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Abstract We introduce a new type of characteristic sets of difference polynomials using a generalization of the
concept of effective order to the case of partial difference polynomials. Applying properties of these characteristic
sets we prove the existence and find invariants of a bivariate dimension polynomial of a finitely generated difference
field extension that describes the transcendence degrees of intermediate fields obtained by adjoining transforms
of the generators whose orders lie between two given natural numbers. We also consider an application of the
properties of introduced characteristic sets to the study of non-reflexive difference polynomial ideals.
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1 Introduction

This work is dedicated to the memory of Vladimir Gerdt who made numerous contributions to differential and dif-
ference algebra, symbolic computation and applications of computational algebraic methods in physics. In recent
years Vladimir obtained a number of deep results on difference schemes for systems of algebraic partial differen-
tial equations and differential and difference algebraic structures associated with such systems. In particular, he
developed new algorithmic methods for differential and difference polynomial ideals and applied them to the con-
sistency analysis of difference schemes for algebraic PDEs, see [1,4–7]. The developed theory allows one to choose
optimal difference schemes based on the relationships between radical differential polynomial ideals associated
with systems of algebraic PDEs and their counterparts defined by the corresponding systems of difference equa-
tions. In this connection, the study of dimensional characteristics of prime and perfect difference polynomial ideals
(in particular, dimension polynomials associated with such ideals) is of primary importance for the comparative
analysis of systems of algebraic difference equations arisen from the same system of PDEs. Univariate difference
dimension polynomials introduced in [12,13] play the same role in the study of difference modules and difference
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field extensions as Hilbert polynomials play in the study of the corresponding structures in commutative algebra and
algebraic geometry. A similar concept of differential dimension polynomial introduced in [9] plays an important
role in the study of finitely generated differential field extensions, differential modules and algebras. The following
theorem, whose proof can be found in [11, Theorem 6.4.1], describes a dimension polynomial associated with a
finitely generated difference field extension.

Theorem 1.1 Let K be a difference field of characteristic zero, that is, a field containing Q considered together
with the action of a set σ = {α1, . . . , αm} of mutually commuting endomorphisms of K . Let T denote the free
commutative semigroup of all power products of the form τ = α

k1
1 . . . α

km
m (ki ≥ 0), let ord τ = ∑m

i=1 ki , and for
any r ≥ 0, let T (r) = {τ ∈ T | ord τ ≤ r}. Furthermore, let L = K 〈η1, . . . , ηn〉 be a difference field extension of
K generated by a finite set η = {η1, . . . , ηn}. (As a field, L = K ({τη j | τ ∈ T, 1 ≤ j ≤ n}). ) Then there exists a
polynomial φη|K (t) ∈ Q[t] such that

(i) φη|K (r) = tr. degK K ({τη j |τ ∈ T (r), 1 ≤ j ≤ n}) for all sufficiently large r ∈ Z;

(ii) deg φη|K ≤ m and φη|K (t) can be represented as φη|K (t) =
m∑

i=0

ai

(
t + i

i

)

where a0, . . . , am ∈ Z;

(iii) d = deg φη|K , am and ad do not depend on the choice of the system of difference generators η of the extension
L/K (clearly, ad �= am if and only if d < m, that is, am = 0). Moreover, am is equal to the difference
transcendence degree of L over K (denoted by σ -tr. degK L), that is, to the maximal number of elements
ξ1, . . . , ξk ∈ L such that the set {τξi | τ ∈ T, 1 ≤ i ≤ k} is algebraically independent over K .

(iv) If the elements η1, . . . , ηn are difference algebraically independent over K (that is, the set {τηi | τ ∈ T, 1 ≤
i ≤ n} is algebraically independent over K ), then φη|K (t) = n

(
t + m

m

)

.

The polynomial φη|K (t) is called the σ -dimension polynomial of L/K associated with the set of σ -generators
η = {η1, . . . , ηn}. Theorem 1.1 allows one to assign dimension polynomials to prime difference ideals of finitely
generated difference algebras over difference fields (these are dimensional polynomials of the quotient fields of the
corresponding factor rings). Using properties of difference dimension polynomials (in particular, the fact that the set
of such polynomials is well ordered with respect to the natural order, f (t) ≤ g(t) if f (r) ≤ g(r) for all sufficiently
large r ∈ Z), one can efficiently study Krull-type dimension of difference rings, local difference algebras, and
extensions of difference fields (see, for example, [11, Chapter 7], [15, Chapter 4], [14,18]). Furthermore, as it
is shown in [19] and [15, Chapter 7], the dimension polynomial of a differential or difference polynomial ideal
generated by a system of partial differential or, respectively, difference equations expresses Einstein’s strength of
the system, its important qualitative characteristic introduced in [3]. (See [15, Section 7.7] for the description of
the relationship between difference dimension polynomials and Einstein’s strength of systems of equations in finite
differences.)

In this paper we introduce a reduction of difference polynomials that takes into account the effective order of
such polynomials (we generalize the concept of the effective order of an ordinary difference polynomial defined
in [2, Chapter 2, Section 4] to the partial case) and consider a new type of characteristic sets that are associated
with this reduction (they are called E-characteristic sets). Then we use properties of E-characteristic sets to prove
the existence of a bivariate dimension polynomial of a finitely generated difference field extension that describes
the transcendence degrees of intermediate fields obtained by adjoining transforms of the generators whose orders
lie between two given natural numbers. We also determine invariants of such polynomials, that is, numerical
characteristics of the extension that are carried by any of its bivariate dimension polynomial and that do not depend
on the system of difference generators the polynomial is associated with. Furthermore, we use the obtained properties
of the E-characteristic sets to prove the existence and describe the dimension polynomial associated with a non-
reflexive prime principal difference polynomial ideal. The problem of existence of such a dimension polynomial
for an arbitrary non-reflexive prime difference ideal in the ring of partial difference polynomials is still open. In
the ordinary case, this problem was solved in [8, Section 4.4], an alternative proof was obtained in [20, Section
5.1]; a constructive proof and an algorithm for computing dimension polynomials of non-reflexive prime difference
polynomial ideals in the ordinary case were obtained in [16,17].
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2 Preliminaries

Throughout the paper, N, Z, and Q denote the sets of all non-negative integers, integers, and rational numbers,
respectively. If m ∈ Z, m ≥ 1, then ≤P will denote the product order on Nm , that is, a partial order ≤P such that
(a1, . . . , am) ≤P (a′

1, . . . , a
′
m) if and only if ai ≤ a′

i for i = 1, . . . ,m.
By a ring we always mean an associative ring with unity. Every ring homomorphism is unitary (maps unity to

unity), every subring of a ring contains the unity of the ring, and every algebra over a commutative ring is unitary.
Every field considered in this paper is supposed to have zero characteristic. Q[t1, . . . , tp] will denote the ring of
polynomials in variables t1, . . . , tp over Q.

By a difference ring we mean a commutative ring R considered together with a finite set σ = {α1, . . . , αm} of
injective endomorphisms of R (called translations) such that any two mappings αi and α j commute. The set σ is
called the basic set of the difference ring R, which is also called a σ -ring. If R is a field, it is called a difference
field or a σ -field. (In what follows, we will often use prefix σ - instead of the adjective “difference”.)

In what follows T denotes the free commutative semigroup generated by the set σ , that is, the semigroup of all

power products τ = α
k1
1 . . . α

km
m (ki ∈ N). The number ord τ =

∑m

i=1
ki is called the order of τ . Furthermore, for

every r, s ∈ N, s < r , we set

T (r) = {τ ∈ T | ord τ ≤ r} and T (r, s) = {τ ∈ T | s ≤ ord τ ≤ r}.
A subring (ideal) R0 of a σ -ring R is said to be a difference (or σ -) subring of R (respectively, a difference (or σ -)
ideal of R) if R0 is closed with respect to the action of any operator in σ . In this case the restriction of a mapping
from σ to R0 is denoted by the same symbol. If a prime ideal P of R is closed with respect to the action of σ , it is
called a prime difference (or σ -) ideal of R.

If L is a σ -field and K a subfield of L which is also a σ -subring of L , then K is said to be a σ -subfield of L;
L , in turn, is called a difference (or σ -) field extension or a σ -overfield of K (we also say that we have a σ -field
extension L/K ). In this case, if S ⊆ L , then the intersection of all σ -subfields of L containing K and S is the unique
σ -subfield of L containing K and S and contained in every σ -subfield of L containing K and S. It is denoted by
K 〈S〉. If S is finite, S = {η1, . . . , ηn}, then L is said to be a finitely generated σ -field extension of K with the set of
σ -generators {η1, . . . , ηn}. In this case we write L = K 〈η1, . . . , ηn〉. It is easy to see that K 〈η1, . . . , ηn〉 coincides
with the field K ({τηi | τ ∈ T, 1 ≤ i ≤ n}). (Here and below we often write τη for τ(η) where τ ∈ T , η ∈ R.)

If R is a σ -ring and F ⊆ R, then the intersection of all σ -ideals of R containing F is, obviously, the smallest
σ -ideal of R containing F . This ideal is denoted by [F]; as an ideal, it is generated by all elements τ f where
τ ∈ T , f ∈ F . If the set F is finite, F = { f1, . . . , fk}, we say that the σ -ideal I = [F] is finitely generated, write
I = [ f1, . . . , fk] and call elements of F difference (or σ -) generators of I . A σ -ideal I of R is said to be reflexive
if for any α ∈ σ , the inclusion α(a) ∈ I implies a ∈ I (therefore, for any τ ∈ T , the inclusion τ(a) ∈ I implies
that a ∈ I ).

Let R and S be two difference rings with the same basic set σ , so that elements of σ act on each of the rings
as pairwise commuting endomorphisms. (More rigorously, we assume that there exist injective mappings of σ into
the sets of endomorphisms of the rings R and S such that the images of any two elements of σ commute. For
convenience we will denote these images by the same symbols α1, . . . , αm). A ring homomorphism φ : R −→ S
is called a difference (or σ -) homomorphism if φ(αa) = αφ(a) for any α ∈ σ , a ∈ R.

If K is a difference (σ -) field and Y = {y1, . . . , yn} is a finite set of symbols, then one can consider a countable
set of symbols TY = {τ y j |τ ∈ T, 1 ≤ j ≤ n} and the polynomial ring R = K [{τ y j |τ ∈ T, 1 ≤ j ≤ n}] in the set
of indeterminates TY over K . This polynomial ring is naturally viewed as a σ -ring where τ(τ ′y j ) = (ττ ′)y j for
any τ, τ ′ ∈ σ , 1 ≤ j ≤ n, and the elements of σ act on the coefficients of the polynomials of R as they act in the
field K . The ring R is called the ring of difference (or σ -) polynomials in the set of difference (σ -) indeterminates
y1, . . . , yn over K . This ring is denoted by K {y1, . . . , yn} and its elements are called difference (or σ -) polynomials.
If f ∈ K {y1, . . . , yn} and η = (η1, . . . , ηn) is an n-dimensional vector with coordinates in some σ -overfield of
K , then f (η) (or f (η1, . . . , ηn) ) denotes the result of the replacement of every entry τ yi in f with τηi (τ ∈ T ,
1 ≤ i ≤ n).
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If π : R = K {y1, . . . , yn} → L = K 〈η1, . . . , ηn〉 is a natural σ -homomorphism (π(a) = a for any a ∈ K and
yi �→ ηi ), then P = Ker π is a prime reflexive σ -ideal of R called the defining ideal of the extension L/K . In this
case, L is isomorphic to the σ -field qf(S/P), the quotient field of S/P (ηi ↔ yi + P).

Let K be a σ -field and U a family of elements of some σ -overfield of K . We say that the family U is σ -
algebraically dependent over K , if the family TU = {τu | τ ∈ T, u ∈ U} is algebraically dependent over K (that
is, there exist elements u1, . . . , uk ∈ TU and a nonzero polynomial f in k variables with coefficients in K such
that f (u1, . . . , uk) = 0). Otherwise, the family U is said to be σ -algebraically independent over K .

If L is a σ -overfield of a σ -field K , then a set B ⊆ L is said to be a σ -transcendence basis of L over K if B
is σ -algebraically independent over K and every element a ∈ L is σ -algebraic over K 〈B〉 (it means that the set
{τa | τ ∈ T } is algebraically dependent over the field K 〈B〉). If L is a finitely generated σ -field extension of K , then
all σ -transcendence bases of L over K are finite and have the same number of elements (see [15, Proposition 4.1.6]).
This number is called the σ -transcendence degree of L over K (or the σ -transcendence degree of the extension
L/K ); it is denoted by σ -tr. degK L .

DIMENSION POLYNOMIALS OF SUBSETS OF Nm

A polynomial in p variables f (t1, . . . , tp) ∈ Q[t1, . . . , tp] is called numerical if f (r1, . . . , rp) ∈ Z for all
sufficiently large (r1, . . . , rp) ∈ Np. (It means that there exist s1, . . . , sp ∈ N such that the equality holds for all
(r1, . . . , rp) ∈ Np with r1 ≥ s1, . . . , rp ≥ sp.).

Clearly, every polynomial with integer coefficients is numerical. As an example of a numerical polynomial in p

variables with noninteger coefficients (p ≥ 1) one can consider
∏p

i=1

(
ti
mi

)

where m1, . . . ,mp ∈ N. (As usual,
(
t

k

)

denotes the polynomial in t of the form
t (t − 1) . . . (t − k + 1)

k! (k ≥ 1),

(
t

0

)

= 1, and

(
t

k

)

= 0 if k < 0.)

As it is shown in [11, Chapter 2], a numerical polynomial in f (t1, . . . , tp) in p variables has a ”canonical”
representation as

f (t1, . . . , tp) =
m1∑

i1=0

. . .

mp∑

i p=0

ai1...i p

(
t1 + i1
i1

)

. . .

(
tp + i p

i p

)

(2.1)

with uniquely defined integer coefficients ai1...i p (mi is the degree of this polynomial with respect to ti , 1 ≤ i ≤ p).
In what follows, if A is a subset of Nm (m is a positive integer), then VA will denote the set of all m-tuples

v = (v1, . . . , vm) ∈ Nm such that a �P v for every a ∈ A (i. e., for any a = (a1, . . . , am) ∈ A, there exists

i, 1 ≤ i ≤ m, such that ai > vi ). Furthermore, for any r ∈ N, we set A(r) = {(a1, . . . , am) ∈ A |
∑m

i=1
ai ≤ r}.

The following theorem about a univariate numerical polynomial associated with a subset of Nm is due to E.
Kolchin, see [10, Chapter 0, Lemma 16].

Theorem 2.1 Let A ⊆ Nm. Then there exists a numerical polynomial ωA(t) such that

(i) ωA(r) = Card VA(r) for all sufficiently large r ∈ N (that is, there exists r0 ∈ N such that the equality holds
for all r ∈ N, r ≥ r0).

(ii) deg ωA ≤ m.

(iii) deg ωA = m if and only if A = ∅. In this case ωA(t) =
(
t + m

m

)

.

(iv) ωA = 0 if and only if (0, . . . , 0) ∈ A.

The polynomial ωA(t) is called the Kolchin polynomial of the set A ⊆ Nm .
Note that if A ⊆ Nm and A′ is the set of all minimal elements of A with respect to the product order on Nm , then

the set A′ is finite (it follows from [10, Ch. 0, Lemma 15] that states that for any infinite set A ⊆ Nm , there exists an
infinite sequence of elements of A, strictly increasing relative to the product order). The following theorem proved
in [11, Chapter 2] gives an explicit formula for the Kolchin polynomial of a finite subset of Nm .
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Theorem 2.2 Let A = {a1, . . . , an} be a finite subset of Nm and let ak = (ak1, . . . , akm) (1 ≤ k ≤ n). For any
l ∈ N, 0 ≤ l ≤ n, let 
(l, n) denote the set of all l-element subsets of the set Nn = {1, . . . , n}. Let ā∅ j = 0 and for
any γ ∈ 
(l, n), γ �= ∅, let āγ j = max{ai j | i ∈ γ } (1 ≤ j ≤ m). Then

ωA(t) =
n∑

l=0

(−1)l
∑

γ∈
(l,n)

(
t + m − ∑m

j=1 āγ j

m

)

. (2.2)

3 E-Reduction and E-Characteristic Sets of Difference Polynomials

Let K be a difference field with a basic set σ = {α1, . . . , αm} and R = K {y1, . . . , yn} the algebra of difference
polynomials in σ -indeterminates y1, . . . , yn over K . Then R can be viewed as a polynomial ring in the set of
indeterminates TY = {τ yi |τ ∈ T, 1 ≤ i ≤ n} whose elements are called terms. The order of a term u = τ yi
(denoted by ord u) is defined as the order of τ . As usual, if τ, τ ′ ∈ T , we say that τ ′ divides τ (and write τ ′|τ ) if
τ = τ ′τ ′′ for some τ ′′ ∈ T . If u = τ yi and v = τ ′y j are two terms in TY , we say that u divides v (and write u|v)
if i = j and τ |τ ′. In this case we also say that v is a transform of u.

By a ranking on R we mean a well-ordering ≤ of the set of terms TY that satisfies the following two conditions:

(i) u ≤ τu for any u ∈ TY, τ ∈ T . (We denote the order on TY by the usual symbol ≤ and write u < v if u ≤ v

and u �= v.)
(ii) If u, v ∈ TY and u ≤ v, then τu ≤ τv for any τ ∈ T .

A ranking is said to be orderly if the inequality ord u < ord v (u, v ∈ TY ) implies u < v (as usual, we write
u1 > u2 or u2 < u1 if u2 ≤ u1 and u2 �= u1). In what follows, we assume that the following orderly ranking ≤ on
R is fixed: if u1 = α

k1
1 . . . α

km
m , , u2 = α

l1
1 . . . α

lm
m ∈ TY , then u1 ≤ u2 if and only if

(ord u1, k1, . . . , km, i) ≤lex (ord u2, l1, . . . , lm, j)

(≤lex denotes the lexicographic order on Nm+2). In this case we set

μ(u2, u1) = (ord u2 − ord u1, l1 − k1, . . . , lm − km, j − i) ∈ N × Zm+1.

Remark 3.1 Note that for every r = 1, . . . ,m, |lr − kr | ≤ lr + kr ≤ ord u1 + ord u2. It follows that there is no
infinite sequence of terms u1, u2, · · · ∈ TY such that u1 > u2 > . . . .

If f ∈ K {y1, . . . , yn} \ K , then the greatest (with respect to the ranking ≤) term that appears in f is called the
leader of f ; it is denoted by u f . If u = u f and d = degu f , then the σ -polynomial f can be written as

f = Idu
d + Id−1u

d−1 + · · · + I0

where Ik(0 ≤ k ≤ d) do not contain u. The σ -polynomial Id is called the initial of f ; it is denoted by I f . The
lowest term in f is called the coleader of f and is denoted by v f .

Definition 3.2 If f ∈ R, u f = α
k1
1 . . . α

km
m yi and v f = α

l1
1 . . . α

lm
m y j , then the nonnegative integer Eord( f ) =

ord u f − ord v f is called the effective order of f . The (m + 2)-tuple μ(u f , v f ) ∈ Zm+2 is said to be the full
effective order of f ; it is denoted by Eord( f ).

It follows from the last definition that for any f ∈ R and for any τ ∈ T , Eord(τ f ) = Eord( f ) and Eord(τ f ) =
Eord( f ). Furthermore, if f, g ∈ R and Eord( f ) < Eord(g), then μ(u f , v f ) < μ(ug, vg) (with respect to the
lexicographic order on Zm+2), that is, Eord( f ) < Eord(g).

Definition 3.3 Let f, g ∈ K {y1, . . . , yn}. Then f is said to have lower rank than g (we write rk f < rk g) if either
f ∈ K , g /∈ K , or

(Eord( f ), u f , degu f
f ) ≤lex (Eord(g), ug, degug g).

If the 3-tuples are equal (or f, g ∈ K ) we say that f and g are of the same rank and write rk f = rk g.
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Definition 3.4 Let f, g ∈ R. We say that f is E-reducedwith respect to g if f does not contain any (τug)e (τ ∈ T )
such that e ≥ d = degug g and τvg ≥ v f .

Thus, f is not E-reduced with respect to g if f contains some (τug)e (τ ∈ T ) with e ≥ d = degug g and also
τvg ≥ v f .

The last definition and the following definitions of E-autoreduced and E-characteristic sets allow one to develop
an analog of the classical method of characteristic sets of difference polynomials (see [11, Section 3.3]) where
the reduction does not increase the full effective order of a σ -polynomial. As an application of properties of E-
characteristic sets , we obtain a proof of the main theorem (Theorem 4.1) that uses a construction of transcendence
bases with terms whose orders are bounded above and below.

Lemma 3.5 If rk f < rk g, then f is E-reduced with respect to g.

Proof Suppose that f contains some (τug)e (τ ∈ T ) such that e ≥ d = degug g and τvg ≥ v f . Then u f ≥
τug = uτg and v f ≤ τvg = vτg , hence Eord( f ) ≥ Eord(g). Also, u f ≥ τug ≥ ug and if u f = ug = u, then
e = degu f ≥ d = degu g. Thus, rk f ≥ rk g contrary to the assumption. ��
Definition 3.6 A set A ⊆ K {y1, . . . , yn} is said to be E-autoreduced if either it is empty or A⋂

K = ∅ and every
element of A is E-reduced with respect to all other elements of the set A.

Lemma 3.7 Every E-autoreduced set is finite.

Proof Suppose that there is an infinite E-autoreduced set A. It follows from [10, Chapter 0, Lemma 15] that A
contains a sequence of σ -polynomials { f1, f2, . . . } such that u fi |u fi+1 and degu fi

fi ≤ degu fi+1
fi+1 for i =

1, 2, . . . .
Let u fi+1 = τi u Ai (i = 1, 2, . . . ). Since the set A is E-autoreduced, it follows that for every i = 1, 2, . . . , the

σ -polynomial fi+1 is E-reduced with respect to fi , hence τiv fi < v fi+1 and Eord(τ fi ) = Eord( fi ) > Eord( fi+1).
Thus, we obtain a strictly decreasing sequence Eord( f1) > Eord( f2) > . . . , a contradiction (see Remark 3.1). ��
Example Let σ = {α1, α2} and A = {g1, g2} ⊆ K {y} where

g1 = α2
1α2y + α2

2 y + 1, g2 = α2
1 y + y.

Then Eord(g1) = (1, 2,−1) <lex Eord(g2) = (2, 2, 0), hence rk g1 < rk g2 and therefore g1 is E-reduced with
respect to g2. Since g2 contains no transform of ug1 = α2

1α2y, g2 is reduced with respect to g1, so the set A is
E-autoreduced. However, since the degree of g1 with respect to α2ug2 is equal to the degree of g2 with respect to
ug2 , the set A is not autoreduced in the usual sense (where f is said to be reduced with respect to g if f does not
contain any (τug)e (τ ∈ T ) such that e ≥ d = degug g, see [11, Section 3.3]) or [15, Section 2.4]).

In what follows, while considering E-autoreduced sets we always assume that their elements are arranged in order
of increasing rank.

Definition 3.8 Let A = {g1, . . . , gs} and B = {h1, . . . , ht } be two E-autoreduced sets in the ring K {y1, . . . , yn}.
Then A is said to have lower rank than B, written as rk A < rk B, if one of the following two cases holds:

(1) There exists k ∈ N such that k ≤ min{s, t}, rk gi = rk hi for i = 1, . . . , k − 1 and rk gk < rk hk .
(2) s > t and rk gi = rk hi for i = 1, . . . , t .

If s = t and rk gi = rk hi for i = 1, . . . , s, then A is said to have the same rank as B; in this case we write
rk A = rk B

Proposition 3.9 In every nonempty family of E-autoreduced sets of difference polynomials there exists an E-
autoreduced set of lowest rank.
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Proof Let M be a nonempty family of E-autoreduced sets in the ring K {y1, . . . , yn}. Let us inductively define an
infinite descending chain of subsets of M as follows: M0 = M, M1 = {A ∈ M0 |A contains at least one element
and the first element of A is of lowest possible rank}, . . . ,Mk = {A ∈ Mk−1 |A contains at least k elements
and the kth element of A is of lowest possible rank}, . . . . It is clear that if f and g are any two σ -polynomials in
the same set Mk , then Eord( f ) = Eord(g), u f = ug (hence v f = vg) and degu f

f = degug g. Therefore, if all
sets Mk are nonempty, then the set {Ak | Ak is the kth element of some E-autoreduced set in Mk} would be an
infinite autoreduced set, and this would contradict Lemma 3.7. Thus, there is the smallest positive integer k such
that Mk = ∅. Clearly, every element of Mk−1 is an E-autoreduced set of lowest rank in the family M. ��

Let J be any ideal of the ring K {y1, . . . , yn}. Since the set of all E-autoreduced subsets of J is not empty (if
f ∈ J \ {0} , then { f } is an E-autoreduced subset of J ), the last statement shows that J contains an E-autoreduced
subset of lowest rank. Such an E-autoreduced set is called an E-characteristic set of the ideal J .

Proposition 3.10 Let A = { f1, . . . , fd} be an E-characteristic set of a σ -ideal J of the ring R = K {y1, . . . , yn}.
Then an element g ∈ J is E-reduced with respect to the set A if and only if g = 0.

Proof First of all, note that if g �= 0 and rk g < rk f1, then rk {g} < rk A that contradicts the fact that A is an
E-characteristic set of the ideal J . Let rk g > rk f1 and let f1, . . . , f j (1 ≤ j ≤ d) be all elements of A whose
rank is lower than the rank of g. Then the set A′ = { f1, . . . , f j , g} is E-autoreduced. Indeed, by the conditions
of the theorem, σ -polynomials f1, . . . , f j are reduced with respect to each other and g is reduced with respect to
the set { f1, . . . , f j } . Furthermore, each fi (1 ≤ i ≤ j) is reduced with respect to g because rk fi < rk g. Since
rk A′ < rk A, A is not an E-characteristic set of J that contradicts the conditions of the proposition. Thus, g = 0.

��
The following proposition shows that if f is an irreducible σ -polynomial in the ring of difference polynomials

R = K {y1, . . . , yn} (K is a difference field with a basic set σ ), then an arbitrary nonzero element of the σ -ideal
[ f ] of R is not E-reduced with respect to f .

Proposition 3.11 Let f be an irreducible σ -polynomial in R = K {y1, . . . , yn}. Let M be a nonzero σ -polynomial
in the ideal [ f ] of R written in the form

M =
s∑

i=1

Ci fi (3.1)

(s ≥ 1) where Ci ∈ R (1 ≤ i ≤ s) and fi = τi f for some distinct elements τ1, . . . , τs ∈ T . Furthermore, let ui
and vi denote the leader and coleader of the σ -polynomial fi , respectively (i = 1, . . . , l). Then there exists j ∈ N,
1 ≤ j ≤ s, such that degu j

M ≥ degu j
f j and vM ≤ v j .

Proof By [15, Theorem 2.4.15], there exists j ∈ {1, . . . , s} such that degu j
M ≥ degu j

f j . In order to show that
vM ≤ v j it is sufficient to show that vM ≤ v where v is the lowest coleader among v1, . . . , vs . Without loss of
generality we can assume that v = v1. Let d = degv f1, so f1 can be written as

f1 = Jdv
d + · · · + J1v + J0

where all terms in Ji (0 ≤ i ≤ d) are greater than v. Since τi �= τ j , v < v j for any j > 1. We can also assume that
s > 1, since for s = 1 the statement is obvious. Considering each Ci as a polynomial of v, we can use reduction
with respect to f1 to eliminate in Ci all powers vk with k ≥ d: there exists ei ∈ N such that J eid Ci ≡ C ′

i (mod ( f1) )

and degv C
′
i < d. Setting e = e1 + · · · + es and multiplying both sides of (3.1) by J ed , we obtain that

J eM ≡
s∑

i=2

C ′′
i fi (mod ( f1) )

where degv C
′′
i < d for i = 1, . . . , s, so the degree of the polynomial in the right-hand side with respect to v is less

that d. Since degv f1 = d, we obtain that degv M ≥ d, hence vM ≤ v. ��
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Corollary 3.12 Let f be an irreducible σ -polynomial in the ring R = K {y1, . . . , yn}. Then { f } is an E-
characteristic set of the σ -ideal [ f ].
Proof By Proposition 3.11, the σ -ideal [ f ] does not contain σ -polynomials reduced with respect to f , and if
M ∈ [ f ], then rk M ≥ rk f . Therefore, if A = {g1, . . . , gt } is an E-characteristic set of [ f ] (recall that we assume
rk g1 < · · · < rk gt ), then either rk f < rk g1, contrary to the assumption that A is an E-characteristic set, or
rk f = rk g1. In the last case, t = 1 (since no gi , i > 1, is reduced with respect to f and therefore with respect to
g1) and rk A = rk{ f }, so { f } is also an E-characteristic set of [ f ]. ��

We conclude this section with an application of the results on E-characteristic sets to the problem of existence
of a dimension polynomial associated with a non-reflexive prime difference polynomial ideal.

Let P be a non-reflexive prime σ -ideal of the ring of σ -polynomials R = K {y1, . . . , yn} over a σ -field K
(Card σ = m). Then the induced translations of the factor ring R/P are not injective, so they cannot be extended
to translations of the quotient field of R/P . However, one still can consider a dimension function of qf(R/P)

defined as follows. For any r ∈ N, let Rr = K [{τ yi | τ ∈ T (r), 1 ≤ i ≤ n}]. In other words, Rr is a polynomial
ring over K in indeterminates τ yi such that ord τ ≤ r . Let Pr = P

⋂
Rr , and let L and Lr denote the quotient

fields of the integral domains R/P and Rr/Pr respectively. If ηi denotes the canonical image of yi in R/P , then
L = K 〈η1, . . . , ηn〉 and Lr can be identified with the subfield K ({τηi | τ ∈ T (r), 1 ≤ i ≤ n}) of L , so we obtain
an ascending chain (Lr ) of intermediate fields of the σ -field extension L/K .

Proposition 3.13 With the above notation, suppose that a prime σ -ideal P of the ring R = K {y1, . . . , yn} is
generated by one irreducible σ -polynomial f , P = [ f ]. Then the numerical polynomial

φP (t) = n

(
t + m

m

)

−
(
t + m − ord u f

m

)

(3.2)

has the property that φP (r) = tr. degK Lr for all r ∈ N.

Proof Let V denote the set of all elements τηi ∈ L such that u f � τ yi (τ ∈ T, 1 ≤ i ≤ n) and for any r ∈ N, let
Vr = {τηi ∈ V | ord τ ≤ r}. By Corollary 3.12, { f } is an E-characteristic set of P = [ f ]. If g is a polynomial in
k variables over K and g(v1, . . . , vk) = 0 for some v1 = τ1ηi1 , . . . , vk = τkηik ∈ V , then g(τ1yi1 , . . . , τk yik ) ∈ P
and this σ -polynomial is E-reduced with respect to f . By Proposition 3.10, g = 0, so the set V (and therefore
every set Vr , r ∈ N) is algebraically independent over K . It remains to show that Lr is an algebraic extension of
the field K (V (r)). Let us write f as a polynomial of u f :

f = Idu
d
f + · · · + I1u f + I0

where Id �= 0 and every term in Id is smaller than u f with respect to our ordering of the set of terms TY . Furthermore,
for any τ ∈ T , Eord(τ (Id)) = Eord(Id) < Eord( f ) hence rk Id < rk f . By Lemma 3.5, Id is reduced with respect
to f , and it follows from Proposition 3.10 that τ(Id) /∈ P .

Since f ∈ P ,

f (η) = Id(η)u f (η)d + · · · + I1(η)u f (η) + I0(η) = 0.

Let w = τu f and ord w ≤ r for some r ∈ N. Applying τ to both sides of the last equality and taking into account
that τ(Id) /∈ P (and therefore τ(Id(η)) �= 0), we obtain an equality that shows that w(η) is algebraic over the
field K ({u(η) | u = τ ′yi for some τ ′ ∈ T (r), 1 ≤ i ≤ n and u < u f }). Now the induction on the set TY with the
introduced well-ordering completes the proof of the fact that Lr is an algebraic extension of K (V (r)).

If u f = α
k1
1 . . . α

km
m yi (1 ≤ i ≤ n), then for any r ∈ N, we have Card V (r) = Card V ′(r) + Card V ′′(r) where

V ′(r) = {αk1
1 . . . αkm

m y j | k1 + · · · + km ≤ r, j �= i} and V ′′(r) = {w = τ yi | τ ∈ T (r), u f � w}.
Applying part (iii) of Theorem 2.1 and a trivial case of Theorem 2.2 with A = {(k1, . . . , km)}, we obtain

Card V (r) = (n − 1)

(
r + m

m

)

+
[(

r + m

m

)

−
(
r + m − ∑m

i=1 ki
m

)]

and therefore equality (3.2). ��
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Remark 3.14 It is easy to see that the arguments of the proof of the last proposition can be applied to any non-reflexive
prime difference polynomial ideal P such that the initials of the elements of an E-characteristic set of P do not lie in
the reflexive closure of P , that is, in the prime reflexive difference ideal defined as {h ∈ K {y1, . . . , yn} | τ(h) ∈ P
for some τ ∈ T }. IfU is a class of all such prime difference ideals (in particular, it contains all linear prime difference
ideals, since their initials lie in the field K ), then each ideal P ∈ U has an associated dimension polynomial similar to
one associated with a prime reflexive difference ideal (defined by Theorem 1.1 where the σ -field L is the difference
quotient field of K {y1, . . . , yn}/P). It allows one to use the technique of dimension polynomials to obtain analogs
of the results of [14,18] on Krull-type dimension with respect to the class U .

Note also that the proof of Proposition 3.13 heavily uses the fact that for any τ ∈ T , one has Eord(τ (Id)) =
Eord(Id) < Eord( f ) and therefore τ(Id) /∈ P (we use the notation of the proof). This argument cannot be applied
if one tries to use the classical notion of reduction and the corresponding notions of autoreduced and characteristic
sets defined in [11, Section 3.3].

4 The Main Theorem

The following theorem is the main result of the paper.

Theorem 4.1 Let L = K 〈η1, . . . , ηn〉 be a σ -field extension generated by a set η = {η1, . . . , ηn}. Then there exists
a polynomial ψη|K (t1, t2) ∈ Q[t1, t2] and r0, s0, s1 ∈ N with s1 < r0 − s0 such that

(i) ψη|K (r, s) = tr. degK K ({τη j | τ ∈ T (r, s), 1 ≤ j ≤ n}) for all (r, s) ∈ N2 with r ≥ r0, s1 ≤ s ≤ r − s0.

(ii) ψη|K (t1, t2) = ψ
(1)
η|K (t1) − ψ

(2)
η|K (t2) where deg ψ

(i)
η|K (t) ≤ m (i = 1, 2), so ψη|K (t1, t2) can be written as

ψη|K (t1, t2) =
m∑

i=0

ai

(
t1 + i

i

)

−
m∑

j=0

b j

(
t2 + j

j

)

(4.1)

where ai , b j ∈ Z.

(iii) ψ
(1)
η|K (r) = φη|K (r) for all sufficiently large r ∈ N and am = bm = σ -tr. degK L. Furthermore, d =

degt1 ψη|K , and ad are also invariants of the extension L/K, that is, they do not depend on the system of σ -

generators of L/K. Finally, deg ψ
(1)
η|K ≥ ψ

(2)
η|K and if deg ψ

(1)
η|K = ψ

(2)
η|K = e < m, then be is also an invariant

of the extension.

Proof Let P ⊆ R = K {y1, . . . , yn} be the defining σ -ideal of the extension L/K and let A = { f1, . . . , f p} be an
E-characteristic set of P . Let ui and vi denote the leader and coleader of fi , respectively (1 ≤ i ≤ p). For any
r, s ∈ N such that s ≤ r , let

W (r, s) = {w ∈ TY | s ≤ ord w ≤ r}, Wη(r, s) = {w(η) | w ∈ W (r, s)},
U ′(r, s) = {u ∈ TY | s ≤ ord u ≤ r and ui � u (i = 1, . . . , p)}, U ′

η(r, s) = {u(η) | u ∈ U ′(r, s)},
U ′′(r, s) = {u ∈ TY | s ≤ ord u ≤ r, u is divisible by the leader of some fi and whenever u = τui

for some τ ∈ T, 1 ≤ i ≤ p, one has ord(τvi ) < s}, and

U ′′
η (r, s) = {u(η) | u ∈ U ′′(r, s)}.

Furthermore, let

U (r, s) = U ′(r, s) ∪U ′′(r, s) and Uη(r, s) = U ′
η(r, s) ∪U ′′

η (r, s).

We are going to show that for every (r, s) ∈ N2, s < r , the set Uη(r, s) is a transcendence basis of the field
K (Wη(r, s)) over K . First, notice that this set is algebraically independent over K . Indeed, if f (w1(η), . . . , wk(η)) =
0 for some elements w1, . . . , wk ∈ U (r, s), then the σ -polynomial f (w1, . . . , wk) lies in P and it is E-reduced with
respect to A. (If f contains a term w = τui , 1 ≤ i ≤ p, τ ∈ T , such that degw f ≥ degui fi , then w ∈ U ′′(r, s),
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so ord(τvi ) < s ≤ ord v f hence τvi < v f . It follows that f is E-reduced with respect to A.) By Proposition 3.10,
f = 0, so the set Uη(r, s) is algebraically independent over K .

Now let us prove that if 0 ≤ s ≤ r − s0, where s0 = max{Eord fi | 1 ≤ i ≤ p}, then every element τηk ∈
Wη(r, s) \ Uη(r, s) (τ ∈ T , 1 ≤ k ≤ n) is algebraic over the field K (Uη(r, s)). In this case τ yk /∈ U (r, s), hence
τ yk is equal to some term of the form τ ′ui where τ ′ ∈ T and ord(τ ′vi ) ≥ s. Let us represent fi as a polynomial in
ui :

fi = I (i)
di

udii + · · · + I (i)
1 ui + I (i)

0

where I (i)
0 , I (i)

1 , . . . I (i)
di

do not contain ui (therefore, all terms in these σ -polynomials are lower than ui ). Since
fi ∈ P , fi (η) = 0, that is,

I (i)
di

(η)(ui (η))di + · · · + I (i)
1 (η)ui (η) + I (i)

0 (η) = 0. (4.2)

There exists q, 0 ≤ q ≤ di , such that I (i)
q contains vi and therefore I (i)

q is E-reduced with respect to A. (I (i)
q is

obviously E-reduced with respect to fi ; if I (i)
q is not E-reduced with respect to some f j with j �= i , then fi would

not be E-reduced with respect to f j , contrary to the assumption that A is an E-autoreduced set.) Since I (i)
q �= 0,

Proposition 3.10 shows that I (i)
q /∈ P . Since the σ -ideal P is reflexive, τ(I (i)

q ) /∈ P for any τ ∈ T . (Note that if no

I (i)
k , 0 ≤ k ≤ di , contains vi , then ui = vi ; in this case I (i)

di
∈ K and therefore τ(I (i)

di
) /∈ P for any τ ∈ T .)

Now, if we apply τ ′ to both sides of (4.2), the resulting equality will show that the element τ ′ui (η) = τηk is
algebraic over the field K ({τ̃ ηl | s ≤ ord τ̃ ≤ r, τ̃ yl < τ ′ui }). Now, the induction on the well-ordered set of terms
TY completes the proof of the fact that the set Uη(r, s) is a transcendence basis of the field K (Wη(r, s)) over K .

In order to evaluate the size of Uη(r, s) we are going to evaluate the sizes of the sets U ′
η(r, s) and U ′′

η (r, s), that
is, the sizes of the sets U ′(r, s) and U ′′(r, s). For every k = 1, . . . , n, let

Ak = {(i1, . . . , im) ∈ Nm | αi1
1 . . . αim

m yk is the leader of some element of A}.
Applying Theorem 2.1, we obtain that there exists a numerical polynomial ωk(t) such that ωk(r) = Card VAk (r)

for all sufficiently large r ∈ N. It follows that if we set ω(t) =
∑n

k=1
ωk(t), then there exist r0, s1 ∈ N such that

for all r, s ∈ N with r ≥ r0 and s1 ≤ s ≤ r − s0, CardU ′(r, s) = ω(r) − ω(s). Furthermore, deg ω ≤ m, and
deg ω = m if and only if at least one of the sets Ak (1 ≤ k ≤ n) is empty.

In order to evaluate CardU ′′(r, s) note that this set consists of all terms τui (τ ∈ T, 1 ≤ i ≤ p) such that
s ≤ ord(τui ) ≤ r and ord(τvi ) < s. For every fixed i , the number Ni of such terms is equal to Card{τ ∈
T | s − ord ui − 1 < ord τ ≤ s − ord vi − 1} = (s − ord vi − 1 + m

m
) − (s − ord ui − 1 + m

m
)
.

Applying the principle of inclusion and exclusion (taking into account terms that are multiples of more than one

leader ui ), we obtain that CardU ′′(r, s) is an alternating sum of polynomials of the form
(s − a + m

m
)−(s − b + m

m
)

where a, b ∈ N, a ≤ b. It follows that CardU ′′(r, s) is expressed by a numerical polynomial of s of degree at most
m − 1. Denoting this polynomial by ω′(s) and setting ψ

(1)
η|K (t1) = ω(t1) and ψ

(2)
η|K (t2) = ω(t2) + ω′(t2), we obtain

a numerical polynomial ψη|K (t1, t2) = ψ
(1)
η|K (t1) − ψ

(2)
η|K (t2) that satisfies conditions (i) and (ii) of our theorem.

In order to prove the last statement of the theorem, suppose that L = K 〈η1, . . . , ηn〉 = K 〈ζ1, . . . , ζk〉. Then there
exists q ∈ N such that ηi ∈ K (T (q)ζ1 ∪· · ·∪T (q)ζk) and ζ j ∈ K (T (q)η1 ∪· · ·∪T (q)ηn) (1 ≤ i ≤ n, 1 ≤ j ≤ k).
It follows that for all sufficiently large r, s ∈ N with s1 ≤ s ≤ r − s0, one has

ψη|K (r, s) ≤ ψζ |K (r + q, s) and ψζ |K (r, s) ≤ ψη|K (r + q, s). (4.3)

Furthermore, the proof of the first part of the theorem shows that ψ
(1)
η|K (t1) = φη|K (t1) (the univariate σ -dimension

polynomial of L/K associated with the set of σ -generators η) and similarly ψ
(1)
ζ |K (t1) = φζ |K (t1). It follows from

Theorem 1.1 that the coefficients of tm1 in the polynomials ψη|K and ψζ |K are equal to σ -tr. degK L , degt1 ψη|K =
degt1 ψζ |K , and if this common degree is denoted by d, then ψζ |K and ψζ |K have the same coefficient ad before
(
t1 + d

d

)

in the representation (4.1).
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If deg ψ
(1)
η|K < deg ψ

(2)
η|K , then setting s = r − s0 we would have ψη|K (r, r − s0) < 0 for sufficiently large r , a

contradiction. Therefore, deg ψ
(1)
η|K ≥ deg ψ

(2)
η|K .

The evaluation of CardU ′′(r, s) in the proof of the first part of the theorem shows that this number is expressed
by a polynomial of s of degree at most m − 1. Suppose that deg ψ

(1)
η|K = ψ

(2)
η|K = e < m. Then setting t1 = r and

t2 = r − s0 in the representations of the form (4.1) for ψη|K (t1, t2) and ψζ |K (t1, t2) and using (4.3), we obtain that
the coefficient of re in the resulting polynomials of r are the same, ae − be. Since ae is an invariant of the extension
L/K , so is be. ��

As it follows from the proof of the last theorem, the computation of the bivariate dimension polynomial
ψη|K (t1, t2) can be reduced to the computation of the numbers of elements of the sets U ′(r, s) and U ′′(r, s) where
r, s ∈ N, s < r . It is shown above that CardU ′′(r, s) depends only on s and it is a certain alternating sum of binomial
coefficients of the form

(s−a−1+m
m

)
where the values of a are the orders of the leaders and coleaders of elements

the E-characteristic set A of the defining σ -ideal of the extension L/K . Thus, the main problem in obtaining
ψη|K (t1, t2) is the computation of the numerical polynomial that expresses CardU ′(r, s) for all sufficiently large
r, s ∈ N (s < r ) satisfying the conditions of the theorem. As it is shown in the proof, CardU ′(r, s) = ω(r) − ω(s)
where ω(t) is the sum of the Kolchin polynomials of the sets Ak = {(i1, . . . , im) ∈ Nm | αi1

1 . . . α
im
m yk is the

leader of some element of A} (k = 1, . . . , n). Algorithms for computing Kolchin polynomials and their complexity
evaluation can be found in [11, Section 2.3].

Example Let K be a difference field with a basic set σ = {α1, α2}. Let L = K 〈η〉 be a σ -field extension of k with
the defining equation

αa
1αb

2η + αb
1η + αa

2η = 0, (4.4)

where a and b are positive integers, a ≤ b. Since every linear difference ideal in the ring of σ -polynomials K {y}
is prime (see [15, Proposition 2.4.9]), the difference ideal P = [ f ], where f = αa

1αb
2 y + αb

1 y + αa
2 y, is the

defining ideal of the extension L/K . It follows from Corollary 3.12 that { f } is a characteristic set of P . With
the notation of the proof of Theorem 4.1, we have u f = αa

1αb
2 y, v f = αa

2 y, Eord f = (a + b) − a = b, and
Eord( f ) = (b, a, b − a). Furthermore, if s is sufficiently large and s ≤ r − b, then

U ′(r, s) = {αi
1α

j
2 y ∈ TY | s ≤ i + j ≤ r and (a, b) �P (i, j)}.

In this case,

CardU ′(r, s) =
[(

r + 2

2

)

−
(
r + 2 − (a + b)

2

)]

−
[(

(s − 1) + 2

2

)

−
(

(s − 1) + 2 − (a + b)

2

)]

= (a + b)r − (a + b)s + (a + b).

Now,

CardU ′′(r, s) = Card{αk1
1 α

k2
1 (αa

1αb
2 y) | k1 + k2 + a + b ≥ s and k1 + k2 + a < s} =

Card{(k1, k2) ∈ N2 | s − (a + b) ≤ k1 + k2 < s − a} =
(
s − (a + 1) + 2

2

)

−
(
s − (a + b + 1) + 2

2

)

=

bs − b(2a + b − 1)

2
. Thus,

CardU (r, s) = CardU ′(r, s) + CardU ′′(r, s) = (a + b)r − (a − 1)s − b2 + 2ab − 3b − 2a

2
,

so we get the following expression for the bivariate dimension polynomial associated with the extension L/K .

ψη|K (t1, t2) = (a + b)t1 − at2 − b2 + 2ab − 3b − 2a

2
.
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Note that the univariate σ -dimension polynomial φη|K (t) of the extension L/K associated with the σ -generator η

(which is equal to the Kolchin polynomial of the set {(a, b)} ⊂ N2) is as follows.

φη|K (t) =
(
t + 2

2

)

−
(
t + 2 − (a + b)

2

)

= (a + b)t − (a + b)(a + b − 3)

2
.

Comparing bivariate and univariate dimension polynomials with the use of Theorems 1.1 and 4.1, we see that
φη|K (t) carries two invariants of the extension L/K , deg φη|K = 1 and the leading coefficient a + b. At the same
time, the bivariate dimension polynomial ψη|K (t1, t2) carries three such invariants: degt1 ψη|K = 1, a + b (the
coefficient of t1), and −a (the coefficient of t2). Thus, ψη|K (t1, t2) gives both parameters a and b of the defining
Eq. (4.4) while φη|K (t) gives just the sum of the parameters.

Suppose that we have two systems of difference (σ -) algebraic equations in n σ -indeterminates over a σ -field K
(i. e., equations of the form f = 0 where f ∈ K {y1, . . . , yn}) that are defining equations of finitely generated σ -field
extensions L/K and L ′/K (it means that they generate prime σ -ideals P and P ′ of the ring R = K {y1, . . . , yn},
respectively, such that L and L ′ are σ -isomorphic to qf(R/P) and qf(R/P ′), respectively). These systems are
said to be equivalent if there is a σ -isomorphism between L and L ′ which is identity on K . The obtained bivariate
σ -dimension polynomial allows one to figure out that two systems of σ -algebraic equations are not equivalent in the
case when the corresponding σ -field extensions have the same univariate σ -dimension polynomial. As an example,
consider the equations

αa
1αb

2 y + αb
1 y + αa

2 y = 0 (4.5)

and

αa
1αb

2 y + αa
1 y + y = 0. (4.6)

The invariants of the univariate and bivariate σ -dimension polynomials for equation (4.5) were found in the last
example; they are {1, a+b} and {1, a, b}, respectively. Similar computation for the extension with defining equation
(4.6) gives (with the above notation)

CardU ′(r, s) = (a + b)r − (a + b)s + (a + b)

(the same as the corresponding value for (4.5)) and

CardU ′′(r, s) = (a + b)s − (a + b)(a + b − 1)

2
,

so the univariate and bivariate dimension σ -polynomials for the equation (4.6) are

φ(t) = (a + b)t − (a + b)(a + b − 3)

2
and ψ(t1, t2) = (a + b)t1 − (a + b)(a + b − 1)

2
,

respectively. Therefore, the invariants of the univariate and bivariate σ -dimension polynomials for equation (4.3)
are {1, a + b} and {1, a + b, 0}, respectively. Thus, the systems (4.5) and (4.6) are not equivalent, even though the
corresponding σ -field extensions have the same univariate σ -dimension polynomial.
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