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Since emerging edge applications such as Internet of Things (IoT) analytics and augmented reality have tight
latency constraints, hardware Al accelerators have been recently proposed to speed up deep neural network
(DNN) inference run by these applications. Resource-constrained edge servers and accelerators tend to be
multiplexed across multiple IoT applications, introducing the potential for performance interference between
latency-sensitive workloads. In this article, we design analytic models to capture the performance of DNN
inference workloads on shared edge accelerators, such as GPU and edgeTPU, under different multiplexing
and concurrency behaviors. After validating our models using extensive experiments, we use them to design
various cluster resource management algorithms to intelligently manage multiple applications on edge accel-
erators while respecting their latency constraints. We implement a prototype of our system in Kubernetes
and show that our system can host 2.3x more DNN applications in heterogeneous multi-tenant edge clusters
with no latency violations when compared to traditional knapsack hosting algorithms.
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1 INTRODUCTION

Recent technological advances have resulted in the emergence of new applications such as mobile
Augmented Reality (mobile AR) [8] and Internet of Things (IoT) analytics [40]. A common
characteristic of these applications is that their data needs to be processed with tight latency con-
straints. Consequently, edge computing, where edge resources can process this data close to the
point of generation and at low latencies, has emerged as a popular approach for meeting the needs
of these emerging applications [43].
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It is increasingly common for such IoT applications to use Al inference as part of their data
processing tasks. In contrast to model training, which involves training a machine learning (ML)
model in the cloud, typically using large GPUs, model inference involves executing a previously
trained model for inference (i.e., predictions) over new data. For instance, video or audio data
generated by IoT devices such as AR headsets, smart cameras, or smart speakers can be sent to
a trained machine learning model for inference tasks such as object or speech recognition. The
model, which is often a deep neural network (DNN), runs on an edge server to provide low-
latency inference processing to the application.

Edge clouds, which extend cloud computing to the edge, are an increasingly popular approach
for running low-latency inference for IoT applications. Edge clouds consist of small edge clusters
that are deployed at a number of edge locations, where each edge cluster hosts multiple IoT
applications. To efficiently run deep learning inference in constrained edge environments,
such edge clouds have begun to use accelerators that are capable of executing DNN models
using specialized hardware. Examples of edge accelerators include Google’s EdgeTPU [48],
Nvidia Jetson line of embedded GPUs [35], and Intel’s Movidius Vision Processing Units
(VPUs) [5]. When equipped with such hardware accelerators, edge cloud servers can signifi-
cantly improve DNN inference tasks’ latency—similar to how cloud servers use larger GPUs
to speed up DNN training. As Al inference for IoT data processing gains popularity, the use of
such accelerators to optimize DNN inference is likely to become commonplace in edge cloud
environments.

Executing Al inference over IoT data in edge clouds raises new challenges. Similar to traditional
cloud platforms, edge clouds will also be multi-tenant in nature, which means that each edge cloud
server will run multiple tenant applications. These applications share the hardware resources of
edge servers, including accelerators [13, 16, 26]. While conventional resources such as CPU and
even server GPUs [25] support virtualization features to enable them to be multiplexed across
applications, edge accelerators lack such hardware features. Consequently, multiplexing a DNN
accelerator across multiple tenant applications can result in performance interference due to
the lack of isolation mechanisms such as virtualization, which can degrade the response times
seen by latency-sensitive IoT applications. This motivates the need for developing new cluster
resources management techniques for efficiently multiplexing shared edge cloud resources across
latency-sensitive applications.

To address the aforementioned challenges, in this article, we present Ibis, a model-driven cluster
resource management system for edge clouds. Ibis is designed to multiplex cluster resources,
such as DNN accelerators, across multiple edge applications while limiting the performance
interference between co-located tenants. Ibis uses a principled resource management approach
based on analytic queueing models of hardware accelerators, such as edgeTPUs and edge GPUs,
that are extensively experimentally validated on real edge clusters. These models are incorporated
into Ibis’ cluster resource manager and used to manage the online placement and dynamic
migration of edge applications. In designing, implementing, and evaluating Ibis, our article makes
the following research contributions.

First, we develop analytical models based on queueing theory to estimate the response times
seen by co-located DNN-based IoT applications running on shared edge servers with accelerators.
We develop models to capture a range of multiplexing behaviors such as first-come first-served
(FCEFS), processor sharing, batching, and multi-core parallelism that are seen when sharing edge
graphical processing units (GPUs) and tensor processing units (TPUs). We experimen-
tally validate our models using two dozen different DNN models, drawn from popular model
families such as AlexNet, ResNet, EfficientNet, Yolo, Inception, SSG, VGG, and DenseNet, and
a variety of IoT workloads. Our extensive validation demonstrates the abilities of our queueing
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models to capture performance interference and accurately predict response times of co-located
applications.!

Second, we present an edge cluster resource manager that uses our analytic models for resource
management tasks such as online placement and dynamic migration. Unlike traditional placement
problems, which can be viewed as an online knapsack, we formulate a new problem called on-
line knapsack with latency constraints for DNN application placement onto shared accelerators
results. We present greedy heuristics that use our analytic models for latency-aware placement
and migration in heterogeneous clusters.

Third, we implement a prototype of Ibis on a Kubernetes-based edge cluster and conduct de-
tailed experiments to demonstrate the efficacy of our model-driven cluster resource management
approach. Our results show that Ibis can host up to 2.3x the number of DNN models in heteroge-
neous edge clusters when compared to traditional knapsack hosting algorithms, and can dynami-
cally mitigate hotspots using edge migration.

2 BACKGROUND

In this section, we provide background on edge computing and edge accelerators.

2.1 Edge Computing and Al Inference for loT

Edge clouds are a form of edge computing that involves deploying computing and storage
resources at the edge of the network to provide low latency access to users [42]. However, edge
clusters are smaller, and hence more resource-constrained than traditional cloud data centers.
Analogous to cloud platforms that run multi-tenant applications in a server cluster, each edge
cluster and edge server, is multiplexed across multiple applications—to maximize the utilization
of scarce edge resources. Since many edge applications are inherently latency-sensitive, it is
important to limit performance interference between co-located tenant applications. This can be
achieved through the use of resource isolation mechanisms (e.g., virtualization), where available,
and by carefully limiting the utilization and sharing of each server across tenant applications.

Our work focuses on emerging edge IoT applications, such as mobile AR, visual analytics over
live videos from smart cameras, and voice assistants (e.g., Alexa, Siri) that run on smart speakers.
Since these applications interact with users, it is necessary to process [oT data at low latencies
to provide high user responsiveness, which imposes latency constraints on edge processing. A
common characteristic of many IoT applications is that they employ machine learning models,
often in the form of a DNN, to process their data at the edge. Recent advances in computer vision
technology have yielded a number of sophisticated and highly effective DNNs for common image
processing tasks such as classification, object detection, and segmentation [29]. Advances in the
field have allowed practitioners to provide a library of pre-trained DNNs such as ResNet [24],
Inception [47], MobileNet [41], and Yolo [39], among others. An edge cloud developer can simply
use one of these pre-trained DNN models within their application for performing inference tasks
such as object detection or recognition over images. Alternatively, the developer can train a custom
DNN for their application using easy-to-use ML frameworks such as TensorFlow [1], PyTorch [37],
and Caffe [28] and datasets such as ImageNet [12] and CIFAR [30].

2.2 Edge Inference Accelerators

The growing popularity of DNN inference at the edge has led to the design of special-purpose
accelerator hardware such as Nvidia’s Jetson GPUs [35] and Google’s edgeTPUs [48]. Edge cloud

INote that the term “model” in this article refers to both a deep neural network (DNN) inference model as well as an analytic
queueing model; the two are distinct, and we disambiguate them in the text as DNN inference and analytic/queueing model.
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Fig. 1. Architectural depiction of edge GPU, discrete GPU, and edgeTPU.

servers are beginning to employ such hardware for efficient inference execution. We provide a
brief overview of these devices here.

2.2.1 Edge GPUs. Today’s GPUs come in three main flavors, each targeting a different applica-
tion workload. Server GPUs are high-end GPUs that are designed to accelerate parallel scientific
computations or speedup the training of machine learning models. Discrete GPUs are designed for
gaming as well as scientific desktop applications (e.g., CAD) and have also been recently used for
edge processing [33, 55] due to their interesting multiplexing capabilities. Finally, embedded GPUs
are designed for edge (or on-device) applications. They have a low power footprint and are less
capable than server or discrete GPUs, but well-suited for edge processing workloads. For example,
Nvidia’s Jetson family [35] of embedded GPUs are designed for running Al inference at the edge.

Figure 1(a) depicts the architecture of a Jetson Nano edge GPU—the smallest embedded GPU
in the Jetson family. All GPUs in the Jetson family are integrated GPUs that integrate the CPU,
GPU, and memory onto a single System-on-Chip (SoC). The figure shows that the device has
4 ARM-based CPU cores and a GPU comprising one Streaming Multiprocessor (SM) with 128
CUDA (GPU) cores. Notably, the device has 4 GBs of RAM that is shared between the CPU and the
GPU. Like any Nvidia GPU, the Jetson Nano runs programs written in CUDA [14].

Each CPU process is associated with a CUDA context that is responsible for offloading compute-
intensive functions, referred to as kernels, to the GPU. Kernels are submitted as a stream and
executed sequentially. Nvidia GPUs support two basic types of concurrency, namely, multi-
processing (MP) and multi-threading (MT) [4, 53]. In multiprocessing, the GPU is time-shared
between processes—processes (CUDA contexts) take turns to execute on the GPU for a time slice.
However, in multi-threading, multiple threads, each associated with a separate CUDA context, can
execute kernels concurrently via thread-level parallelism.

Researchers have noted that multi-threaded execution introduces significant synchroniza-
tion overheads on GPUs, with increased blocking and non-determinism for latency-sensitive
tasks [4, 53]. Since such non-deterministic blocking behavior is problematic for latency-sensitive
edge applications, we focus our work on process-level concurrency, which has been shown to
provide more predictable behavior [4, 53]. In our case, this implies a separate process executes
each DNN model, and different processes can issue concurrent inference requests to execute using
time-sharing on GPU cores.

2.2.2  Discrete GPUs. Discrete GPUs support additional multiplexing capabilities that are useful
in multi-tenant edge settings [33, 55]. Discrete GPUs, such as GeForce 1080, are higher-end GPUs
with their own on-GPU memory that is separate from CPU’s RAM (see Figure 1(b)). As shown,
the 1080 GPU has 20 SMs, 2560 GPU cores, and 8 GM RAM, which is significantly greater than Jet-
son GPUs. Discrete GPUs support both multi-processing and multi-threading like their embedded
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Table 1. Used Notations

Symbol Description Notes
A Arrival Rate A=A
J7i Service Rate pu=1/s
S Service time S=XMASi/ > Ai
c Number of cores
p Utilization p=Alcu
E[w] Expected Waiting Time
E[R] Expected Response Time E[w]+S
P(M;) Probability of a request for DNN i P(M;) = A;/A
e; Execution Time for DNN i
0; Context Switch overhead for DNN i

counterparts. In addition, they also support Nvidia’s Multi-process Service (MPS) that enables
true parallelism across concurrent GPU requests from independent processes [36]. When MPS is
enabled in a GPU, all kernel requests are forwarded to MPS for scheduling. The MPS system par-
titions the GPU cores and memory across CUDA contexts and schedules kernels for execution on
each partition in parallel. In our case, this implies that DNN inference of two DNN models can exe-
cute in parallel increasing the utilization of the GPU cores (while in embedded GPUs, they execute
using time-sharing but not in parallel).

2.2.3 EdgeTPU. EdgeTPU is an ASIC designed by Google for high performance DNN inference
using very low power. In contrast to GPUs, which are optimized for performing floating-point oper-
ations, EdgeTPU uses 8-bit integers for computation and requires the DNN models to be quantized
to 8-bit [48]. Employing quantization greatly reduces the hardware footprint and energy consump-
tion of the EdgeTPU.

Figure 1(c) shows the architecture of EdgeTPU [48]. In contrast to CUDA cores, Matrix Multiply
Unit (MXU) is the heart of EdgeTPU. It employs a systolic array architecture, which reuses inputs
many times without storing them back to a register. By reducing access to registers, MXU is opti-
mized for power and area efficiency for performing matrix multiplications and allows EdgeTPU to
perform 4 trillion fixed-point operations per second (4 TOPS) using only 2 watts of power. EdgeTPU
is designed specifically for DNN inference and is less general than GPUs. Its design is strictly
deterministic and has a much smaller control logic than GPU. Thus, it can only run one task at a
time in a non-preemptive FCFS manner. Unlike GPUs, time-sharing and multiprocessing are not
supported.

3 ANALYTIC MODELS FOR INFERENCE WORKLOADS

The goal of our work is to design a cluster resource manager for edge clouds that can efficiently
multiplex edge server resources, and specifically accelerator resources, across multiple applica-
tions. Our system employs a model-driven resource management approach, where we first design
analytic models of edge workloads and then use these models to design practical cluster resource
management algorithms. In this section, we design analytical models based on elementary queue-
ing theory and use extensive experimentation to show that queueing models can (i) capture a
range of multiplexing behavior seen in real-world accelerators such as edge GPUs and edgeTPUs,
(i) accurately estimate the response times of a broad range of real-world DNN models, and
(iii) capture the impact of interference from co-located applications on application response times.
For readability, Table 1 summarizes the notation and common equations used in our models.
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Fig. 2. (a) Tandem queue model for CPU and GPU/TPU processing of a request. (b) Network of queues model
showing one CPU queue per application and a single GPU/TPU queue for all applications.

3.1 Network of Queues Model

Queueing theory has been used to analytically model the behavior of web applications [15, 45, 49],
server farms[21, 23] and cloud computing [3]. Here, we use it to analytically model concurrent
DNN applications running on edge servers with accelerators such as GPU and TPU.

To do so, we assume each edge server has at least one accelerator and runs k concurrent DNN
applications, k > 1. We assume that application i receives DNN inference requests at rate A; from
an IoT device and specifies a mean response time R; that should be provided by the edge cloud. We
assume that each inference request undergoes a combination of CPU and GPU/TPU processing by
the application.

We model this CPU and GPU/TPU processing using a network of queues model, with separate
queues to capture the CPU and GPU/TPU processing of a request (see Figure 2). In the simplest
case where a single application runs on the edge server (i.e., k = 1), this model reduces to a
tandem queue shown in Figure 2(a). In the general case where k applications are co-located on
an edge server, we model each application’s CPU processing as a separate queue. In contrast,
the GPU/TPU processing of all applications is modeled as a single queue that is fed by the k
CPU queues. Figure 2(b) shows the network of queueing model. We make this design choice,
since CPU processing of the k co-located applications is isolated from each other (since appli-
cations run inside containers or virtual machines and the CPU is a virtualized resource with
isolation). Edge accelerators, in contrast, lack hardware support for virtualization. As a result,
edge GPU and TPU processing is not isolated, and GPU/TPU requests from all k applications
will be multiplexed onto the accelerator without isolation. Hence, we model GPU/TPU pro-
cessing as a single queue that services the aggregate GPU/TPU workload A = Y% A; of all k
applications.

By using a shared queue, our analytic model can capture the performance interference between
applications on the accelerator and its impact on per-application response time. We need to design
different queueing models for edgeTPUs and GPUs, since they differ in three main aspects: (i) Mul-
tiplexing abilities: GPUs natively allow for multiple multiplexing modes such as process sharing
and FCFS, while TPUs only allow FCFS. (ii) Memory Management: TPUs allow one model only to
reside on the device (even if multiple models can fit in memory). However, GPUs allow multiple
models as long as they fit in memory. (iii) Context switch overhead: GPUs have negligible context
switching overhead while TPUs have switching overhead proportional to the model size. Given
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these characteristics, we next derive closed form equations of response times for TPU, GPU, and
CPU processing for each queue in the network.

3.2 Modeling TPU Inference Processing

We first model an edgeTPU accelerator that executes inference requests from k co-located
applications. We assume that all kK DNN models are loaded onto the TPU. When application i
receives an inference request, it invokes the ith DNN model for executing that request. Incoming
TPU requests from all k applications are queued up in a single shared queue and processed in
FCFS order. TPU request processing is sequential and non-preemptive in nature. Once TPU begins
processing a request, the processing cannot be preempted. Upon completion, the DNN model
corresponding to the next queued request is loaded from host RAM into device memory, resulting
in context switching overhead before DNN inference can begin; no context switching overhead
is involved if the next request invokes the same model as the previous one.

To demonstrate that request multiplexing on an edgeTPU is FCFS and non-preemptive, we ex-
perimentally ran five different DNN models on an edgeTPU node. We first ran each DNN model
by itself in isolation and then with all DNNs executing concurrently. Figure 3 depicts the TPU
execution (service) time in each case. As can be seen, in the presence of concurrent arrivals, the
response time of requests beyond the first arrival includes the service time of previous arrivals,
indicating FCFS and non-preemptive service. In addition, there is a non-negligible context switch-
ing overhead when loading a new DNN model to the edgeTPU, making it important to model. We
experimentally quantify this overhead in Figure 4 in Section 3.2.1.

Therefore, when modeling edgeTPUs, the analytic model needs to consider three important char-
acteristics. (1) The device processes concurrent requests in an FCFS manner. (2) Context switching
overhead to a different model is not negligible. (3) The mean service time across all requests seen
by the TPU will be the weighted sum of the service times of requests of co-located DNN models.
Hence, we model the queue for a TPU as an M/G/1/FCFS queueing system, where arrivals are
Poisson with a rate A, the service times have a general distribution, and requests are scheduled in
an FCFS manner.

If k applications run on the edge server, where k > 1, and each sees an arrival A;, then A = }; A;
denotes the aggregate request rate at the TPU. Let S; denote the expected service time, e; denote
the execution time and o; be the switch overhead for workload i. Then, we have

Si = P(My)e; + (1 - P(M;))(ei + 05), (1)
where P(M;) = A;/ Xk Ak is the probability that a randomly chosen request in the system runs
DNN model i. Then the mean service time of the aggregated workload is the weighted sum of
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service time, weighted by arrival rates:
S= ZP(Mi)Si. )
i

For an M/G/1/FCFS queueing system, the mean queueing delay seen by requests is given by
the well-known Pollaczek-Khintchine (P-K) formula [17, 22]:

E[w] = p + AuVar[S] 7
2(p—4)
where p = 1/S is the TPU service rate, p = A/p is the utilization, and Var[S] denotes the variance
of service time S. In the special case where there is a single tenant on the TPU, the DNN execu-
tion times can be modeled as a deterministic process, which reduces the M/G/1/FCFS model to a

M/D/1/FCFS model. In this case, the waiting time for a M/D/1/FCFS system is well-known and
is given by

®)

p 1
E = — —, 4
=15 o @
In either case, the mean response time of a particular model i can be approximated as
E[R;] = E[w] + S;. (5)

3.2.1 Experimental Validation of TPU Models. We conduct an experimental validation of our
analytic TPU model to demonstrate that it can accurately predict TPU response time for a broad
range of real-world DNN models running concurrently on the edgeTPU. To do so, we consider IoT
applications that use different DNN models for image classification and object detection. We use
two dozen DNN models from many of the most popular model families, namely, AlexNet, ResNet,
EfficientNet, Yolo, Inception, SSG, VGG, and DenseNet. The characteristics of the used DNN mod-
els, along with their memory footprint and inference time are summarized in Table 2 in Section 4.4.
The model sizes range from 3.5 million parameters to 144 million with a memory footprint of 22
to 617 MB. Collectively, these models range from small to large, both in their memory footprint
and execution cost.

Our first experiment shows the context switch overhead when starting a new request execution.
We loaded five DNN models on an edge server and sent a sequence of requests invoking these mod-
els in random order. Figure 4 shows the context switch overhead as well as on-chip and off-chip
memory consumption of various models. Since the TPU stores all models in host server RAM and
loads them to on-chip device memory on-demand, the context switch overhead is strongly corre-
lated with model size (due to the overhead of copying the model from host RAM to TPU memory).
The context switch overhead ranges from 10 to 17 ms, which is not negligible when compared to
the DNN execution times that are shown in Figures 5 and 6. This experiment confirms the need to
incorporate the context switch overhead when modeling request service times in Equation (1).

Next, we evaluate our TPU queueing model in the presence and absence of other co-located
applications to demonstrate the impact of performance interference. We run an application that
uses the Efficientnet-S model and vary its request rate. Initially, we run the application by itself
on the edge server and measure the response time under different request rates. We then run the
application along with a second application running Mobilenet-V1 that sees a constant workload.
We measure the response times in the presence of this co-located application. Figure 5 depicts the
observed response times and those predicted by our analytic models when running the Efficientnet-
S by itself and with the background MobilenetV2 application. As can be seen, the response time
seen by Efficientnet-S is higher when it is running with a second application due to the perfor-
mance interference from the background load. Further, our response times of our analytic model
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match closely with the observed response time, indicating that our model is able to capture the
performance interference when sharing the TPU across multiple applications.

To further validate our TPU model, we run various mixes of the DNN models on a TPU cluster
node with varying request arrival rates. Figure 6 shows the response times seen by three co-located
applications—Efficientnet-L, Inception-V3, and Inception-V4—under different levels of system uti-
lization. In all cases, the analytic model predictions closely match the observed response times over
a range of utilization values. Finally, we repeat the experiment with other mixes of DNN models
and observed similar prediction accuracies (graphs omitted due to space constraints).

Overall, our validation experiments show that our analytic models can (1) accurately capture
the context switch overheads and multiplexing behavior of the TPU, (2) capture performance inter-
ference from co-located applications, and (3) accurately predict TPU response time for real-world
DNN models and workloads.

3.3 Modeling GPU Inference Processing

We next model an edge GPU accelerator that executes inference requests from k co-located appli-
cations. Like in the TPU case, we assume that all Kk DNN models are loaded onto the GPU, and
applications issues requests to these models upon receiving a request. Like before, all issued re-
quests arrive at a shared queue and are processed by the edge GPU. Unlike the TPU that processes
queued requests in an FCFS manner, edge GPUs, specifically those from Nvidia, have more sophis-
ticated multiplexing capabilities. In particular, GPUs can process concurrent inference requests
issued by different processes via preemptive time-sharing [36]. That is, if n concurrent requests are
issued by n independent applications, then the GPU will serve the requests using round-robin time-
sharing, where each request receives a time slice before being preempted [36]. Unlike TPUs, which
incur significant context switch overhead from memory coping, GPU’s context switches are very
efficient so long as models fit in GPU memory. Since GPUs have several GBs of on-device memory,
we assume they can hold several models in RAM and are context switch overheads are negligible.

To demonstrate time-sharing behavior of an edge GPU, we ran several DNN models on a Jetson
Nano GPU, first in isolation and then with all of them executing concurrently. Figure 7 shows
that when requests to various DNN models arrive concurrently, their completion times reflect
time-sharing behavior. For example, requests to Yolo4 and Resnet DNNs, shown in red and blue,
complete at nearly the same time, which can not happen if they were processed sequentially in an
FCFS manner. This experiment confirms the time-sharing behavior of the GPU.

From a queueing perspective, the time-sharing capability of the GPU lends itself to a process-
sharing (PS) queueing discipline. However, there are some important system issues to consider.
First, despite the GPU’s time-sharing capabilities, multiple requests issued by the same process (i.e.,
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Fig. 7. Effect of Concurrency on Jetson Nano. Fig. 8. GPU response times for small and large DNN
models.

application) are serviced in FIFO order. This is because the GPU associates a single CUDA context
to each OS process, and all requests from a CUDA context go into a FIFO queue on the device and
are serviced sequentially (FCFS fashion). Time-sharing is possible only when concurrent requests
are issued by separate processes (i.e., separate applications) from distinct CUDA contexts.

Since we model the workload from all applications using a single queue, the resulting behavior
will resemble some combination of an FCFS and PS queueing system. If multiple requests arrive
concurrently from the same edge application, then they will see FCES processing. Conversely, if
different applications issue concurrent requests to the GPU, these requests will see concurrent
time-sharing processing (i.e., PS behavior).

Put another way, if an incoming request sees an idle system, then it experiences FCFS process-
ing. If the GPU is busy processing a request and another request arrives at the same application,
then it will be queued, also yielding FCFS behavior. In contrast, if the GPU is busy and a new
request arrives at a different application, then all requests receive service via process-sharing (i.e.,
time-sharing).

We model this GPU behavior using a combination of M/G/1/FCFS and M/G/1/PS system,
which serve as the upper and lower bounds of what requests actually experience in the system. The
waiting time and response time for M/G/1/FCFS are given by the P-K formula and are the same as
Equations (3) and (5). The response time of a M/G/1/PS queueing system has the following closed
form solution [22]:

-t 6)
- (
where A = }; A;and S = % and p = 1/S. Note that M/G/1/PS has a well-known insensitively
property, where the behavior is independent of job size distribution, which yield the same response
time solution of M/M/1/FCFS [22]. The mean queueing delay is

1 1

E[R]

E[w] = E[R] - E[S] = ~— - —. ™)

H—= H

The application-specific response time can be approximated as
E[Ri] = E[w] + S;. ®)

3.3.1 Experimental Validation of GPU Model. We now experimentally validate the above GPU
model to show that it can accurately predict GPU response time and capture the multiplexing
behavior of the GPU under different conditions. We also show that the real-world edge GPU be-
havior is bounded between our FCFS and PS models depending on arrival patterns. To do so, we
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Fig. 9. GPU behaviour with multiple applications per node.

first run a single DNN model on the GPU and subject it to various arrival rates. We choose an
isolated EfficientNet_b0 (a small classification DNN) for this experiment and then repeat it with
an isolated YoloV4 (a large object detection DNN) in isolation. In either case, since only a single
CUDA context is running in the application, the request processing will be FCFS. Figure 8 shows
the GPU response times at different utilization levels compared to the queueing models predictions.
As shown, the observed GPU response times closely match the values predicted by our FCFS GPU
model. This validates the FCFS behavior of the device under concurrent requests from the same
application and also the ability of our model to capture this FCFS behavior.

Next, we validate our queueing models when multiple models run on a single node. Here, the
observed response time should be lower and upper bounded by the pure FCFS and PS queueing
models. Figure 9 describes the response time when the GPU is multiplexing multiple models,
where Figure 9(a) shows the predicted response times according to the queueing models along with
the observed response times when running two concurrent models on the cluster, namely, ResNet
50 and EfficientNet_b1. In addition, Figure 9(b) depicts a node with three concurrent DNN models
(MobileNetV2, AlexNet, and GoogleNet). In all cases, we see that the observed response time
curve for each model lies between the PS and FCFS model curves. When a request arrives to an idle
system or to the same application that served the previous request, it experiences FCFS behavior.
Concurrent requests to different DNN models see time-sharing behavior. To further demonstrate
the accuracy of the queueing models and behavior mentioned earlier, we run an experiment where
we use a node with two identical MobileNetV2 models seeing the same arrival rates and force the
models to follow a certain scheduling paradigm by issuing requests in a coordinated fashion.

In Figure 10(a), we force FCFS scheduling by generating arrivals with no execution overlap.
This guarantees that the model sees no time-sharing behaviour yielding exact matching with the
FCEFS curve. We then, as shown in Figure 10(b), repeat the run forcing PS behavior using perfectly
synchronized arrivals, hence causing time-shared processing. The results of the experiment are
shown in Figure 10. As shown, the curve shifts down and closely match the PS model curve. This
validates our assumption that the Nano GPU exhibits a mix of both behaviors.

Together, these experiments show that our models can capture the time-sharing behavior of the
GPU and also predict GPU response times in the presence of concurrent applications.

3.4 Modeling Parallel Inference Processing

While time-sharing is the default multiplexing behavior of a GPU, GPUs also support two types
of parallelism, which we model in this section. First, GPUs support batch processing, where a
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Fig. 10. Enforcing PS and FCFS processing behaviour of two applications.

batch of requests is issued to the GPU and data parallelism is used to process the batch in parallel.
Second, discrete GPUs support request parallelism, where GPU cores are used to process multiple
requests in parallel. We present models to capture both data parallelism and request parallelism
multiplexing behaviors.

3.4.1 Modeling Batch Inference. Consider a GPU device that receives a batch of b requests for
inference. Batch inference processing exploits data parallelism to distribute the processing of mul-
tiple requests in a batch across device cores. Consequently, processing the b requests on a single
batch is faster than processing them individually (as b separate requests). From a modeling per-
spective, batch inference can be viewed as an increase in the GPU processing capability due to the
speedup seen by batch inference—based on data parallelism. Consequently, we can model batch
inference processing by viewing the batch of b requests as a single logical request that sees a faster
service rate yj than the service rate p seen by individual requests. Similar to [44], which reported
this behavior as well, we model this faster service rate by estimating the service time of the logical
request comprising the batch as follows:

Sp =k + % where b > 1, 9)

where ki, k; are DNN model and device-dependent constants, and b denotes the batch sizes. The
constants ki, k; are estimated empirically for each model. This model captures typical device be-
havior where the latency decreases initially with increasing batch size, followed by asymptotically
diminishing improvements in the latency. Consequently, we model service time of a batch S; o 1/b.
The service rate y, is then 1/S,. The adjusted service time and service rate can then be used in the
M/G/1/FCFS system from Section 3.2.

3.4.2 Experimental Validation of Batched Inference. We conduct experiments to validate data
parallelism with batched requests. We consider three models GoogleNet, InceptionV3, and
DenseNet. We execute each DNN model individually on the Geforce-GTX-1080 GPU and empiri-
cally profile each model. To do so, we run each DNN with batch sizes of b = 1, 2, 4, 8, and find the
parameters for k; and k; of Equation (9). Next, we run each model on the GPU and vary the batch
size from b = 1 to b = 32. Figure 11 compares the model predicted service time from Equation (9),
and the observed service time. Again, the model predictions closely match the observed response
times over a range of batch sizes. The figure also shows that service time reductions show dimin-
ishing returns with the increase in batch size and the most significant gains are seen at small batch
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sizes. This is in line with our analytic model, which assumes asymptotically diminishing latency
improvements with increasing batch size.

3.4.3 Modeling Parallel Inference using MPS. In contrast to batching, which provided data par-
allelism, Nvidia’s MPS provides request parallelism when executing concurrent requests from dif-
ferent DNN models in parallel on different GPU cores. MPS also supports memory partitioning
and isolation of GPU resources [36]

The behavior of MPS can be modeled as a M/G/c/PS system, with the GPU providing ¢ servers
that can execute ¢ DNN models in parallel. Assuming an aggregate arrival rate A across all GPU
containers, a mean service time S and service rate y, the response time yielded by a M/G/c/PS
system is given as

c p c
E = = — = . 1
[R] =~ = " oa (10)

In practice, the degree of multiprocessing depends on (i) the actual number of cores on the
device and (ii) the model size in terms of its processing and memory needs. In most cases, with
MPS enabled, the GPU acts as a multi-processor with a small value of ¢ (e.g., c is often 2 or 3 for
desktop-class GPUs, indicating a limited degree of parallelism).

3.4.4 Experimental Validation of MPS-based Parallel Inference. We conduct experiments to val-
idate the above model that captures request parallelism due to Nvidia’s MPS scheduler. In this
case, we ran two InceptionV3 models on the GeForce 1080 GPU with the MPS daemon running
with each having a varying request arrival rate. Figure 12 compares the observed response time to
those predicted by the queueing model for ¢ = 1.65 (empirically measured speed up). As shown,
our model has a good match with the observed values, which shows that our analytic model is
able to accurately capture parallel request processing on GPUs.

3.5 Modeling CPU processing

Having analytically modeled GPU and TPU processing under a range of multiplexing behaviors
such as FCFS, time-sharing, and data/request parallelism. We turn to CPU processing incurred
by each edge request. Unlike GPU and TPU accelerators, where we use a single queue to model
the aggregate workload of all k applications, the CPU model assumes a separate queue for each
application. This is because each application is assumed to run in a separate container or a virtual
machine (VM) on the edge server and is allocated a dedicated amount of CPU capacity (e.g., a
fraction of a CPU core or multiple cores). We assume that the operating system uses standard CPU
time-sharing for processing requests within each container or VM.

Under this scenario, the CPU processing of each application can be modeled as a separate
M/G/c/PS queueing system. The M/G/c/PS queueing system is well studied in the literature and
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has a closed form equation for average response time, which is given by [22]

E[R] = % . % = cyc—/l’ since p = A/cp. (11)

3.5.1 CPU Model Validation. To experimentally validate our CPU model, we allocate a fixed
amount of CPU and memory to each application container and ran a multi-threaded process to
accept incoming image requests and perform CPU processing on this request prior to issuing it
to the GPU or TPU We varied the arrival rate and experimentally measured the response time
for various degrees of CPU utilization. Figure 13 shows that the observed CPU response time
increases with utilization and closely matches the prediction of our model, showing that the model
accurately captures the CPU processing of the application. Results for multi-core containers (¢ > 1)
are similar and omitted due to space constraints. Our results show that our model can capture
CPU processing of DNN inference requests and that use of separate queueing models for each
applications yields accurate response time predictions.

3.6 Estimating End-to-End Response Time

Our previous sections presented analytic models for the CPU and GPU/TPU processing stages
for each inference request. To estimate the end-to-end response time, we can use the network of
queues model from Figure 2. The mean end-to-end is the sum of the mean response time of each
stage in the network. For application i the end-to-end response time R} al = RI.C]‘D Ut Rl.GPU/ TPU.

where RiCP U and R?PU/ TPU can be computed using the above analytic models.

4 MODEL-DRIVEN CLUSTER RESOURCE MANAGEMENT

In this section, we show how the predictive capabilities of our analytic models can be employed
for cluster resource management tasks such as online DNN placement and dynamic migration.
We also discuss the implementation of our algorithms into our Ibis prototype that is based on the
Kubernetes cluster manager.

4.1 Latency Aware Online Knapsack Placement

A key resource management task performed by cluster managers in cloud computing platforms is
online placement.? In this case, new applications arrive into the cluster and must be placed onto a
server with adequate unused capacity to run that application. The placement problem in cloud com-
puting has been well studied for over a decade [50] and is typically viewed as a multi-dimensional
knapsack problem [6]. In this case, each server in the cluster is a knapsack and the various dimen-
sions of the knapsack represent the resource capacities of the server (e.g., capacities of the CPU,
memory, network). An application request specifies the amount of each resource it needs, and the
knapsack problem involves selecting an edge server with sufficient unused resources.

In the case of edge clusters with accelerators, the traditional knapsack placement approach is not
applicable. This is because traditional knapsack placement in cloud computing has assumed that
resource requirements are additive and an application can run on a server if it “fits” on that server.
This assumption is reasonable, since all applications run in VMs or containers and are isolated
from each other using virtualization.

As explained in Section 3, accelerators do not provide support for virtualization or isolation and
co-located DNN applications on a GPU or TPU see performance interference. Hence, it is no longer
sufficient for placement techniques to check if the DNN model will “fit” on a GPU or TPU memory.

20ffline placement assumes that all applications arrive at once and must be placed together onto an empty cluster, while
online placement assumes applications arrive sequentially and must be incrementally placed without knowledge of future
arrivals.
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ALGORITHM 1: Latency-aware Online Knapsack Placement
Input: A dictionary dnnConfig contains DNN profile, task type, input rate A and latency constrain 7; A
list of available nodes, nodeList.
Output: A selectedNode to place the incoming DNN such that all applications running on the node
will not violate their latency SLOs after placement
1 feasibleNodes « []
2 memNeed < computeMemNeed(dnnConfig)

3 for node in nodelList do

4 resTime « computeResponseTime(dnnConfig, node) /* Use queueing models */
5 sysUtil « computeSysUtilization(dnnConfig, node)

6 memOk < memNeed < node. freeMem /* Check knapsack resources */
7 sloOk « resTime <t

8 utilOk « sysUtil < maxRho

9 if memOk && sloOk && utilOk then

10 ‘ feasibleNodes. append(node)

1 end

12 end

13 if dnnConfig. type == "AlaaS" then

14 groupNodes « findNodeWithSameApp(dnnConfig, feasibleNodes)
15 feasibleNodes « groupNodes if !groupNodes.empty ()

16 end
17 selectedNode « findNodeWithLeastUtil(feasibleNodes) return selectedNode

The placement technique should additionally ensure that the increased workload and performance
interference from placing a new application will not cause response time requirements to be vio-
lated. We refer to this new problem as online placement with latency constraint, where the knapsack
(i.e., edge server) has both resource capacity constraints as well as a response time (latency) prop-
erty. While used resource capacity increases in an additive manner with each placed application,
response time increases non-linearly. Thus, traditional packing algorithms that are based on linear
packing assumptions do not hold in our setting.

Our placement approach is based on our analytic queueing models to address the latency con-
straint. We assume that a newly arriving DNN application specifies its resource (e.g., CPU, mem-
ory) needs as well as a latency constraint (Rl?h), for an expected request rate 4;.

Our placement technique first determines a list of all feasible servers in the cluster that can
house the new application. A server is feasible if (1) it has sufficient free resources such as CPU,
CPU Memory, GPU memory to house the DNN application and (2) the end-to-end response time
seen by the new as well as existing applications are below their specified thresholds. That is, for
each application on that server pr” +Rl.GPU/TPU < thr“h‘”d, pru, and RiGPU/TPU
using our analytic models.

If no feasible server exists, then the application placement request is rejected. Otherwise, a
greedy heuristic is used to pick a specific server from the list of feasible candidate servers. Cur-
rently, our system supports two greedy heuristics. (1) highest utilization (aka worst fit) that is
designed to achieve a tight packing on the smallest number of servers and (2) lowest utilization,
which chooses the least loaded server to house the new application. Algorithm 1 lists the pseudo
code for our online knapsack placement with latency constraints.

are computed

4.1.1 Heterogeneous and Grouped Placement. We next present two enhancements to our base-
line placement algorithm, namely, heterogeneous and grouped placement. The heterogeneous
placement algorithm assumes an edge cluster with heterogeneous servers, where each server is
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equipped with a GPU, TPU, or both. The goal of the placement algorithm is to choose a suitable
server and the best accelerator type for a newly arriving application. To do so, the placement
algorithm computes the CPU response time of the application on each feasible server as well as
the GPU and TPU response times, depending on the accelerators on each feasible server. The
placement algorithm greedily chooses the GPU server as well as the TPU server with the least
latency from this feasible set.

The server with the lower of the two latencies is then chosen to house the application, which also
determines the best accelerator for the application. As we show in Section 4.4.2, no one accelerator
is optimal for all DNN models, and this enhancement enables the best accelerator to be chosen,
based on the performance offered by each type of accelerator and the load on servers.

Our second enhancement use a grouped placement technique that we refer to as AI-as-a-Service
(AIaaS) placement. In the AlaaS model, the edge cloud provider offers a choice of several pre-
trained DNN models as an edge service. An application can simply choose one of these DNN
models and avoid having to supply its own DNN for inference tasks. The advantage of the AlaaS
model is that the cluster manager can opportunistically group applications that choose the same
DNN model on the same server—in doing so, it can load a single copy of the DNN for all applica-
tions that have chosen it, instead of loading one DNN model per application. This can potentially
increase the cluster capacity due to the reduced memory requirements. In the grouped placement,
if the DNN model is already executing on the edge cluster (by being chosen by one or more prior
applications), then we need to determine if the newly arriving application can be grouped with the
existing ones. To do so, we aggregate the request rate A; of all grouped applications and use the
analytic queueing model to determine the GPU and TPU response time of the shared container. If
the latency threshold of the entire group can be met for the aggregate workload, then the new ap-
plication is co-located with the current group. If the application cannot be placed with the current
group, then it is placed onto a new server to start a new grouping.

4.2 Model-driven Dynamic Migration

Application workloads in edge clouds tend to be dynamic and will fluctuate over time. While our
analytic model ensures that response times meet latency objectives for a specified request rate A;,
applications will nevertheless experience latency violations if the workload fluctuates dynamically
and the observed request rate i exceeds the specified workload. To handle dynamic workloads,
Ibis uses a police-and-migrate strategy. Each application container includes a token bucket regu-
lator to police the incoming workload—the token bucket is configured with a rate A; and config-
urable burst b;. Hence, if the observed request rate exceeds the specified rate, requests get queued
by the token bucket regulator. Doing so avoids overloading the underlying accelerator and isolates
other co-located tenants from experiencing performance degradation due to the overloaded ten-
ant. A sustained hotspot is mitigated by dynamically migrating the overloaded tenants to a new
less-loaded server. To do so, Ibis monitors the mean end-to-end response time for each application
over a moving time window. It also tracks the observed request rate 1; for each application. If la-
tency violations or request drops are observed on any node, then the application whose observed
request rate 1; exceeds the specified rate A; is flagged for migration. The analytic queueing models
are used to determine a new node and accelerator for this application using a new higher request
rate estimate. The application is then migrated to the new node using container or VM migration.

4.3 Ibis Implementation

We have implemented a prototype of our system, named Ibis, using Kubernetes on a custom-built
edge cluster of ten nodes depicted in Figure 14, each comprising a Jetson Nano GPU, 4 GB of RAM,
and quad-core ARM processor. We use a similar ten node cluster equipped with USB edgeTPUs
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Fig. 14. 10-node Jetson Nano cluster. Fig. 15. Ibis implementation overview.

for our TPU experiment. Our cluster also contains a Dell PC with a 3.2 GHz i7-8700 processor,
16 GB RAM, and Geforce-GTX-1080 GPU. All machines are connected via a gigabit ethernet switch
and run Linux Ubuntu 18.04. Further, each Jetson Nano runs CUDA 10.2, cuDNN 8, and TensorRT
7.1.3, while the PC runs CUDA 11, cuDNN 7.6.5, and TensorRT 7.1.3. All machines are virtualized
using Docker 19 and managed by Kubernetes 11; gRPC 1.31 is used for inter-communication.

Figure 15 depicts Ibis system overview. Our prototype currently runs DNN models in TensorRT
engine format for GPU and quantized tflite format for EdgeTPU. For AlaaS models, Ibis first
retrieves its resource requirements (e.g., memory, service time) using a pre-profile table. However,
in the case of User-Supplier models (provided in ONNX format), we compile and profile it on an
idle node and save the result back to the profile table for future use. Our application containers
are deployed as Kubernetes Deployment, and we use Kubernetes Service to route network traffic.
Ibis collects node resource status and chooses a node and device using our analytic models and
scheduling strategies. Finally, Ibis deploys the incoming workload to the target node and device
via Kubernetes interface. Source code for our prototype is available at https://github.com/umassos/
ibis.

4.4 Experimental Evaluation of Model-driven Resource Management Algorithms

In this section, we experimentally evaluate our cluster resource management techniques on an
edge cluster using realistic workloads. To do so, we deploy Ibis on our 10 node edge cluster and
use the trace workloads discussed below for our experiments.

4.4.1 Trace Workloads. The trace workload for each IoT application is constructed using our
21 DNN models and a sequence of images from the ImageNet dataset [12]. Table 2 shows the
characteristics of the DNN models used in our experiments. We adopt models for both image clas-
sification and object detection tasks. Each model contains a set of parameters whose size directly
affects its memory footprint. All parameters are pre-trained. Classification models are pre-trained
on ImageNet dataset and detection models are pre-trained on COCO [32] dataset. In addition to
model parameters, TensorRT allocates extra memory for CUDA context and runtime. The Runtime
Footprint column shows the total memory used by each model, note that the large difference be-
tween runtime memory and static size is due to CUDA runtime requirements, while actual inputs
and intermediate results are overheads are minimal. The input of the models is a batch of images
in NCHW format, where N is the batch size, C is the number of channels, H is the height, and
W is the width of the image. During inference, a certain number of floating point operations
(FLOPs) are performed. We categorize the models into small (S), medium (M), and large (L) based
on their memory footprint and FLOPs per input sample.
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Table 2. DNN Characteristics for GPU

Models Scale | Input Shape |Parameters St?&%?*l ze Fooﬁ)l;rilrﬁr?l\e/[B)* F;‘(?FI))S ;innflzr?:fs;*
Classification Models
AlexNet S [N, 3, 224, 224] 62M 138 992 0.7 14.18
GoogleNet S [N, 3, 224, 224] 6M 39 893 2 13.37
InceptionV3 M | [N, 3, 224, 224] 24M 81 836 6 30.56
MobileNetV2 S [N, 3, 224, 224] 3.5M 22 1,130 0.6 13.02
ResNet18 S [N, 3, 224, 224] 12M 69 930 1.8 10.83
ResNet34 S [N, 3, 224, 224] 21.2M 155 1,044 3.6 19.51
ResNet50 M | [N, 3, 224, 224] 26M 106 965 3.8 29.2
ResNet101 L [N, 3, 224, 224] 44.5M 247 1,135 7.6 50.32
EfficientNet-b0 S [N, 3, 224, 224] 5.3M 30 1,168 0.4 26.03
EfficientNet-b1 | M [ [N, 3, 240, 240] 7.8M 42 1,184 0.7 41.32
EfficientNet-b2 | M [ [N, 3, 260, 260] 9.2M 49 1,196 1 49.58
EfficientNet-b3 L [N, 3, 300, 300] 12M 77 1,229 1.8 81.67
EfficientNet-b4 L [N, 3, 380, 380] 19M 124 1,042 4.2 166.15
EfficientNet-b5 L [N, 3, 456, 456] 30M 180 1,320 9.9 337.44
DenseNet121 M | [N, 3, 224, 224] 7.2M 50 910 3 30.14
DenseNet201 L [N, 3, 224, 224] 20M 103 964 4 89.11
VGG16 L [N, 3, 224, 224] 138M 407 1,275 16 86.36
VGG19 L [N, 3, 224, 224] 144M 463 1,333 20 99.19
Object Detection Models

YoloV3 L [N, 3, 416, 416] 62M 617 1,501 65.88 190.24
YOLO-tinyV4 M | [N, 3,416, 416] 6.06M 75 938 6.91 23.79
YoloV4 L [N, 3, 608, 608] 64.43M 445 1,329 128.46 407.91

Values are based on Jetson Nano with FP16, batch size of 1.

Further, we use the public Azure trace [10] to construct realistic mixes of containerized applica-
tions of varying sizes. Azure Public Dataset provides data on the characteristic of the production
virtual machine workloads of large cloud providers. It describes the characteristics of Microsoft
Azure’s VM workload, including distributions of the VMs’ lifetime, deployment size, and resource
consumption. The trace is created using data from the 2019 Azure VM workload containing infor-
mation about 2.6M VMs and 1.9B utilization readings. To create realistic workloads, we analyze the
distribution of VM sizes (CPU utilization and memory footprint) in the Azure trace and use them
to generate the utilization and model size of our DNN-based applications. We categorize VMs as
small (<2 GB), medium (2-8 GB), and large (>8 GB) and find that proportions of small, medium,
and large applications are 47%, 33%, and 20%, respectively. The mix of small, medium, and large
DNN models housed on the edge cluster is chosen in the same proportion. Finally, models in the
same category are chosen evenly.

We use this Azure trace to generate an arrival trace of DNN applications that require placement
on our cluster. Each arriving application is chosen from the above DNN types and is associated
with a response time constraint R;, and worst-case request rate A.

4.4.2  DNN Profiling. We start with profiling of various DNNs to measure their service times
in isolation on a Nano GPU and an edgeTPU. Figure 16 shows the normalized execution time of
various models. Interestingly, the figure shows that smaller DNN models run faster on the TPU
than the GPU, while larger ones run faster on the GPU than the TPU. This is because the edgeTPU
is an ASIC designed specifically for DNN inference and has higher operations per second than
more general-purpose GPU devices. But it has a small (i.e., 8 MB) device or on-chip memory. To
run models with a memory footprint larger than this limit, it employs host, or off-chip memory, to
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store the extra model parameters. This incurs a context switch overhead, since accessing off-chip
memory is much slower than accessing on-chip memory, and hence, larger DNNs have worse
performance than smaller DNNs on EdgeTPU. However, GPU does not have this problem as it
can store all DNN runtime and parameters in its larger device memory; the reduction in context
switch overhead offsets the somewhat higher execution times, yielding lower service times for
larger models.

Our results show that neither the TPU nor GPU is optimal for all DNN models, and the optimal
choice will depend on the characteristics of each model. This result also motivates the need for
our heterogeneous placement technique discussed in Section 4.1.1.

4.4.3  Efficacy of Our Placement Algorithm. We conduct an experiment to show the efficacy
of our online knapsack placement with latency constraints. We do so by comparing our approach
with a traditional online knapsack placement approach that is used for cloud application placement.
As noted earlier, traditional knapsack placement is latency oblivious and performs placement us-
ing additive resource packing. We construct application arrival traces with an increasing number
of applications and place them on our edge cluster using the two placement methods and measure
whether there are any response time violations when subjecting applications to the specified re-
quest rates. In the following experiments, DNN inference requests are dispatched to the container
from an idle local node on the network. Figure 17 show our results. As shown, the latency-oblivious
traditional knapsack sees latency violations even with a small number of co-located applications,
and the number of applications seeing violations increases with more application arrivals. When
we try to load more than 50 applications with a latency-oblivious policy, the system crashes. In
contrast, our latency-aware policy is able to place 61 applications onto the cluster, with no latency
violations for any application.

Next, we run a simulation experiment where we vary the number of applications that need to
be placed from 10 to 70, and construct 1,000 random arrival traces for each data point. We try to
place applications from each trace on a ten node cluster of discrete GPUs using three knapsack
aware methods (i) latency (Proposed model), (ii) utilization [38], and (iii) online knapsack. Then,
we determine whether each placement is successful (i.e., whether the applications fit on the cluster
and if there are any latency violations using our queuing equations). Figure 18 shows the fraction
of workloads that can be successfully placed on the cluster using these three methods. As the
number of applications increases, the probability of successful placement for a random arrival
pattern decreases for all methods. However, the success rate decreases much faster for the latency-
oblivious traditional knapsack due to the higher rate of response time violations, followed by a
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moderate decrease in the number of applications. Finally, our method can encounters a higher
probability of successful placement. For a 90% or higher cutoff success rate, the traditional method
can place at most 30 applications, utilization method is able to host 40 applications, while our
method can place nearly 70 applications, yielding a 2.3X increase in cluster capacity.

4.4.4  Efficacy of Our Heterogeneous Placement. We next show the efficacy of our heteroge-
neous placement enhancement. We conduct an experiment where we construct an arrival sequence
where each application randomly makes a static choice of a GPU or TPU accelerator, and we use
our latency-aware online knapsack to make placement decisions. We compare this static placement
policy with our heterogeneous placement approach, where the choice of the accelerator is made
dynamically by our placement algorithm. Figure 19 shows the number of applications placed onto
the cluster in each case. As can be seen, when a static choice is made, some applications can make
a bad choice and use more resources than they need (e.g., as see in Figure 16 VGG16 has 4x more
service time on TPU than on GPU). In the case of heterogeneous placement, the best accelerator
is chosen for each application, and resources are effectively used to pack more applications. The
heterogeneous policy yield a cluster capacity improvement of 10%. This experiment shows that
Ibis is able to maximize resource sharing while maintaining response time guarantees.

Moreover, we notice that the efficacy of heterogeneous placement also depends on the model
type. As shown in Figure 16, the service time saving of heterogeneous placement varies from 15%
to 75%. If the workloads consist of models with strong hardware preferences (e.g., VGG16), then
the cluster capacity improvement can be much larger. However, if most of the models do not have
hardware preferences (e.g., Effinet-B0), then the improvement would be minor. In addition, device
memory capacity also has a great impact on the efficacy of heterogeneous placement. If one type
of accelerators run out of memory, then we have to place all incoming models to the other type of
accelerators, which may yield worse performance. In our experiment, on GPUs, distinct models are
loaded within different CUDA contexts, which introduces a huge memory overhead. As a result,
the GPUs run out of memory quickly, and all incoming models have to be placed on the TPUs,
which offset the benefits of our heterogeneous placement policy.

4.4.5 Efficacy of AlaaS Placement. Next, we conduct an experiment to compare the degree of
sharing achieved using Al-as-a-Service applications, user-trained models, and a mix of both. We
construct a trace of application arrivals and use our algorithms to place these applications using
all three approaches on the Jetson Nano GPU cluster. As shown in Figure 20, Al-as-a-Service place-
ment achieves 2.1X cluster capacity improvement compare to user-trained models. This is because
when loading a model on GPU, a significant amount of memory is allocated by CUDA context and
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user-trained models.

runtime. As shown in Table 2, model parameters only consume 15% of total memory footprint.
Since user-trained models are run in different containers, a new CUDA context is created when a
model is placed to the cluster. As a result, a Jetson Nano node runs out of memory after loading
two or three applications. No additional applications can be loaded even though the GPU is under-
utilized. In this case, the cluster capacity is bounded by memory. However, AlaaS applications are
run in a shared container and thus share the CUDA context. Since sharing amortizes the memory
overhead of CUDA context, AlaaS is able to achieve a greater degree of resource sharing. Finally,
the mixed workload placement achieves co-location performance that lies between user-trained
and AlaaS placement.

Moreover, the effectiveness of AlaaS placement is dependent on device memory capacity and
runtime memory dynamics. If the memory capacity is high, then the improvement of AlaaS will
be limited. However, when the memory capacity is limited, which is generally the case for edge
servers, the capability of amortizing memory overhead allows AlaaS to achieve better resource
sharing and cluster utilization.

4.4.6 Evaluation of Hotspot Migration with Token Bucket. Finally, we conduct an experiment
to demonstrate the efficacy of hotspot mitigation with token bucket. We start the experiment
with the system moderately loaded with two DNN models—EfficientNet-S and MobileNetV2. We
then increase the request rate of EfficientNet-S beyond the placement time estimate. As shown in
Figure 21, the workload increase causes the response time of EfficientNet-S to exceed the latency
threshold but does not affect the MobileNetV2 because of the token bucket. Our system monitors
the response time seen by customers and triggers a migration when violations are observed.
The overloaded application is migrated to a new node with sufficient idle capacity, causing the
response time of the overloaded application to fall below the latency violation threshold. This
experiment shows the ability of our techniques to mitigate hotspots dynamically.

4.5 Limitations

Our current Ibis prototype has four main limitations:

Mean Versus Tail Latencies. Ibis uses queueing models to predict the system behavior under
certain load conditions. However, our queueing models focus on mean latency and do not consider
tail latencies. Extending our models to support tail latencies is part of future work.

GPU Memory Overheads. In GPU deployments, Ibis deploys a model per container/process
resulting in a CUDA context per process. However, as mentioned in Section 4.4.1, this adds a high
memory overhead per container. Although one alternative is to share the context between DNN
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models using multiple threading. However, as mentioned in References [4, 53], this can add higher
unpredictability due to interference.

TPU Limitations. TPUs have two main limitations: its low memory and the execution model.
We expect that larger edgeTPUs will appear in the near future, resolving the first issue. However,
the execution model presents a fundamental source of overhead. TPUs load only a single model at
a time (even if memory can accommodate multiple), which adds a context switch overhead. One
solution to this problem is to co-compile the models into a single model graph, which allows the
TPU to decrease the mandatory context switch overhead across models. However, this approach
comes at a higher cost, since compiling the models beforehand is infeasible, and online compilation
will add overheads.

Security Model. Currently, edgeTPUs and edge GPUs do not provide any isolation/virtualization
mechanisms. Our threat model assumes a trusted cloud manager while users are not trusted, sim-
ilar to most cloud services. To solve this problem, Ibis takes a DNN model in a standard format
such as onnx and builds a run-time container without any user-provided code.

5 DISCUSSION

Geographical Placement. Ibis assumes all nodes reside in one edge cluster and does not ex-
plicitly consider multiple edge sites with different geographical locations. However, Ibis can be
extended to support the multiple edge sites. For example, we can adaptively change the response
time SLOs based on network latency estimations of different edge sites once this is done. Ibis will
then ensure the SLOs are met. Moreover, Ibis separates feasibility checking and scheduling, which
allows it to incorporate the ever-growing number of scheduling policies.

Network. Ibis does not explicitly consider the network latency between CPU and GPU/TPU con-
tainers. In our experiment, the containers of one application are placed in the same node. The low
network latency, in this case, had a negligible impact on our results. However, in the case when
containers are in different nodes, the network latency can affect our model accuracy. We can re-
move this limitation by enforcing the placement of the containers in the same node or adjusting
the SLOs to tolerate the network latency.

Security. Security is important for all shared systems. Ibis addresses the security problem by sep-
arating user code and DNN models. Users are allowed to run arbitrary code in the CPU container
with isolated resources, but they have no access to the accelerators. The DNN model is loaded in
GPU/TPU container, which has access to the accelerator. Users can only execute the DNN model
through provided APIs.

6 RELATED WORK

DNN Inference systems. Building SLO aware inference systems have been widely discussed [11,
18, 44, 46, 54]. Zhang et al. [54] proposed a scalable system for DNN inference workloads, where
different classes of resources are provisioned to allow efficient and effective scaling. Similarly,
Nexus [44] provides a solution for deploying multi-level Al workload utilizing batching to decrease
the processing time. Clipper [11] proposes a general-purpose low-latency prediction serving sys-
tem by introducing caching, batching, and adaptive model selection techniques. Soifer et al. [46]
provide insights on the inference infrastructure at Microsoft, which duplicates requests with cross-
cancellation tokens to ensure predictable response times. Clockwork [18] proposes a model serving
system that fulfills aggressive tail-latency SLOs by restricting the choices available to lower system
layers. In our work, we provide a proactive estimation tool for predicting the performance of DNNs
and provide a latency and heterogeneity aware scheduling mechanism for edge deployments.

Edge inference. Although most DNN inference systems focus on cloud deployments. The promise
of edge computing is to provide lower latency for real-time applications by eliminating the latency
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of offloading to remote clouds [2, 40, 42, 55]. Hardware accelerators such as GPUs and TPUs provide
a powerful add-on for edge infrastructure [7, 34, 56]. Many researchers have studied and charac-
terized the performance of various edge accelerators [19, 20, 31, 51]. Reference [19] characterizes
several commercial edge devices on popular frameworks using well-known CNNs. Reference [31]
further characterizes edge accelerators using typical device-cloud-edge computing paradigm, such
as split processing. Moreover, Reference [20] highlights the correlation between DNN models and
edge accelerators. Finally, Reference [51] demonstrates an FPGA-accelerated and general-purpose
distributed stream processing system for Edge stream processing.

Multi-tenancy on accelerators. Sharing of GPUs across applications has been studied for cloud
servers [13, 16, 26]. Olympian [26] and GPUShare [16] focus on sharing a single GPU across mul-
tiple users, while GSLICE [13] focuses cluster-level sharing. PERMA [9] proposes a preemption
mechanism that facilitates neural network accelerators to become preemptible and share between
multiple DNN tasks. Also, Reference [18] highlights the effect of multiplexing Inference requests,
while proposing using FCFS scheduling to provide latency guarantees. In contrast to these efforts,
we focus on analytic models, using queueing theory, to enable GPU or TPU multiplexing while
providing response time guarantees.

Model-aware placement. Model (queueing models) have been used extensively to monitor and
predict the performance of traditional processing units (i.e., CPU) [3, 15, 21, 23, 45, 49]. There
has been recent work on capturing the performance of accelerators using queueing models. The
work in Reference [27] presents a queueing model to capture the effect of GPU batching of a
single application. Zhang et al. [54] proposes using queueing models to meet SLO requirement of
machine learning inference serving on public cloud. They assume deterministic inference time and
only one inference job running on a node. Also, Reference [52] shows how queuing models can be
used to schedule DNN models on cloud CPU clusters. In contrast, we cover multiple accelerator
architectures at the edge, which in resource constrained environments.

7 CONCLUSION

In this article, we presented analytic models to estimate the latency behavior of DNN inference
workloads on shared edge accelerators, such as GPU and edgeTPU, under different multiplexing
and concurrency behaviors. We then used these models to design resource management algorithms
to intelligently co-locate multiple applications onto edge accelerators while respecting their la-
tency constraints. Our results showed that our models can accurately predict the latency behavior
of DNN applications on shared nodes and accelerators, while our algorithms improve resource
sharing by up to 2.3x when providing response time guarantees.

Our future work will extend our models and implementation in three main directions: (i) Our
current queueing model captures response time on CPUs, TPUs, and GPUs. We plan to extend
the queueing models to include other ASICs such as FPGA, DSP units, and so on. Further, since
such hardware support different runt-time configurations (e.g., Power modes and DVFES), our
models can be extended to provision resources in an energy efficient way, which is crucial for
energy-constrained edge deployments. (ii) Multi-tier Deployments: In our current implementation,
we assume that both the pre-processing and inference phases are deployed on the same physical
node. Multi-tier deployments are beneficial in cases where the edge is connected to the cloud
or heterogeneous nodes. In these cases, our tandem queue can be extended to include multiple
phases such as transmission from client to edge or across nodes. (iii) Multi-edge Deployments:
Although we focused on single edge deployment, our queueing models can be used in multi-edge
deployments, where tandem queues can be dynamic. However, this will require adding new
scheduling policies based on management goals such as fault-tolerance and energy aware
placement.
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