 ≤ 𝑗 ≤ 𝑛}) for all
sufficiently large 𝑟 ∈ N). Applications of univariate dimension

polynomials of difference field extensions to the study of difference

rings, modules and systems of algebraic difference equations, as

well as methods of computation of such polynomials, can be found

in [6] and [11].

The 𝜎-𝐸-dimension polynomial has a natural interpretation in

the spirit of Einstein’s strength of a system of equations in finite

differences (see [11, Section 7.7] for the description of this notion,

which is a difference analog of Einstein’s strength of a system of

partial differential equations introduced in [2]). Let

𝐴𝑖 (𝑓1, . . . , 𝑓𝑛) = 0 (𝑖 = 1, . . . , 𝑝) (7)

be a system of equations in finite differences with respect to 𝑛 un-

known grid functions 𝑓1, . . . , 𝑓𝑛 in𝑚 real variables 𝑥1, . . . , 𝑥𝑚 with

coefficients in some functional field 𝐾 . Suppose that the difference

grid, whose nodes form the domain of considered functions, has

equal cells of dimension ℎ1 × · · · × ℎ𝑚 (ℎ1, . . . , ℎ𝑚 ∈ R) and fills

the whole space R𝑚 . (As an example, one can consider a field 𝐾

consisting of the zero function and fractions of the form 𝑢/𝑣 where
𝑢 and 𝑣 are grid functions defined almost everywhere and vanish-

ing at a finite number of nodes.) Let us fix some node P and say

that a node Q has order 𝑖 (with respect to P) if the shortest path

from P to Q along the edges of the grid consists of 𝑖 steps (by a

step we mean a path from a node of the grid to a neighbor node

along the edge between these two nodes). Let us consider the val-

ues of the unknown grid functions 𝑓1, . . . , 𝑓𝑛 at the nodes whose

orders lie between 𝑠 and 𝑟 inclusively (𝑟, 𝑠 ∈ N, 𝑠 ≤ 𝑟 ). If 𝑓1, . . . , 𝑓𝑛
should not satisfy any system of equations (or any other condition),

their values at nodes of any order can be chosen arbitrarily. Be-

cause of the system in finite differences (and equations obtained

from the equations of the system by transformations of the form

𝑓𝑗 (𝑥1, . . . , 𝑥𝑚) ↦→ 𝑓𝑗 (𝑥1+𝑘1ℎ1, . . . , 𝑥𝑚+𝑘𝑚ℎ𝑚)with𝑘1, . . . , 𝑘𝑚 ∈ N,
1 ≤ 𝑗 ≤ 𝑚), the number of independent values of the functions

𝑓1, . . . , 𝑓𝑛 at the nodes of order ≤ 𝑟 decreases. This number, which

is a function of 𝑟 and 𝑠 , can be viewed as a generalized ”measure

of strength” of the system in finite differences (in the sense of A.

Einstein). We denote it by 𝑆𝑟𝑠 . (The direct difference counterpart of

Einstein’s strength expresses the number of independent values of

unknown functions at nodes of order at most 𝑟 , 𝑟 ∈ N.)
Considering the field of coefficients 𝐾 as a difference field with

a set of𝑚 translation 𝜎 = {𝛼1, . . . , 𝛼𝑚} such that

𝛼 𝑗 𝑓 (𝑥1, . . . , 𝑥𝑚) = 𝑓 (𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗 + ℎ 𝑗 , . . . , 𝑥𝑚)
(1 ≤ 𝑗 ≤ 𝑚) and assuming that the left-hand sides of equations (7)

are polynomials in 𝑓𝑖 ’s and their transforms, we can treat system (7)

as a system of algebraic difference equations𝐴𝑖 (𝑦1, . . . , 𝑦𝑛) = 0 (1 ≤
𝑖 ≤ 𝑛) in the ring of difference (𝜎-) polynomials 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛}.
Suppose that the reflexive difference ideal 𝑃 generated by𝐴1, . . . , 𝐴𝑝
in 𝑅 is prime (in this case the system (7) is said to be prime) and 𝐿

is the difference field of fractions of 𝑅/𝑃 . Then 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩,
where 𝜂𝑖 denotes the canonical image of 𝑦𝑖 in 𝐿 (1 ≤ 𝑖 ≤ 𝑛), and

one can consider the 𝜎-𝐸-dimension polynomial𝜓𝜂 |𝐾 (𝑡1, 𝑡2) of the
𝜎-field extension 𝐿/𝐾 associated with the system of generators

𝜂. This polynomial is said to be the 𝜎-𝐸-dimension polynomial of

system (7). In the considered case,𝜓𝜂 |𝐾 (𝑟, 𝑠) = 𝑆𝑟𝑠 for sufficiently

large values of 𝑟 and 𝑠 (and with 𝑠 ≤ 𝑟 − 𝑠0 for some 𝑠0 ∈ N),
so the 𝜎-𝐸-dimension polynomial of a prime system of difference

equations can be viewed as a generalized measure of strength of

such a system. In this connection, Example 4.4 can be viewed as

computation of the strength of equation (6); equations of this type

arise from finite difference approximations to heat, wave and many

other PDEs of mathematical physics.
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