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ABSTRACT

In the last few years, many works have tried to explain the predictions of deep learning models. Few
methods, however, have been proposed to verify the accuracy or faithfulness of these explanations.
Recently, influence functions, which is a method that approximates the effect that leave-one-out
training has on the loss function, has been shown to be fragile. The proposed reason for their fragility
remains unclear. Although previous work suggests the use of regularization to increase robustness, this
does not hold in all cases. In this work, we seek to investigate the experiments performed in the prior
work in an effort to understand the underlying mechanisms of influence function fragility. First, we
verify influence functions using procedures from the literature under conditions where the convexity
assumptions of influence functions are met. Then, we relax these assumptions and study the effects of
non-convexity by using deeper models and more complex datasets. Here, we analyze the key metrics
and procedures that are used to validate influence functions. Our results indicate that the validation
procedures may cause the observed fragility.

Influence functions
Bayesian neural networks
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1. Introduction

Due to the black-box nature of Deep Neural Networks (DNNs),
explaining the predictions of these models remains a challenging
problem. Several techniques for addressing this challenge have
been proposed such as saliency maps (Simonyan, Vedaldi, & Zis-
serman, 2014), influence functions (Koh & Liang, 2017), concept
activation vectors (Kim et al., 2018), and activation atlases (Carter,
Armstrong, Schubert, Johnson, & Olah, 2019). These techniques
are not without problems. The fragility of these methods have
been well studied, but few works have tried to understand where
these methods break down (Basu, Pope, & Feizi, 2020; Ghorbani,
Abid, & Zou, 2019).!

Influence functions were originally proposed to diagnose and
debug linear models by predicting the parameter or loss change
due to removing a training instance (Cook & Weisberg, 1982).
Their extension to deep learning models, however, did not occur
until recently (Koh & Liang, 2017). Influence functions and their
applications have been well studied since their reemergence and
have since been adopted as a mainstream tool for the interpre-
tation of deep models in a variety of data modalities (Cohen,
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Sapiro, & Giryes, 2020; Guo, Rajani, Hase, Bansal, & Xiong, 2020;
Han, Wallace, & Tsvetkov, 2020; Lee, Park, Pham, & Yoo, 2020),
including high-risk areas such as mortality prediction for patients
in the Intensive Care Unit (Epifano, Ramachandran, Patel, & Ra-
sool, 2020). Due to the diversity of the use cases for influence
functions, understanding their limitations is imperative if they
are to be used to explain model behavior. Without key validation
procedures, we run the risk of providing misleading or incorrect
information to the model users.

To validate these methods, we must first agree on a metric
to rate explanations. Spearman correlation between the approx-
imate and true loss differences has been used as a metric to de-
termine the accuracy of influence estimates. The approximate loss
differences are given by the influence functions and the true loss
differences are obtained by retraining an already trained network
after removing a specific training sample (Koh & Liang, 2017).
Recent works have used this metric to study the effects that in-
creases in model and dataset size have on the influence functions.
It has been found that influence functions are extremely sensitive
to these increases (Basu, Pope, & Feizi, 2020).

It is well known that increases in model and dataset size
affect the curvature of the loss function (Alain, Roux, & Manzagol,
2019; Ghorbani, Krishnan, & Xiao, 2019; Sagun, Bottou, & LeCun,
2016; Sagun, Evci, Guney, Dauphin, & Bottou, 2017). Convexity
of the loss function is a critical assumption of influence func-
tions as they heavily rely on the approximation of the inverse
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Hessian-vector product. The stochastic estimation algorithm used
to compute the inverse Hessian-vector product assumes that the
Hessian is positive semidefinite (Agarwal, Bullins, & Hazan, 2017;
Pearlmutter, 1994). Preliminary work has been done to try to
remedy these problems via higher-order approximations (Koh,
Ang, Teo, & Liang, 2019) and group influences (Basu, You, & Feizi,
2020), i.e., computing loss differences for more than one training
instance at a time.

When discussing fragility, we must look at the whole sys-
tem, not just the method in question. Deep neural networks
have been shown to be sensitive to small perturbations via the
weight initialization or by the order in which the data is given
to the model (Madhyastha & Jain, 2019; Smilkov, Thorat, Kim,
Viégas, & Wattenberg, 2017). The problem lies in the noisy nature
of the gradients. This problem has been linked to poor model
convergence as well as explainability and attempts to address
it include Gaussian averaging (Smilkov et al., 2017), Stochastic
Weight Averaging (SWA) (Izmailov, Podoprikhin, Garipov, Vetrov,
& Wilson, 2018; Madhyastha & Jain, 2019) and model averaging
through Bayesian Inference (Blundell, Cornebise, Kavukcuoglu, &
Wierstra, 2015).

In this paper, we examine the cases where influence functions
seemingly fail, i.e. have low Spearman correlation between ap-
proximate and true loss differences. We obtain the operands for
the correlation using the retraining procedure introduced in Koh
and Liang (2017), where the approximate loss differences are
computed for the test point with the maximal loss using influence
functions. Each training point is removed one at a time and the
neural network is retrained from the optimal parameters until
convergence in order to obtain the true difference in the loss
function values. We determined that this training procedure is
not valid for most applications of deep learning and present
evidence for these cases.

2. Background
2.1. Influence functions

Consider a standard classification problem where a label y
is predicted for each feature vector x. Let zz = (x;,y;), where
i = 1,2,...,N, for N instances in the dataset. It is assumed
that we have a trained model where 6 represents the trained
network parameters. Our loss function can be written as L(z, 0) =
Zf’: 1 L(z;, 0). Our optimal model parameters are the set of param-
eters that minimize the loss: & = argmingce ZL L(z;, 0) (Koh
& Liang, 2017). Koh and Liang (2017) offers insight on how to
approximate the effect that removing a training point z has on
the parameters . We compute the parameter change with z up-
weighted by a small value, €. Using this upwelghtmg scheme we
obtain a new set of parameters, 96 ; = argMingep ; Zl 1 Uz, 0)+
€l(z,0) (Koh & Liang, 2017). Cook and Weisberg (1982) has
shown that as e approaches zero the influence of z on the
parameters is:

dé _ .
Iup,params(z) = d;z = _Hé ]VGL(Z, 0), (1)
€ le=0
where H; = 130 V2I(z,0) is the Hessian. If we let € =

=, then we can approximate the parameter change as 9,2
0 ~ —%Iup,params(z) (Koh & Liang, 2017). To study the effect of
removing a training point on a test point zs on the loss function,
we apply the chain rule: Koh and Liang (2017):

= —Vul(zest, §)'H; ' VoL, 6) (2)

Iup,loss (Z s Ztest )
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2.2. Influence function guidance

_ Ideally, a model must be trained until the optimal parameters
6 are obtained in order to compute the influence functions. For
a single test instance, zis, we would then compute the inverse
Hessian-vector product, VyL(Ztest, é)THT ! using stochastic esti-
mation (Pearlmutter, 1994). In reality, due to non-linearities in
our networks, our objective function may become non-convex
and we obtain our parameters § via SGD, where 6 # 6. In this
case, the Hessian may have negative eigenvalues which would
cause the stochastic estimation algorithm to not converge. To
address this, we adopt a regularization scheme similar to L2
regularization discussed by Koh and Liang (2017). We regularize
the computation of the Hessian-vector product using a damping
term of A = 0.01. We can then compute the gradient of the loss
as VyL(z, 0). The inner product of the Hessian-vector product and
the gradient of the training instance results in a scalar value that
tells us the approximate change in loss to expect on zyg if we
were to remove the training instance z. Note that we compute the
gradient of the loss function with respect to only the parameters
of the last layer (Koh & Liang, 2017).

2.3. Non-convexity and eigenvalues of the Hessian

Due to the importance of the Hessian in the computation
of influence functions, the convexity of the loss function and
its effects on the Hessian are important. Recall that influence
functions assume the Hessian is positive definite such that it
is invertible. Koh and Liang (2017) have shown that even with
negative Hessian eigenvalues it is still possible to obtain good
influence estimates. It is understood that large overparameterized
networks affect the convexity of the loss function (Ghorbani,
Krishnan, & Xiao, 2019; Sagun et al., 2017), which we observe via
the eigenvalues of the Hessian. Basu, Pope, and Feizi (2020) have
shown that larger eigenvalues are correlated with decreases in
the Spearman correlation metric when network depth and width
are increased. This contradicts the literature where the long tail
of the Hessian Eigen Spectral Density (ESD) has been well studied
for large DNNs and it has been shown that the largest eigenvalue
does not tend to increase as width of the network increases (Sa-
gun et al,, 2016). In this paper, we utilize a method developed
by Yao, Gholami, Keutzer, and Mahoney (2020) to compute the
eigenvalues of the Hessian in an effort to quantify the effect if any,
of non-convexity and non-convergence on Influence functions.

2.4. Bayesian deep neural networks

The current state of the art for influence functions, suggests
that by applying L2 regularization to our networks during train-
ing, we can reduce the negative effects that are associated with
overparameterization (Basu, Pope, & Feizi, 2020). Variational
Bayesian Learning has been shown to result in superior regular-
ization, better model averaging and built-in uncertainty predic-
tion (Blundell et al., 2015). We select this method specifically for
its regularization strength.

In this subsection, we present a modified version of the Ex-
tended Variational Inference model proposed by Dera, Rasool, and
Bouaynaya (2019). We assume the covariance is zero and only
propagate variance for each parameter.

For a given classification problem, we want to estimate the
posterior distribution of the weights given the data, i.e., p(6|D).
This, however, is intractable due to the high dimensionality of
the parameter space. We can approximate the true posterior
by defining a variational distribution g(#), which is assumed to
be Gaussian. Since we want the variational distribution to be
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close to the true posterior, we minimize the Kullback-Leibler (KL)
divergence.

argemin KL(q(#) Il p(8|D)) = — Eq) [log p(D|6)]

+ KL(q(®) |l p(6))

To quantify the loss for the variational learning approach, we
use the Evidence Lower Bound (ELBO), £(6, D) which consists
of two parts, namely, the expected log-likelihood of the training
data given the weights and a regularization term,

L(6, D) = Eq)[log p(D|6)] — KL[q(8)|p(6)] (4)

where 6 represents the weights of the network and D represents
the data label pairs. Continuing the derivation gives

(3)

1 N
£(6.0) =+ ) log (]‘[ o;)
1 l;]
+ 5D (0= me) ™ (5)
i=1
1 l
+ 5 D _ilogoi — Il —joi)

n=1

where: y is the label, u; is the output mean, %2 is the output

variance, [ is the number of hidden layers and j is the number of
nodes in that layer.

For a neural network, we define the equations to propagate the
first two moments. First, we assume the input x is deterministic.
The weights and biases of the first layer, w are assumed to be
Gaussian. If the incoming input is deterministic (input layer), then
the output, z is:

(6)
(7)

To propagate the moments through an arbitrary element-wise
non-linear function, f (e.g., ReLU, SELU), we use a first order
Taylor-series approximation, to get an output, a:

Mz = X + fu,

2 20 24T 2
o, =x[o,] +0y,

a=f(z) (8)
Ha %f(lJvz) (9)
of =07 O /(1)) (10)

If the incoming input, a is a random variable (for the interme-
diate layers), then the first two moments, y are:

s = il s (1
o7 = 02021 + 20021 + W2lol) + o2, (12)

To propagate through a non-linear function that is not element-
wise, e.g. softmax, we use a first order Taylor-series approxima-
tion (Simon, 2006). The output, y of the non-linear function, g
is:

wy ~ g(uy) (13)
2 12 2
% *J; O

~ (my(1 = ) © of (14)

where ], is the Jacobian of g.
3. Experiments
3.1. Iris dataset

To study the effect of random initialization on influence func-
tion estimates, we reproduced an experiment from Basu, Pope,
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and Feizi (2020) using the Iris dataset. The Iris dataset consists
of 150 instances with 4 features and 3 classes. The decision to
use this dataset as a benchmark is due to its simplicity. To make
our models more robust to random initialization, we considered
weight decay as well as Stochastic Weight Averaging (SWA) and
Bayesian Neural Networks (BNNs) as novel additions to this ex-
periment (Dera et al., 2019; Izmailov et al,, 2018; Madhyastha &
Jain, 2019).

This experiment was repeated for two types of DNNs: (1)
DNNs with constant width (number of nodes in a hidden layer)
and variable depth (number of hidden layers), and (2) DNNs
with constant depth and variable width. In the experiments with
variable depth, the number of nodes per hidden layer was held
constant at 5 as in Basu, Pope, and Feizi (2020). In the variable
width experiments, the depth of the network was held constant
at 1, i.e., one hidden layer only. We used the Adam optimizer with
an initial learning rate of 0.001 as in Basu, Pope, and Feizi (2020).
A learning rate scheduler was used to decrease the learning rate
by a factor of 10 if the loss did not decrease for 100 epochs. For
the experiments with weight decay, we used a constant value of
0.005 as in Basu, Pope, and Feizi (2020). Each experiment was
repeated 50 times.

Koh and Liang (2017) showed that fine-tuning a trained DNN
from the optimal parameters is approximately equal to retraining
the same network with a training instance removed. Therefore, to
obtain the true differences in loss when removing a test point, we
replicate the training procedure outlined by Basu, Pope, and Feizi
(2020). The models are initially trained for 60k epochs of full-
batch gradient descent instead of SGD. The training instances are
then sorted by their loss and the 40 training instances with the
maximal loss are identified. We then fine-tune only the top layer
for 7.5k epochs when individually removing each of the training
points with the highest loss. Finally, we compute the influence
function estimates for those training instances with respect to
the test instance with the highest loss. The Spearman correla-
tion between the true and approximate differences in loss are
then computed. The eigenvalues of the Hessian for each network
were computed via power iteration using the PyHessian Python
package (Yao et al., 2020).

3.2. MNIST and CIFAR10

We drastically increase the model and dataset size to study
the performance of influence functions in non-convex settings.
Similar to the experiment described in Basu, Pope, and Feizi
(2020), we chose to look at a small fully connected network,
LeNet, and VGG13. Each model was trained in a similar manner as
our previous experiment. The Adam optimizer was used with an
initial learning rate of 0.001 and weight decay of 0.001. The learn-
ing rate was reduced by a factor of 10 if the loss did not decrease
after 2 epochs. The test instance with the maximal loss was used
to compute the influence functions and influence functions were
computed for all training instances. We deviate from our previous
experiment when choosing the training instances to remove and
retrain. The true loss difference was computed for the top 40
most influential training points (highest absolute value) using the
re-train from optimal approximation. The Spearman correlation
between the true and estimated differences in loss was computed.

3.3. Statistical analysis

We use one-way analysis of variance (ANOVA) to compare
various dependent variables and establish statistical significance
in various experiments described above.
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Fig. 1. Influence function performance evaluation on Iris dataset. Left: constant depth experiment. Right: constant width experiment. Spearman correlation between
the true and approximate loss differences is on the y-axis (higher is better). The error bars represent the 95% intervals obtained by repeating the experiment 50
times. Blue: training without weight decay. Orange: training without weight decay but with Stochastic Weight Averaging (SWA). Green: training with weight decay.
Red: training with weight decay and SWA. Purple: training with BNN. We observe that the influence functions that come from BNN are significantly better than the
rest of the methods in almost all cases. SWA has significant performance increases without the presence of regularization but with regularization has little effect
and was removed for clarity. Statistical testing using one-way ANOVA revealed no significant difference (p > .05) between correlation values for any of the model

types.

Spearman Correlation

FC-128 - MNIST LeNet - MNIST BNN LeNet - MNIST

VGG13 - MNIST

LenNet-CIFAR10  BNN LeNet- CIFAR10  VGG13 - CIFAR10

Type

Fig. 2. Spearman correlation between the true and approximate loss differences is on the y-axis (higher is better). The error bars represent the 95% intervals obtained
by repeating the experiment 10 times. We observe that the Spearman correlation is only significant in the small fully connected model on the MNIST dataset. As
the number of parameters increases, the influence function performance falls off sharply, which was expected. There are no significant differences between VDP and

the other large models.

4. Results and discussion
4.1. Effect of model size on the influence function estimates

In Fig. 1, we present the Spearman’s rank correlation co-
efficient (p) between the true and estimated loss differences
for the Iris dataset for a variety of model types and sizes. We
present four different types of models, including a model with
L2 regularization, a model without L2 regularization, a model
with SWA, and a BNN. The figure presents models trained using
an increasing number of neurons in one layer (Fig. 1-Left) and
increasing number of layers with fixed number of neurons in
each layer (Fig. 1-Right). The true loss difference is found us-
ing the re-training strategy and the estimated loss difference is
found using Eq. (2). The error bars represent the 95% confidence
intervals obtained by repeating the experiment 50 times. It is
evident from both sub-figures that for any type of model (L2,
No-L2, SWA, and BNN), there is a minimal effect of increasing
number of neurons or number of layers on the quality of estimate
(of the influence of a training point on the selected test data
point) provided by influence functions (using Eq. (2)). A statistical
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analysis performed using ANOVA did not reveal any significant
effect of number of neurons or layers on the Spearman correlation
(p > 0.5 for all cases). Previously, Basu, Pope, and Feizi (2020)
had reported increasing model size (depth and width) degrades
influence function estimates. We believe that the discrepancy
between the reported results is linked to statistical rigor as no
statistical tests or analyses were reported by Basu, Pope, and
Feizi (2020) to establish the effect of model size on the quality
of estimates produced by influence functions.

We also observe that the estimates provided by influence
function are more accurate for models with regularization, as
shown in Fig. 1, in particular, the Bayesian models (BNNs) out-
perform all other methods. We consider that the observed be-
havior is linked to (1) the “ensemble” or “average” effect intro-
duced by Bayesian approaches in the model training, and (2) the
type of regularization present in the ELBO loss function which
has been shown to give these models superior self-compression
properties (Carannante, Dera, Rasool, & Bouaynaya, 2020). This
performance increase, however does not seem to carry over to
our experiments with larger datasets (Fig. 2), where all mod-
els were trained with regularization. This is congruent with the
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Fig. 3. Influence Function performance evaluation on Iris dataset. Left: constant depth experiment. Right: constant width experiment. Largest Eigenvalue is on the
y-axis. The error bars represent the 95% intervals obtained by repeating the experiment 50 times. Blue: training without weight decay. Orange: training without
weight decay but with Stochastic Weight Averaging (SWA). Green: training with weight decay. Red: training with weight decay and SWA. Purple: training with
BNN. This figure shows little correlation between curvature of the loss function. Statistical testing using one-way ANOVA showed no difference in the top eigenvalue

for any model in the width or depth experiments.
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Fig. 4. Example of miss-relation. Left: Depth 1 width 5 network with weight decay on Iris dataset. Right: Small FC network with 128 nodes on MNIST dataset. We
show that when the loss function is convex, our estimates match the true loss differences (Left, scale does not matter). When the loss function is non-convex there
is significant deviation from the true loss differences. Both left and right receive an absolute Spearman correlation of 0.85, which results in a miss-relation for the

right graph.

results obtained by Basu, Pope, and Feizi (2020) on the same
datasets.

4.1.1. The largest eigen value

In Fig. 3 we observe the same trend that Basu, Pope, and Feizi
(2020) found in the Iris experiment, e.g., the eigenvalues of the
Hessian increase with model width and depth (ANOVA p < 0.05).
We do not however, relate the supposed decrease in influence
function estimates to the increasing top eigenvalue as a proxy
for curvature of the loss function given that our statistical results
from Fig. 1 show that there are no significant differences between
model sizes and influence function performance. Given that Koh
and Liang (2017) have shown that even when most assumptions
about convexity of the loss function have been broken, i.e., the
optimal parameters have not been obtained (6 # 6) and the
Hessian has negative eigenvalues (Hessian not PD), we can still
obtain “good” influence estimates. We postulate that the problem
lies with the methods that have been used to evaluate influence
functions.

4.2. The (In-)validity of Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient is an established met-
ric for determining the accuracy of influence function estimates
(Basu, Pope, & Feizi, 2020; Basu, You, & Feizi, 2020; Koh & Liang,
2017). We note that the output of Eq. (2) is the difference in the
loss function value for the test instance if the training instance
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is removed. This loss difference can be positive or negative. For
a training instance to be influential, it needs to have a large
magnitude.

In Fig. 4, we provide an example where Spearman’s correla-
tion coefficient is unable to capture the underlying relationship
between the true loss difference and estimated loss difference,
where the estimate is being calculated using Eq. (2). The horizon-
tal axis in both sub-figures (Fig. 4 Left and Right) corresponds
to the rank of the training point, where the rank is determined
by the approximate loss difference. Thus, we should expect to
see the exact loss differences (blue points) move from a large
magnitude towards zero as we move from left to right on the
horizontal axis. In Fig. 4(Left), the estimated and true values (after
ignoring the scale) are close to each other. In Fig. 4(Right), the
values of true and estimated loss differences are significantly
different from each other. However, the value of Spearman’s
correlation coefficient for both cases is approximately 0.85.

We consider that since the relationship between the estimated
and true loss function difference values may not always be mono-
tonically decreasing or increasing, the Spearman’s correlation can
lead to misleading results.

4.3. Re-training for optimal parameters
To compute the Spearman’s correlation coefficient, we need to

know the true difference in the loss function value. This requires
retraining models for every training instance that we want to
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Fig. 5. The loss trajectories followed during re-raining loss. Left Depth 1 width 5 network with weight decay on Iris dataset. Right Small FC network with 128 nodes
on MNIST dataset. Here we show the test loss as a function of re-training in convex and non-convex settings. The sharp jumps of the right plot indicate that the
model leaves the minima that it settled in previously, which breaks the assumptions of the influence functions.

analyze. This is a very costly operation in time. The re-training
from optimal parameters has been shown to be an approximately
equivalent alternative to retraining from scratch (Koh & Liang,
2017). Previous works have not proven that this approximation
is valid for large datasets (Basu, Pope, & Feizi, 2020; Koh & Liang,
2017). It has been well established that increasing model and
dataset complexity increases the largest eigenvalue of the Hessian
of the loss function (Ghorbani, Krishnan, & Xiao, 2019; Sagun
et al,, 2017). While we have demonstrated that the increasing
curvature does not affect estimates made by influence functions
with small datasets and models, with large datasets and models
the extreme curvature of the loss function makes us question
the validity of the re-training approximation (Zhang, Wang, Xu, &
Grosse, 2018). To study this, we looked at the loss of the test in-
stance at each epoch during re-training in both the Iris and MNIST
experiments. In Fig. 5, the test loss difference is plotted against
epochs on the horizontal axis. We note significant differences in
the trajectories followed by the gradient descent algorithm for
two cases (Iris - Fig. 5 left and MNIST 5 right). The Iris model
has a well damped convergence whereas the MNIST model is
underdamped and does not seem to converge as smoothly as did
Iris.

4.4. The effect of large networks

We consider large neural networks as having more parame-
ters, more non-linear operations owing to their depth, and reluc-
tantly requiring large datasets for training. We note that originally
Cook and Weisberg derived influence functions for regression
models, which can be considered as neural networks with one
layer and mean-square error loss function (Cook & Weisberg,
1982). Recently, Koh and Liang (2017) extended the idea of using
influence functions in deep neural networks by treating all but
the last layer of the deep neural network as a feature extractor.
The influence functions were computed with respect to only
the last layer. This practice seems to work in some cases and
produce promising results (Koh & Liang, 2017). However, it does
not account for the large dimensionality of the final layer of
modern neural networks. This proves to be a problem when these
large parameter matrices become ill-conditioned (Belsley, Kuh, &
Welsch, 2005). This problem was captured by Basu, Pope, and
Feizi (2020) in their analysis of large datasets like CIFAR-100 and
ImageNet where true differences in losses from removing training
instances resulted in very noisy results.

Large neural networks may have more layers (depth) and/or
more operations per layer (width). This results in increasing the
number of non-linear operations which are performed on the
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data for calculating the loss function. The most popular imple-
mentation of influence functions, as defined by Koh and Liang
(2017), relies on only a first-order Taylor series approximation
to efficiently compute influence (Eq. (A.6)). We argue that the
increasing number of non-linear operations strongly affects the
convexity assumption of loss function R(6) (Eq. (A.1)) as used
in the mathematical relationships derived for influence functions
(Eq. (A.2)). There is evidence suggesting that adding the second
term of the Taylor series in the influence function approximation
improves the estimates (Basu, You, & Feizi, 2020; Koh et al., 2019).

Finally, large networks typically go hand-in-hand with large
datasets. From Eq. (1), it is evident that removing a training
instance is equivalent to up-weighting it by € = —%. In the Iris
dataset, |¢| =~ 6.6e — 3 compared to MNIST where |e| &~ 1.6e — 5.
Any larger datasets will lead to smaller epsilon, that is:
0_,—0~00rf_,~80. (15)
In other words, owing to the large dataset, the influence of a sin-
gle training point on a test sample is asymptotically approaching
zero. Perhaps the first-order Taylor series approximation of the
influence functions does not provide enough resolution to predict
loss differences when predicting on only one training instance.
If one wanted to use influence functions in large datasets like
CIFAR-100 and ImageNet, one would have to turn to higher-order
approximations of influence functions as well as group influences.
In Basu, You, and Feizi (2020), promising results were obtained
by examining the effect of a second-order approximation as well
as group influence. These solutions of course have an associated
cost. Adding a second-order term increases the cost and complex-
ity of the analysis. Optimal group selection is also a non-trivial
and expensive operation.

While there is theoretical evidence to suggest that the first-
order implementation of influence functions is fragile, due to the
difficulty of finding robust ways to empirically evaluate them in
difficult settings, their supposed fragility remains unclear.

5. Limitations

While we have established that the procedures used to mea-
sure the accuracy of influence functions are flawed in multiple
ways, we have not been able to ascertain exactly where or why
these procedures break down. It appears that the answer lies
with increasing model and dataset size. To precisely define the
boundaries on where violating the approximations that Koh and
Liang (2017) have established is valid, we would need to exhaus-
tively search the space of increasing complexity of the model and
dataset.
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6. Conclusion

Validating the performance of explanation methods is a key
area of deep learning that has not been well studied. In particular,
the validation of influence functions in deep learning has been an
area of interest. In this work, we analyzed several experiments
from the recent literature in order to understand the fragility of
influence functions. We obtained results that conflict with those
of our peers, which we attribute to the repetition in our experi-
mental design as well as the misuse of the Spearman correlation
metric and retraining procedure.

While we have demonstrated that the methods we use to
measure the accuracy of influence functions are flawed, we must
not conclude that influence functions are uninformative. Due to
the flaw in validation methodology, we do not have any evi-
dence to support the claim that the explanations provided by
influence functions are not accurate or faithful to the original
model. Future efforts should be focused on developing robust
validation frameworks for explainable methods in order to foster
user-model trust.
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Appendix. Influence function derivation

This derivation was taken directly from Koh and Liang (2017)
and has been reproduced below:

Influence functions are considered one of the classic technique
from robust statistics that can quantify the change in model
parameters attributed to up-weighting a training point by an
infinitesimal amount. In the following, we derive mathematical
relationships for influence functions, examine their underlying
assumptions, and attempt to explain these in the context of large
neural networks. We start by defining an optimization problem
where 6 minimizes the empirical risk following Koh and Liang
(2017):

RO) ™ % Y Lz.6 (A1)
i=1

A fundamental assumption for influence functions is that R
is twice-differentiable and strongly convex in 6. That is, the
Hessian, as defined by:

def 2.4 1 2 A
H; = V°R(0) = —V;L(z;, 0), (A2)

n
exists and is positive definite. The convexity assumption guar-
antees the existence of Hé’]. Recall, that we approximate the
removal of a training point by up-weighting the parameters by
a small quantity € ~ —%, where n is the total number of training
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data points. The perturbed parameters, és,z can be written as (Koh
& Liang, 2017):

0., = arg ming e [R() + €L(z, 6)] . (A3)

The total parameter change by up-weighting a training exam-
ple can be defined as A, = 6., — 6. Differentiating with respect
to € and noting that 6 does not depend on ¢, we can write:

.. dA

de ~ de’

We note that for the optimal parameters ég,z, we can rewrite
Eq. (A.3) as

0 = VR(b.,) + €VL(z, b, ,).

(A4)

(A5)

Since éE,Z — 0§ as € — 0, the first-order Taylor expansion of
the right-hand side produces:

0~ [VR(é) +evVi(z, é)] T [VZR(é) +eV2(z, é)] A, (A6)
Solving for A,
A = — [V2R(é) +eV2I(z. 0) ] (A7)

[VR(G + eV, 9)]
6

Since # minimizes R, then VR( ) = 0. Neglecting higher order
€ terms,

c~ —V2RO)VL(z, O)e. (A8)
When we substitute Eqgs. (A.2) and (A.4), we have:
dé _ def
de,z = _Hé ]VL( 0) i Iupparams(z) (A~9)
€
e=0
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