
Cache-Coherent Accelerators for Persistent Memory
Crash Consistency

Ankit Bhardwaj
University of Utah

Todd Thornley
University of Utah

Vinita Pawar
University of Utah

Reto Achermann
University of British Columbia

Gerd Zellweger
VMware Research

Ryan Stutsman
University of Utah

ABSTRACT

Building persistent memory (PM) data structures is difficult

because crashes interrupt operations, leaving data structures

in an inconsistent state. Solving this requires augmenting

code that modifies PM state to ensure that interrupted op-

erations can be completed or undone. Today, this is done

using careful, hand-crafted code, a compiler pass, or page

faults. We propose a new, easy way to transform volatile data

structure code to work with PM that uses a cache-coherent

accelerator to do this augmentation, and we show that it may

outperform existing approaches for building PM structures.

CCS CONCEPTS

• Hardware → Memory and dense storage.

KEYWORDS

persistent memory, cache-coherent accelerators

ACM Reference Format:

Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann,

Gerd Zellweger, and Ryan Stutsman. 2022. Cache-Coherent Accel-

erators for Persistent Memory Crash Consistency. In 14th ACM

Workshop on Hot Topics in Storage and File Systems (HotStorage ’22),

June 27–28, 2022, Virtual Event, USA. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3538643.3539752

1 INTRODUCTION

The availability of commodity persistent memory, or PM,

(like Intel Optane DC Persistent Memory) has the potential

to transform computer storage. By enabling direct CPU load

and store access to persistent data structures, applications

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HotStorage ’22, June 27–28, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00

https://doi.org/10.1145/3538643.3539752

can interact with vast amounts of data in granular patterns

while avoiding costly kernel boundary crossings, data move-

ment, and serialization/deserialization overheads.

Hence, kernel file systems now map PM into processes

to avoid overheads (e.g., Linux DAX), but this forces ap-

plications to handle crash consistency. If a process crashes

while modifying a persistent data structure, its changes may

be incomplete, and it may leave the data structure in an

inconsistent state. Machines with PM support ensure the

durability of dirty cache lines enqueued for write back to

PM at the memory controller (ADR) and now even in CPU

caches (eADR) [28]. However, this merely guarantees that

dirty cache lines are persisted after a crash or power loss;

it does not provide crash consistency guarantees. Processes

must still ensure the crash consistency of their data struc-

tures at application level.

Many past schemes have been developed to provide crash

consistency, but all existing approaches require interposing

on stores to the persistent data structure, cutting into the

direct-access benefit of PM. The standard approach is to

rewrite code from scratch for crash consistency [4, 9, 11,

26, 30] by adding code that appends to a write-ahead log

(WAL) before each store. On crash, the WAL is used to undo

partially-applied operations to recover to a consistent state.

This instrumentation can be automated by using a compiler

to transform standard volatile data structures to support PM,

but the injected logging code and ordering constraints still

add overhead.

Hardware can also interpose on stores. Approaches that

do this generally use page table protections to trigger write

page faults on stores to track modifications [12, 15, 20]. This

is a black-box approach in the sense that it can be used with

unmodified code for volatile data structures. However, this

approach suffers from extreme trap overheads on modern

x86 CPUs (more than 1 µs per trap). It also suffers from

high write amplification since it forces logging at a page

granularity (4 KiB on x86) rather than at the specific size of

the field being mutated in the persistent structure [1].

Our insight is that this interposition can be done today in

hardware with low overhead without modifying host CPUs.

37

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3538643.3539752&domain=pdf&date_stamp=2022-06-27

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

The idea is to use information exposed by CPUs to forth-

coming cache-coherent accelerator devices (e.g., CXL [6]) to

provide crash consistency for applications. In our approach,

a process maps a physical address range exposed by a cache-

coherent persistence accelerator device (or PAX) into its ad-

dress space, and its threads interact with that region using

normal loads and stores as if the region were the persis-

tent structure itself (Figure 1). In turn, the device intercepts

CPU requests for cache lines, and it proxies loads to PM. For

stores, the device buffers modifications to cache lines, and it

performs persistent undo logging before writing mutations

back to PM. On crash, the structure on PM can be recovered

to a consistent snapshot by rolling back partially-applied

operations. To avoid the need for synchronous undo logging

and write back after every operation on PM, operations asyn-

chronously group commit at the device, ensuring processes

need not block to wait for undo log entries to persist before

continuing operation.

We outline how a PAX device would work and our plan to

implement it on a cache-coherent FPGA [5]; we also de-

scribe a software-based prototype of the device that we

have implemented. The device works together with a soft-

ware library (libpax) to transform volatile data structures

into linearizable and persistent data structures (e.g., C++

std::unordered_map) using the PAX to accelerate persis-

tent snapshotting. PAX has several benefits over existing

approaches to crash consistency:

Low Overhead. Loads and stores to PM operate out of CPU

caches; cache misses are directly served by the device with

no CPU traps and often from an on-device high-bandwidth

memory (HBM) cache of PM. Undo logging for crash con-

sistency is done by the device asynchronously for stores.

Black-Box Code Reuse. Existing volatile data structures

can be transformed to be persistent without code changes.

Low Write Amplification. The device tracks modifica-

tions to the PM via cache-coherence messages, so it can log

at cache line granularity, avoiding the high write amplifica-

tion of page-based approaches for crash consistency.

No Working Set Size Limits. Unlike hardware transac-

tional memory and approaches that buffer write sets in

caches or DRAM [14], working set size is not limited by host-

or device-side cache or volatile memory capacity. Dirty

cache lines can be safely written back to PM to make room

for new mutations even in the middle of operations on PM.

Efficient Use of PM Capacity. Despite snapshot seman-

tics, only one copy of the persistent structure should be

kept on PM; approaches [21, 22, 32] that create physical

snapshots hurt the capacity cost of PM by 2× or more.

Why CXL, why now? Some cache-coherent accelerators

already exist (e.g. Intel HARP [10], ETH Zurich’s Enzian [5]),

and augmenting CPU cache coherence to provide similar

L
ast-L

ev
el C

ach
e

L1/L2 Cache L1/L2 Cache

L1/L2 Cache L1/L2 Cache

Host CPU vPM

HBM Cache

Write Back Coordinator

Undo Logger

PAX Device PM

PM Undo Log

A
to

m
ic S

n
ap

sh
o

t

CXL

Figure 1: PAX Design Overview

crash-consistency guarantees have been explored in the

past [8, 14, 23]. However, CXL-based accelerators are po-

sitioned to make PAX realizable soon and practical to use

in real systems. This is because CXL eliminates the fragility

of past approaches that required hardware changes [8, 14,

23, 27, 31] or that were tightly coupled to a specific CPU

generation’s microarchitecture and coherence details [2, 10]

which made at-scale deployment impractical. CXL will allow

PAX to be developed in such a way that it will work across

different CPU architectures and microarchitectures without

requiring changes to CPUs.

Recent work has begun to show the potential of these

types of accelerators for disaggregated and distributed shared

memory [1, 16] and VM migration [2]. Upcoming commod-

ity CXL-enabled hardware will fuel at-scale deployment of

new accelerator hardware and an explosion of use cases in-

cluding PM applications. CXL devices are not yet available,

but, as we will show (§4), it is possible to develop for CXL-

based accelerators today without relying (solely) on software

simulation.

2 BACKGROUND

To illustrate the problem of crash consistency, imagine a sim-

ple persistent hash table. When put(key, value) is called,

several locations must be modified in the table: a key and

value must be stored in a fresh allocation in PM, that alloca-

tion must be linked into the table, and the count of elements

in the table may need to be updated. Regardless of complica-

tions like volatile caches and CPU store buffers, even if all

written data is persisted, consistency will be violated after

restarting if a crash occurs in the middle of these steps.

Write-ahead logging (WAL) is the standard approach to

recovering from crash failures. It underlies persistent pro-

gramming frameworks like Intel’s PMDK, which provide PM

structures like hash tables and more. WAL can use either

redo or undo logging. In redo logging, structure operations

log all locations and values to be updated; once the log en-

tries persist, updates to the structure are applied. On a crash,

missing updates are applied from the log. Similarly, in undo

logging, the existing value stored in a persistent structure

is logged for each location that must be modified. After a

log entry recording the prior value persists, modifications

38

Cache-Coherent Accelerators for Persistent Memory Crash Consistency HotStorage ’22, June 27–28, 2022, Virtual Event, USA

1 let mut allocator =

HWSnapshotter<MyAllocator>::map_pool("./ht.pool");

2 let persistent_ht = Persistent<HashMap>::new(&allocator);

3 persistent_ht.insert(1, 100);

4 println!("Key 1 = {}", persistent_ht.get(1));

5 persistent_ht.insert(2, 200);

6 persistent_ht.persist();

Listing 1: Example of the PAX programming model in Rust.

are applied directly to the structure. The recovery procedure

applies log entries to revert partially-completed operations.

Unfortunately, WAL-based approaches have drawbacks

that cut into the benefits of PM’s direct access model. The

first is that code must be modified to interpose on updates to

add logging, either by hand (like those provided by PMDK)

or by using a compiler to inject code [3, 17]. Hence, creat-

ing correct, crash-safe persistent structures is a task left to

experts, and existing volatile code is hard to recycle.

The second drawback is that logging adds overhead and

many additional stalls to enforce the safe ordering of up-

dates. In all forms of WAL, log entries must be ensured to be

durable before the write back of changes to the structure be-

gins, which requires costly SFENCE stalls. Without nuanced,

structure-specific changes to code, stalls are incurred mul-

tiple times during a single logical operation like put() (log

the allocation of a new key and value, SFENCE, write the new

key and value, SFENCE, log the update of an internal pointer,

SFENCE, update the internal pointer, SFENCE, etc.).

Our insight is that this interposition and these overheads

can be offloaded to emerging cache-coherent accelerators.

3 DESIGN

In PAX users use unmodified code from standard volatile

data structures to create persistent structures with low over-

head. Here, we outline the PAX programming model, its

handling of asynchronous logging and write backs, and its

crash-consistent snapshotting and recovery procedures.

3.1 Programming Model

Listing 1 outlines the PAX programming model and shows

how to use libpax to convert a (Rust) hash table into a per-

sistent variant. libpax coordinates with a PAX device, which

we plan to implement on an attached cache-coherent FPGA

device (Figure 1). The PAX device interposes on accesses

to the data structure, performs the necessary logging, and

handles writing back updates to PM in a way that preserves

crash consistency and snapshot semantics.

PAX Allocator Setup. Like other libraries, the application

starts with a pool file that contains the persistent struc-

ture [11, 22], typically in a DAX-accessible file in PM (Line 1).

libpaxmaps the corresponding vPM region into the address

space of the process, and then it wraps the corresponding

virtual address in an allocator object. The vPM addresses are

marked as cacheable at the device (using CXL.cache seman-

tics; see §4). All application accesses to the structure happen

through those addresses, allowing the device to interpose on

coherence messages for cache lines in vPM.

Data Structure Initialization. Then, the allocator is passed

to a data structure constructor that accepts a custom alloca-

tor (many standard structure constructors do); here, the code

is using an unmodified Rust hash table (Line 2). The allocator

ensures all of the structure’s allocations and accesses target

the vPM region. (If the structure in the pool file needs re-

covery due to an earlier crash, libpax performs the needed

recovery during this step; see §3.4.)

Loads. Line 4 calls the read-only get() method on the data

structure. Loads that miss in CPU caches trigger the host

CPU’s cache home agent to forward a message to the device,

which in turn fetches the corresponding cache line from

the underlying PM and returns it to the CPU. Since vPM

addresses are cacheable, future loads to the same line will hit

in the CPU cache without communicating with the device.

Stores. Calls to insert() (Line 5) mutate state in the per-

sistent hash table. On stores, the CPU’s cache home agent

contacts the device to request the cache line for modifica-

tion. This gives the device a chance to perform undo logging,

knowing that the CPU will soon produce a new value that

must be written back to the structure at the requested ad-

dress. To do this, the device fetches the old version of the

cache line being modified from PM, and it logs the address

and old value of the cache line in a persistent undo log.

Persisting. Finally, by calling persist() on Line 6 the li-

brary instructs the PAX device to persist a crash-consistent

snapshot of the data structure.

3.2 Asynchronous Logging and Write Back

PAX asynchronously logs the old contents of a cache line

to PM whenever a CPU asks to upgrade the cache line to

exclusive mode in order to modify it. Rather than stalling the

CPU while the device does logging, the device immediately

acknowledges CPUs’ upgrade request to modify cache lines

without waiting for the logging to complete. This is safe since

libpax only guarantees durability when a call to persist()

completes.

Generally, the application issues persist() after a batch

of operations, which works as a form of group commit [25].

CPU cores can read and modify cache lines without stalling

for cache flushes or barriers for ordering and durability. In-

stead, the PAX device builds up a set of undo log entries that it

flushes out asynchronously until persist(), making stores

to PM nearly as efficient stores to non-crash-consistent struc-

tures. vPM is cacheable, so most operations are performed

without consulting the device at all. Even for modified cache

39

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

lines, the device is generally only informed the first time

a cache line is modified after a call to persist(). Also, if

desired, libpax can issue persist() periodically to limit

undo log growth.

3.3 Crash-consistent Snapshotting

PAX guarantees that after recovery the application will al-

ways see vPM in a state that reflects the point in time of

the last call to persist() executed. During recovery, PAX

undoes unpersisted changes with the help of the log. If run

in isolation, persist() ensures that the recovered PM is

an atomic snapshot; it always appears to transition between

successive persisted states atomically. We label each succes-

sive snapshot with an epoch number. The recovered state

of the structure is always represented by the most recently

persisted epoch.

One can think of the PAX as buffering all of the modified

cache lines that should be atomically persisted when the next

epoch finishes. However, solely using this approach has two

problems: 1) the buffer could run out of capacity for modified

cache lines, artificially limiting per-epoch working set size;

and 2) the CPU may be caching modified cache lines that the

device does not have in its buffer.

The device’s asynchronous undo logging is key to solving

both of these issues. The device-generated undo log is di-

vided into epochs; if a crash occurs in the middle of writing

changes to PM, the recovery process restores consistency

by undoing all of the effects in the most recent (and not-yet-

durable) epoch. This allows the device to freely modify PM

during an epoch so long as it can undo partially-applied ef-

fects after a crash. So, the device can proactively write back

a modified cache line to PM so long as its corresponding

undo log entry is durable. This is easy to track since the

undo log becomes durable at a monotonically increasing off-

set. Modified cache lines buffered at the device include the

offset of their corresponding undo log entry, so the device

knows when write back for that cache line is safe. This also

avoids the capacity limitations like those that plague Intel’s

TSX hardware transactional memory [8, 19]; if the device is

overwhelmed with modified cache lines that are part of the

current epoch, it can still evict them and write them back

once they are logged. In fact, the device buffer’s eviction

policy can try to minimize stalls by preferring to evict cache

lines whose undo log entries are already durable.

Write back happens asynchronously as the application per-

forms operations on vPM, even before persist() is called.

Once persist() is called, the device ensures that all write

back completes for all cache lines that the CPU modified

during the epoch. This is done by iterating through each

undo log entry as it persists and writing back any buffered

new value to the corresponding cache line in PM.

However, one challenge is that a CPU may have modified

some cache lines that it never evicted from its caches back

to the device, which is the home of all vPM addresses. On a

store that misses in the host CPU cache, themessage from the

CPU to the device only notifies the device that the CPU will

modify the cache line, not what it will change it to. Hence,

at end of an epoch, the device needs to ensure it has an up-

to-date view of every cache line that the CPU could have

modified. So, when persist() is called, the device iterates

over every address in an undo log entry generated in the

current epoch. For each address, the device triggers a CXL

device-to-host message that is handled by the host CPU’s

memory controller requesting that cache line in shared mode,

which both downgrades the cache line in all host CPU caches

and causes the host CPU memory controller to forward the

up-to-date value of the cache line to the device.

After this step and after all modified cache lines are safely

written back to PM, the device writes the current epoch

number to a special location in the structure’s pool file. This

write (once durable) atomically transitions the structure from

the old epoch’s snapshot to the new epoch’s snapshot and

persist() returns to the application.

3.4 Recovery

After a crash, the application reopens the same pool file

and calls Persistent<T>::new(). libpax reads the epoch

number stored in the pool, then it looks for undo log en-

tries associated with the pool tagged with any later epoch

number. For each such entry, libpax overwrites the corre-

sponding cache line in PM with the value stored in the log

entry. Next, it performs an SFENCE, and initializes the device

and vPM as usual. Finally, it recovers the pool’s allocator

state, and it returns Persistent<T> which internally holds

a pointer of type T to the persistent structure in vPM. From

the application’s perspective, there is no difference between

constructing a new persistent map and recovering one; the

application always recovers at the most recent persistent

snapshot or with a new, empty instance of the structure.

3.5 Multi-threading

PAX requires the data structure code to be thread safe if

multiple threads access the data structure concurrently; it

does not provide concurrency control or transactions over

vPM. Application code must ensure that persist() is only

called when no thread is modifying the data structure, oth-

erwise persisted snapshots may still include partial effects

from ongoing operations.

4 IMPLEMENTATION & PROTOTYPING

We are currently implementing PAX. libpax is written in

Rust; Rust’s ownership semantics and borrow checker help

40

Cache-Coherent Accelerators for Persistent Memory Crash Consistency HotStorage ’22, June 27–28, 2022, Virtual Event, USA

statically enforce some of the safety properties of PAX. A

C/C++ implementation is also straightforward, especially

since C++’s STL structures accept custommemory allocators.

Our eventual goal is to implement a PAX device on

a CXL 2.0-enabled FPGA where it will implement the

CXL.cache protocol to interpose on coherence messages.

This forces the host CPU cache home agents to forward

snoop data and invalidate requests (SnpData and SnpInv,

CXL 2.0 §3.2.4.3) in vPM. This lets PAX track which cache

lines are being modified by host CPU cores.

On persist(), we plan to generate CXL device-to-host

RdSharedmessages to force the host CPU to downgrade (and

forward the current values of) its dirty cache lines before

write back to PM. This is more efficient than forcing CPUs to

issue CLWBs which are serialized, consume cycles, and cause

complete evictions of cache lines and future cache misses

(though future Intel CPUs promise to improve on this by

simply downgrading cache lines to shared mode on CLWB).

CXL-enabled FPGAs are not yet available, so we are pur-

suing two alternative approaches today.

Cache-Coherent FPGAs. Other cache coherent accelera-

tors can be used instead of a CXL accelerator like Intel’s own

discontinued HARP platform. For our hardware prototype,

we are using an Enzian machine, a research computer with a

Marvell Cavium ThunderX-1 48-core 2 GHz CPU connected

to a Xilinx CVU9P FPGA via 24×10Gb/s lanes [5]. These

lanes connect the ThunderX’s cache-coherence bus to the

FPGA, exposing the information we need to implement PAX.

The coherence messages observed by the FPGA are at a

lower-level than what a CXL-enabled device would receive,

and they are tightly coupled to the ThunderX’s microarchi-

tecture. To address this, our plan is to implement an “adapter”

layer at the FPGA that filters and adapts the ThunderX’s co-

herence messages to match the CXL specification so our

implementation will be immediately portable to commodity

machines when CXL devices arrive.

Enzian’s CPU-to-FPGA coherence message latencies are

higher than what are expected for CXL-attached device; we

explore the impact of accelerator latency on expected per-

formance in the next section.

Software-Simulated CXL Accelerators. Concurrently,

we have also been working on a software-based, reference

PAX implementation that runs on standard Intel CPUs. It

uses a similar adapter layer to try to ensure that the software-

based PAX still receives and reacts to CXL-defined messages.

To use this implementation, a process links against our

PAX library as usual, but it is run via Intel’s Pin [18]. Pin

performs dynamic binary translation on the program, and it

rewrites all loads and stores that target the vPM region. For

each load or store, the rewritten code simulates a CPU cache;

on a cache miss it sends a simulated CXL message to a PAX

process over a shared memory queue. This CXL simulation

(a)

DRAM PM PM via
CXL

PM via
Enzian

0
20
40
60

AM
AT

 [n
s]

(b)

1 8 16 24 32
Threads

0
20
40
60

Th
ro

ug
hp

ut
 [M

op
s] DRAM PM Direct PMDK

Figure 2: AMAT estimates and throughput benchmarks.

layer is independent of PAX; it may be useful more generally

for prototyping CXL-based systems.

The software PAX runs on a separate host CPU core; it

receives these simulated CXL messages and performs the

same logic that we have described for the hardware-based

PAX. Since communication is via shared memory, communi-

cation between program threads can be fast (easily 100 ns or

less). Since persistent memory accesses take 305 ns [33], it is

likely this PAX will be able to simulate realistic access times.

The caveat to that is that Pin must instrument every store

that accesses the vPM region, even if it would have been a

CPU cache hit in the real implementation. Hence, we aren’t

yet sure how well it will perform overall.

5 PERFORMANCE

How will PAX perform compared to hand-crafted persistent

memory structures (like those from PMDK) and compiler-

transformed approaches? Though we don’t have a hardware

PAX implementation today to get a definitive answer, we

can estimate it using a combination of benchmarks, latency

measurements, and public information. Our estimates and

measurements suggest that the performance of off-the-shelf

data structures (std::unordered_map) using PAX may be

similar to or better than hand-crafted PMDK data structures.

AMAT estimates. Our first analysis estimates how average

memory access times (AMAT) would change for a simple

hash table; it shows how much individual loads and stores

would be slowed by adding a PAX between PM and an ap-

plication. In the experiment, we measure cache miss rates

at the L1, L2, and last-level cache running a standard hash

table benchmark that performs get() operations on a single

thread with small 8 B keys and values and a uniform ran-

dom key access distribution on a Cloudlab c6420 [7] (put()

latency is impacted similarly). We combine these miss rates

with access latencies of each level estimated empirically us-

ing the same machine and publicly available information for

Optane DCPMM [33], expected CXL latency [6], and Enzian

coherence latency [5].

Figure 2a compares the estimated AMAT of different lay-

ers and media servicing last-level cache misses. DRAM and

PM are not crash consistent; PM via CXL and PM via Enzian

provide crash consistency. The key takeaway is that crash

consistency for PM via a CXL-based PAX (blue bar) may only

41

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

add 25% to application-experienced AMAT. This is because

vPM is cacheable; though PAX interposes on PM access, the

CPU caches eliminate most accesses to PAX. End-to-end

application metrics (e.g., throughput) vary in sensitivity to

AMAT between applications, but these results are promis-

ing as standard approaches to crash consistency would have

additional stores and synchronous overheads that PAX elim-

inates.

Finally, our estimate for an Enzian-based PAX suggests

that we can build a prototype PAX today that imposes about

a 2× overhead over an eventual CXL-based implementation.

Throughput benchmark. Figure 2b compares the through-

put of a volatile hash table (from Intel’s TBB [13]) when it

is placed in DRAM, PM directly (not crash consistent), and

PMDK’s TBB-based hash table for a write-only workload. For

32 cores, PM Direct performs ≈2× better than PMDK since

PMDK writes to an undo log before updating the table.

We are optimistic that PAX will match or beat PM Direct

for all workloads; hence, it may beat the hand-crafted PMDK

hash table. This is because, though PAX does undo logging,

its logging is asynchronous, so it provides nearly the perfor-

mance of unsafe, direct PM access. By using high bandwidth

memory (HBM) to cache at a PAX, it may be possible to beat

direct PM performance and approach the performance of

having the structure in volatile DRAM.

5.1 Bottlenecks and Optimizations

PCIe and PM Bandwidth. CXL is based on PCIExpress 5.0,

so CXL-enabled accelerators could support up to 63 GB/s of

full duplex bandwidth. A single CPU socket with an Optane

DC PMDIMMper memory channel peaks at about 40 GB/s of

read bandwidth and 14 GB/s for writes [33]. Workloads that

reach these bandwidths would be rare, since most workloads

will frequently hit in CPU caches. Overall, we expect that

I/O bus bandwidth will not be a primary bottleneck in PAX.

Accelerator Bottlenecks. Host CPUs may collectively gen-

erate hundreds of millions of last-level cache misses per sec-

ond that the PAX device must handle. In our initial Enzian-

based prototype, we expect this to be a substantial bottleneck.

The CVU9P FPGA that runs PAX is clocked at 300 MHz. To

saturate the interconnect between the ThunderX-1 and the

FPGA, PAXwould need to respond to coherence messages on

nearly every clock cycle. We plan to make PAX parallel and

pipelined, but we expect this will still be a bottleneck. Hence,

we expect that designs for other cache-coherent accelerators

that include ASICs for handling coherence messages [10]

would likely outperform our Enzian-based prototype.

Combining with Paging. Recent work suggests that

paging-based approaches for tracking changes to remote

memory suffer both in terms of performance and write am-

plification compared to a PAX-like approach [1]. However,

paging may capture spatial locality well for some work-

loads. PAX must interpose on every last-level cache miss,

but paging-based approaches only incur overhead on the

first access to a page per epoch, which can be amortized for

some applications. Our plan is to compare these approaches

in detail for a variety of applications. We may find that a

combination of the approaches works best. For example, it

is possible for PAX to manage write backs to PM DIMMs

attached to the host CPU memory controller. In such de-

ployment, the application could directly map PM pages as

read-only; on a write page fault, the page could remapped at

read/write through addresses assigned to vPM, letting PAX

track changes to the page at cache line granularity.

6 LOOKING FORWARD

PAX will provide near-native access times to PM structures

with unmodified volatile data structure code with low write

amplification and without hardware changes, stalls for log-

ging, or working set restrictions.

Our work on PAX has already raised interesting questions

that we are exploring. For example, we believe it may be pos-

sible to make persist() fully non-blocking, so that epochs

overlap and threads never stall even during persist(); this

is challenging since we cannot modify CPU caches to re-

tain different cache line versions for epochs. Similarly, we

are extending PAX to efficiently provide linearizability in a

black-box fashion with highly concurrent workloads.

Integrating PAXwith existing and future hardware is inter-

esting since platforms have different capabilities; CXL.mem

can support basic functionality, but it does not have as much

visibility into coherence as CXL.cache, which has less visibil-

ity than Enzian [5]. Hence, it will be interesting to see what

optimizations are possible with each approach.

Finally, different applications can use our techniques e.g.,

to enable efficient transactions within a cluster of machines

by connecting FPGAs over a high-speed network or provid-

ing fault tolerance via remote memory [24, 29].

CXL will be here soon. Beyond coherence, CXL can give

applications a new lens to view and interpose on their own

operations. We believe PAX is exciting since it is an early

step toward algorithms that benefit from exposing cache-

coherence details directly to applications.

ACKNOWLEDGMENTS

We thank the reviewers for their feedback. This material is

based upon work supported by the National Science Founda-

tion under Grant No. CNS-1750558. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

42

Cache-Coherent Accelerators for Persistent Memory Crash Consistency HotStorage ’22, June 27–28, 2022, Virtual Event, USA

REFERENCES
[1] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al

Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking Software Run-

times for Disaggregated Memory. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 79–92, 2021.

[2] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel

Gandhi, Onur Mutlu, and Pratap Subrahmanyam. Project PBerry:

FPGAAcceleration for RemoteMemory. In Proceedings of theWorkshop

on Hot Topics in Operating Systems, pages 127–135, 2019.

[3] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:

Leveraging Locks for Non-VolatileMemory Consistency. In Proceedings

of the 2014 ACM International Conference on Object Oriented Program-

ming Systems Languages and Applications, OOPSLA ’14, page 433–452,

New York, NY, USA, 2014.

[4] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-

jesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making

Persistent Objects Fast and Safe with next-Generation, Non-Volatile

Memories. In Proceedings of the Sixteenth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), page 105–118, New York, NY, USA, 2011.

[5] David Cock, Abishek Ramdas, Daniel Schwyn,Michael Giardino, Adam

Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Liccia-

rdello, Kristina Martsenko, Reto Achermann, Gustavo Alonso, and

Timothy Roscoe. Enzian: An Open, General, CPU/FPGA Platform for

Systems Software Research. In Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS 2022, page 434–451, New York, NY,

USA, 2022.

[6] CXL 2.0 Specification. https://www.computeexpresslink.org/spec-

landing.

[7] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of

CloudLab. In 2019 USENIX Annual Technical Conference (USENIX ATC

19), pages 1–14, Renton, WA, July 2019. USENIX Association.

[8] Pradeep Fernando, Irina Calciu, Jayneel Gandhi, Aasheesh Kolli, and

Ada Gavrilovska. Persistence and Synchronization: Friends or Foes?

arXiv preprint arXiv:2012.15731, 2020.

[9] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and

Pratap Subrahmanyam. go-pmem: Native support for programming

persistent memory in go. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 859–872, 2020.

[10] Prabhat K Gupta. Accelerating Datacenter Workloads. In 26th Interna-

tional Conference on Field Programmable Logic and Applications (FPL),

volume 2017, page 20, 2016.

[11] Morteza Hoseinzadeh and Steven Swanson. Corundum: Statically-

Enforced Persistent Memory Safety. In Proceedings of the 26th interna-

tional conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2021.

[12] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-

ton, and Patrick Eugster. NVthreads: Practical persistence for multi-

threaded applications. In Proceedings of the Twelfth European Confer-

ence on Computer Systems, pages 468–482, 2017.

[13] Advanced HPC Threading: Intel oneAPI Thread Building Blocks.

https://www.intel.com/content/www/us/en/developer/tools/

oneapi/onetbb.html.

[14] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas.

DHTM: Durable Hardware Transactional Memory. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA),

pages 452–465, 2018.

[15] Terence Kelly. Persistent Memory Programming on Conventional

Hardware: The persistent memory style of programming can dramati-

cally simplify application software. Queue, 17(4):1–20, 2019.

[16] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,

Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill, Marcus

Fontoura, and Ricardo Bianchini. First-generation Memory Disaggre-

gation for Cloud Platforms. arXiv preprint arXiv:2203.00241, 2022.

[17] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H

Noh, and Changhee Jung. iDO: Compiler-directed failure atomicity

for nonvolatile memory. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 258–270. IEEE, 2018.

[18] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur

Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and

Kim M. Hazelwood. Pin: Building Customized Program Analysis Tools

with Dynamic Instrumentation. In Proceedings of the ACM SIGPLAN

2005 Conference on Programming Language Design and Implementation,

Chicago, IL, USA, June 12-15, 2005, pages 190–200. ACM, 2005.

[19] Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. To Lock,

Swap, or Elide: On the Interplay of Hardware Transactional Mem-

ory and Lock-Free Indexing. Proceedings of the VLDB Endowment,

8(11):1298–1309, July 2015.

[20] Leonardo Marmol, Mohammad Chowdhury, and Raju Rangaswami.

LibPM: Simplifying application usage of persistent memory. ACM

Transactions on Storage (TOS), 14(4):1–18, 2018.

[21] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi

Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.

Atomic in-place updates for non-volatile main memories with kamino-

tx. In Proceedings of the Twelfth European Conference on Computer

Systems, pages 499–512, 2017.

[22] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson.

Pronto: Easy and fast persistence for volatile data structures. In Pro-

ceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages

789–806, 2020.

[23] Tri M Nguyen and David Wentzlaff. PiCL: A software-transparent,

persistent cache log for nonvolatile main memory. In 2018 51st An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 507–519. IEEE, 2018.

[24] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,

Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,

Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen

Yang. The RAMCloud Storage System. ACM Trans. Comput. Syst.,

33(3), aug 2015.

[25] Steven Pelley, Thomas F Wenisch, Brian T Gold, and Bill Bridge. Stor-

age management in the NVRAM era. Proceedings of the VLDB Endow-

ment, 7(2):121–132, 2013.

[26] Persistent Memory Devlopment Kit. https://pmem.io/pmdk/.

[27] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,

and Onur Mutiu. ThyNVM: Enabling software-transparent crash con-

sistency in persistent memory systems. In 2015 48th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 672–685.

IEEE, 2015.

[28] Steve Scargall. Programming Persistent Memory: A Comprehensive

Guide For Developers. Springer Nature, 2020.

[29] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel

Madden. Speedy Transactions in Multicore In-Memory Databases.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles, SOSP ’13, page 18–32, 2013.

43

HotStorage ’22, June 27–28, 2022, Virtual Event, USA A. Bhardwaj et al.

[30] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:

Lightweight Persistent Memory. In Proceedings of the Sixteenth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, page 91–104, New York, NY, USA, 2011.

[31] Ziqi Wang, Chul-Hwan Choo, Michael A Kozuch, Todd C Mowry, Gen-

nady Pekhimenko, Vivek Seshadri, and Dimitrios Skarlatos. NVOver-

lay: Enabling Efficient and Scalable High-Frequency Snapshotting to

NVM. In 2021 ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA), pages 498–511. IEEE, 2021.

[32] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Lu-

ján. PMThreads: Persistent Memory Threads Harnessing Versioned

Shadow Copies. In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 623–637,

2020.

[33] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steven Swanson. An Empirical Guide to the Behavior and Use of

Scalable Persistent Memory. In 18th USENIX Conference on File and

Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27,

2020, pages 169–182. USENIX Association, 2020.

44

