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AbstractÐUnmanned aerial vehicles (UAVs) equipped with
cameras have provided new capabilities for the reconnaissance
of disaster-stricken areas. Deep learning-based computer vision
algorithms enable the analysis of the captured images and the
detection of damage to the built environment. If such analyses are
conducted onboard in UAVs, they will provide real-time action-
able information that is critical for the accelerated restoration
of systems. However, conventional deep learning algorithms are
computationally demanding. Moreover, the deployment of deep
learning models with a large number of parameters in scenarios
that require low-latency inference is prohibitive. To address
this fundamental gap, we develop an efficient deep learning-
based computer vision model of power distribution poles (PDP)
damage detection that is capable of onboard deployment in
UAVs. Specifically, we propose a lightweight convolutional neural
network (CNN) architecture called PDP-CNN that embodies
multi-scale feature operations and anchor-less object detection.
This model is applied to a dedicated image database from a post-
hurricane reconnaissance in power distribution poles. Results
of extensive experiments show that PDP-CNN is capable of
achieving high throughput, competitive accuracy, and efficient
memory utilization on power-constrained embedded systems.

Index TermsÐComputer vision, convolutional neural networks
(CNNs), unmanned aerial vehicles (UAVs), damage detection,
hurricanes, distribution systems, utility poles, reconnaissance
data.

I. INTRODUCTION

EXTREME weather events pose significant risks to the

reliability and resilience of power systems, resulting in

tens of billions of dollars in economic damage annually and

adverse public health impacts [1]. According to the North

American Electric Reliability Corporation (NERC), a third of

all sustained outages in medium and high voltage systems

in the period of 2013-2018 were caused by weather-related

events [1]. Moreover, a recent analysis of power outage data

collected by the US Department of Energy (DOE) reveals a

67% increase in major power outages from weather-related

events since 2000 [2].
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Overhead power distribution systems are highly vulnerable

to high-wind hazards [3]. In fact, high wind-induced outages in

distribution systems account for over 92% of electric service

interruptions in the US [4]. The extensive failures in power

distribution systems in the aftermath of extreme events often

lead to prolonged power outages. For example, full restoration

of the grid post-Hurricane Maria in 2017 took nearly 10

months [5]. Similarly, nearly 800,000 customers experienced

a 10-day long blackout during Superstorm Sandy in 2012 [6].

The high vulnerability of our overhead distribution systems

and the significant socio-economic costs of prolonged outages

underpin the critical importance of improved grid resilience,

where consumers’ access to electricity is restored rapidly

post-disasters. The critical importance of achieving climate

resilience is not lost on the current administration as evidenced

by the DOE’s new Building a Better Grid Initiative, investing

$2.3 billion to strengthen the grid against extreme weather [7].

Strategies such as grid hardening, dispatch of restoration

crew, network reconfiguration, and deployment of distributed

generation units [8]±[10] are often leveraged to enhance the

resilience of power systems during disruptions. Besides these

control-based strategies, prompt assessment of physical dam-

ages to components in the aftermath of extreme weather and

climate events such as hurricanes can facilitate rapid power

restoration. Specifically, analysis of the collected damage data

enables fault detection. Although these methods can help

reduce overall equipment downtime, they cannot accurately

pinpoint the location of the fault, and the type and degree

of sustained damages. Moreover, data acquisition systems are

prone to failure during extreme events, leaving the possibility

that faults may not be reliably detected.

Visual inspection of the power equipment also provides

valuable information about the characteristics of physical

damages. Several methods of visual inspection have been

employed by utility companies during extreme events. Manual

reconnaissance (i.e., foot patrol) is the most common method,

where a group of experienced inspectors visits impacted re-

gions and documents incurred damages. Although foot patrol

has been commonly used for post-disaster reconnaissance, the

impacted regions in most cases are not readily accessible

due to varying degrees of failures in transportation systems

as well as safety concerns to inspectors posed by poten-

tially live conductors. Unmanned aerial vehicles (UAVs) are



2

a favorable alternative in these conditions. Deployment of

UAVs has recently gained attention for damage assessment

and monitoring of infrastructure systems [11], [12] due to their

high maneuverability, the ability for remote control, and lower

cost relative to conventional reconnaissance strategies.

Motivated by this paradigm shift, several recent studies

have focused on leveraging UAV-captured imagery and deep

learning-based computer vision for rapid autonomous damage

assessment in power distribution and transmission systems. For

example, the authors in [13] developed damage classification

and estimation models based on four different convolutional

neural network (CNN) models. The first CNN unit was de-

signed to classify power distribution poles (PDP) into three

classes of healthy, fallen, and burning poles. Other separate

CNN units were designated to estimate the extent of falling

and fire damages in poles. The CNN models were loosely

based on the structure of a ResNet18 model and the four

CNN models had a total of 37.6 million learnable parameters.

Adopting a similar pre-trained ResNet18 model with 72 layers

and 11 million parameters, [14] estimated the leaning angle of

distribution poles using a dataset acquired from open-source

Google Street View images. In addition, the authors proposed

using AlexNet with 61 million parameters for material clas-

sification in distribution poles. Inference using these models

was carried out on a GeForce 1050 Max-Q NVIDIA graphical

processing unit (GPU). With a focus on the detection of faulty

insulators on overhead transmission towers, the authors in [15]

developed an improved variant of YOLOv3 and a densely

connected feature pyramid network with a total of 51 million

learnable parameters. Similarly, [16] proposed a multiscale

residual model for insulator surface breakage detection. The

results of the performance evaluation showed a competitive

accuracy compared to the state-of-the-art architectures with a

frames per second of 3.16 and 3.14GB of FLOPS. Semantic

segmentation is another approach that has been applied for

detecting and assessing distribution poles. For example, the

authors in [17] used a modified version of the SegNet model

for pixel-wise semantic segmentation to detect distribution

poles and an image processing approach to estimate the incline

angle. In their study, the inference was carried out in an end-

to-end manner on a GeForce 1080ti NVIDIA GPU.

Training the most commonly used convolutional neural

network architectures -such as the ones employed in the

existing literature- requires GPUs with high computing power

and memory resources. In lieu of these resources on recon-

naissance sites, training and evaluation of computer vision

models are often carried out after transferring the imagery

dataset off-site to cloud datacenters. However, data transfer

between the cloud and an edge device requires a reliable

wireless internet connection with high bandwidth. This pro-

hibits the use of cloud processing units for reconnaissance in

regions struck by natural hazards with limited connectivity. In

these situations, relatively powerful embedded systems are a

favorable alternative for real-time analysis of data real-time.

However, it is often impractical to deploy deep neural network

architectures on resource-constrained embedded systems. In

particular, the size of conventional models which is greatly

larger than the on-chip local storage prohibits such applica-

tions. More importantly, large networks cannot be employed

on low-power UAV-mounted embedded platforms due to their

high power consumption. Reducing the number of learnable

parameters by pre-training computer vision models is often

selected as a remedy to this issue. The major shortcoming of

this approach is poor detection performance in object-specific

tasks as a result of transferring weights learned on generic

object detection datasets.

A. Major Contributions

To address the limitations elaborated in the previous section,

we develop an efficient CNN approach, PDP-CNN, specif-

ically designed for damage detection and classification of

distribution poles from post-hurricane reconnaissance imagery

data at the edge. In particular, as the architecture of object

detection models has a significant influence on both their ac-

curacy and computational efficiency, our objective is to design

an architecture that enables real-time perception capabilities

at the edge. For this purpose, we propose a new feature

extraction backbone, as well as a feature pyramid network,

and a detection backend. In summary, our major contributions

are as follows:

• We develop a novel deep learning-based computer vision

model suitable for deployment on resource-constrained

embedded systems such as unmanned aerial vehicles.

• We introduce a lightweight yet effective feature extraction

backbone that leverages separable convolutions, short

and long dense-like connections, and feature pyramid

networks.

• We develop anchor-free detection heads that remove the

need for postprocessing steps such as non-maximum

suppression.

• Results of extensive experiments show computational

efficiency and competitive performance of the developed

model compared to state-of-the-art computer vision mod-

els.

B. Organization

This paper is organized as follows. Section II provides a

background of object detection methods based on deep learn-

ing. Details of the proposed PDP-CNN model are elaborated

in Section III. Data acquisition and image pre-processing

methods are explained in Section IV. Results of training,

validation, and testing of the developed PDP-CNN model are

presented in Section V. The conclusions of this research are

presented in Section VI.

II. BACKGROUND

A. Object Detection

Deep learning-based object detection methods are clas-

sified into two major categories, namely, region proposal-

based methods and classification-based methods. While region

proposal-based models require a discrete step designed for

region proposal, classification-based methods consist of a

single CNN for the acquisition of representative features and

localizing the objects of interest. A brief review of these

categories is presented next.
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1) Region Proposal-based Methods: The family of region-

based convolutional neural networks including R-CNN, Fast

R-CNN, and Faster R-CNN [18] belongs to the class of

region proposal-based methods. These methods essentially

decompose the process of object detection into two discrete

stages and design separate algorithms for each stage. The

first stage in this process consists of extracting regions of

interest, i.e., regions of proposals. This stage is followed by

a separate network that is responsible for the classification of

each region proposal as well as predicting the bounding box.

Typically, the first stage of region proposal-based methods

is the computational bottleneck of these object detection

algorithms. Faster R-CNN alleviates this issue by developing a

region proposal network (RPN) which is a fully convolutional

network. RPN shares full-image convolutional features with

the detection network used in the second stage of detection and

therefore enables nearly cost-free region proposals. Despite

major advancements offered by methods such as Faster R-

CNN, generating a large number of region proposals and

classifying each region during inference is a computationally

demanding process that introduces significant delays [19]. For

this reason, classification-based detection methods have gained

attention. In this paper, we exclusively focus on classification-

based detector networks due to their desirable trade-off be-

tween accuracy and computational cost which makes them

more suitable for deployment on low-power and resource-

constrained embedded systems.

2) Single-shot detectors: Single-shot detectors such as dif-

ferent variations of YOLO [20] and SSD [21] combine the

distinct components of region proposal-based methods into

a unified single neural network. Through this process, the

features of the input image are directly used for both the

classification and regression of the bounding boxes. In par-

ticular, YOLO uses a spatial grid over the input image and

estimates bounding box coordinates along with the object label

and the presence probability of the object. The architecture

of YOLO models is inspired by GoogleNet and has a total

of 24 convolutional layers with two fully connected layers at

the end. Despite the computational advantage of YOLO, their

major drawback is that they are limited to detecting only a

single object in each grid. On the other hand, SSD network

uses convolutional layers of varying sizes and computes mul-

tiscale feature maps which in turn produces the bounding box

and class predictions. To further enhance the computational

efficiency of YOLO models, lightweight variants, i.e., tiny-

YOLO, are proposed in the literature where smaller feature

extraction layers are employed at the cost of a marginal drop

in accuracy [20], [22], [23].

B. Benchmark CNN Architectures

CNN networks commonly consist of a stack of convolu-

tional layers with the purpose of performance enhancement.

VGG [24] expanded the depth of CNN models and introduced

a variant of the model with 13 convolutional layers and 3

fully connected layers as VGG-16 and a deeper variant with 3

additional convolutional layers as VGG-19. To overcome the

limitations of the conventionally used CNN architectures in the

selection of kernel sizes, inception networks were introduced

[25]. Inception networks leveraged kernels of multiple sizes

to develop an inception module which results in a wide rather

than a deep network. Besides the limitation on the selection of

kernel sizes, extremely deep neural networks often suffer from

vanishing and exploding gradients. To address this issue, He

et al. [26] introduced the idea of skip connections. Through

this modification, the activations of one layer are directly fed

into another deeper layer to explicitly let these layers fit a

residual mapping. This resulted in the introduction of the

residual blocks that prevent performance reduction in deep

networks. Leveraging the idea of skip connections, ResNet-

50 and ResNet-101, with 50 and 101 convolutional layers,

were introduced. DenseNets [27] extended the idea of skip

connections and proposed concatenation of the output of each

layer with the output from all previous layers. MobileNetV1

[28] and V2 [29] introduced separable convolutions which re-

place normal convolution operations by depthwise convolution

followed by point-wise convolution.

III. PDP-CNN ARCHITECTURE

The PDP-CNN architecture is composed of three main

components: a novel feature extraction backbone, a feature

pyramid network, and an anchor-free detection backend. The

feature extraction backbone features a set of properties to

achieve state-of-the-art performance and accurate representa-

tions while minimizing the computational cost for application

in resource-constrained embedded systems. These features

include separable convolutions, long skip connections between

layers with the aim of creating a multi-scale set of features as

well as short connections to enhance the diversity of learned

feature maps. The FPN module merges the feature maps

extracted by the backbone in a top-down manner from coarsest

to finest and generates multi-scale feature maps. Subsequently,

the pyramid features are fed into the designed detection

backend which consists of two separate subnets for object

detection and bounding box regression. To further enhance

the computational efficiency, we design the detection backend

such that it does not require anchors for bounding box pre-

dictions. In addition to the novel PDP-CNN architecture, we

propose a direct set prediction loss function that includes two

major components: a bipartite matching loss and a bounding

box loss to improve localization. Fig. 1 illustrates the overall

architecture of the proposed PDP-CNN model.

A. Feature Extraction Backbone

The performance of deep learning-based object detection

algorithms hinges on the quality of representations learned by

the feature extraction layers. Besides the importance of these

layers in achieving high detection accuracy, the architecture of

feature extraction layers also impacts inference performance

in terms of throughput. Evidently, feature extraction networks

with fewer parameters exhibit lower memory utilization and

consequently lower power consumption. Therefore, given the

significant influence of feature extraction layers on the overall

performance of detection models as well as the resources

consumed by these layers, it is imperative to design a powerful
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yet lightweight network with a limited number of parameters.

With these considerations, we design 10 convolutional layers

as the feature extractor in the PDP-CNN backbone. Inspired by

the performance of separable convolutions [29], we explicitly

factor regular convolution into distinct steps of a depthwise

convolution followed by a pointwise convolution. Depthwise

convolutions perform a spatial convolution independently over

each channel of input. In addition, pointwise convolutions

perform a 1 × 1 convolution and project the outputs of the

depthwise convolution onto a new channel space. This results

in a substantial reduction of the parameter count by a factor of

the depth of the output feature map and the size of the kernel,

without a noticeable reduction in accuracy.

Progressive downsampling is essential for the reduction of

memory usage and computational cost in the development

of efficient object detection algorithms. However, in order to

maintain the localized information on foreground objects re-

quired for detection networks throughout the feature extraction

layers, excessive downsampling should be avoided. In this

study, we empirically achieve a desirable trade-off between

the preservation of localized feature points and computational

efficiency. In this context, the initial convolutional layer in the

PDP-CNN backbone as shown in Fig. 1 only downsamples

the input image by a factor of 2 using strided convolutions.

Furthermore, in the first block of layers, the first convolutional

layer and the other three have 64 and 32 kernels, respectively,

and with a kernel size of 5 × 5. Other convolutional layers

employ kernels with a size of 3×3 with an increasing number

of filters of up to 256. It is critical to limit the number of

kernels in order to achieve higher performance in the first few

layers where the resolution of the feature map is extremely

high.

Inspired by DenseNets [27], in order to facilitate a fluent

flow of gradients and feature propagation between the layers

of PDP-CNN and to avoid problems such as vanishing or

exploding gradients, we design short dense-like connections

after concatenation layers and long dense-like connections

placed between pooling and every other convolutional layer.

This design further builds a more diverse set of visual features.

This along with the fusion of additional information with

less semantic meaning compensates for pooling operations

which reduce the spatial resolution. Therefore, the PDP-

CNN backbone is capable of achieving richer feature maps.

Despite the high accuracy of DenseNet architectures, a major

drawback of these networks is the progressive increase of their

computational demand as the number of dense connections

increases [30]. In order to alleviate this issue, we design PDP-

CNN with only a selection of short and long connections

instead of using the feature maps of all preceding layers as

inputs. Based on the selected arrangement of the layers in

the backbone architecture, we design a connection at every

other block of convolutional layers. Moreover, a channel-wise

concatenation merges the feature maps that are obtained from

the preceding pooling layer.

The final output of the feature extraction backbone is a

coarse feature map that essentially represents a downsample

of the input image. As a result, a desirable object detection

accuracy is out of reach by only using this coarse feature

map. To resolve this issue, we propose combining feature

maps from multiple layers through FPN. FPN provides a top-

down pathway to construct higher-resolution layers from a

semantically richer layer. To augment extracted feature maps

and create multi-scale feature pyramids, we extract feature

maps M3, M4, and M5 and note the downsampling rate of

2l where l denotes the index of the feature map. Accordingly,

feature maps P3, P4, and P5 are created using upsampling.

In addition, P6 and P7 are built using a convolution with a

stride of two. Ultimately, these feature maps, i.e., P3 through

P7 are passed to the detection backend.

B. Detection Backend

Inspired by the computational efficiency of RetinaNet [31]

and anchor-less object detection models, we propose a novel

anchor-free detection backend that does not assume predefined

anchors during the training process. In this process, the points

on extracted feature maps throughout the FPN are labeled

with positive or negative classes considering the sampling

rate of 2l. For anchor-based object detection algorithms, if

the anchor falls in a ground truth box, and the intersection-

over-union (IoU) metric is larger than a fixed threshold, we

label the point as positive and otherwise negative. Similarly,

we assume that the point (x, y) on the input image falls in a

ground truth box with center coordinates of (xg, yg), w as the

width, and h as the height. We define (a1, a2, a3, a4) as the

distance of point (x, y) from the four sides of the ground truth

box, i.e., left, top, right, and bottom, respectively. Then, we

define a projected box with center point (x, y) and distances

(b1, b2, b3, b4). Based on this definition, b1 and b3 are the

average of a1 and a2, and similarly b2 and b4 are defined

with respect to a2 and a4. Next, the intersection and union

between these two boxes with distance sets of a and b are

calculated and IoU is determined. Finally, the points on feature

maps are labeled based on this value. Through this process,

we remove the need for predetermined anchor boxes and their

corresponding computational complexity. It is worth noting

that there still exists a threshold for the labeling process similar

to the anchor-based methods.
Separate fully convolutional subnetworks are ubiquitously

employed in the literature as detection heads for classification

and regression tasks (e.g., [32]). Adopting this scheme, we

design a detection head that consists of two subnetworks

with four convolutional layers and 256 filters of the size of

3 × 3. Following these layers, the classifier subnetwork has

a convolutional layer with a kernel size of 3 × 3 and K

filters, where K represents the number of target classes. On the

other hand, the regressor subnetwork adopts 4 filters with the

same size, where the four outputs represent the bounding box

(a1, a2, a3, a4). It is worth noting that the two subnetworks

do not share weights despite their architectural similarity.

However, the weights corresponding to each subnetwork are

shared between features P3 through P7 that are extracted from

the FPN model.

C. Loss Function

In order to learn the task of distribution pole detection

in an end-to-end fashion, we develop a set prediction loss
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Fig. 1. An overview of the PDP-CNN consisting of a CNN-based feature
extraction backbone, an FPN, and a detection backend for on-edge reconnais-
sance of power distribution poles. H and W denote the dimensions of the
input image.

function. Inspired by the set-based global loss function in

detection transformer (DETR) [33] and similar to methods

such as Faster R-CNN [18] and RetinaNet [31], the proposed

loss function consists of two components: bipartite matching

loss and bounding box loss.

1) Bipartite Matching Loss: After passing through the

detection backend, PDP-CNN makes N predictions where N

represents the number of classes. Let y be the set of ground

truths in the image, i.e., yi = (ci, bi), and ŷ = {ŷi}
N
i=1 be the

set of N predictions of the network where ŷi = (ĉi, b̂i) is the

tuple consisting of the predicted class, ci, and a bounding box

bi = (x̄i, ȳi, wi, hi) where (x̄i, ȳi) represents the midpoint of

the bounding box, and wi and hi are the width and height

of the bounding box, respectively. PDP-CNN finds a bipartite

matching between these two sets of y and ŷ using a matching

function across a permutation of N elements, σ ∈ SN , with

the lowest cost as follows:

σ̂ = argminσ∈SN

N∑

i

Lmatch(yi, ŷσ(i)) (1)

where Lmatch is a pair-wise matching cost between ground truth

yi and prediction with index σ(i). The matching cost accounts

for both the class prediction and the similarity of predicted and

ground truth boxes. For the prediction with index σ(i), the

probability of class ci is defined as p̂σ(i)(ci) and the predicted

box as b̂σ(i). The matching cost, therefore, is then defined as

Lmatch(yi, ŷσ(i)) = −I{ci ̸=∅}p̂σ(i)(ci) + I{ci ̸=∅}Lbox(bi, b̂σ(i))
(2)

where I{·} is an indicator function. The second step is to

compute the loss function, which consists of the Hungarian

loss for all pairs matched in the previous step. The loss is

defined similarly to the losses of common object detectors

as a linear combination of a negative log-likelihood for class

prediction and a bounding box loss

LHungarian(yi, ŷi) =

N∑

i=1

[− log p̂σ̂(i)(ci)+I{ci ̸=∅}Lbox(bi, b̂σ̂(i))]

(3)

where σ̂ is the optimal assignment computed in the first step

via Eq. (1).

2) Bounding Box Loss: Another term in the loss function is

the bounding box loss which estimates a score for the predicted

bounding boxes. In this paper, a linear combination of the l1
loss and the generalized IoU loss LIoU that is scale-invariant

is used as

Lbox = λIoULIoU(bi, b̂σ(i)) + λl1 ||bi − b̂σ(i)|| (4)

where λIoU and λl1 are hyperparameters. The bounding box

loss function helps to predict the box directly without any

anchor reference or scaling issue. These two losses are nor-

malized by the number of objects inside the batch.

IV. DATA COLLECTION AND PRE-PROCESSING

In this study, we use a post-hurricane reconnaissance im-

agery dataset collected by the StEER group of inspectors

through both single-camera shots of utility poles and street-

level imagery. After processing the street-level imagery and

extracting all recorded distribution poles, the repository of im-

ages consists of 3182 poles that are acquired in the aftermath

of three hurricane events (Irma 2017, Maria 2017, and Michael

2018) as well as an archive of past events [34]. A small set

of damaged distribution poles (53 cases) is accompanied by

a description reporting the state of the pole as one of the

classes of intact, leaning, and fallen. In this labeling scheme,

if structural damage is observable in the body of the pole,

it is labeled as fallen and if only the pole is leaning and no

structural damage is observed, the pole is labeled as leaning.

In this study, these three classes of intact, learning, and fallen

are hereinafter referred to as T, D1, and D2, respectively.

Missing damage categories are manually annotated by the

authors complying with the visual characteristics of the already

labeled images by the inspectors. Samples of leaning and fallen

poles are presented in Fig. 2.

We apply a scale augmentation to the input images in this

study to a minimum and maximum dimension of 600 and

1024 pixels, respectively while keeping the original aspect

ratio. The input images were horizontally flipped randomly

with a probability of 0.5 as part of the data augmentation.

Furthermore, in order to account for the variation in lighting

conditions of the images, we apply a color jittering that

randomly changes the brightness, contrast, saturation, and hue

of an image. Moreover, we account for the potential low-

quality of the captured images by the embedded systems by

randomly blurring the images through a Gaussian blur.

V. RESULTS AND DISCUSSION

A. Training, Validation, and Testing of PDP-CNN

We divide the labeled dataset of utility poles into parts

containing 60%, 20%, and 20% of the size of the dataset

and use them for training, validation, and testing, respectively.

The purpose of defining a validation set is solely to tune the

hyper-parameters of the PDP-CNN model via cross-validation.

No repetitive sample was used in splitting the dataset for

validation, and the evaluation metrics obtained through the
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Fig. 2. Sample images of damaged utility poles from the gathered dataset.
[35]

cross-validation folds were averaged to produce a single-

point estimate. In addition, the training data have imbalanced

representation from different classes, with the intact class

having the largest number of data points, which can potentially

induce a prediction bias towards the over-represented class

of intact utility poles. Specifically, the populations of the

classes of intact, leaning, and fallen in the dataset curated

in this study are about 81%, 16%, and 3% of the size of

the entire dataset (i.e., 3182 poles), respectively. To mitigate

the problem of inducing bias, class-specific weights based on

these populations are assigned to the loss function to impose

an additional penalty for misclassifying an under-represented

class [18]. The PDP-CNN model is trained with AdamW.

The initial learning rate is set to 10−5 for the CNN model.

Furthermore, a weight decay of 10−4 is applied to gradually

reduce the learning weight along training epochs. The weights

are initialized via Xavier initialization. The PDP-CNN model

was implemented in PyTorch and was run on one GeForce

3090 NVIDIA GPU for 30 epochs with a batch size of 64 for

about 40 minutes.

B. Metrics and Evaluation

1) Mean Average Precision (mAP): Precision and recall are

two of the most common performance evaluation metrics that

are inversely related. Therefore, impartial comparison between

object detection methods is conventionally carried out without

solely relying on either of these metrics. Alternatively, the area

under the precision-recall curve is defined as average precision

(AP). In the case of multi-class object detection tasks such as

the problem in this study, mean average precision (mAP) is

reported which is defined as the mean of AP values in the

detection of individual classes.

2) Intersection over union (IoU): Intersection over union

(IoU) is a well-established and common evaluation metric

in anchor-based object detection methods. IoU investigates

the similarity between arbitrary shapes. In the case of object

detection, IoU is defined as the ratio of the area of overlap to

the area of the union between the ground truth and estimated

bounding boxes.

3) False positive per image (FPPI): FPPI is defined as

the ratio of predicted false positives and the total number of

images.

4) Miss rate (MR): MR is defined as the ratio between the

number of missed objects and the total number of samples

belonging to the same class.

5) Frames per Second (FPS): FPS is defined as the number

of images that can be processed by the object detection model

in a second during the inference phase (i.e., the rate of

processing images).

Fig. 3. Detected classes of damaged and undamaged utility poles in a single
image. T, D1, and D2 refer to classes of intact, leaning, and fallen, respec-
tively. Identified classes have the highest probability among the three possible
classes. (Different colors for overlapping bounding boxes are selected solely
for better visualization. This image is captured during the reconnaissance after
hurricane Michael in 2018. Raw image courtesy of [36])

C. Ablation Study

In this section, we perform an ablation study to determine

the contribution of the building blocks of PDP-CNN in its

performance in terms of mAP. Four variants of the model are

considered in this analysis and the results are shown in Table

I. The first variant of the model removes the loss function

definition by performing a regression to estimate the bounding

box coordinates. This base model further removes the defined

short skip connections in the feature extraction backbone as

well as the FPN and its long connections. Therefore, this

model does not leverage diverse and semantically rich feature

maps otherwise offered by PDP-CNN and can only achieve an

mAP of 73.5%. The second variant uses the defined bipartite

matching loss and bounding box loss and therefore investigates

the contribution of the loss function formulation in the perfor-

mance of PDP-CNN. As can be seen in Table I the introduced

loss function significantly improves the performance of PDP-

CNN in object localization and classification by 7.6%. To

evaluate the significance of diverse feature maps, we add

another variant that employs short skip connections as well as

the defined loss function. This addition has resulted in a 1.8%
increase in mAP. Finally, the last variant in this ablation study

employs all features of the full PDP-CNN model and shows an

mAP of 86.1%. This observation highlights the significance of
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TABLE I
COMPARISON OF THE IMPACT OF MAIN COMPONENTS OF THE MODEL VIA

ABLATION STUDY.

Loss Function ✓ ✓ ✓

Short Connections ✓ ✓

Feature Pyramid Network ✓

mAP (%) 73.5 80.7 83.3 86.1

using multi-scale feature maps which is mainly attributed to

the presence of objects with different scales in a single image

similar to Fig. 3.

D. Comparison of Networks

Table II presents the overall performance of PDP-CNN

in the detection and classification of the damages in power

distribution poles. We compare this performance with a variety

of state-of-the-art CNN benchmark architectures where all

models are initialized with MSCOCO pre-trained weights

and the same PDP-CNN training framework as described

in Section V-A. This comparison also includes EfficientNet

[37] in addition to the architectures described in Section II

as one of the recent architectural advancements in object

detection. EfficientNet introduces the idea of utilizing an

effective compound coefficient to scale up CNNs. This model

has shown state-of-the-art accuracy on benchmark datasets

while decreasing the number of parameters by 20 times. In

overall, the selected benchmark architectures are the most

commonly used and well-established models in the field of

object detection.

Performance of the proposed method is also presented for

the individual classes of intact, leaning, and fallen in Table II

in terms of the mean value and standard deviation of average

precision (AP) over rounds of cross-validation. Based on the

information presented in this table, no consistent pattern exists

in the performance hierarchy of the baselines evaluated with

respect to the AP value. To resolve the problem of inconclusive

performance comparisons, it is common to average the AP

values over all object classes and refer to mAP as a metric

for the comparison of the efficiency of different detection

algorithms. As can be seen in Table II, the proposed PDP-CNN

backbone achieves an mAP of 86.1% which means that PDP-

CNN is the second-best detection model, following YOLOv5

only by 1.2%. It is worth noting that the threshold of labeling

in the anchor-free detection backend is a hyperparameter of the

PDP-CNN model and it is set based on the performance of the

model on the validation dataset. Based on our study, a labeling

threshold of 0.4 results in the best mAP on the validation

dataset. Moreover, in addition to the evaluation metrics defined

earlier, we use accuracy contribution per parameter (APP) as

a metric to quantify the contribution of parameters in the

model in achieving high accuracy. This metric is defined as

the ratio between an accuracy-related metric -mAP in this

study- and the number of parameters in million. Based on APP,

despite better mAP of YOLOv5, it suffers from poor memory

utilization and therefore it achieves a significantly less APP

compared to PDP-CNN. In fact, YOLOv5 is the largest CNN

architecture among the benchmark architectures used in this

analysis as it has the largest number of parameters. On the

other hand, PDP-CNN exhibits an impressive APP value of

2.77 while all other models have an APP value of less than

1. This is further translated to the high FPS of PDP-CNN

which is the highest among benchmark models. In terms of

false positives and miss rate, PDP-CNN shows performance

similar to the other benchmark architectures. The YOLOv5

model also shows the best performance with respect to FPPI

which is mainly attributed to its larger number of parameters

and the ability to achieve semantically richer feature maps.

Contrary to large networks such as YOLOv5 and VGG16,

PDP-CNN achieves high mAP through short skip connections,

feature pyramid network, and anchor-free detection backend

that result in more diverse and multi-scale feature maps. This

demonstrates the effectiveness of the designed architecture.

Fig. 3 shows the detected and classified distribution poles

in one of the test sample images. This sample is a great

representation of the ability of PDP-CNN in the detection,

localization, and classification of poles. As can be seen in

this image, many poles are located in the background of the

closer poles and show significant overlap. Even in this complex

sample, PDP-CNN has identified and classified poles with

multiple classes and at a far distance from the point where the

image was captured. One of the failure cases of the proposed

PDP-CNN model is predicting the pole class to be intact

when the damage to the pole has caused detachment of the

upper portion of the pole. However, this is one of the rare

cases of damage in the employed dataset and in general does

not control the performance of the model. Another limitation

is the cases where the damaged poles are obstructed by

environmental objects in still images. Both of these limitations

can be resolved by increasing the size of the dataset and

providing a stream of images to the model.

VI. CONCLUSION

The reliability and resilience of electric power distribution

systems are exceedingly threatened by extreme weather events.

In light of this increased vulnerability, energy systems’ re-

silience has garnered more attention in recent times, especially

since the reliance of communities on electric power is growing

exponentially. A critical phase in the restoration of electric

power to affected regions is the collection and processing

of information about the state of the grid infrastructure in

the aftermath of extreme events. This step is necessary to

provide actionable information for effective crew dispatch

management. Unmanned aerial vehicles (UAVs) can cruise

autonomously and acquire critical visual information about the

infrastructure. An autonomous damage detection model can

subsequently facilitate rapid evaluation of the damaged assets.

This paper developed a deep learning-based computer vision

approach for rapid damage assessment of utility poles in the

wake of hurricane events. In the broader domain of computer

vision, this problem is regarded as an object detection prob-

lem. Although many object detection algorithms have been

proposed in the literature, the inference phase of these methods

when deployed on resource-constrained embedded platforms

such as on-edge devices mounted on UAVs is time- and
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TABLE II
COMPARISON OF NETWORKS IN TERMS OF ACCURACY METRICS, PERFORMANCE, AND PARAMETER EFFICIENCY.

Model Parameters mAP AP (%) AP (%) AP (%) IoU FPPI MR APP Memory FPS

(M) (%) intact, T leaning, D1 fallen, D2 (%) (mAP/MP) (MB) (1/second)

PDP-CNN 0.31 86.1 80.2± 0.1 88.5± 3.0 89.5± 2.2 64.2 0.18 0.14 2.77 0.815 28.1

VGG16 [24] 16.0 83.4 70.6± 3.5 90.0± 1.8 89.6± 1.55 60.4 0.22 0.11 0.05 63.6 4.5

ResNet-25 [26] 5.40 79.8 72.4± 0.8 74.7± 2.8 92.3± 0.48 60.1 0.24 0.17 0.15 21.3 14.1

ResNet-50 [26] 28.3 85.1 71.9± 4.5 88.0± 3.1 95.4± 0.74 61.7 0.19 0.13 0.03 113.26 6.1

MobileNetV1 [28] 5.60 83.6 92.4± 3.6 82.6± 2.1 75.8± 0.88 60.3 0.28 0.15 0.15 22.3 15.1

MobileNetV2 [29] 2.30 84.7 70.9± 4.7 90.6± 0.82 92.5± 0.95 62.5 0.27 0.13 0.36 21.3 16.3

YOLOv5 [20] 62.0 87.3 92.9± 1.0 74.9± 1.8 93.9± 2.3 65.0 0.16 0.12 0.01 247.7 3.8

EfficientNet-B0 [37] 5.50 85.2 85.8± 2.5 70.9± 2.6 98.8± 2.9 58.0 0.37 0.14 0.15 34.7 12.5

YOLOX [23] 54.2 83.5 88.9± 2.6 78.0± 0.33 83.6± 4.76 61.8 0.19 0.15 0.01 213.7 3.5

YOLOX-Tiny [23] 5.06 81.5 80.4± 1.53 75.1± 2.37 89.0± 4.0 56.0 0.39 0.14 0.10 25.4 14.2

resource-consuming and therefore is impractical.To overcome

these performance-limiting disadvantages, in this study we

introduced a lightweight deep learning-based computer vision

model called PDP-CNN. PDP-CNN consists of a specially

designed feature extractor with short dense connections, a

feature pyramid network that leverages multi-scale feature

maps, and an anchor-free detection backend. We conducted

training, validation, and testing of the PDP-CNN model us-

ing post-hurricane reconnaissance imagery data acquired by

structural extreme events reconnaissance (StEER) from over

three historic hurricanes. Three damage categories of intact,

leaning, and fallen were defined for the distribution poles.

The results from performance evaluation on the test dataset

showed that the proposed PDP-CNN architecture provides

accuracy on par with state-of-the-art object detection methods

while substantially outperforming these methods in terms of

throughput. The outcomes of this study can facilitate rapid

autonomous damage assessment of distribution poles and

enhance the resilience of power distribution systems. With

the recent advancements in transfer learning, the developed

methodology can be extended to achieve competitive accuracy

and efficiency in the task of detecting damages in other key

assets of power distribution and transmission systems and for

other hazards.

REFERENCES

[1] Executive Office of the President, ªEconomic Benefits of Increasing
Electric Grid Resilience to Weather Outages,º IEEE USA Books &

eBooks, 2013.

[2] Climate Central, ªPower OFF: Extreme Weather and Power Outages |
Climate Central,º Sept. 2020.

[3] T. Gwaltney, ªFlorida Power & Light Company Grid Hardening and
Hurricane Response,º United States Department of Energy, p. 22, 2018.

[4] United States Government Accountability Office (GAO), ªElectricity and
grid resilience: Climate change Is expected to have far-reaching effects
and DOE and FERC should take actions,º GAO-21-423T, no. GAO-21-
423T, 2021.

[5] A. Kwasinski, F. Andrade, M. J. Castro-Sitiriche, and E. O’Neill-
Carrillo, ªHurricane maria effects on puerto rico electric power infras-
tructure,º IEEE Power and Energy Technology Systems Journal, vol. 6,
no. 1, pp. 85±94, 2019. Publisher: IEEE.

[6] P. Hoffman and W. Bryan, ªComparing the impacts of northeast hurri-
canes on energy infrastructure,º Office of Electricity Delivery and Energy

Reliability, US Dept. of Energy, Washington, DC, 2013.

[7] Department of Energy (DOE), ªBiden Administration Launches $2.3
Billion Program to Strengthen and Modernize America’s Power Grid,º
Apr. 2022.

[8] N. L. Dehghani and A. Shafieezadeh, ªMulti-stage Resilience Manage-
ment of Smart Power Distribution Systems: A Stochastic Robust Opti-
mization Model,º IEEE Transactions on Smart Grid, 2022. Publisher:
IEEE.

[9] N. L. Dehghani, A. B. Jeddi, and A. Shafieezadeh, ªIntelligent hurricane
resilience enhancement of power distribution systems via deep reinforce-
ment learning,º Applied Energy, vol. 285, p. 116355, 2021. Publisher:
Elsevier.

[10] A. B. Jeddi and A. Shafieezadeh, ªA Physics-Informed Graph Attention-
based Approach for Power Flow Analysis,º in 2021 20th IEEE Inter-

national Conference on Machine Learning and Applications (ICMLA),
pp. 1634±1640, IEEE, 2021.

[11] H. Zhang, L. Wu, Y. Chen, R. Chen, S. Kong, Y. Wang, J. Hu, and
J. Wu, ªAttention-Guided Multitask Convolutional Neural Network for
Power Line Parts Detection,º IEEE Transactions on Instrumentation and

Measurement, vol. 71, pp. 1±13, 2022. Publisher: IEEE.

[12] R. Jenssen and D. Roverso, ªIntelligent monitoring and inspection of
power line components powered by UAVs and deep learning,º IEEE

Power and energy technology systems journal, vol. 6, no. 1, pp. 11±21,
2019. Publisher: IEEE.

[13] M. M. Hosseini, A. Umunnakwe, M. Parvania, and T. Tasdizen, ªIntel-
ligent damage classification and estimation in power distribution poles
using unmanned aerial vehicles and convolutional neural networks,º
IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3325±3333, 2020.
Publisher: IEEE.

[14] J. Kim, M. Kamari, S. Lee, and Y. Ham, ªLarge-scale visual data±driven
probabilistic risk assessment of utility poles regarding the vulnerability
of power distribution infrastructure systems,º Journal of Construction

Engineering and Management, vol. 147, no. 10, p. 04021121, 2021.
Publisher: American Society of Civil Engineers.

[15] X. Zhang, Y. Zhang, J. Liu, C. Zhang, X. Xue, H. Zhang, and W. Zhang,
ªInsuDet: A fault detection method for insulators of overhead transmis-
sion lines using convolutional neural networks,º IEEE Transactions on

Instrumentation and Measurement, vol. 70, pp. 1±12, 2021. Publisher:
IEEE.

[16] L. She, Y. Fan, J. Wang, L. Cai, J. Xue, and M. Xu, ªInsulator surface
breakage recognition based on multiscale residual neural network,º IEEE

Transactions on Instrumentation and Measurement, vol. 70, pp. 1±9,
2021. Publisher: IEEE.

[17] M. M. Alam, Z. Zhu, B. Eren Tokgoz, J. Zhang, and S. Hwang, ªAuto-
matic assessment and prediction of the resilience of utility poles using
unmanned aerial vehicles and computer vision techniques,º International

Journal of Disaster Risk Science, vol. 11, no. 1, pp. 119±132, 2020.
Publisher: Springer.

[18] S. Ren, K. He, R. Girshick, and J. Sun, ªFaster r-cnn: Towards real-time
object detection with region proposal networks,º Advances in neural

information processing systems, vol. 28, 2015.

[19] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, ªObject detection with deep
learning: A review,º IEEE transactions on neural networks and learning

systems, vol. 30, no. 11, pp. 3212±3232, 2019. Publisher: IEEE.

[20] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,
L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek,
L. Diaconu, and M. T. Minh, ªultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and Inference,º Feb.
2022.



9

[21] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, ªSsd: Single shot multibox detector,º in European conference on

computer vision, pp. 21±37, Springer, 2016.
[22] J. Redmon and A. Farhadi, ªYolov3: An incremental improvement,º

arXiv preprint arXiv:1804.02767, 2018.
[23] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ªYOLOX: Exceeding YOLO

Series in 2021,º Aug. 2021. arXiv:2107.08430 [cs].
[24] K. Simonyan and A. Zisserman, ªVery deep convolutional networks for

large-scale image recognition,º arXiv preprint arXiv:1409.1556, 2014.
[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ªGoing deeper with convolutions,º
in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1±9, 2015.
[26] K. He, X. Zhang, S. Ren, and J. Sun, ªDeep residual learning for image

recognition,º in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770±778, 2016.
[27] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ªDensely

connected convolutional networks,º in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 4700±4708, 2017.
[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, ªMobilenets: Efficient convo-
lutional neural networks for mobile vision applications,º arXiv preprint

arXiv:1704.04861, 2017.
[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

ªMobilenetv2: Inverted residuals and linear bottlenecks,º in Proceedings

of the IEEE conference on computer vision and pattern recognition,
pp. 4510±4520, 2018.

[30] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q.
Weinberger, ªMulti-scale dense networks for resource efficient image
classification,º arXiv preprint arXiv:1703.09844, 2017.

[31] Y. Li, A. Dua, and F. Ren, ªLight-Weight RetinaNet for Object Detection
on Edge Devices,º in 2020 IEEE 6th World Forum on Internet of Things

(WF-IoT), pp. 1±6, IEEE, 2020.
[32] Y. He, K. Song, Q. Meng, and Y. Yan, ªAn end-to-end steel surface

defect detection approach via fusing multiple hierarchical features,º
IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 4,
pp. 1493±1504, 2019. Publisher: IEEE.

[33] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, ªEnd-to-end object detection with transformers,º in
European conference on computer vision, pp. 213±229, Springer, 2020.

[34] ªHome | StEER Website.º
[35] A. L. Salman, ªStEER - Hurricane Dorian: Field Assessment Structural

Team (FAST-1) Early Access Reconnaissance Report (EARR),º Oct.
2019. Publisher: DesignSafe-CI Type: dataset.

[36] D. Roueche, J. Cleary, K. Gurley, J. Marshall, J.-P. Pinelli, D. Prevatt,
D. Smith, A. Alipour, K. Angeles, B. Davis, C. Gonzalez, A. Len-
jani, H. Mulchandani, M. Musetich, A. Salman, T. Kijewski-Correa,
I. Robertson, and K. Mosalam, ªStEER - HURRICANE MICHAEL:
FIELD ASSESSMENT TEAM 1 (FAT-1) EARLY ACCESS RECON-
NAISSANCE REPORT (EARR),º Oct. 2018. Publisher: DesignSafe-CI
Type: dataset.

[37] M. Tan and Q. Le, ªEfficientnet: Rethinking model scaling for con-
volutional neural networks,º in International conference on machine

learning, pp. 6105±6114, PMLR, 2019.

Ashkan B. Jeddi received a B.S. degree in civil
engineering from the Iran University of Science and
Technology, Tehran, Iran, in 2015., and an M.S.
in structural engineering from Sharif University of
Technology, Tehran, Iran, in 2017. He is a Gradu-
ate Research Associate in the Department of Civil,
Environmental and Geodetic Engineering, The Ohio
State University, Columbus, OH, USA. His primary
research interests include the application of machine
learning techniques for the risk and resilience assess-
ment of structural and infrastructure systems.

Abdollah Shafieezadeh received the B.S. and M.S.
degrees in civil engineering from the University of
Tehran, Tehran, Iran, in 2002 and 2006, respectively.
He received a M.S. degree in structural engineering
from the Utah State University, Logan, UT, USA, in
2008 and the Ph.D. degree in structural engineering
with a minor in mathematics from the Georgia
Institute of Technology, Atlanta, GA, USA, in 2011.
He is the Lichtenstein Associate Professor in the
Department of Civil, Environmental and Geodetic
Engineering at The Ohio State University, Colum-

bus, OH, USA. His primary research interests are in uncertainty quantification
using machine learning, and resilience quantification and optimal management
of infrastructure systems.

Roshanak Nateghi received the bachelor’s degree
in mechanical engineering from the Imperial College
London, in 2006, and the M.S.E. and Ph.D. degrees
in environmental engineering from Johns Hopkins
University, in 2009 and 2012, respectively. Prior to
joining Purdue in 2015, she was an NSF Science,
Engineering and Education for Sustainability Fellow,
jointly appointed between Johns Hopkins University
and Resources for the Future. She is currently an
Associate Professor in industrial engineering with
Purdue University. Her research interests include

developing interdisciplinary methods to model the sustainability, risk and
resilience of critical infrastructure under natural hazards, and climate change.


	Introduction
	Major Contributions
	Organization

	Background
	Object Detection
	Region Proposal-based Methods
	Single-shot detectors

	Benchmark CNN Architectures

	PDP-CNN Architecture
	Feature Extraction Backbone
	Detection Backend
	Loss Function
	Bipartite Matching Loss
	Bounding Box Loss


	Data Collection and Pre-processing
	Results and Discussion
	Training, Validation, and Testing of PDP-CNN
	Metrics and Evaluation
	Mean Average Precision (mAP)
	Intersection over union (IoU)
	False positive per image (FPPI)
	Miss rate (MR)
	Frames per Second (FPS)

	Ablation Study
	Comparison of Networks

	Conclusion
	References
	Biographies
	Ashkan B. Jeddi
	Abdollah Shafieezadeh
	Roshanak Nateghi


