

1 **The influence of LEDs with different blue peak emission wavelengths**
2 **on the biomass, morphology, and nutrient content of kale cultivars**
3

4

5

6

7 Eyosias L. Ashenafi ^a, Marianne C. Nyman ^{a*}, Jake M. Holley ^b, Neil S. Mattson ^b

8

9 ^a Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute,
10 Troy, NY 12180, USA

11 ^b School of Integrative Plant Science, Cornell University, Ithaca, NY 14583, USA

12

13

14

15

16

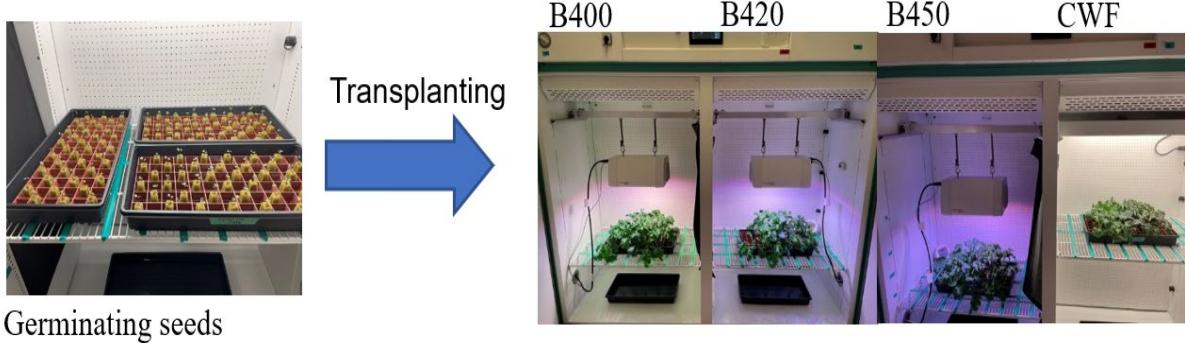
17

18

19 *Corresponding author: Dr. Marianne Nyman, 518-276-2268, Email: nymanm@rpi.edu

20

21 **Abstract**


22 Light-emitting diodes (LEDs) enhance plant production in vertical farms by
23 regulating photosynthetic rate and phytochemistry. Specific light recipes can be
24 formulated using LEDs for high output by fine-tuning spectral composition and
25 irradiance. In this study, the growth, development, and nutritional quality of three kale
26 cultivars ('Toscano', 'Redbor', and 'Winterbor') were examined under different blue peak
27 emission wavelengths (λ_{peak}). Photosynthetic photon flux density (PPFD) was
28 maintained at $200 \pm 10\% \mu\text{mol m}^{-2} \text{ s}^{-1}$ over a 16-hr photoperiod. The LED light
29 treatments had blue λ_{peak} centered at 400, 420, and 450 nm wavelengths, all with
30 spectral ratios of 20 % blue, 20 % green, 60 % red in the visible light region, and 15 %
31 of total PPFD in the far-red region. The control light was cool-white fluorescent (CWF)
32 light with blue λ_{peak} at 436 nm and a slightly higher amount of PPFD in the blue region
33 (23%). The biomass yield and leaf physical characteristics were largely unaffected by
34 the light treatments with different blue λ_{peak} . However, the concentration of carotenoids
35 and chlorophylls in kale leaves was influenced by the type and amount of blue light
36 during growth. Future research should investigate the effect of different blue light
37 percentages in pre- and post-harvest LED treatments (continuous or pulsed) on high-
38 value, nutritious crops.

39

40

41 **Keywords:** carotenoids, phytochemicals, blue light, controlled environment, light-
42 emitting diode, kale

43 **Graphical abstract**

44

45

46

47

48

49

50

51

52

53

54

55

56 **1. Introduction**

57 Light emitting diodes (LEDs) can be designed with built-in dimmable (intensity
58 control) and tunable (spectral control) functions to enhance crop productivity in indoor
59 plant factories [1]. Recently, several research groups have been employing LED fixtures
60 with independently controllable light channels and narrow spectral regions for identifying
61 optimum light recipes for growing different crops [2-4]. Compared to High-Pressure
62 Sodium or fluorescent light sources, LEDs have long lamp life (up to 50,000 hrs.),
63 minimal infrared emission, and high electrical efficiency [5-7]. Over time, advancements
64 in semiconductor technology will allow for the manufacture of LEDs with a significantly
65 increased light output, while the production cost of LEDs is projected to plummet over
66 time [8].

67 Previous research demonstrates that plants growing under monochromatic (100
68 %) blue or red light display abnormal growth and low yield in biomass and pigment
69 content [9-10]. Hence, an investigation into photomorphogenesis and pigment
70 biosynthesis under a combination of different light spectra is warranted. The most
71 efficient and cost-effective way to maximize yield and quality of plant growth involves
72 using light to interact with both photosynthesis and plant photoreceptors. One common
73 strategy is to match the emission spectrum of the light source with the absorption
74 spectra of photosynthetic pigments and photoreceptors in plant leaves for a high
75 probability of photochemical reactions [11-12].

76 Light sources with high red: blue (R:B) ratio have been shown to promote plant
77 growth and increase biomass accumulation [13-15]. On the contrary, a light spectrum
78 with a low R:B ratio leads to increased production of important phytochemicals in

79 different plant species but at the cost of lower biomass yield [12,16-17]. A balance
80 between promoting growth and increasing phytochemicals is necessary for optimum
81 plant production.

82 Light absorption of blue and red light is above 90 %, while only 81 % of incident
83 green light is absorbed by leaves [2]. This is due to the high absorption of blue and red
84 light by the photosynthetic pigments – chlorophylls and carotenoids [18]. However,
85 green light is necessary to increase photosynthetic productivity, particularly in lower
86 canopy plants due to its deeper penetration than other light photons (high transmittance
87 of green light by uppermost leaves, especially at high PPFDs) [2,19-20].

88 The interaction of blue light and blue-sensitive photoreceptors (cryptochromes,
89 phototropins, and zeitlupes) controls aspects of plant physiology such as the production
90 of secondary metabolites [12]. Known biological responses to high blue light treatment
91 (40 % or more blue light) include lower biomass yield, compact growth, high stomatal
92 conductance, and high phenolic content in comparison to light treatments lower in blue
93 light [14,20–22]. Leaves with deep red or purple pigmentation (high anthocyanin
94 content) are observed in plants grown under high blue light [14,23-24]. Blue light
95 photons at different wavelengths have different relative quantum efficiency (RQE) for
96 photosynthesis. RQE of monochromatic blue light at 400 nm wavelength is 0.66, while
97 the RQE at 420, 436, and 450 nm is 0.75 [25]. It is important to note there are
98 synergistic effects that take place when blue light is combined with other types of light
99 [26].

100 Ying and co-workers [27] observed no effect of increasing blue light from 5 to 30
101 % in blue-red combination LED treatment on the concentration of photosynthetic

102 pigments and the concentration of harmful nitrate content in 'Red Russian' kale
103 samples. However, a higher concentration of anthocyanins and total phenolic content
104 (TPC) was observed when the ratio of blue light increased. In an experiment with two
105 lettuce cultivars, the highest concentration of chlorophylls, anthocyanins, and total
106 phenolics was reported in plants grown with "blue-rich" light (50 and 80 % blue), in
107 comparison to monochromatic red/blue and simulated sunlight conditions [23]. A linear
108 decrease in cotyledon area and hypocotyl length in kale and mustard seedlings was
109 observed with an increase in the blue light fraction from 5 to 30 % [27]. However, no
110 significant differences in fresh and dry weight were found in the seedlings of kale,
111 arugula, and mustard plants grown under different combinations of blue and red light
112 [27].

113 Kale, (*Brassica oleracea* L. var. *acephala*) a cold-tolerant, cruciferous vegetable,
114 contains a diverse class of health-promoting, bioactive compounds. Previously, high
115 concentrations of carotenoids (lutein and β -carotene), phenolics (anthocyanins), and
116 glucosinolates have been measured in the leaves of kale cultivars [26-30]. These
117 compounds provide good antioxidant properties, pro-vitamin A activity, and promote
118 good cardiovascular and ocular health in humans [31]. Carotenoids in plant cells play
119 an important role in photoprotection by quenching radical species with high oxidizing
120 potential during high light overexcitation [32].

121 Overall, past photobiological research primarily focused on understanding the
122 effect of different light combinations on plant species but not the impact of peak
123 emission wavelengths. In this study, the growth and development of three kale cultivars
124 ('Toscano', 'Redbor', and 'Winterbor') at different λ_{peak} (wavelength of peak emission) of

125 blue light were investigated. Physical attributes (fresh weight, total leaf area, etc.) and
126 nutritional quality (chlorophyll, carotenoids, and total phenolics) of leaf samples were
127 quantified. We hypothesized that light treatment with a low peak wavelength for blue
128 light will promote a higher accumulation of bioactive compounds.

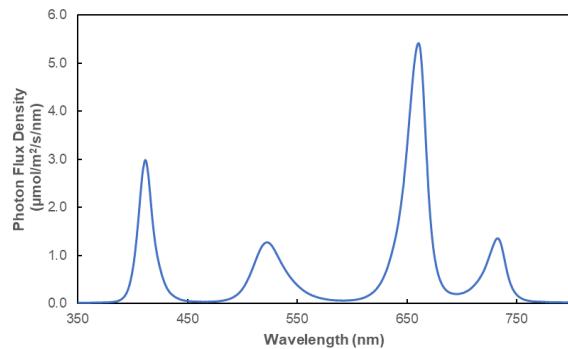
129

130 **2. MATERIALS AND METHODS**

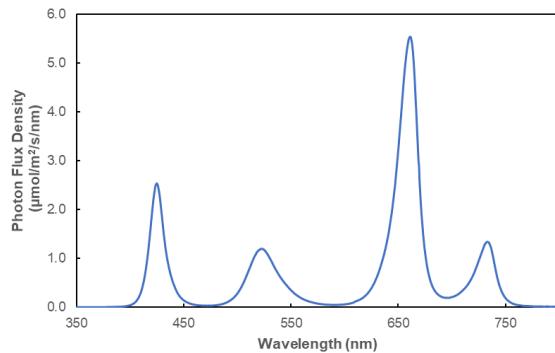
131 **2.1 Planting Materials and Growing Conditions**

132 Seeds for the kale cultivars, 'Toscano', 'Redbor', and 'Winterbor', were
133 purchased from Johnny's Selected Seeds (Winslow, ME). The seeds were sown on
134 soaked Rockwool cubes (Grodan®, Milton, ON) inside Terra Cotta plant trays. Upon
135 germination, kale seeds were transplanted to different light treatments and supplied with
136 a nutrient solution prepared from 5-12-26 N-P-K Jack's hydroponic and CAL-Trate LX
137 formula (JR Peters Inc, Allentown, PA). Tap water was used to prepare the nutrient
138 solution. The nutrient composition was 200 ppm N, 50 ppm P, 206 ppm K, 78.4 ppm S,
139 182.7 ppm Ca, 60.3 ppm Mg, 3.63 ppm Fe, 0.63 ppm B, 0.86 ppm Mn, 0.52 ppm Zn,
140 0.22 ppm Cu, and 0.17 ppm Mo as described by Ashenafi [33]. Fresh nutrient solution
141 was added to trays regularly as needed.

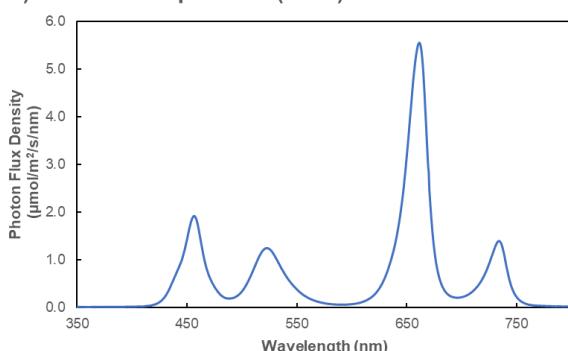
142 The effect of light treatments with different blue λ_{peak} on the growth and
143 development of kale cultivars was examined. The LED treatments were performed
144 using Heliospectra DYNA RX-30 LED lamps (Göteborg, Sweden). The λ_{peak} of the blue
145 light channels listed by the LED manufacturer was 400 nm (B400), 420 nm (B420), and
146 450 nm (B450). Measured emission peaks of blue wavebands from spectroradiometer
147 readings were 412 nm (for B400), 426 nm (for B420), and 457 nm (for B450). All LED
148 treatments contain 20 % blue, 20 % green, 60 % red of PAR, and far-red (FR) light at 15
149 % of total PPFD.

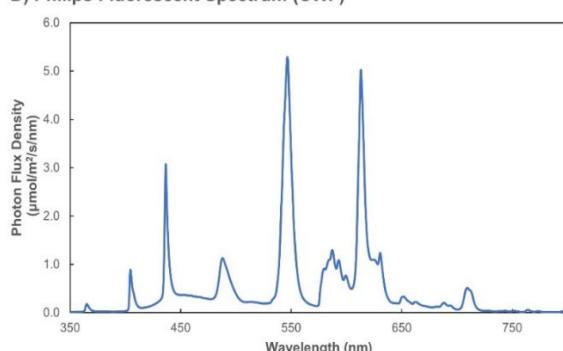

150 The control light was cool-white fluorescent (CWF), which was supplied by
151 Philips T5 CWF lamps (Eindhoven, Netherlands). Measured photon flux density in the

152 CWF light spectrum was 23 % blue ($\lambda_{\text{peak}} = 436 \text{ nm}$), 44 % green, and 33 % red of the
153 total PPFD and small FR light (4 % of PPFD). For all treatment groups, the light level
154 was maintained at PPFD of $200 \pm 10 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ at canopy height during the growth
155 of kale. The spectral power distribution of the light sources was measured using a PS-
156 300 spectroradiometer (Apogee Instruments, Logan, UT) and presented in **Fig. 1**.


157 Kale seeds were germinated in low CWF light for one week. Germinated plants
158 were transplanted to growth chambers with the different light treatments (B400, B420,
159 B450, and CWF) and grown inside A2000 growth chambers (Conviron, Winnipeg, MB).
160 Plants were harvested and analyzed 30 days after seeding. Under the four light
161 treatments, there was a total of three biological replicates for each cultivar. The indoor
162 air temperature was set at $24 \text{ } ^\circ\text{C}$ during the 16-hr light period and $18 \text{ } ^\circ\text{C}$ during the 8-hr
163 darkness. Relative humidity inside the chambers was maintained between 50 and 70 %.
164 The planting area was assessed in a grid system and the light intensity in each grid was
165 measured using a LI-190R quantum sensor (LI-COR Biosciences, Lincoln, NE). The
166 measured intensity values at the center of the growing area were between 211.8 –
167 $219.9 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$. Plants were randomly selected for morphology and nutrient analysis
168 to avoid potential differences based on spatial location within the chamber.

169


170 A) DYNA LED Spectrum (B400)


170 B) DYNA LED Spectrum (B420)

171 C) DYNA LED Spectrum (B450)

171 D) Philips Fluorescent Spectrum (CWF)

172 **Fig. 1.** Spectral power distribution of four light treatments. The first three LED
173 treatments had different peaks for the blue emission waveband: 400 nm (A), 420
174 nm (B), and 450 nm (C). The control light was a cool white fluorescent lamp (D).
175 **[Two column fitting]**

176

177 **2.2 Morphology measurements**

178 Five samples per planting cycle (a total of 15 plants) were harvested from each
179 treatment group for biomass and morphology measurements. Fresh weight (FW), dry
180 weight (DW), and total leaf area (TLA) of plant samples were measured. DW was found
181 by drying leaves inside the oven at 70 °C until a constant weight was obtained. TLA was
182 measured using a CI-202 laser leaf area meter (CID-Bioscience, Camas, WA). Moisture
183 content was determined based on the difference between FW and DW. Stem length and
184 diameter were measured using a transparent ruler and digital caliper, respectively.
185 Specific-leaf area was calculated using **Equation 1**, based on TLA and DW values.

$$\text{SLA} = \frac{\text{TLA}}{\text{DW}} \quad \text{Eqn. 1}$$

186 Where SLA is specific leaf area ($\text{cm}^2 \text{ g}^{-1}$); TLA is total leaf area (cm^2), and DW is the
187 total dry weight of leaf samples (g).

188 **2.3 Chlorophyll and carotenoid analysis**

189 At harvest time, four leaf samples from each light treatment were flash frozen,
190 placed in aluminum envelopes, and stored inside a - 80 °C freezer until pigment
191 analysis. Frozen samples were homogenized with mortar and pestle prior to extraction.
192 Pigments from approximately 50 mg of plant matter (weight known) were extracted
193 using 1 mL of 80:20 (v/v) acetone: deionized (DI) water. Samples were vortexed and
194 centrifuged inside 1.5 mL plastic microcentrifuge tubes until only white pellets were
195 visible.

196 HPLC analysis was performed on a supernatant solution from the extracted leaf
197 samples for the determination of chlorophyll and carotenoid content. The analysis was
198 performed on a Prominence *i* LC-2030 3D liquid chromatograph with a PDA detector
199 (Shimadzu Scientific Instruments, Kyoto, Japan). Polymeric YMC C-30 Carotenoid
200 column (4.6 x 250 mm x 5 μ m) was used as a stationary phase (YMC America,
201 Allentown, PA). The used mobile phase was isocratic 81:15:4 (v/v/v) methanol: methyl
202 *tert*- butyl ether: DI water solution. The flow rate was 1 mL min⁻¹.

203 High purity pigment standards were used for the analysis of pigments in extract
204 solutions. Lutein pigment standard (98.6 % purity) was obtained from ChromaDex
205 (Irvine, CA), while the standards for violaxanthin (\geq 95 %), chlorophyll a (\geq 85 %), and
206 chlorophyll b (\geq 90 %) were purchased from Sigma-Aldrich (St. Louis, MO). The peaks
207 of individual leaf pigments were identified using external standards under a run time of
208 36 minutes.

209

210

211 **2.4 Total phenolic content analysis**

212 Phenolic content was measured using a Folin-Ciocalteu reagent, according to a
213 modified protocol from Ainsworth and Gillespie [34]. Pigments from approximately 20
214 mg (weight known) of homogenized leaf powder were extracted using a 95:5 (v/v)
215 methanol: DI water solution. To each supernatant and standard solutions (200 μ L
216 volume), 10 % (v/v) Folin-Ciocalteu reagent (400 μ L volume) and 0.7 mM sodium
217 carbonate (1600 μ L volume) were added. The reaction resulted in a dark-blue pigment
218 complex. The mixture was incubated at room temperature for 2 hours. Absorbance at
219 765 nm wavelength was measured from each supernatant, blank, and gallic acid
220 standards using quartz cuvettes and a UV-VIS spectrophotometer (UV-1800, Shimadzu
221 Instruments, Kyoto, Japan). The TPC of kale samples was determined in gallic acid
222 equivalents (GAE). Calibration standards of gallic acid were prepared in the 0.05 – 2.5
223 mM range in 95:5 (v/v) methanol: DI water. The coefficient of determination (r^2) value of
224 gallic acid's calibration curve was 0.99. Folin-Ciocalteu Phenol TS solution was
225 obtained from Spectrum Chemical Manufacturing (New Brunswick, NJ). Gallic acid
226 standard (98 %) was purchased from Acros Organics (Fair Lawn, NJ).

227

228

229 **2.5 Leaf gas exchange measurements**

230 Water use efficiency (WUE) from each light treatment was measured using
231 CIRAS-3 Portable Photosynthesis System (PP Systems, Amesbury, MA). Leaf gas
232 exchange measurements were taken on the third fully expanded leaf under ambient
233 light. The measurements were performed at each biological replicate (9 measurements
234 per cultivar per treatment). The exchange of carbon dioxide (CO_2) and water (H_2O)
235 molecules between leaves and gas cuvette was directly measured inside growth
236 chambers, 1 hour after the photoperiod started and one or two days before harvest.
237 Calculated parameters from direct measurements include net assimilation rate or A_n
238 ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$), stomatal conductance or gs ($\text{mmol H}_2\text{O m}^{-2} \text{ s}^{-1}$), and WUE (mmol
239 $\text{CO}_2 \text{ mol}^{-1} \text{ H}_2\text{O}$). Fresh reference CO_2 cartridges were used to supply 400 ppm CO_2
240 inside leaf cuvettes during each day of measurement. The cuvette and analyzer flows
241 were 300 and 100 mL min^{-1} , respectively.

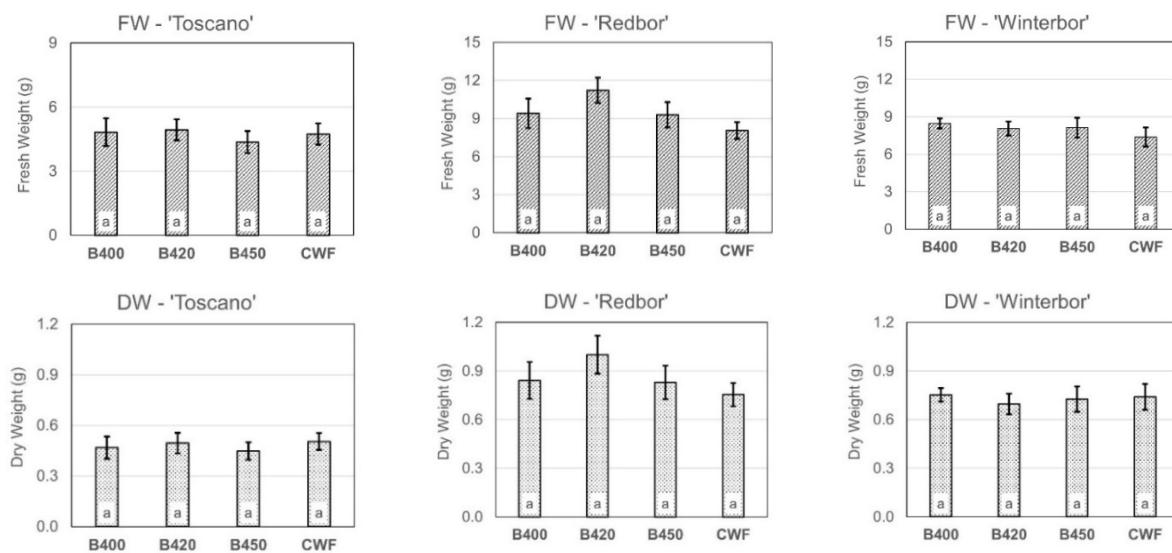
242 **2.6 Lamp efficiency measurement**

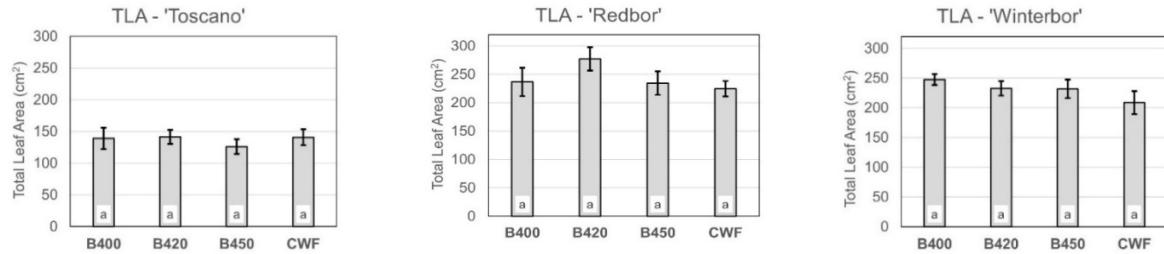
243 The electrical consumption of LED lamps was measured using Kuman KW-47
244 electric meter (Shenzhen, China). Photosynthetic photon efficiency (PPE) of electric
245 lamps can be calculated using **Equation 2**. The T5 CWF lamps were connected
246 directly to the Conviron growth chambers for power, and hence a measurement of
247 electrical consumption rate was not obtained. From previous measurements, PPE
248 values of $0.84 - 0.95 \mu\text{mol J}^{-1}$ were reported in different fluorescent lamps [35].

$$\text{Photosynthetic Photon Efficiency} = \frac{\text{Number of PAR photons } (\mu\text{mol})}{\text{Electrical energy input } (\text{J})} \quad \text{Eqn. 2}$$

250 **2.7 Statistical analysis**

251 Mean of biomass, nutrient, and gas exchange measurements from different light
252 treatments were compared using one-way ANOVA followed by Tukey's HSD at a 0.05
253 significance level. Different Tukey letters between different treatment groups indicate
254 statistically significant differences with a > b > c. Pseudo-replicate measurements from
255 HPLC and UV-VIS analysis were removed before statistical tests. Results are presented
256 as mean \pm standard error (SE) for different parameters. All statistical analysis was
257 performed using R Studio Ver. 1.4.1103 (Boston, MA) and plotted using Microsoft Excel
258 (Redmond, WA).


259


260

261 **3. RESULTS AND DISCUSSION**

262 **3.1 Biomass analysis**

263 At the end of the growth period, plant samples were harvested and the
264 differences in physical characteristics between the light treatment groups were
265 analyzed. In this study, no statistical differences were found in the FW and DW values
266 between plants grown under the different LED and CWF treatments (see **Fig. 2**). This
267 observation was apparent in all kale cultivars investigated. Plants in each treatment
268 received the same total amount of light (DLI) during growth, which likely contributed to
269 the insignificant differences in biomass measurements. Kurosaki [36] found similar
270 findings with lettuce cultivars 'Red Oak' and 'Rex' grown under blue light at 412, 425, or
271 454 nm. In addition, Spalholz and co-workers [23] concluded that there was evident of
272 gain in fresh mass for lettuce while exposing the lettuce to a variety of blue: red and sun
273 simulated light treatments.

274 **Fig. 2.** Fresh weight (FW), dry weight (DW), and total leaf surface area (TLA) of three
275 kale cultivars grown under the three LED and CWF (control) light treatments with
276 different blue λ_{peak} . Error bars represent mean \pm SE from three biological
277 replicates. Sample size per cultivar: n = 15. Tukey's significance letters are
278 indicated inside bar plots at the bottom. **[Two column fitting]**

279 Based on the electrical consumption of the LED spectra employed in this study,
280 the PPE values (average of three measurements) were 1.86 $\mu\text{mol J}^{-1}$ (B400), 2.01 μmol
281 J^{-1} (B420), and 2.09 $\mu\text{mol J}^{-1}$ (B450) over a unit area (m^2) at the specified intensity
282 levels. The LEDs (regardless of the blue peak wavelength) had about twice the
283 electrical efficacy as what has been reported in the literature for fluorescent fixtures [35].
284 Between the blue LED treatments, the B450 light was more efficient than the others. In
285 other words, a higher amount of electrical energy was converted to PAR light in the
286 B450 LED treatment; however, the photochemical action on selected kale plants was
287 similar to B400, B420, and CWF light, based on the obtained yield data.

288 Dou and co-workers [13] found similar shoot FW, DW, and TLA for green basil
289 plants grown under four LED treatments with different light spectra but identical PPFD
290 ($220 \mu\text{mol m}^{-2} \text{s}^{-1}$). Similarly, Camejo and co-workers [37] observed non-significant
291 differences in biomass yield in lettuce plants (cv. 'Batavia Letttony') grown under CWF
292 and two LED light spectrums, all maintained at constant PPFD of $250 \mu\text{mol m}^{-2} \text{s}^{-1}$. This
293 phenomenon was also observed in 'Red Cos' lettuce grown under different
294 combinations of blue, green, red, and UV light (all at constant irradiance) and harvested

295 at the seedling stage [38]. However, a decrease in final biomass has been found in
296 'Rouxai' lettuce when the blue light intensity was increased from 0 to 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$
297 while maintaining the total PPFD constant [14].

298

299 **3.2. Morphology analysis**

300 Some differences were observed during the morphological analysis of kale
301 cultivars from the different light treatments (see **Table 1**). Plants in the three LED
302 groups had similar stem lengths, which were significantly longer than plants grown
303 under the CWF light. CWF light spectrum contains a higher fraction of blue light (23 %
304 Blue) and very low FR light (4 % of PPFD in FR) than the blue LED treatments (20 %
305 Blue and 15 % of PPFD in FR) (see **Fig. 1**). Similarly, reduced stem elongation had
306 been observed in lettuce, kale, and other leafy greens grown under light treatments with
307 a high blue light percentages [16,20-21]. High FR light in the blue LED treatments can
308 increase leaf expansion and internode elongation, while low FR light can elicit compact
309 growth [3]. In addition, Vastakaite-Kairiene *et al.* [39] observed end-of-day blue light
310 caused increased shoot elongation at all developmental growth stages of lettuce
311 (*Lactuca sativa*, Lobjoits Green Cos) . However, Li and co-workers [40] found end-of-
312 day blue light suppressed the growth of 'Red butter' lettuce, but enhanced the biomass
313 yield in 'Green butter' lettuce.

314 Some significant differences were observed in the moisture content (%) of
315 'Toscano' and 'Winterbor' kale leaf samples (**Table 1**). Overall, 89 – 92 % moisture
316 content was found in the three kale cultivars. No statistical differences were found in the
317 SLA (inverse of leaf mass area) and stem diameter values between plants grown under
318 the LED and CWF light. The calculated SLA values in this study were high (290 – 320
319 $\text{cm}^2 \text{ g}^{-1}$), which is characteristic of indoor-grown plants [37-38]. Slightly higher SLA
320 values were found in 'Toscano' and 'Winterbor' kale grown in the blue LED treatments

321 when compared to the same cultivars grown under CWF light. For 'Redbor' kale, larger
322 but non-significant SLA values were found in CWF light treatments.

323

324 **Table 1.** Effect of blue peak wavelength on the morphology and moisture content of
 325 'Toscano', 'Redbor', and 'Winterbor' kale. Values are reported as mean \pm SE.
 326 Sample size $n = 12$.

327 A) 'Toscano'

Light treatment	SLA ($\text{cm}^2 \text{g}^{-1}$)	Stem length (cm)	Stem diameter (mm)	Moisture content (%)
B400	320 ± 14.2 a	7.9 ± 0.4 a	3.1 ± 0.1 a	90.6 ± 0.2 a
B420	306 ± 14.5 a	8.2 ± 0.4 a	3.4 ± 0.1 a	90.2 ± 0.3 ab
B450	293 ± 11.4 a	7.0 ± 0.4 a	3.3 ± 0.2 a	89.6 ± 0.4 ab
CWF	289 ± 10.7 a	4.3 ± 0.3 b	3.5 ± 0.1 a	89.2 ± 0.3 b

328

329 B) 'Redbor'

Light treatment	SLA ($\text{cm}^2 \text{g}^{-1}$)	Stem length (cm)	Stem diameter (mm)	Moisture content (%)
B400	301 ± 13.8 a	7.6 ± 0.3 a	4.3 ± 0.2 a	91.3 ± 0.3 a
B420	295 ± 14.1 a	7.8 ± 0.3 a	4.8 ± 0.2 a	91.3 ± 0.3 a
B450	307 ± 16.7 a	6.7 ± 0.4 a	4.5 ± 0.2 a	91.3 ± 0.3 a
CWF	314 ± 16.3 a	4.3 ± 0.1 b	4.6 ± 0.2 a	90.7 ± 0.3 a

330

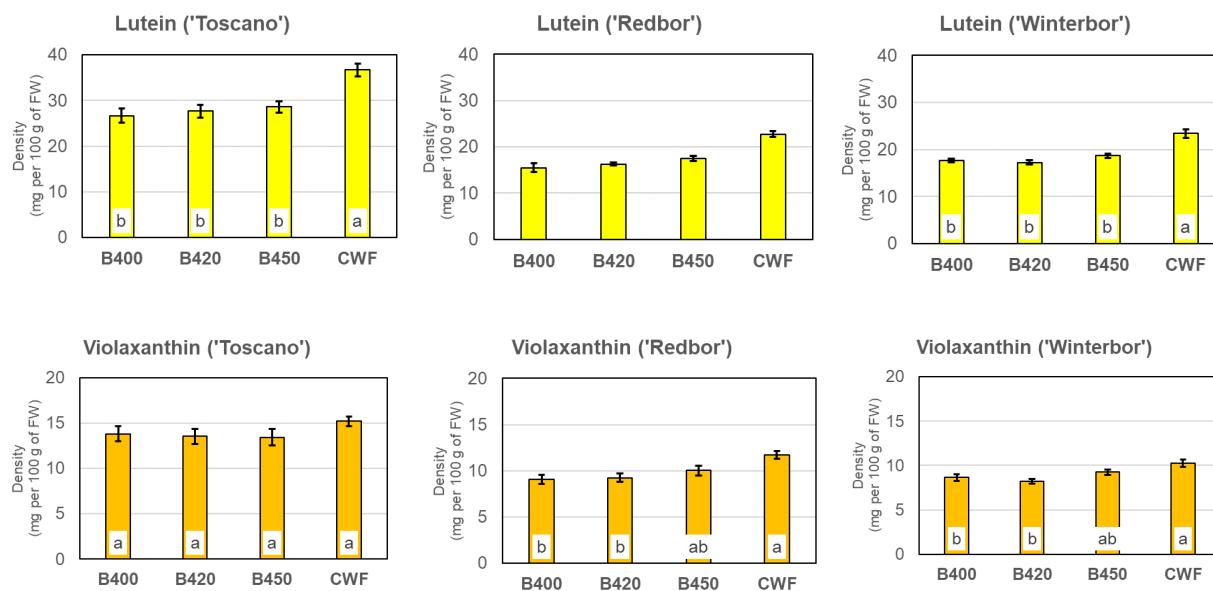
331 C) 'Winterbor'

Light treatment	SLA ($\text{cm}^2 \text{g}^{-1}$)	Stem length (cm)	Stem diameter (mm)	Moisture content (%)
B400	335 ± 12.7 a	9.7 ± 0.4 a	3.5 ± 0.1 a	91.1 ± 0.2 ab
B420	357 ± 19.3 a	9.8 ± 0.3 a	3.6 ± 0.1 a	91.5 ± 0.3 a
B450	337 ± 14.5 a	9.1 ± 0.5 a	3.5 ± 0.1 a	91.1 ± 0.2 ab
CWF	300 ± 15.9 a	4.7 ± 0.3 b	3.5 ± 0.1 a	90.1 ± 0.4 b

332 Tukey's significance letters with a > b at $\alpha = 0.05$ significance level. Light treatments
 333 with the same significance letters are not statistically significant.

334 SLA = specific leaf area, B400 = Blue λ_{peak} at 400 nm, B420 = Blue λ_{peak} at 420 nm,
 335 B450 = Blue λ_{peak} at 450 nm, and CWF = Cool-white fluorescent.

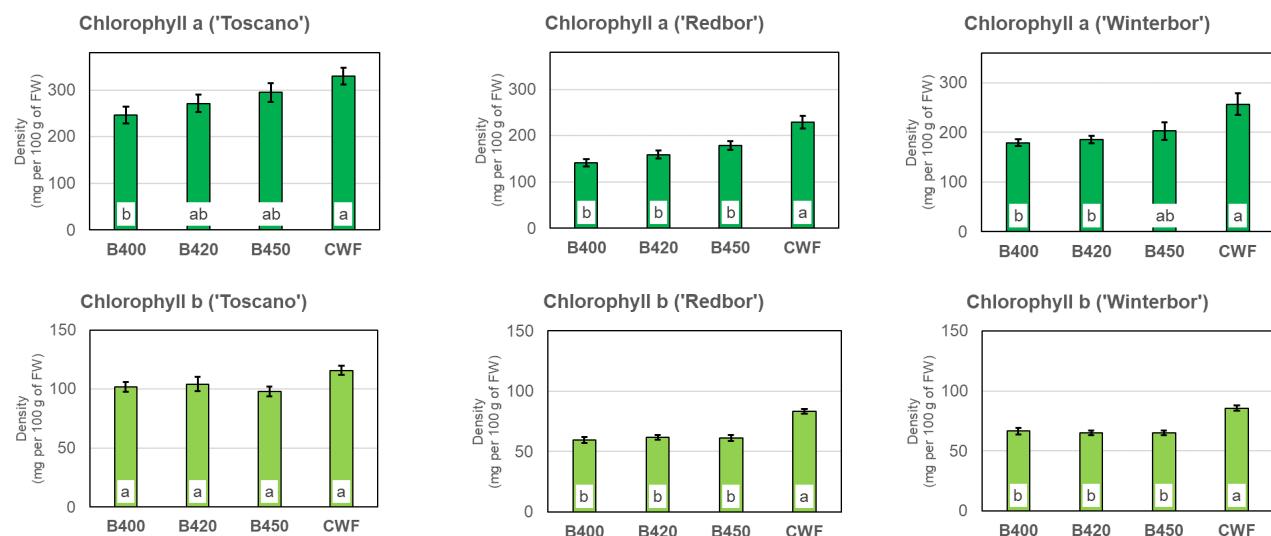
336


337

338

339

340 **3.3. Nutrient and Pigment analysis**


341 HPLC analysis of leaf pigments was performed on harvested plants from the
 342 different light treatment groups. The concentration of lutein, violaxanthin, chlorophyll *a*,
 343 and chlorophyll *b* in leaves was measured. For all three kale cultivars, lutein content in
 344 the CWF light treatments (22.7 – 36.7 mg per 100 g of FW) was significantly higher than
 345 the lutein concentration found in the LED treatments (see **Fig. 3**). For instance,
 346 measured lutein concentration in 'Toscano' leaves from CWF treatment was 37.4 %,
 347 32.4 %, and 28.3 % larger than LED treatments with blue λ_{peak} at 400, 420 and 450 nm,
 348 respectively. Slight differences in lutein content were observed between the three blue
 349 LED treatments, but it was not found to be statistically significant as shown in **Fig. 3**.

350 **Fig. 3.** Carotenoids measurements (lutein and violaxanthin) in the leaves of 'Toscano',
 351 'Redbor', and 'Winterbor' kale plants grown under the three LED and CWF
 352 (control) light treatments. Error bars represent mean \pm SE from three biological
 353 replicates. Sample size per cultivar: $n = 12$. Tukey's significance letters are
 354 indicated inside bar plots at the bottom. Zeaxanthin was not detected in any of
 355 the leaf samples.
 356 **[Two column fitting]**

357 The highest violaxanthin content was found in leaves from B450 and CWF
 358 groups (both with higher blue λ_{peak}) for 'Redbor' and 'Winterbor' kale (see **Fig. 3**). Non-
 359 statistical difference in violaxanthin content was observed for 'Toscano' kale between
 360 the different light treatments. Zeaxanthin was not detected in any of the leaf samples
 361 due to low indoor light intensity [30] and indoor grown plants typically have less
 362 xanthophyll cycle pigments [41].

363 For 'Toscano' and 'Winterbor' kale, the highest concentration of chlorophyll a was
 364 found in leaves harvested from B450 and CWF light treatments (see **Fig. 4**). For
 365 'Redbor' kale, the chlorophyll a content from CWF treatment was 61.4 %, 43.7 %, and
 366 28 % higher than the chlorophyll a pigment found in the leaves from the B400, B420,
 367 and B450 LED treatments. For the three kale cultivars, an increase in lutein and
 368 chlorophyll a was observed in the blue LED treatments from B400 to B450 (see **Fig. 3**
 369 and **4**).

370 **Fig. 4.** Chlorophyll measurements (Chl a and b) in the leaves of 'Toscano', 'Redbor',
 371 and 'Winterbor' kale plants grown under three LED and CWF (control) light
 372 treatments. Error bars represent mean \pm SE from three biological replicates.

373 Sample size per cultivar, $n = 12$. Tukey's significance letters indicated inside
374 bar plots at the bottom. **[Two column fitting]**
375

376 For chlorophyll *b* pigment, the highest density was observed in plants grown
377 under CWF light for 'Redbor' and 'Winterbor' kale (**Fig. 4**). Measured chlorophyll *b*
378 concentration in leaves from the CWF treatment was 40 % and 36 % higher than the
379 pigment concentration in B400 and B450 LED treatments, respectively, in 'Redbor' kale
380 samples. For 'Toscano' kale, the differences in foliar chlorophyll *b* content between the
381 different treatment groups were not statistically significant.

382 Variety-dependent response in pigment content was evident in this study.
383 Overall, the pigment density (lutein, violaxanthin, chlorophyll *a* and *b*) in 'Toscano' kale
384 leaves was higher than pigments in 'Redbor' and 'Winterbor' kale leaves. In terms of
385 total chlorophyll and total carotenoid content, leaf samples grown under CWF light
386 contained significantly higher amounts of these photosynthetic pigments than leaves
387 from the LED treatments (see **Table 2**). Total carotenoids (lutein and violaxanthin) in
388 'Toscano' kale from CWF treatment were 27.9 % and 23.3 % larger than the
389 carotenoids from B400 and B450 treatments, respectively.

390 Between the different blue LED treatments, higher pigment density was observed
391 in leaves from B450 than in the other two treatments, but the difference was not found
392 to be statistically significant. For instance, the total carotenoid content in 'Redbor' leaves
393 from the B450 treatment was 11.8 % and 7.8 % higher than the measured carotenoids
394 'Redbor' leaves from the B400 and B420 treatments, respectively.

395 The ratio of chlorophyll *a* to chlorophyll *b* (Chl. *a/b*) in leaf samples was observed
396 to be relatively low in this study (**Table 2**), which is characteristic of plants grown at low
397 light levels [41-43]. For the three kale cultivars, the Chl. *a/b* values from B400 and B420
398 treatments were slightly lower than the ratios in the B450 and CWF treatments.

399 Previously, a higher concentration of carotenoids and chlorophyll compounds
400 was reported in leaf samples grown under light treatments with a large percentage of
401 blue light [16,20]. Camejo and co-workers [37] observed higher anthocyanin content
402 (cyanidin) in the CWF light group than in white-LED and red and blue-LED treatments
403 (all at constant PPFD of 250 $\mu\text{mol m}^{-2} \text{s}^{-1}$), likely due to the difference in the blue light
404 spectrum. This trend was also evident in this study with plants grown under the CWF
405 light treatment, which contained a higher blue light fraction (see **Fig. 1**).

406 Blue light is known to enhance the production of phenolic compounds (such as
407 anthocyanins) in various plant species mediated by cryptochrome and phototropin
408 photoreceptors [44-45]. A higher concentration of phenolic compounds was previously
409 measured in red leaf 'Lollo Rossa' lettuce exposed to longer durations of supplemental
410 blue light [46]. In this study, non-significant differences were observed for total phenolics
411 between treatment groups (see **Supplementary materials**). However, the TPC values
412 in CWF-grown leaves were slightly higher than the TPC values measured from leaves
413 from blue LED treatments. Vastakaite-Kairiene *et al.* [39] observed end-of-day blue light
414 negatively impacted the accumulation of total phenolic compounds in lettuce. Similarly,
415 Li and researchers [40] found no applicable changes in total phenolic compounds of two
416 lettuce cultivars during a 24-d study.

417

419 **Table 2:** Effect of blue peak wavelength on the phytochemical content in 'Toscano',
 420 'Redbor', and 'Winterbor' kale. Values are reported as mean \pm SE. Sample
 421 size: $n = 12$.

422 A) 'Toscano'

Light treatment	Chl. a/b ratio	Total chlorophylls ^a	Total carotenoids ^a
B400	2.4 \pm 0.2b	348 \pm 20b	40.5 \pm 2.0b
B420	2.6 \pm 0.1ab	375 \pm 24ab	41.0 \pm 2.0b
B450	3.0 \pm 0.2a	393 \pm 23ab	42.0 \pm 2.1b
CWF	2.9 \pm 0.1ab	446 \pm 20a	51.8 \pm 1.8a

423

424 B) 'Redbor'

Light treatment	Chl. a/b ratio	Total chlorophylls ^a	Total carotenoids ^a
B400	2.4 \pm 0.1a	201 \pm 9b	24.6 \pm 1.3b
B420	2.6 \pm 0.1a	221 \pm 10b	25.5 \pm 0.7b
B450	3.0 \pm 0.2a	240 \pm 10b	27.5 \pm 1.0b
CWF	2.8 \pm 0.2a	312 \pm 14a	34.4 \pm 1.0a

425

426 C) 'Winterbor'

Light treatment	Chl. a/b ratio	Total chlorophylls ^a	Total carotenoids ^a
B400	2.7 \pm 0.1a	246 \pm 9b	26.4 \pm 0.7b
B420	2.9 \pm 0.1a	250 \pm 9b	25.5 \pm 0.6b
B450	3.1 \pm 0.2a	268 \pm 19b	27.9 \pm 0.7b
CWF	3.0 \pm 0.2a	342 \pm 24a	33.7 \pm 1.3a

427 ^a Total chlorophylls (chlorophyll *a* and *b*) and carotenoids (lutein and violaxanthin) were
 428 reported in "mg per 100 g of FW".

429 **3.4. Leaf gas exchange analysis**

430 The exchange of CO₂ and H₂O from leaf samples was measured from each light
431 treatment group at the end of the growth period. Similar to the biomass analysis,
432 instantaneous leaf gas exchange measurements between the different light treatments
433 were found not to be different (see **Supplementary materials**). For 'Toscano' and
434 'Winterbor' kale, non-significant differences in the parameters, WUE, A_n, E, and gs were
435 observed. For 'Redbor' kale, significantly higher WUE and E values were found in B400
436 and B420 LED treatments.

437 Overall, there was a decreasing trend in A_n from B400 to B450, based on the
438 measured data. Leaves from the blue LED treatments had slightly higher A_n than leaves
439 from control CWF lights, an exception with B420 in 'Winterbor' kale. There was large
440 variability in the data likely due to non-saturating, low incident light (200 µmol m⁻² s⁻¹)
441 during gas exchange measurements. Previously, A_n values of 5 - 10 µmol CO₂ m⁻² s⁻¹
442 were reported in lettuce leaves grown under LED treatment (16 % Blue + 20 % Green +
443 64 % Red) and exposed to PPFD of 200 µmol m⁻² s⁻¹[2], similar to the current findings.
444 At higher irradiance (PPFD > 700 µmol m⁻² s⁻¹), A_n increased to 15 – 20
445 µmol CO₂ m⁻² s⁻¹ in leaf samples. Furthermore, Piovene and co-workers [46] did not find
446 significant differences in A_n measurements on basil leaves between LED and
447 fluorescent light treatments (excluding 10 % B + 90 % R LED treatments, which yielded
448 significantly lower A_n).

449

450 Higher WUE values are associated with higher PPFD or ambient CO₂
451 concentrations, while instantaneous WUE measurement depends on many
452 environmental factors such as light and drought conditions [47-48]. Furthermore, A_n
453 measurements from individual leaves or time points in a treatment group may not have
454 a good correlation with crop yield [49]. In basil leaves, gs values of 140 – 220 mmol H₂O
455 m² s⁻¹ (approx.) were reported in leaves from different LED and CWF (control)
456 treatments, with lower gs values, found when the R: B ratio in the light source dropped
457 below 1 [4].

458 Hogewoning and co-workers [26] found an increase in light-saturated CO₂
459 assimilation rate (A_{max}), gs, and the number of stomata units (adaxial side) in cucumber
460 leaves when the percentage of blue light was increased from 0 % to 50 % of PPFD. In
461 another study, a higher photosynthetic rate and gs were reported in lettuce leaf samples
462 when growth light had a high blue light fraction [49]. However, a saturation of
463 photosynthetic parameters was evident at the later growth stage (20 days after
464 transplanting), irrespective of the blue light spectrum. Excessive light can, however,
465 induce photoinhibition, which results in a reduction of A_{max} [50].

466

467

468

469 **4. CONCLUSION**

470 Findings from this research demonstrate that the total amount of light available to
471 kale plants under sole-source lighting conditions is more important than light quality for
472 photosynthesis and biomass accumulation. On the other hand, plant morphology and
473 nutrient yield are largely influenced by the spectral quality (blue light fraction) of light. In
474 this work, differences in biomass yield for all three kale cultivars ('Toscano', 'Redbor',
475 and 'Winterbor') between the different light spectra were found to be small and non-
476 significant. This was also evident in gas exchange measurements, as the CO₂
477 assimilation rate and WUE were similar for the different kale cultivars, irrespective of
478 blue λ_{peak} . From pigment analysis, the concentration of total carotenoids and total
479 chlorophylls was significantly higher in plants grown under CWF light. This is likely due
480 to the higher blue and lower FR light amount in CWF, in comparison to the different blue
481 LED lights. In conclusion, our data indicate that kale plant growth under sole-source
482 lighting is primarily regulated by the total irradiance level, while the accumulation of
483 phytochemicals is controlled by the spectral composition of growth light. This study is
484 one of the first to demonstrate the influence of specific peak emission wavelengths of
485 blue light on plant nutrition.

486

487

488 **Acknowledgments**

489 This work was supported by the National Science Foundation (NSF) grant –
490 Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS/T3) (award

491 number 1739163). The authors would like to acknowledge the contribution of Dr. Tessa
492 Pocock during the design of the experiment.

493

494 **Declaration of interest:** none

495 **References**

- 496 [1] G. Cocetta, D. Casciani, R. Bulgari, F. Musante, A. Kolton, M. Rossi, and A.
497 Ferrante, "Light use efficiency for vegetables production in protected and indoor
498 environments," *Eur. Phys. J. Plus*, vol. 132, no. 43, pp. 1–15, 2017, doi:
499 10.1140/epjp/i2017-11298-x.
- 500 [2] J. Liu and M. W. van Iersel, "Photosynthetic physiology of blue, green, and red
501 light: Light intensity effects and underlying mechanisms," *Front. Plant Sci.*, vol. 12,
502 no. March, 2021, doi: 10.3389/fpls.2021.619987.
- 503 [3] M. A. Mickens, E. J. Skoog, L. E. Reese, P. L. Barnwell, L. E. Spencer, G. D.
504 Massa, and R. M. Wheeler, "A strategic approach for investigating light recipes for
505 'Outrageous' red romaine lettuce using white and monochromatic LEDs," *Life
506 Sci. Sp. Res.*, vol. 19, no. September, pp. 53–62, 2018, doi:
507 10.1016/j.lssr.2018.09.003.
- 508 [4] G. Pennisi, S. Blasioli, A. Cellini, L. Maia, A. Crepaldi, I. Braschi, F. Spinelli, S.
509 Nicola, J. A. Fernandez, C. Stranghellini, L. Marceilis, F. Orsini, and G.
510 Gianquinto, "Unraveling the role of red:Blue LED lights on resource use efficiency
511 and nutritional properties of indoor grown sweet basil," *Front. Plant Sci.*, vol. 10,
512 no. March, pp. 1–14, 2019, doi: 10.3389/fpls.2019.00305.
- 513 [5] F. Bantis, S. Smirnakou, T. Ouzounis, A. Koukounaras, N. Ntagkas, and K.
514 Radoglou, "Current status and recent achievements in the field of horticulture with
515 the use of light-emitting diodes (LEDs)," *Sci. Hortic. (Amsterdam)*, vol. 235, no.
516 17, pp. 437–451, 2018, doi: 10.1016/j.scienta.2018.02.058.
- 517 [6] C. M. Bourget, "An introduction to light-emitting diodes," *HortSci.*, vol. 43, no. 7,
518 pp. 1944–1946, Dec. 2008, doi: 10.21273/HORTSCI.43.7.1944.
- 519 [7] J. A. Nelson and B. Bugbee, "Analysis of environmental effects on leaf
520 temperature under sunlight, high pressure sodium and light emitting diodes,"
521 *PLoS One*, vol. 10, no. 10, pp. 1–14, 2015, doi: 10.1371/journal.pone.0138930.
- 522 [8] S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, "Prospects for LED
523 lighting," *Nat. Photonics*, vol. 3, no. 4, pp. 180–182, 2009, doi:
524 10.1038/nphoton.2009.32.
- 525 [9] A. Amoozgar, A. Mohammadi, and M. R. Sabzalian, "Impact of light-emitting diode
526 irradiation on photosynthesis, phytochemical composition and mineral element
527 content of lettuce cv. Grizzly," *Photosynthetica*, vol. 55, no. 1, pp. 85–95, 2017,
528 doi: 10.1007/s11099-016-0216-8.
- 529 [10] J. He, L. Qin, Y. Liu, and T. W. Choong, "Photosynthetic capacities and
530 productivity of indoor hydroponically grown 'Brassica alboglabra' Bailey under
531 different light sources," *Am. J. Plant Sci.*, vol. 6, pp. 554–563, 2015, doi:

532 10.4236/ajps.2015.64060.

533 [11] P. M. Pattison, J. Y. Tsao, G. C. Brainard, and B. Bugbee, “LEDs for photons,
534 physiology and food,” *Nature*, vol. 563, no. 7732, pp. 493–500, 2018, doi:
535 10.1038/s41586-018-0706-x.

536 [12] C. E. Wong, Z. W. N. Teo, L. Shen, and H. Yu, “Seeing the lights for leafy greens
537 in indoor vertical farming,” *Trends Food Sci. Technol.*, vol. 106, no. 2020, pp. 48–
538 63, 2020, doi: 10.1016/j.tifs.2020.09.031.

539 [13] H. Dou, G. Niu, and M. Gu, “Photosynthesis, morphology, yield, and
540 phytochemical accumulation in basil plants influenced by substituting green light
541 for partial red and/or blue light,” *HortSci.*, vol. 54, no. 10, pp. 1769–1776, 2019,
542 doi: 10.21273/HORTSCI14282-19.

543 [14] Q. Meng, J. Boldt, and E. S. Runkle, “Blue radiation interacts with green radiation
544 to influence growth and predominantly controls quality attributes of lettuce,” *J. Am.
545 Soc. Hortic. Sci.*, vol. 145, no. 2, pp. 75–87, 2020, doi: 10.21273/JASHS04759-
546 19.

547 [15] Y. Zhang, J. Ji, S. Song, W. Su, and H. Liu, “Growth, nutritional quality and
548 health-promoting compounds in Chinese kale grown under different ratios of
549 red:blue LED lights,” *Agronomy*, vol. 10, no. 9, pp. 1–15, 2020, doi:
550 10.3390/agronomy10091248.

551 [16] M. T. Naznin, M. Lefsrud, V. Gravel, and M. O. K. Azad, “Blue light added with red
552 LEDs enhance growth characteristics, pigments content, and antioxidant capacity
553 in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment,”
554 *Plants*, vol. 8, no. 4, pp. 101–111, 2019, doi: 10.3390/plants8040093.

555 [17] G. Samuolienė, A. Viršilė, A. Brazaitytė, J. Jankauskienė, S. Sakalauskienė, V.
556 Vaštakaitė, A. Novičkovas, A. Viškelienė, A. Sasnauskas, and P. Duchovskis,
557 “Blue light dosage affects carotenoids and tocopherols in microgreens,” *Food
558 Chem.*, vol. 228, pp. 50–56, 2017, doi: 10.1016/j.foodchem.2017.01.144.

559 [18] T. Ouzounis, E. Rosenqvist, and C. O. Ottosen, “Spectral effects of artificial light
560 on plant physiology and secondary metabolism: A review,” *HortSci.*, vol. 50, no. 8,
561 pp. 1128–1135, 2015, doi: 10.21273/hortsci.50.8.1128.

562 [19] I. Terashima, T. Fujita, T. Inoue, W. S. Chow, and R. Oguchi, “Green light drives
563 leaf photosynthesis more efficiently than red light in strong white light: Revisiting
564 the enigmatic question of why leaves are green,” *Plant Cell Physiol.*, vol. 50, no.
565 4, pp. 684–697, 2009, doi: 10.1093/pcp/pcp034.

566 [20] G. Massa, T. Graham, T. Haire, C. Flemming, G. Newsham, and R. Wheeler,
567 “Light-emitting diode light transmission through leaf tissue of seven different
568 crops,” *HortSci.*, vol. 50, no. 3, pp. 501–506, 2015, doi:
569 10.21273/hortsci.50.3.501.

570 [21] M. O. K. Azad, K. Heinsvig Kjaer, M. Adnan, M. T. Naznin, J. D. Lim, I. J. Sung,
571 C. H. Park, and Y. S. Lim, “The evaluation of growth performance, photosynthetic
572 capacity, and primary and secondary metabolite content of leaf lettuce grown
573 under limited irradiation of blue and red LED light in an urban plant factory,”
574 *Agric.*, vol. 10, no. 2, pp. 1–16, 2020, doi: 10.3390/agriculture10020028.

575 [22] R. M. Metallo, D. A. Kopsell, C. E. Sams, and N. R. Bumgarner, “Influence of
576 blue/red vs. white LED light treatments on biomass, shoot morphology, and
577 quality parameters of hydroponically grown kale,” *Sci. Hortic. (Amsterdam)*, vol.

578 235, pp. 189–197, 2018, doi: 10.1016/j.scienta.2018.02.061.

579 [23] H. Spalholz, P. Perkins-Veazie, and R. Hernández, "Impact of sun-simulated
580 white light and varied blue:red spectrums on the growth, morphology,
581 development, and phytochemical content of green- and red-leaf lettuce at different
582 growth stages," *Sci. Hortic. (Amsterdam)*, vol. 264, p. 109195, 2020, doi:
583 10.1016/j.scienta.2020.109195.

584 [24] M. Cammarisano, I.S. Donnison, and P. R. H. Robson, "The effect of red & blue
585 rich LEDs vs fluorescent light on Lollo Rosso lettuce morphology and physiology",
586 *Frontiers Plant Sci.*, vol. 12, 603411, 2021, doi: 10.3389/fpls.2021.603411.

587 [25] Sager, J.C., Smith, W.O., Edwards, J.L., and K. L. Cyr, "Photosynthetic efficiency
588 and phytochrome photoequilibria determination using spectral data," *Trans.*
589 *ASAE*, vol. 31, no. 6, pp. 1882–1889, 1988, doi: 10.13031/2013.30952.

590 [26] S. W. Hogewoning, G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and
591 J. Harbinson, "Blue light dose-responses of leaf photosynthesis, morphology, and
592 chemical composition of *Cucumis sativus* grown under different combinations of
593 red and blue light., " *J. Exp. Bot.*, vol. 61, no. 11, pp. 3107–3117, 2010, doi:
594 10.1093/jxb/erq132.

595 [27] Q. Ying, Y. Kong, C. Jones-Baumgardt, and Y. Zheng, "Responses of yield and
596 appearance quality of four Brassicaceae microgreens to varied blue light
597 proportion in red and blue light-emitting diodes lighting," *Sci. Hortic. (Amsterdam)*,
598 vol. 259, no. 2020, p. 108857, 2020, doi: 10.1016/j.scienta.2019.108857.

599 [28] F. Ferioli, E. Giambanelli, L. F. D'Antuono, H. S. Costa, T. G. Albuquerque, A. S>
600 Silva, O. Hayran, and B. Kocaoglu, "Comparison of leafy kale populations from
601 Italy, Portugal, and Turkey for their bioactive compound content: Phenolics,
602 glucosinolates, carotenoids, and chlorophylls," *J. Sci. Food Agric.*, vol. 93, no. 14,
603 pp. 3478–3489, 2013, doi: 10.1002/jsfa.6253.

604 [29] D. A. Kopsell, C. E. Sams, and R. C. Morrow, "Interaction of light quality and
605 fertility on biomass, shoot pigmentation and xanthophyll cycle flux in Chinese
606 kale," *J. Sci. Food Agric.*, vol. 97, no. 3, pp. 911–917, 2017, doi:
607 10.1002/jsfa.7814.

608 [30] E. L. Ashenafi, M. C. Nyman, J. M. Holley, N. S. Mattson, and A. Rangarajan,
609 "Phenotypic plasticity and nutritional quality of three kale cultivars (*Brassica*
610 *oleracea* L. var. *acephala*) under field, greenhouse, and growth chamber
611 Environments," *Environ. Exp. Bot.*, p. 104895, Apr. 2022, doi:
612 10.1016/J.ENVEXPBOT.2022.104895.

613 [31] H. Y. Leong, P. L. Show, M. H. Lim, C. W. Ooi, and T. C. Ling, "Natural red
614 pigments from plants and their health benefits: A review," *Food Rev. Int.*, vol. 34,
615 no. 5, pp. 463–482, Jul. 2018, doi: 10.1080/87559129.2017.1326935.

616 [32] D. Latowski, P. Kuczyńska, and K. Strzałka, "Xanthophyll cycle - a mechanism
617 protecting plants against oxidative stress," *Redox Rep.*, vol. 16, no. 2, pp. 78–90,
618 2011, doi: 10.1179/174329211X13020951739938.

619 [33] E. Ashenafi, "Optimization of controlled environment agriculture (CEA) for growing
620 crops", Ph.D thesis, Rensselaer Polytechnic Institute, Troy, NY, 2022.

621 [34] E. A. Ainsworth and K. M. Gillespie, "Estimation of total phenolic content and
622 other oxidation substrates in plant tissues using Folin-Ciocalteu reagent," *Nat.*
623 *Protoc.*, vol. 2, no. 4, pp. 875–877, 2007, doi: 10.1038/nprot.2007.102.

624 [35] J. A. Nelson and B. Bugbee, "Economic analysis of greenhouse lighting: Light
625 emitting diodes vs. high intensity discharge fixtures," *PLoS One*, vol. 9, no. 6, pp.
626 1–10, 2014, doi: 10.1371/journal.pone.0099010.

627 [36] M. Kurosaki, "Optimizing sole-source and supplemental lighting and carbon
628 dioxide enrichment for controlled environment production of lettuce (*Lactuca*
629 *sativa L.*) and tomato (*Solanum esculentum L.*)", M.Sc. Thesis, Cornell University,
630 Ithaca, NY, 2022.

631 [37] D. Camejo, A. Frutos, T. C. Mestre, M. del Carmen Piñero, R. M. Rivero, and V.
632 Martínez, "Artificial light impacts the physical and nutritional quality of lettuce
633 plants," *Hortic. Environ. Biotechnol.*, vol. 61, no. 1, pp. 69–82, 2020, doi:
634 10.1007/s13580-019-00191-z.

635 [38] G. Samuolienė, A. Viršilė, P. Haimi, and J. Miliauskienė, "Photoresponse to
636 different lighting strategies during red leaf lettuce growth," *J. Photochem.*
637 *Photobiol. B Biol.*, vol. 202, no. April 2019, p. 111726, 2020, doi:
638 10.1016/j.jphotobiol.2019.111726.

639 [39] V. Vastakaitė-Kairienė, G. Samuolienė, V. Šveikauskas, K. Laužikė, and S.
640 Jurkonienė, "The influence of end-of-day blue light on the growth, photosynthetic,
641 and metabolic parameters of lettuce at different development stages", *Plants*, vol.
642 11, pp. 2798-2811, 2022, doi.org/10.3390/plants11202798

643 [40] Y. Li, R. Shi, H. Jiang, L. Wu. Y. Zhang. S. Song, W. Su, and H. Liu, "End-of-day
644 LED lightings influence the leaf color, growth and phytochemicals in two cultivars
645 of lettuce", *Agronomy*, vol. 10, pp.1475-1493, 2020,
646 doi:10.3390/agronomy1010147

647 [41] Y. Mishra, H. Johansson Jänkänpää, A. Z. Kiss, C. Funk, W. P. Schröder, and S.
648 Jansson, "Arabidopsis plants grown in the field and climate chambers significantly
649 differ in leaf morphology and photosystem components," *BMC Plant Biol.*, vol. 12,
650 no. 6, pp. 1–18, 2012, doi: 10.1186/1471-2229-12-6.

651 [42] H. K. Lichtenthaler, "Chlorophylls and carotenoids: Pigments of photosynthetic
652 biomembranes," *Methods Enzymol.*, vol. 148, no. C, pp. 350–382, 1987, doi:
653 10.1016/0076-6879(87)48036-1.

654 [43] R. J. Porra, W. A. Thompson, and P. E. Kriedemann, "Determination of accurate
655 extinction coefficients and simultaneous equations for assaying chlorophylls a and
656 b extracted with four different solvents: verification of the concentration of
657 chlorophyll standards by atomic absorption spectroscopy," *Biochim. Biophys. Acta
- Bioenerg.*, vol. 975, no. 3, pp. 384–394, 1989.

658 [44] A. V. Ruban, "Evolution under the sun: Optimizing light harvesting in
659 photosynthesis," *J. Exp. Bot.*, vol. 66, no. 1, pp. 7–23, 2015, doi:
660 10.1093/jxb/eru400.

661 [45] J. K. Holopainen, M. Kivimäenpää, and R. Julkunen-Tiitto, "New Light for
662 Phytochemicals," *Trends Biotechnol.*, vol. 36, no. 1, pp. 7–10, 2018, doi:
663 10.1016/j.tibtech.2017.08.009.

664 [46] K. Taulavuori, V. Hyöky, J. Oksanen, E. Taulavuori, and R. Julkunen-Tiitto,
665 "Species-specific differences in synthesis of flavonoids and phenolic acids under
666 increasing periods of enhanced blue light," *Environ. Exp. Bot.*, vol. 121, pp. 145–
667 150, 2016, doi: 10.1016/j.envexpbot.2015.04.002.

668 [47] C. Piovene, F. Orsini, S. Bosi, R. Sanoubar, C. Bregola, G. Dinelli, and G.

670 Gianquinto, "Optimal red: Blue ratio in led lighting for nutraceutical indoor
671 horticulture," *Sci. Hortic. (Amsterdam)*, vol. 193, pp. 202–208, 2015, doi:
672 10.1016/j.scienta.2015.07.015.

673 [48] A. D. B. Leakey, J.N. Ferguson, C. P. Pignon, Z. Jin, G. L. Hammer, and D. B.
674 Lobell, "Water use efficiency as a constraint and target for improving the
675 resilience and productivity of C3 and C4 crops," *Annu. Rev. Plant Biol.*, vol. 70,
676 pp. 781–808, 2019, doi: 10.1146/annurev-arplant-042817-040305.

677 [48] H. Poorter and A. van der Werf, "Is inherent variation in RGR determined by LAR
678 at low light and by NAR at high light?," *Inherent Var. plant growth Physiol. Mech.*
679 *Ecol. consequences.*, pp. 309–336, 1998.

680 [49] X. Y. Wang, X. M. Xu, and J. Cui, "The importance of blue light for leaf area
681 expansion, development of photosynthetic apparatus, and chloroplast
682 ultrastructure of *Cucumis sativus* grown under weak light," *Photosynthetica*, vol.
683 53, no. 2, pp. 213–222, 2015, doi: 10.1007/s11099-015-0083-8.

684 [50] S. P. Long, S. Humphries, and P. G. Falkowski, "Photoinhibition of photosynthesis
685 in nature," *Annu. Rev. Plant Physiol. Plant Mol. Biol.*, vol. 45, no. 1, pp. 633–662,
686 Jun. 1994, doi: 10.1146/annurev.pp.45.060194.003221.

687