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ABSTRACT

We introduce a new type of reduction in a free difference module
over a difference field that uses a generalization of the concept of
effective order of a difference polynomial. Then we define the con-
cept of a generalized characteristic set of such a module, establish
some properties of these characteristic sets and use them to prove
the existence, outline a method of computation and find invari-
ants of a dimension polynomial in two variables associated with
a finitely generated difference module. As a consequence of these
results, we obtain a new type of bivariate dimension polynomials
of finitely generated difference field extensions. We also explain the
relationship between these dimension polynomials and the concept
of Einstein’s strength of a system of difference equations.
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1 INTRODUCTION

Difference dimension polynomials play the same role in difference
algebra, as Hilbert polynomials play in commutative algebra and
algebraic geometry. (A similar role in differential algebra is played
by differential dimension polynomials introduced by E. Kolchin
in [4]; see also [5, Chapter 2].) Several applications of difference
dimension polynomials to the study of difference algebraic struc-
tures are based on the fact that if P is a prime reflexive difference
ideal in a ring of difference polynomials R = K{yi,...,yn} over
a difference field K, then the quotient field of R/P is a difference
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field extension of K generated by the images of y; in R/P. The di-
mension polynomial of this extension, therefore, characterizes the
ideal P; assigning such polynomials to prime reflexive difference
polynomial ideals has led to a number of new results on dimension
of difference varieties (see [3] and [14]) and on the Krull-type di-
mension of difference algebras (see [13], [6, Section 7.2], and [11,
Section 4.6]) and difference field extensions (see [12]). Another im-
portant application of difference dimension polynomials is based
on the fact that the univariate difference dimension polynomial of a
system of algebraic difference equations (defined as the dimension
polynomial of the difference field extension associated with the
system) expresses the A. Einstein’s strength of this system (see [9]
and [11, Chapter 7]). In this connection, the study of difference
dimension polynomials and methods of their computation is of pri-
mary importance for the qualitative theory of difference equations.
One should also mentioned that a number of results on difference
dimension polynomials were generalized to the case of difference
fields and modules where one considers a partition of the basic set
of translations. The corresponding study (see [8] and [10]) resulted
in theorems on multivariate dimension polynomials of difference
modules and difference field extensions that carry more invariants
(i. e., characteristics of a difference module or a difference field
extension that do not depend on the set of generators) than their
univariate counterparts.

In this paper we introduce a reduction in a free difference mod-
ule F over a difference field K that takes into account the effective
order of elements of the module (we generalize the concept of the
effective order of an ordinary difference polynomial defined in
[1, Chapter 2, Section 4] to the partial case) and consider a new
type of characteristic sets that are associated with this reduction
(they are called E-characteristic sets). Then we use properties of
&-characteristic sets to prove the existence of a bivariate dimen-
sion polynomial of a finitely generated difference K-module M that
describes the dimension of intermediate K-vector spaces generated
by the transforms of the module generators whose orders lie be-
tween two given natural numbers. We also determine invariants of
such dimension polynomials, and apply them to the study of the
isomorphism problem for difference modules. As an application,
we obtain a bivariate dimension polynomial of a finitely generated
difference field extension that describes the transcendence degrees
of intermediate fields obtained by adjoining transforms of the gen-
erators whose orders are bounded above and below. We determine
invariants of these polynomials and discuss their relationship with
the concept of Einstein’s strength of a system of algebraic difference
equations.
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2 PRELIMINARIES

Throughout the paper, N, Z, Q, and R denote the sets of all non-
negative integers, integers, rational numbers, and real numbers,
respectively. If m € Z, m > 1, then <p will denote the product
order on N™ that is, a partial order <p such that (ay,...,am) <p
(af,....ap,) if and only if a; < alf fori=1,...,m.

By a ring we always mean an associative ring with unity. Every
ring homomorphism is unitary (maps unity to unity) and every sub-
ring of a ring contains the unity of the ring. Every field considered
in this paper is supposed to have zero characteristic. Q[t1, ..., tp]
will denote the ring of polynomials in variables t1, . . ., tp over Q.

By a difference ring we mean a commutative ring R considered
together with a finite set 0 = {a1, ..., an} of injective endomor-
phisms of R (called translations) such that any two mappings «;
and «j commute. The set o is called the basic set of the difference
ring R, which is also called a o-ring. If R is a field, it is called a
difference field or a o-field. (In what follows, we will often use prefix
o- instead of the adjective “difference”.)

In what follows T denotes the free commutative semigroup gen-
erated by the set o, that is, the semigroup of all power products

m

T= aicl ...afn'" (k; € N). The number ordz = Z k; is called the
i=1
order of 7. Furthermore, for every r,s € N, s < r, we set

T(ry={r€eT|ordr<r} and T(r,s)={reT|s<ordr <r}.

A subring (respectively, ideal) Ry of a o-ring R is said to be a differ-
ence (or 0-) subring of R (respectively, a difference (or o-) ideal of
R) if Ry is closed with respect to the action of any operator in o. In
this case the restriction of a mapping in o to Ry is denoted by the
same symbol. If a prime ideal P of R is closed with respect to the
action of o, it is called a prime o-ideal of R.

If L is a o-field and K a subfield of L which is also a o-subring of
L, then K is said to be a o-subfield of L; L, in turn, is called a o-field
extension or a o-overfield of K (we also say that we have a o-field
extension L/K). The maximal number of elements {1,...,{} € L
such that the set {z({;) |7 € T,1 < i < k} is algebraically inde-
pendent over K is called the o-transcendence degree of L over K;
it is denoted by o-tr.degy L. If S C L, then the intersection of all
o-subfields of L containing K and S is the unique o-subfield of L
containing K and S and contained in every o-subfield of L con-
taining K and S. It is denoted by K(S). If S is a finite subset of L,
S = {n1,...,nn}, then L is said to be a finitely generated o-field
extension of K with the set of o-generators {71, ...,1,}. In this
case we write L = K(5j1, ..., ). It is easy to see that K(n1,...,nn)
coincides with the field K({zn; | € T, 1 < i < n}). (Here and below
we often write rn for () where r € T, n € L.)

A difference (o-) field K is said to be inversive if the elements
of o are automorphisms of K. As it is shown in [11, Proposition
2.1.7], any o-field K has an inversive closure, that is, an inversive
o-overfield K* of K with the property that for any a € K*, there
exists 7 € T such that 7(a) € K.

Let K be a difference field with a basic set o = {a1, . .., @m }. With
the above notation, an expression of the form .7 a7, where
ar € R for any 7 € T and only finitely many elements a, are
different from 0, is called a o-operator over K. Two o-operators
Yzer arT and Y 1 b7 are considered to be equal if and only if

ar = b for any 7 € T. The set of all o-operators over K will be
denoted by ®. This set, which has a natural structure of a K-vector
space with a basis T, becomes a ring if one sets 7a = 7(a)7 for any
a € K, r € T and extends this rule to the multiplication of any
two o-operators by distributivity. The resulting ring D is called the
ring of o-operators over K. A left D-module is called a difference
K-module or a 0-K-module. In other words, a K-vector space M
is a difference (or o-) K-module, if the elements of o act on M
in such a way that a(x + y) = a(x) + a(y), a(fx) = f(ax), and
a(ax) = a(a)a(x) forany x,y €e M; a,f € 0; a € K.

If M is a 0-K-module and S C M, then the D-submodule of M
generated by S is denoted by [S]. A o-K-module is said to be finitely
generated (respectively, free) if it is finitely generated (respectively,
free) as a left D-module. If M and N are two o-K-modules, then a
homomorphism of D-modules ¢ : M — N is said to be a difference
(or 0-) homomorphism if ¢(ax) = a¢p(x) for any x € M, @ € o.

If M is a o-K-module, then the maximal number of elements
e1,...,er € M such that the set {re; |7 € T,1 < i < k} is linearly
independent over K is called the difference (or o-) dimension of M
over K; it is denoted by o-dimg M.

The following theorem proved in [6, Section 6.2] establishes the
existence of a Hilbert-type dimension polynomial associated with
a finite system of generators of a 0-K-module.

THEOREM 2.1. Let K be a difference field of characteristic zero
with a basic set 0 = {a1, ..., am}, D the ring of o-operators over K,
and M a finitely generated o-K-module with generators x1, . .., Xn

n

(that is, M = Z Dx;). For anyr € N, let M, denote the K-vector
space generateldlby all elements of the formtx; (t € T,1 < i < n)
with ord < r. Then there exists a polynomial ¢(t) € Q[t] with the
following properties.
(i) ¢(r) = dimg M, for all sufficiently larger € N (that is, there
exists ro € N such that the last equality holds for all integersr > rg).
(ii) deg ¢(t) < m and the polynomial ¢(t) can be written as

m .
o(t) = Z(; c,-(t :— l) where g, C1, . ..,Cm € Z. (As usual, (I:.'i) denotes
i=l
the polynomial (t+i)(t+i—1)...(t+1)/i! € Q[¢] that takes integer
values for all sufficiently large integer values of t.)
(iii) The integers d = deg ¢(t), ¢y and cq (if d < m) do not
depend on the choice of the system of generators of M over ©. Fur-
thermore, ¢, = o-dimg M.

The polynomial ¢(t) is called a o-dimension polynomial of the o-
K-module M associated with the system of o-generators xy, . . ., xp.

DIMENSION POLYNOMIALS OF SUBSETS OF N™

A polynomial in p variables f(t1,...,tp) € Q[t1,...,tp] is called
numerical if f(ry,...,rp) € Z for all sufficiently large (r1,...,rp) €
NP (It means that there exist s1, ..., sp €N such that the equality
holds for all (ry,...,rp) € NP withry > s1,...,1p 2 s5p.).

Of course, every polynomial with integer coefficients is numeri-

cal. As an example of a numerical polynomial in p variables with
P
t.
non-integer coefficients (p > 1) one can consider 1—[ ( ! ) where
n mi
i=1
my,...,mp € N. Note that the o-dimension polynomial ¢(t) intro-
duced in Theorem 2.1 is a univariate numerical polynomial.



As it is shown in [6, Chapter 2], a numerical polynomial in p
variables has a canonical” representation as

& R t+i ty+i
— 1Th PP
oo t)) = > ... - 1
=2 Y[ 0) - [717) 0
i1=0 ip=0
with uniquely defined integer coefficients a;, . . iy (m; is the degree
of this polynomial with respect to t;, 1 < i < p).

In what follows, if A is a subset of N™ (m is a positive integer),
then V4 will denote the set of all m-tuples v = (v1,...,0,) € N™
such that a £p v for every a € A (i. e, forany a = (ay,...,am) € A,
there exists i, 1 < i < m, such that a; > v;). Furthermore, for any

m
reN,weset A(r) = {(ai,...,am) € A Zai <rh
i=1

The following theorem about a univariate numerical polynomial
associated with a subset of N™ is due to E. Kolchin, see [5, Chapter
0, Lemma 16].

THEOREM 2.2. Let A C N'™. Then there exists a numerical polyno-
mial wa(t) such that

(i) wa(r) =Card V4(r) for all sufficiently larger € N.

(ii) deg wa < m.

(i) deg wa = m if and only if A = 0. In this case

t+m
wa(t) = ( .
m
(iv) wa =0 ifandonlyif(0,...,0) € A.

The polynomial w4 (t) is called the Kolchin polynomial of the set
ACN™

Note that if A € N and A’ is the set of all minimal elements
of A with respect to the product order on N™, then the set A’ is
finite (it follows from [5, Ch. 0, Lemma 15] that states that for any
infinite set A C N, there exists an infinite sequence of elements of
A, strictly increasing relative to the product order). The following
theorem proved in [6, Chapter 2] gives an explicit formula for the
Kolchin polynomial of a finite subset of N

THEOREM 2.3. Let A ={ay,...,an} be a finite subset of N and
letag = (agy,...,akm) 1 <k <n).Foranyl e N,0 <[ < n, let
T'(1, n) denote the set of all I-element subsets of the set N, = {1,...,n}.
Letagj = 0 and foranyy € T(L,n), y # 0, leta,j = max{a;; | i € y}
(1< j<m) Then

oa= Y0 Y (”m_ZT”dW) @)

=0 yeT(Ln) m

3 &-REDUCTION AND E-GROBNER BASES IN
FREE DIFFERENCE MODULES

Let K be a difference field with a basic set o = {a1,...,am} and
F a free 0-K-module with free generators fi,..., fy (i. e., these
generators form a basis of the free left module F over the ring of
o-operators D over K). Then the elements of the form zf, (r €
T,1 < v < n) are called terms; the set of all terms is denoted by Tf.
It is easy to see that this set is a basis of F treated as a vector space
over the field K.

The order of a term u = 7f; (denoted by ord u) is defined as the
order of 7. As usual, if 7, 7’ € T, we say that 7 divides 7’ (and write
t|7’)if v’ = 77" for some v/ € T.If u = 7f; and v = 7’f; are two

terms in T f, we say that u divides v (and write u|v) if i = j and 7|7’.
In this case we also say that v is a transform of u.

By a ranking on Tf we mean a well-ordering < of the set of
terms T f that satisfies the following two conditions:

(i) u < tuforanyu € Tf, 7 € T. (We denote the ordering of T f
by the usual symbol < and writeu <vorov > uifu <vandu # 0.)

(i) fu,v e Tfandu <o, thenru < 7o forany r € T.

A ranking is said to be orderly if the inequality ord u < ord v
(u,0 € Tf) implies u < v. In what follows, we assume that the fol-
lowing orderly ranking < on Tf is fixed: if u; = a]fl .. afn'"ﬁ, uy =
ail . .ocf;,"fj € Tf, then u; < uy if and only if

(orduy, ki, ..., km, i) <pex (ordug,l,...,Im, j)
(<Jex denotes the lexicographic order on N™*2), In this case we set
p(ug, up) = (orduy —orduy, by —ki, ..., Iy —km, j — i) € NxZ™*1,

REMARK 3.1. Note that foreveryr =1,...,m, |l —ky| < I +k, <
ord uy + ord uy. It follows that there is no infinite sequences of terms

U, U, . .., 01,02, ... such that p(ui, v1) >jex p(U2,02) >lex - - -

Since the set T f is a basis of the vector K-space F, every nonzero
element f € F has a unique (up to the order of the terms in the
sum) representation in the form

g=a1T1ﬁ1+--~+aprpﬁp (3)
where 11 fi;, ..., 7pfi, are distinct elements of Tf (1 < iy, ..., ip < n)
and aq,..., a, are nonzero elements of K.

DEFINITION 3.2. Let g be an element of the free o-K-module F
written in the form (3) and let 7, f;, and tsfi, (1 < r,s < p) be the
greatest and the smallest terms in the set {1 f;,, ..., 71 fi, }, respectively,
relative to the introduced order on T f. Then the terms 7, f;, and 7 f;
are called, respectively, the leader and coleader of the element g;
they are denoted by ug and vy, respectively. The coefficient of ug is
called the leading coefficient of g; it is denoted by lc(g).

DEFINITION 3.3. If0 # g € F,uy = a]fl .,.a,lj{"ﬁ,vg = ail af;;’f]

then the nonnegative integer Eord(g) = ord ug — ord vy is called the
effective order of g. The (m + 2)-tuple ji(ug,vg) € Z"™+2 is said to
be the full effective order of g; it is denoted by & ord(g).

It follows from the last definition that for any g € F and for any
7 € T, Eord(rg) = Eord(g) and Eord(zg) = & ord(g). Furthermore,
if g, h € F and Eord(g) < Eord(h), then u(uy, vg) < p(up,vy) (with
respect to the lexicographic order on Z™*2), that is, & ord(g) <
& ord(h) (we will always compare the full effective orders of ele-
ments of F by the lexicographic order).

DEFINITION 3.4. Let g,h € F. We say that g is &-reduced with
respect to h if g does not contain any tuy, (t € T) such that top, > vy.
IfS C F, then an element g € F is said to be &-reduced with respect
to S of g is E-reduced with respect to every element of S.

DEFINITION 3.5. Let g, h € F. Then g is said to have lower rank
than h (we writerk g < rk h) if either g = 0, h # 0 or

(E o1d(g), tg) <1ex (& ord(h), up).

If the pairs are equal, we say that g and h are of the same rank and
writerk g = rk h.



REMARK 3.6. Ifg,h € F andrkg < rk h, then g is &-reduced with
respect to h. Indeed, if it is not so, then g contains tuy, for somer € T
such that top, > vg. Since ug > tup, > up and & ord(h) = & ord(th),
we obtain that & ord(g) > & ord(h) and the last inequality becomes
an equality if and only if t = 1, ug = uy, and vy = vy, that is,
rk g = rk h, a contradiction.

DEFINITION 3.7. A set of A C F is said to be E-autoreduced if
either it is empty or every element of A is &-reduced with respect to
all other elements of the set A.

LEmMMA 3.8. Every E-autoreduced set is finite.

Proor. Note first that two elements of an &-autoreduced set
cannot have the same leader (if ug = up for some g, h € F, then
either v, > vy or vy > v, so one of these two elements is not
reduced with respect to the other one). Suppose that there is an
infinite &-autoreduced set A. It follows from [5, Chapter 0, Lemma
15] that A contains a sequence of elements {g1, g2, ... } such that
ug, |“gi+1 fori=1,2,....Let Ug;, = Tillg, (i=1,2,...). Since the set
A is E-autoreduced, it follows that for every i = 1,2,..., gij+1 is
&-reduced with respect to g;, hence 704, < vg,,, and & ord(rg;) =
&ord(g;) > & ord(gi+1). Thus, we obtain a strictly decreasing se-
quence & ord(g;) > Sord(gz) > ..., a contradiction (see Remark
3.1). O

ExamPLE 3.9. Let o = {a1, a2} and F a free o-K-module with
one free generator f. Let A = {g1,g2} C F where

glzafa2f+a§f, gzzaff+f.

Then Sord(g1) = (1,2,-1,0) <jor Sord(gz) = (2,2,0,0), hence
rk g1 < rk g7 and therefore g1 is &-reduced with respect to go. Since
g2 contains no transform of uy, = af azy, gz is reduced with respect
to g1, so the set A is &E-autoreduced. However, since g; contains a
transform of Ug,, the set A is not autoreduced in the usual sense
(where h is said to be reduced with respect to g if h does not contain
any (rug) (r € T), see [6, Section 4.1] or [11, Section 2.4]).

In what follows, while considering &-autoreduced sets we always
assume that their elements are arranged in order of increasing rank.

DEFINITION 3.10. Let A = {g1,...,9s} and B = {hy,..., ht}
be two nonempty E-autoreduced sets in a finitely generated free o-
K-module F. Then A is said to have lower rank than B, written as
rk A < rk B, if one of the following two cases holds:

(1) There exists k € N such that k < min{s, t}, rkg; = rk h; for
i=1,....,k—1andrkg; <rkhg.

(2) s > tandrkg; =1kh; fori=1,...,t.

Ifs =t andrkg; = tkh; fori = 1,...,s, then A is said to have
the same rank as B; in this case we write tk A =tk B. If A # 0 and
B =0, thentk A < rk B.

PROPOSITION 3.11. In every nonempty family of &-autoreduced
sets in a finitely generated free o-K-module F there exists an &E-
autoreduced set of lowest rank.

Proor. Let M be a nonempty family of &-autoreduced sets in
F. Let us inductively define an infinite descending chain of subsets
of M as follows: My = M, My = {A € My|A contains at
least one element and the first element of A is of lowest possible
rank},..., Mg = {A € Mj_; | A contains at least k elements and

the kth element of A is of lowest possible rank}, .. .. It is clear that
if f and g are the ith elements in two &-autoreduced sets in the
same set My (1 < i < k), then S ord(f) = Eord(g) and uy = uy
(hence vy = vy). Therefore, if all sets My are nonempty, then the
set {fx | fx is the kth element of some &-autoreduced set in My}
would be an infinite E-autoreduced set, and this would contradict
Lemma 3.8. Thus, there is the smallest positive integer k such that
M. = 0. Clearly, every element of My_; is an E-autoreduced set
of lowest rank in the family M. O

DEFINITION 3.12. Let N be any o-K-submodule of a finitely gen-
erated free -K-module F (that is, N is a left D-submodule of F).
Since the set of all &-autoreduced subsets of N is not empty (if f € N,
then {f} is an E-autoreduced subset of N), the last statement shows
that N contains an &-autoreduced subset of lowest rank. Such an
&-autoreduced set is called an E-characteristic set of the o-K-
submodule N.

PROPOSITION 3.13. Let A = {¢g1,...,94} be an E-characteristic
set of a o-K-submodule N of a finitely generated free o-K-module F.
Then an element h € N is E-reduced with respect to the set A if and
only if h = 0.

ProoF. Suppose that a nonzero element h € N is &-reduced with
respect to A. First of all, note that if rk h < rk gj, then rk {h} <
rk A that contradicts the fact that A is an &-characteristic set of N.
Letrk h > rk g1 (if rk h = rk g1, then h is not reduced with respect
to g1, contrary to our assumption) and let g1,...,g; (1 < j < d) be
all elements of A whose rank is lower that the rank of h. Then the
set A’ = {g1,...,9j, h} is E-autoreduced. Indeed, since the set A is
&E-autoreduced, elements gy, . .. ,gj are &-reduced with respect to
each other, and A is &-reduced with respect to the set {g1,...,g;}
by our assumption. Furthermore, each g; (1 < i < j) is &-reduced
with respect to h because rk g; < rk g. Since tk A’ < rk A, A is
not an E-characteristic set of N, a contradiction. O

PROPOSITION 3.14. Let A ={g1,...,94} be a subset of a finitely
generated free D-module F and let h € F. Then there exists an element

h* € F such that
d
h-h"=> Cigi
i=1

for someCy,...,Cq € D and h* is E-reduced with respect to A.

Proor. If h is &E-reduced with respect to A, the statement is
obvious (one can set h* = h). Suppose that h is not E-reduced with
respect to A. In what follows, a term wy, that appears in a non-&-
reduced element ¢ € F, will be called the A-leader of t if w; is the
greatest term among all terms ruy; (r € T, 1 < j < d) that appear
in ¢ and satisfy the condition 7oy, > v;.

Let wy, be the A-leader of the element h and let ¢}, be the coef-
ficient of wy, in h. Then wy, = tug; for some 7 € T and for some
j (1 £ j < d)such that 7oy, > vp. Let us choose such j that cor-
responds to the maximum leader ug; in the set of all leaders of
elements of A and let us consider the element h’ = h— r(lcc(ﬁfg -

Obviously, h’ does not contain wy, and up < uy. Furthermore, h’
cannot contain any term of the form 7’ug, (r" € T,1 < i < d) that
is greater than wy, and satisfies the condition 7’04, > vj,/. Indeed,
since vy > vy, such a term 7’ug; cannot appear in h. Such a term



cannot appear in 7g; either, since ury;, = tug; = wp, < T’ug,. Thus,
the A-leader of A’ is strictly less than the A-leader of h. Apply-
ing the same procedure to the element h’ and continuing in the
same way, we obtain an element h* € F such that h — h* is a linear
combination of elements gy, . . ., g4 with coefficients in D and h* is
&-reduced with respect to A. O

The process of reduction described in the proof of the last propo-
sition can be realized by the following algorithm.

ArGoriTaM 3.15. (h,d,g1,...,94; h*)

Input: h € F, a positive integer d, A = {g1, . .
gi#0fori=1,...,d

Output: Element h* € F and elements Cy,...,Cy € D such that
h=Cig1+--+Cqygq +h* and h* is &-reduced with respect to A

Begin

C1:=0,...,C3:=0,h* :=h

While there exist i, 1 < i < d, and a term w, that appears in h*
with a (nonzero) coefficient c,y, such that ug, |w and u—‘;’_vgi > ope
do -

z:= the greatest of the terms w that satisfy the above conditions.

j:= the smallest number i for which uy, is the greatest leader of
an element of A such that ug, |z and %Ugi > ops

i

.94} € F where

- _Z
T: 7

e BT & : : i *
Cj=Cj+ T(lc(“gj)) T where c; is the coefficient of z in h
h* = h*

End

__C .
w(c(gm ¥

COROLLARY 3.16. IfA is an &-characteristic set of a 0-K-submodule
N of a finitely generated free c-K-module F, then A generates N as
a left ©-module.

Proor. By Proposition 3.14, if h € N, then there exists an ele-
ment g € N such that g is a linear combination of elements of A
with coefficients in D and h — g is &-reduced with respect to A. By
Proposition 3.13, h — g = 0, hence h € DA. m]

PROPOSITION 3.17. Let N = [g] be a cyclic D-submodule of the
free 0-K-module F. Then {g} is an &-characteristic set of N.

PROOF. Let 0 # h € N, so that h can be written as h = }5_, ¢;7ig
where 71,...,7s € T,c1,...,cs € K,¢i #0(1 <i <s),and 1y <
-++ < 75. Then up, = 75uy and 7504 > 11094 = 0. Therefore, h is not
&-reduced with respect to g. Furthermore, forany i = 1,...,s, u =
Tsllg 2 Titlg > Ug and v, = 1194 < 704, 50 & ord(h) 2 & ord(zig) =
&ord(g). It follows that rk(g) < rk(h), and rk(g) = rk(h) if and
onlyifr; =1fori=1,...,s, thatis, h = cg for some ¢ € K. Thus,
N does not contain elements reduced with respect to g, and g is the
element of the lowest rank in N. It follows that if A = {hy,..., h;}
is an &-characteristic set of N, then rk(g) = rk(h1) and [ = 1,
whence {g} is also an &-characteristic set of N. O

REMARK 3.18. The concepts of &-autoreduced and E-characteristic
sets in a finitely generated free o-K-module with n free generators
produce the corresponding notions for linear difference (c-) ideals
in the algebra of difference polynomials R = K{y1,...,yn} inn o-
indeterminates over K (see [6, Section 3.3]). If one considers the free
o-K-module F generated by y, ..., yn inR, then every E-autoreduced
set of F will be an autoreduced set (in the sense of [6, Definition 3.3.4])

of the a-ideal of R generated F. Therefore, if F is a free o-K-module
with n free generators fi,..., fu, N a 0-K-submodule of F and A is
an E-characteristic set of N, then one can apply [6, Theorem 6.4.1] to
the factor module F/N and obtain that there exists a numerical poly-
nomial ¢(t) of degree at most m such that ¢(r) = dimg (F./N (N Fr)
for all sufficiently larger € N. (F, = Y1, D, f; where Dy, is the
K-vector space generated by T(r).) Furthermore, this theorem shows
that if Aj is the set of all m-tuples (ky,...,km) € N™ such that

afl ...afn'"fj (1 < j < n)is a leader of an element of A, then

n
o(t) = Z wa; (t) where wa(t) is the Kolchin polynomial of the set
j=1
Aj defined in Theorem 2.2.

4 THE MAIN THEOREM AND ITS
APPLICATIONS

The following theorem is the main result of the paper.

THEOREM 4.1. Let K be a difference field with a basic set ¢ =
{a1,...,am} and M a finitely generated o-K -module with generators
n

X1,...,Xn (that is, M = Z Dx; where D is the ring of difference
i=1

n
(0-) operators over K). For anyr,s € N, let Mys = Z Drsx; where

i=1
Dys denotes the K-vector subspace of D generated by all elements
;i (1 < i < n) witht € T(r,s). Then there exists a polynomial
Y (t1, t2) € Q[t1, t2] and numbersry, so, s1 € N withsy < ro—so such
that

() ¢(r,s) = dimg Mys for all (r,s) € N2 withr > rg, 51 < s <
r —3S0.

(ii) Y(11,12) = $V(01) = Y2 (12) where deg ¥V (1) < m (i =
1,2), so Y(t1, t2) can be written as

m . m .
_ ) 1+ ) ta+]J
lﬁ(tl,fz)—zaz( ; )—ij( i ) (4)
i=0 Jj=0
where aj,bj € Z.
(iii) For all sufficiently larger € N, ¢(1) (r) = ¢(r) where ¢(t)
is the difference (c-) dimension polynomial of M associated with

n
the filtration (M, = Z Drxi)rez where D, denotes the K-vector

i=1
subspace of © generated by all elementstx; (1 < i < n)witht € T(r).

(iv) am = b = o-dimg M. Furthermore, d = deg, , and aq are
invariants of the o-K-module M, that is, they do not depend on the
finite system of o-generators of M over K the polynomial Y/(t1, t2) is
associated with.

v) degy (D > degy® and ifdegy(V) = degy® = e < m, then
be is also an invariant of M.

DEFINITION 4.2. The bivariate numerical polynomial (11, t2)
whose existence is established by Theorem 4.1 is called a o-E-dimension
polynomial of the 0-K-module M associated with the system of o-K-
generators {x1,...,Xp}.

We will start the proof of the theorem with the following lemma.



LEMMA 4.3. With the above notation, let F be a free D-module
with a basis fi, ..., fn, and w : F — M the natural D-epimorphism
of Fonto M (n(f;) = x;j fori = 1,...,n). Let N = Ker x and let
A ={g1,...,9p} be an E-characteristic set of N. Let u; and v; denote
the leader and coleader of g;, respectively (1 < i < p). Foranyr,s € N
such thats < r, let

W(r,s) ={weTf|s<ordw <r}, Wy(r,s)=x(W(r,s)),
U'(r,s)={ueTf|s<ordu<r and uyjtu(i=1,...,p)}
Upg(r,s) = {z(u) |u e U'(r,9)},

U”(r,s) ={u € Tf|s < ordu < r, u is divisible by some u;

(1 <i < p) and whenever u = tu; for some r € T, one has
ord(zv;) < s}, and

Upg(r,s) = {m(u) lu e U (r,5)}.

Furthermore, let

U(r,s) =U’'(r,s) U U”(r,s) and Up(r,s) = Uy,(r,s) U Uy (r,s).

Then for every (r,s) € N2 s < r, the set Up(r,s) is a basis of the
K-vector space Mys.

Proor. First, let us show that the set Ups(r, s) is linearly inde-
pendent over K. Indeed, suppose that Zle a;jn(u;) = 0 for some
u,...,ur € U(r,s) and ay,...,a; € K. Then h = Z{'C:I aju;j is an
element of N which is &-reduced with respect to A. Indeed, if a
term u = rf; appears in h (so that u = u; for some i, 1 < i < k),
then either u is not a transform of any u, (1 < v < p) or u = 7u,
for some 7 € T, 1 < v < p, such that ord(zv,) < s < ord vy, hence
10y < vp. Thus, h is E-reduced with respect to the E-characteristic
set A, hence (see Proposition 3.13) h=0and a; =--- = a; = 0.

Now let us prove that if s € N and s < r — 59, where sp =
max{Eordg; |1 < i < p}, then every element 7x; € Wp(r,s) \
Up(r,s) (r € T, 1 < j < n) can be written as a finite linear combi-
nation of elements of Uy (r, s) with coefficients in K. In this case
7f;j € U(r,s), hence tf; is equal to some term of the form T’ u;
(1 <i < p) where 7’ € T and ord(7'v;) > s. Let us consider the
element g; = cju; +... (c; € K,c; # 0), where dots are placed in-
stead of the linear combination of terms that appear in g; and that
are less than u;. Since g; € N = Ker x, n(g;) = cim(uj) +--- =0,
whence 7(7'g;) = cjm(r'uj) +- - = cim(zfj)+- - = citxj+--- =0,
so that 7x; is a finite linear combination with coefficients in K of
some elements 7x; (1 < [ < n) such that 7 € T(r,s) and 7f] < 7’u;.
Thus, we can apply the induction on the well-ordered set T f and
obtain that every element 7x; (r € T(r,s), 1 < i < n) can be written
as a finite linear combination of elements of the set 7 (U(r, s)) with
coefficients in K. It follows that Uy(r, s) is a basis of the K-vector
space Mys. O

Now we can prove the main theorem.

PRrROOF. Asabove, let F be a free D-module with a basis fi, . .., fu,
N the kernel of the natural o-epimorphism 7= : F — M, and
A = {91, ,gp} an &-characteristic set of N. Furthermore, let
U(r,s) and Up(r, s) be the sets defined in the proof of the Lemma
43 (s,r € N,s < r). By this lemma, for any r,s € N, s < r,
Ups(r, s) is a basis of the K-vector space M. Therefore, dimg M, =
CardUp(r,s) = Card U(r,s). (It was shown in the second part of

the proof of Lemma 4.3 that the restriction of the mapping 7 on
U (r,s) is bijective.)

In order to evaluate the size of U(r, s) we are gong to evaluate
the sizes of the sets U’ (r,s) and U”'(r,s). Forevery k = 1,...,n, let

A ={(i1,...,im) € N| ail ...ocf,’{'fk is the leader of some

element of A}.

Applying Theorem 2.2, we obtain that there exists a numerical
polynomial w () such that wy (r) = Card V4, (r) for all sufficiently
n

large r € N. It follows that if we set w(t) = Z wi(t), then there

exist rg,s; € N such that for all r,s € N wit}frlz roand sy <s <
r —so, CardU’(r,s) = w(r) — w(s). Furthermore, deg w < m, and
deg w = m if and only if at least one of the sets Ay (1 < k < n)is
empty.

In order to evaluate Card U”’ (r, s) note that this set consists of
all terms 7u; (r € T,1 < i < p) such that s < ord(ru;) < r and
ord(rv;) < s. For every fixed i, the number N; of such terms is
equal to Card{r € T|s —ordu; — 1 < ordr < s —ordv; — 1} =
(s—ordvi—1+m) _ (s—ordu,——1+m).

m m
Applying the principle of inclusion and exclusion (taking into ac-
count terms that are multiples of more than one leaders u;), we
obtain that Card U"/(r, s) is an alternating sum of polynomials of

the form (s - ?n+ m) - (s - ?n+ m) where a,b € N, a < b. It follows
that CardU"’ (r, s) is expressed by a numerical polynomial of s of
degree at most m — 1. Denoting this polynomial by w’(s) and set-
ting v (1) = w(t;) and 1//(2)(t2) = w(ty) — @’ (t2), we obtain a
numerical polynomial ¢ (1, t2) = gb(l) (t1) — 1//(2) (t2) that satisfies
conditions (i) and (ii) of our theorem. Furthermore, it follows from
Remark 3.18 that 1,0(1) (t1) = ¢(t1) where ¢(¢) is the polynomial
described in part (iii) of the theorem.

In order to prove the last two statements of the theorem, sup-
pose that {z1, ..., zx } is another system of generators of M as a D-

k k
module and let M, = Z D,sz; and M, = Z D,z forany r,s € N.
i=1 i=1
Then there exists g € N such that x; € Mg andzj € Mg (1 < i <
n,1 < j < k). It follows that if ¢/(ty, 2) is the o-E-dimension poly-
nomial associated with the system of o-K-generators {z1,. .., z¢ },
then for all sufficiently large r, s € N with s; <'s < r—sg for certain
50,51 € N, one has

¥(r,s) < y(r+q,s) and ¢(r,s) < ¢(r+q,s). (5)

Furthermore, as we have proved, W(l) (t1) = ¢(t1) and x}(l) (t1) =

$(t1) where $(t1) and ¢(t;) are o-dimension polynomials of M as-
n k
sociated with filtrations (M, = Z Drxi)rez and (My = Z Drzj)rez,
i=1 J=1
respectively. It follows from Theorem 2.1 that the coefficients of
t in t%le polynomials ¢ and ¢ are equal to o-dimg M, deg, ¥ =
deg, ¥, and if this common degree is denoted by d, then ¢ and

- t1+d
1 have the same coefficient a; of the summand ( ! d ) in the

representation (4).



If deg 1//(1) < deg 1//(2), then setting s = r — sp we would have
Y(r,r —so) < 0 for sufficiently large r, a contradiction. Therefore,
deglﬁ(l) > deglﬁ(z),

The evaluation of Card U”’(r, s) in the proof of the first part of
the theorem shows that this number is expressed by a polynomial of
s of degree at most m—1. Suppose that deg lﬁ(l) =deg lﬁ(z) =e<m.
Then setting t; = r and t2 = r — ¢ in the representations of the
form (4) for (1, t2) and (1, t2) and using (5), we obtain that the
coefficients of r¢ in the resulting polynomials of r are the same,
ae — be. Since a is an invariant of the module M , so is be. )

ExaAMPLE 4.4. Let K be a difference field with a basic set o =
{a1, a2} and let M be a o0-K-module with one generator x over the
ring of o-operators D and with the defining equation

afa3x+a{’x+agx =0. (6)
where a and b are positive integers, 1 < a < b. In other words,
if F denotes the free D-module with free generator fand g =
afazb f+ a{’ f+ajf € F, then N = [g] is the kernel of the nat-
ural o-epimorphism F — M (f + x). By Proposition 3.17, {g} is
an &-characteristic set of N. With the notation of Section 3 we
have u; = afazbf, vg = ajf, Eord(g) = (a+b) —a = b, and
Eord(g) = (b,a, b — a,0). Furthermore, with the notation of the
proof of Lemma 4.3, if s is sufficiently large and s < r — b, then

U'(r,s)={aiaéf€Tf|s <i+j<r and (ab) £p (i,j)}.
Then
r+2\ (r+2-(a+b) (s—1)+2
O )

(757 | = @or-siian.

CardU’(r,s) =

2

Now,
CardU"'(r,s) = Card{o{f1 afz(alaagy) |ki+k;+a+b>s and

ki+ky+a < s} = Card{(ky, k2) € N? |s— (a+b) < ki +ky < s—a}
_ (s—(a+1)+2)_(s—(a+b+1)+2) :bs—b(2a+b_1)

2 2 2
We obtain that

CardU(r,s) = CardU’(r,s)+Card U"’(r, s) = (a+b)r—as—
b2 +2ab - 3b — 2a

2
associated with the generator x is as follows:

, so that the o-E-dimension polynomial of M

b% +2ab - 3b - 2a

—_—

By Remark 3.18, the univariate o-dimension polynomial ¢(t) of
the o-K-module M associated with the generator x is equal to the
Kolchin polynomial of the set {(a, b)} c N2. By Theorem 2.3,

¢(t)=(t+2)_(t+2—(a+b) _(a+b)(a+b—3).

2 2 2
Comparing this polynomial with the bivariate o-E-dimension poly-
nomial §(#1, t2), we see that ¢(t) carries two invariants of the
module M, deg ¢(t) = 1 and the leading coefficient a + b. At the
same time, (11, t2) carries three such invariants: degt1 Yy=1a+b
(the coeflicient of 1), and —a (the coefficient of t;). Thus, ¥/(t1, t2)

¥ (t1, t2) = (a+b)t1—aty—

)=(a+b)t

gives both parameters a and b of the defining equation (6) while
¢(t) gives just the sum of the parameters.

The last example illustrates an important application of the ob-
tained results to the isomorphism problem for difference modules.
The example shows that it is possible that two non-isomorphic
finitely generated o-K-modules have the same invariants carried
by the univariate o-dimension polynomial, but have different invari-
ants carried by their bivariate o-E-dimension polynomials. There-
fore, the fact that two finitely generated o-K-modules are not
isomorphic can be proved by comparing the corresponding o-
E-dimension polynomials computed from the corresponding &-
characteristic sets while the test based on consideration of invari-
ants of univariate o-dimension polynomials is inconclusive.

To justify the last observation, let us consider a cyclic o-K-
module M” = Dy with defining equation

alaaé’ y+y=0.
Proceeding as in Example 4.4, we get (with the above notation)
CardU’(r,s) = (a+b)r — (a+b)s+ (a+b)
(the same as the corresponding value in Example 4.4) and
_ (a+b)(a+b-1)
-

so the univariate o-dimension and bivariate o-E-dimension poly-
nomials for M’ associated with the generator y are

¢ () = (a+b)t—w and

11.10) = (e - DD D)
respectively. Thus, the o-dimension polynomials of M (see Example
4.4) and M’ carry the same invariants, deg ¢ () = deg ¢’(¢) = 1 and
a+ b. At the same time, the sets of invariants of the o-E-dimension
polynomials ¢(t1,t2) and ¢'(t1,t2) are {deg, ¥ = 1,a + b,~a}
and {degtl ¥’ = 1,a + b, 0}, respectively. Therefore, M and M’
are not isomorphic (as D-modules) even though they have the same
invariants carried by their univariate o-dimension polynomials.
Theorem 4.1 implies the following result about difference fields.

THEOREM 4.5. Let L = K(n1,...,Nn) be a o-field extension gener-
ated by a setn = {n1,...,n}. (As before, 0 = {a1,...,am}.) Then
there exists a polynomial lﬁ,ﬂK(tl,tz) € Q[t1, t2] and ry,sp,s1 € N
with s1 < rg — so such that

(i) ¥y (r,s) = tr.degg K({rnj |7 € T(r,s),1 < j < n}) forall
(r,s) € N2 withr > rg,s1 <s <r—sp.

(i) Y (b1, t2) = Yy (1) = Yy o (12) where deg 0 (1) < m
(i=1,2), s0 Yk (t1, t2) can be written as

Yk (t1,t2) = Z ai(t1 1+ i) - Z bj (tzjj)

i=0 7=0

CardU"’(r,s) = (a+b)s

>

where aj,bj € Z.

(iil) am = bm = o-tr. degg L. Furthermore, d = deg,, Y|k, and
aq are also invariants of the extension L /K, that is, they do not depend

on the system of o-generators of L/K. Finally, deg x//;llI)( > deg lﬁ,(ﬁ[)(

and if deg ¢;|11)< = ;\2}){ = e < m, then b, is also an invariant of the
extension.



Proor. Let L* be the inversive closure of L and let Qp+ g be
the module of Kahler differentials of the extension L*/K. By [11,
Lemma 4.2.8], Qr+|g has a natural structure of an inversive differ-
ence (0-) L*-module, that is, Qp« |k is an L*-vector space on which
elements of the set o = {ay, ..., am, al’l, el a,’nl} act in such a
way that a(x + y) = ax + ay, a(fx) = f(ax), a(ax) = a(a)a(x),
and a(a”'x) = x forany @, € ¢*; x,y € Qp+g; a € L*. Fur-
thermore, a(d{) = da({) forany { € L* (d : L* — Qp»g is the
universal K-linear derivation). In particular, Qp+ g is a D-module,
where D is the ring of o-operators over L*, and we can consider

n
a D-submodule M = Z:qui of Qp: . For any r,s € N, let

i=1

n
Mys = Z Drsdn; where D, is the L*-vector subspace of D gen-
i=1
erated by the set T(r,s). It follows from [11, Proposition 1.7.13]
that dimy+ Mys = tr.degg K({rnj |7 € T(r,s),1 < j < n}), so all
statements of our theorem follow from Theorem 4.1. |

The bivariate polynomial |k (1, t2) is called a o-E-dimension
polynomial of the o-field extension L/K associated with the system
of generators 7.

Note that the last theorem generalizes the theorem on univariate
difference dimension polynomial of a difference field extension
introduced in [7]. (With the notation of Theorem 4.5, this numerical
polynomial gives tr.degg K({rnj |7 € T(r),1 < j < n}) for all
sufficiently large r € N). Applications of univariate dimension
polynomials of difference field extensions to the study of difference
rings, modules and systems of algebraic difference equations, as
well as methods of computation of such polynomials, can be found
in [6] and [11].

The o-E-dimension polynomial has a natural interpretation in
the spirit of Einstein’s strength of a system of equations in finite
differences (see [11, Section 7.7] for the description of this notion,
which is a difference analog of Einstein’s strength of a system of
partial differential equations introduced in [2]). Let

Ai(fi,....fa) =0 (i=1,....,p) ™
be a system of equations in finite differences with respect to n un-
known grid functions fi, ..., f; in m real variables x1, . .., xp, with

coefficients in some functional field K. Suppose that the difference
grid, whose nodes form the domain of considered functions, has
equal cells of dimension Ay X - -+ X hp, (h1,..., h, € R) and fills
the whole space R™. (As an example, one can consider a field K
consisting of the zero function and fractions of the form u/v where
u and v are grid functions defined almost everywhere and vanish-
ing at a finite number of nodes.) Let us fix some node # and say
that a node Q has order i (with respect to P) if the shortest path
from P to Q along the edges of the grid consists of i steps (by a
step we mean a path from a node of the grid to a neighbor node
along the edge between these two nodes). Let us consider the val-
ues of the unknown grid functions fj, . .., f, at the nodes whose
orders lie between s and r inclusively (r,s e N, s < r).If fi,..., fn
should not satisfy any system of equations (or any other condition),
their values at nodes of any order can be chosen arbitrarily. Be-
cause of the system in finite differences (and equations obtained
from the equations of the system by transformations of the form

filxt, ..., xm) = fi(xitkihy, .. xmtkmhm) withky, ..k € N,
1 < j < m), the number of independent values of the functions
fi, ..., fn at the nodes of order < r decreases. This number, which
is a function of r and s, can be viewed as a generalized "measure
of strength” of the system in finite differences (in the sense of A.
Einstein). We denote it by Sys. (The direct difference counterpart of
Einstein’s strength expresses the number of independent values of
unknown functions at nodes of order at most r, r € N.)

Considering the field of coefficients K as a difference field with
a set of m translation o = {a1, ..., am} such that

ajf(xl,. . .,xm) =f(x1,. cHXj-1,Xj +hj,.. .,Xm)

(1 £ j < m) and assuming that the left-hand sides of equations (7)
are polynomials in f;’s and their transforms, we can treat system (7)
as a system of algebraic difference equations A; (y1, ..., yn) =0(1 <
i < n) in the ring of difference (¢-) polynomials R = K{y1, ..., yn}.
Suppose that the reflexive difference ideal P generated by Ay, ..., Ap
in R is prime (in this case the system (7) is said to be prime) and L
is the difference field of fractions of R/P. Then L = K(n1,...,1n),
where 7; denotes the canonical image of y; in L (1 < i < n), and
one can consider the o-E-dimension polynomial ¢,k (#1, t2) of the
o-field extension L/K associated with the system of generators
1. This polynomial is said to be the o-E-dimension polynomial of
system (7). In the considered case, lﬁ,ﬂK(r, s) = Sy for sufficiently
large values of r and s (and with s < r — sp for some sy € N),
so the o-E-dimension polynomial of a prime system of difference
equations can be viewed as a generalized measure of strength of
such a system. In this connection, Example 4.4 can be viewed as
computation of the strength of equation (6); equations of this type
arise from finite difference approximations to heat, wave and many
other PDEs of mathematical physics.
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