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Abstract
Electricity usage is a substantial source of carbon emissions world-
wide. There has been signi�cant interest in reducing the carbon
impact of energy usage through supply-side shifts to cleaner gen-
eration sources and through demand-side optimizations to reduce
carbon usage. An essential building block for these optimizations is
future knowledge of the carbon intensity of the supplied electricity.
In this paper, we present a Day-Ahead Carbon Forecasting system
(DACF) that predicts the carbon intensity from scope 2 emissions
in the power grids using machine learning. DACF �rst computes
production forecasts for all the electricity-generating sources and
then combines them with the carbon-emission rate of each source
to generate a carbon intensity forecast. DACF provides a general ap-
proach that works well across a range of geographically distributed
regions. DACF has a mean MAPE of 6.4% across the regions. It also
achieves an average decrease of 6.4% and a maximum decrease of
8.6% in MAPE compared to the state-of-the-art. We make DACF
publicly available so that it is easily accessible to researchers.
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1 Introduction
Electricity is an integral part of modern society and is used for all
aspects of our daily lives. Typically the electric grid uses a mix of
renewable (e.g. solar, wind) and non-renewable (e.g. coal, natural
gas) sources to generate electricity. Electricity generation is known
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to be one of the largest sources of greenhouse gas emissions in
many countries [13, 19, 20]. These emissions depend directly on the
generation sources used by the grid. Since the electricity demand
varies over time and across regions, this mix of energy sources used
by the grid to ful�l this demand, and hence the emissions, also vary
temporally and spatially.

The need for carbon-aware systems. As the electric grid
begins a transition to reduce the carbon emissions resulting from
consuming electricity, techniques to shift energy demand from
periods when the carbon intensity of energy is high to periods when
it is low have begun to gain attention. For example, electric vehicles
(EVs) can be charged aggressively during hours when the carbon
intensity of electricity is low [12] (e.g., during night in regions like
Texas when there is abundant wind energy). A key requirement of
these carbon reduction techniques is future knowledge of the grid’s
carbon intensity. If carbon forecasts of the grid’s energy generation
are known, such techniques can exploit this knowledge to decide
how much demand to shift and to what hours.

Carbon intensity forecasting. Short-term (day-ahead) fore-
casts of carbon intensity is an essential �rst step for systems and
applications to become carbon aware and reduce their carbon foot-
print, where carbon intensity is de�ned as average carbon (in6A0<B)
per unit of energy (in :,⌘) produced or consumed by a system.
Short-term carbon forecasting for power grids is a nascent research
area. Watttime [21], and ElectricityMap [10] are commercial ser-
vices that provide both real-time carbon intensity for the grid and
short-term carbon intensity forecasts for many regions. However,
their models are proprietary, and these services are expensive for
consumer and research use. Other early research on short term
forecasting of carbon intensity [3, 15] su�er from higher errors
since they typically do not consider future knowledge like weather
forecasts, which have a direct impact on renewable energy genera-
tion and hence the carbon intensity forecasts. These observations
motivate the need for an accurate, easily accessible grid carbon
forecasting technique that considers both historical data as well as
future knowledge.

Our contributions. In this paper, we developDACF, a day-ahead
carbon forecasting system to predict the carbon intensity of the
power grid of a region in the short term. We only consider scope
2 emissions [18] that account for operational emissions from the
generation and consumption of electricity. In addition to historical
data of the sources used for electricity generation, we consider
other factors like day-ahead weather forecasts. Our key hypothesis
is that using this source forecast information can signi�cantly im-
prove the prediction accuracy over current methods. Our speci�c
contributions are as follows:
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1) Model accuracy and robustness. We evaluate our model
in power grids of six regions across the US and Europe. DACF
has Mean Absolute Percentage Error (MAPE) of 6.4% on average
across all regions. Thus, our model is accurate and robust across
geographically distributed regions. We claim that DACF can be used
in any region with minimal changes to get good day-ahead carbon
intensity forecasts. It also achieves an average MAPE decrease of
6.4% over the state-of-the-art.

2) Open-source tool.We release DACF as an open-source tool1
that can be easily accessed by researchers and practitioners to
include carbon predictions in carbon reduction optimizations.

2 Background
In this section, we provide background on power distribution grids,
carbon intensity of energy, and its temporal and spatial variations.

Power distribution grids. The electric grid in any region con-
sists of a complex network of power plants, generator stations,
transmission lines and distribution centers. In general, there are
system operators who are in charge of managing the power grid
and supplying electricity to match the current demand. Typically,
the mix of sources generating electricity in a region’s power grid
at any instant is governed by several factors — current electricity
demand, availability of a source in that region at that time, cost
of generating electricity using a speci�c source, etc. Consequently,
the source mix and the carbon intensity vary from region to region
and across time.

Average carbon intensity. Each energy source generating elec-
tricity emits a certain amount of carbon per unit of electricity gen-
erated, which we refer to as that source’s direct carbon-emission
rate (in 6/:,⌘). Since we account only for scope 2 emissions, we
follow the median carbon-emission rate due to direct emissions
that only include operational emissions when a source is converted
to electricity. The rate for each source is speci�ed in [7, 8]. In some
cases, the generation source is unknown; we assume such sources
(labelled as “other”) are non-renewable by default. Table 1 shows
the direct carbon-emission rate of the sources (in 6/:,⌘) generat-
ing electricity in various regions. Renewable sources include solar,
wind, hydro, geothermal and biomass.

Coal Oil Natural
gas

Renewables +
Nuclear Other

760 406 370 0 575
Table 1: Carbon-emission rate (6/:,⌘) for di�erent sources

Mathematically, we determine the average carbon intensity (in
6/:,⌘) of a region at a particular time using the equation below:

⇠0E6 =
Õ (⇢8 ⇤⇠'8 )Õ

⇢8
(1)

where ⇢8 is the electricity generated (", ) by a Source 8 & ⇠'8 is
the carbon-emission rate (6/:,⌘) for that source.

2.1 Carbon intensity variability
In this paper, we consider six geographically distributed regions
across the US and Europe, as follows:

1https://github.com/UMass-LIDS/DACF

• US: California (CA), Pennsylvania-Jersey-Maryland (PJM),
Texas (TX), New England (NE).

• Europe: Sweden (SE), Germany (DE).

Region Fossil fuel (%) Renewables
(%)

Avg. Carbon
Intensity
(g/kWh)

CA 53.6 34.6 200.62
PJM 60.4 5.2 295.98
TX 63.7 25.2 301.86
NE 60.4 11.9 231.95
SE 6.9 63.2 39.79
DE 38.3 49.1 241.54

Table 2: Avg. yearly carbon intensity across regions (2020)

Spatial variability.We compute Table 2 from the datasets we
have used and from Table 1. Table 2 shows the correlation between
the percentage of electricity generated by non-renewables and the
annual average carbon intensity in a region. We see that carbon
intensity varies spatially across countries and regions. In general,
regions with a higher dependence on fossil fuels have a higher
average carbon intensity than those with a high percentage of
renewables.

Temporal variability. Even within a region, the fraction of
each energy source contributing to electricity generation varies
over time. For example, solar energy may be abundant during the
day but will not be present during the night. So, carbon intensity
will be less during the day when more solar energy is available than
during the night for a given electricity demand. Consequently, the
average carbon intensity also varies temporally.

Figure 1: DACF architecture. “Historical” denotes past 24
hours. “Day-ahead” denotes the next 24 hours. CI formula is
the formula to get avg. carbon intensity (refer Eq. 1)

3 DACF system architecture
In this section, we describe DACF, our system for forecasting the
average hourly carbon intensity of the power grid of a region for
the next 24 hours, given the carbon-emission rate of each source
generating electricity, hourly electricity source mix for the last 24
hours, and the day-ahead weather forecast. Fig. 1 shows the system
architecture. For simplicity, we introduce the following terms that
we will use throughout the paper:

• Historical source production: Hourly electricity gener-
ated (in", ) by a source in the past 24 hours.

• Source production forecast: Hourly predicted day-ahead
electricity generation by a source (in", ).
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DACF is based on three key insights. First, it does not rely only
on historical data for making predictions. Instead, it incorporates
future knowledge like weather forecasts to obtain individual source
production forecasts and uses those to derive the carbon intensity
forecasts. Second, when using historical data, DACF considers both
long-term (e.g., seasonal) and short-term (e.g., hourly) patterns
when making source production forecasts. Finally, DACF incorpo-
rates deep learning techniques for forecasting.

DACF uses individual forecasting models to predict electric-
ity generated by each renewable (e.g., solar and wind) and non-
renewable (e.g., coal and natural gas) sources. While DACF cur-
rently uses machine learning models for these individual forecasts,
its “plug and play” architecture allows any individual forecasting
model to be replaced with a di�erent type of forecasting model.
If any such forecasts are already available publicly (for example,
solar and wind forecasts are available in [5] for California), our
architecture enables such predictions to be used as an alternative to
using our models. Indeed, as such forecasts improve with the design
of better models (e.g., a better wind forecasting model), DACF can
progressively better its own overall carbon forecast.

Speci�cally, we consider the historical source production for
each source as input, and output the source production forecast
for each source individually. Then, we apply Eq. 1 on those source
production forecasts to get the carbon intensity forecast.

3.1 Obtaining source production forecasts
We employ Arti�cial Neural Network (ANN) models to get the
source production forecasts for all sources. Fig. 2 shows our ANN
architecture.

Figure 2: ANN model design and architecture

We consider the following sources of electricity:
• Non-renewable: Coal, natural gas, oil, nuclear, other.
• Renewable: Solar, wind, hydro, geothermal, biomass.

Each region uses a subset of the above sources for generating elec-
tricity. We take one source at a time from the relevant subset and
consider the following factors as input to the ANN models:

1) Historical source production. We already have the hourly
historical electricity generation by various sources for each region.

2) Date and time features. For all sources, we also add date and
time-related features to the ANN model to capture any daily and
seasonal trends in the data. Date and time-related features include
hour of the day, hour of the year, and whether the current day is a
weekday or a weekend.

3) Day-ahead weather forecasts. Weather conditions a�ect
renewable generation and hence the day-ahead carbon intensity.

For example, more wind speed correlates with more electricity
generation from wind. Consequently, we use day-ahead weather
forecasts as features to predict source production forecasts for
renewable sources (solar, wind, and hydro). We use wind speed (in
</B), temperature (in  ), dewpoint temperature (in  ), downward
short-wave radiation �ux (in, /<2, also known as solar irradiance),
and total precipitation (in :6/<2) as the weather variables.

3.2 Applicability across regions
We now discuss the generality of our approach. DACF’s plug and
play architecture and a generalized approach of individually predict-
ing forecast for each source provide su�cient �exibility to be used
in power grids of regions worldwide, despite notable di�erences
in source mix across such power grids. While DACF needs to be
retrained with the training data for a particular region, our evalua-
tion shows that DACF works well across geographically distributed
regions without changing the model hyperparameters.

3.3 Open-source implementation
DACF is implemented in Python. We use Keras [6] and Tensor�ow
[1] for implementing the ANN models. Our datasets and code are
publicly available at h�ps://github.com/UMass-LIDS/DACF . We
hope researchers and practitioners can easily use it to incorporate
carbon intensity predictions into carbon optimization problems.

4 Empirical evaluation
We now evaluate the forecast performance of DACF. We show
how DACF performs across power grids of several geographically
distributed regions. We also compare our approach with other
methods and show that DACF is more accurate than the current
state-of-the-art.

4.1 Experimental methodology
Datasets. Table 3 lists the data sources for the six regions we

have considered in this paper. We obtain any source production
forecasts not available publicly using our ANN models.

Region
Historical
source

production

Solar/Wind
forecasts

Weather
forecasts

CA EIA [2] OASIS [5]
NCEP GFS
ds084.1 [17]PJM, TX, NE N/A

SE ENTSOE [11] ENTSOE [11]DE
Table 3: Data sources

Weather data aggregation. The bounding box for any region
is publicly available at [9]. We follow the weighted average method
suggested in [16] to aggregate the weather data across a region,
where the weights are the earth area covered by each latitude-
longitude grid.

Model training and testing.We consider a three-year period
(2019 – 2021) for training DACF and predicting average grid carbon
intensity. The data is in hourly granularity. If any value is missing,
we assume that the conditions are the same as the previous hour
and copy over the value from the previous row in the dataset. For
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each source, we re-train the ANN models every six months. We use
the predictions of the last six months of 2021 for testing.

We use Root Mean Square Error (RMSE) as the loss function to
minimize during training. We implement early-stopping and model-
checkpointing mechanisms to avoid over�tting and get the best-
trained model. We use Mean Absolute Percentage Error (MAPE)
for evaluating DACF performance.

4.2 DACF performance across regions
We evaluate the prediction errors across the six geographically
distributed regions in terms of MAPE. Fig. 3 shows a 3-day time
series for the actual and predicted carbon intensities of the power
grid in California. We see that DACF follows the actual pattern and
is able to match the unpredictability in the time series.

Figure 3: DACF predictions closely match actual values for
California, following the diurnal pattern of lower carbon
intensities during the day when solar production is high

Region Mean Median 90th per-
centile

95th per-
centile

CA 7.41 6.30 12.21 14.04
PJM 3.30 2.71 5.80 6.89
TX 8.05 6.40 14.55 20.76
NE 4.44 3.51 8.35 9.75
SE 6.47 5.14 11.39 14.32
DE 9.08 6.44 19.84 24.86
Table 4: DACF performance across regions (MAPE)

Table 4 list the mean and percentile MAPE values over the whole
test period for all the regions. DACF performs well across all the
regions, with themeanMAPE of 9.08% in theworst case. On average,
DACF has a MAPE of 6.4% across the regions.

4.3 Comparing DACF with state-of-the-art
We now compare DACF with the model proposed by Leerbeck et al.
[14] (labelled as SOTA), which is a non-proprietary state-of-the-art
method. They use historical source production, weather forecasts
and solar/wind production forecasts to predict day-ahead carbon
intensities. They also use a combination of linear regression and
splines for forecasting, and ARIMA for residual correction. Since
the code is not publicly available, we develop our own implemen-
tation that incorporates the main elements of their approach that

is based on linear regression but without non-renewable source
production forecasts. Additionally, Leerbeck et al. [14] use lifecycle
(operational and infrastructural) emission rates for their carbon
intensities. However, we use the representative implementation to
forecast carbon intensities using direct (only operational) emission
rates to perform a fair comparison with our approach.

Other e�orts on forecasting short-term carbon intensities [3, 15]
consider only historical source production data and have higher pre-
diction errors than SOTA [14], and hence are excluded for brevity.

Region SOTA DACF
CA 7.94 7.41
PJM 3.59 3.30
TX 8.19 8.05
NE 4.86 4.44
SE 6.80 6.47
DE 9.91 9.08

Table 5: DACF outperforms the state-of-the-art (SOTA)
Table 5 compares DACF with SOTA in terms of average MAPE

across all the regions. We see that DACF outperforms SOTA and
achieves an average decrease of 6.4% and a maximum reduction of
8.6% in MAPE in comparison with the state-of-the-art.

5 Related Work
National Grid ESO [4] provides free APIs for short-term carbon
intensity forecasts (using direct emissions) in the UK, but neither
their model nor the data are publicly available and hence cannot
be used in another region. Tomorrow’s ElectricityMap [10], and
Watttime [21] provide short-term carbon intensity forecasts for
many regions. However, their forecast data is proprietary and is
expensive for consumer and research use. Leerbeck et al. [14] use
ElectricityMap’s [10] proprietary data and consider lifecycle (opera-
tional and infrastructural) emission factors for predicting carbon
intensity, which is not applicable if we only account for scope 2
emissions [18]. They also do not consider non-renewable source
production forecasts as features. Lowry [15] and Bokde et al. [3] use
statistical methods to get carbon intensity forecasts. However, both
these works only consider historical data to get the predictions,
whereas we include future knowledge also.

6 Conclusions
In this paper, we presented DACF, an open-source system for day-
ahead predictions of the grid’s carbon intensity. DACF obtains
source production forecasts for each source generating electricity
in the power grid of a region and computes the carbon intensity
forecast using Eq. 1. DACF has a mean MAPE of 6.4% across the
regions. It also achieves an average decrease of 6.4% and amaximum
decrease of 8.6% in MAPE over the state-of-the-art. Further, its plug-
and-play framework and a general approach enable it to work well
across a range of geographically distributed regions. As future
work, we plan to extend DACF to incorporate the impact of energy
exchange between regions, provide forecasts based on both lifecycle
and direct emission rates, and provide multi-day forecasts.
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