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Abstract—Recent approaches in continual learning (CL) have
focused on extracting various types of features from multi-task
datasets to prevent catastrophic forgetting — without formally
evaluating the quality, robustness and usefulness of these features.
Recently, it has been shown that adversarial robustness can be
understood by decomposing learned features into robust and
non-robust types. The robust features have been used to build
robust datasets and have been shown to increase adversarial
robustness significantly. There has not been any assessment on
using such robust features in CL frameworks to enhance the
robustness of CL models against adversarial attacks. Current
CL algorithms use standard features - a mixture of robust and
non-robust features - and result in models vulnerable to both
natural and adversarial noise.

This paper presents an empirical study to demonstrate the
importance of robust features in the context of class incremental
learning (CIL). We adopted the publicly available CIFAR10
dataset for our CIL experiments. We used CIFAR10-Corrupted
dataset to evaluate the robustness of the standard, robust and
non-robust models against various types of noise including bright-
ness, contrast, Gaussian noise and more. To test these models
against adversarially attacked input, we created a new dataset
using the project gradient descent (PGD) and fast gradient sign
(FGSM) algorithm.

Our experiments demonstrate that a set of models trained on
the standard (a mixture of both robust and non-robust) features
obtained a higher accuracy compared to the models trained either
using robust features or non-robust features. However, the models
trained using standard and non-robust features performed poorly
in noisy and adversarial conditions as compared to the model
trained using robust features. The model trained using non-
robust features performed the worst in noisy conditions and
under adversarial attacks. Our study underlines the significance
of using robust features in CIL.

I. INTRODUCTION

Continual learning is an active and challenging area of
research [1], [2]. One of the most challenging aspects of
continual learning is the catastrophic forgetting phenomenon,
in which a model experiences rapid performance degradation
on past tasks while it focuses on learning the current task
[3], [4]. The model has to strike a balance between learning
the classification-related features of the current task and the
previous task, which is also known as the plasticity-stability
dilemma [5]. Current approaches to mitigate catastrophic
forgetting can broadly be categorized into five groups [6].
The first is regularization-based methods; these methods define
metrics to measure the important features and constraint them
from being changed in efforts to prevent the model from for-
getting previous tasks [7], [8], [9], [10], [11], [12]. The second

is rehearsal-based methods; these methods play features of
the previous task from the memory buffer while learning the
features of the current task, simultaneously [13], [14], [15],
[16], [17]. The third is a pseudo-rehearsal based methods; in
this group, a generator is used to create synthetic features from
the previous task to be replayed for the model, while learning
the original features of the current task [18], [19], [20]. The
fourth is architectural-based methods; these methods freeze
a portion of the network which has learned the current task-
specific features and keeps the model from forgetting them
[21], [22], [23], [24], [25]. It keeps freezing parts of the
network as it learns more tasks, and continues until the model
reaches its capacity. The fifth is saliency-based methods; these
methods use saliency maps of the previous tasks in the replay
buffer while the model is learning the current task [26], [27].
The saliency maps are created using activation map algorithms,
which capture the important features of the previous task [27],
[28], [29], [30], [31], [32].

All the above methods either focus on learning the current
task features or on replaying previous features simultaneously,
to prevent the model from catastrophic forgetting; however,
the question is whether the quality of the input features itself
plays a significant role in the continual learning [33], [34]. We
took inspiration from the field of adversarial machine learning
where it has been established that the extracted features can
be classified into robust features and non-robust features [35],
[36]. Non-robust features carry transferable/shared knowledge
between classes and robust features carry class-specific infor-
mation [35]. It has been proven that non-robust models are
susceptible to adversarial attacks where robust features are
stronger and not as easily attacked [35]. Adversarial machine
learning has clearly defined categories of features (robust and
non-robust) but in continual learning, no such framework has
been defined [35]. They further have shown how a dataset can
be separated into two datasets, one containing robust features
and the other containing non-robust features [35]. In this paper,
we explore the role of these two groups of features in continual
learning. We consider three versions of a dataset (standard,
robust, non-robust dataset) and train five continual learning
models on them in class incremental settings. We train them on
different types of features to analyze how they react to various
types of noise including adversarial. Based upon our analysis,
we found that models trained on robust features are more
suitable to be deployed in real-world scenarios as compared
to models trained on non-robust features.
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In summary, our contributions are three-fold:

• We have shown that regardless of which data-set (stan-
dard, robust, non-robust) the model is trained on, it was
able to obtain comparable accuracy to that of the standard
model.

• The features of the input are directly related to how strong
a model is against noise and adversarial attacks. Better
quality input features lead to a better performing model;
it can resist natural as well as worst-case adversarial
perturbations.

• Models which are trained on non-robust features experi-
ence the most degradation. Such degraded performance
limits their applicability to be deployed in safety-critical
systems.

II. ADVERSARIALLY ROBUST AND NON-ROBUST
FEATURES

Consider a classification problem with input-label pairs
(x, y) ∈ X sampled from a distribution D. A feature f
is defined as a function mapping from the input space X
to the real numbers, with the set of all features thus being
F = {f : X 7→ R}. Andrew et al. proposed a framework
for disentangling adversarially robust and non-robust features
[35]. A feature f is ρ-useful (ρ > 0) if it is correlated with
the true label in expectation, that is if

E(x,y)∼D[y.f(x)] ≥ ρ. (1)

Suppose we have a ρ-useful feature f . We refer to f as a
robust feature - formally a γ-robustly useful feature for γ > 0
- if, under adversarial perturbation (for some specified set of
valid perturbations ∆), f remains γ-useful. Formally, we have

E(x,y)∼D[ inf
δ∈∆(x)

y.f(x+ δ)] ≥ γ. (2)

The robust features are extracted by constructing a distribution
D̂R which satisfies:

E(x,y)∼D̂R
[y.f(x)] =

{
E(x,y)∼D[y.f(x)] if f ∈ F
0 otherwise,

(3)

where F represents the set of features utilized by the model
classifier. Conceptually, we want the robust features to be
as useful as they were in the original distribution D while
ensuring that the remaining features are not useful under
D̂NR. The training set for D̂R is constructed via a one-to-
one mapping x 7→ xr from the original training set for D.
We used the optimization framework in [35] to disentangle
the standard CIFAR10(D) dataset into robust CIFAR10(R)
and non-robust CIFAR10(N ) versions. Robust features are
those that are more descriptive, distinctive and carry more
class-specific information. Non-robust features are spurious,
generic and imperceptible. Figures 1, 2 and 3 present the
visual examples of standard, robust and non-robust datasets,
respectively.

Fig. 1. Standard, Robust and Non-robust CIPHAR-10 datasets. Each column
represents a class. 1st row: Sample images from standard CIFAR10(D) for all
10 classes. 2nd row: The robustified sample images from robust CIFAR10(R).
3rd row: Samples images from non-robust CIFAR10(N ) dataset.

Fig. 2. Sample images from the robustified CIFAR10(R) dataset for ten
classes. Each row represents a class. Each column showcases sample robust
images from each class. For example, row 1 represents the “airplane” class,
and each column has a different robust image belonging to this class. Note
that the robust features are sparse and carry class-specific information.

Fig. 3. Sample images from the non-robustified CIFAR10(N ) dataset for ten
classes. Each row represents a class. Each column showcases sample non-
robust images from each class. For example, row 1 represents the “airplane”
class, and each column has a different non-robust image belonging to this
class. Observe that the non-robust features are generic and class-transferable.

Authorized licensed use limited to: University of South Florida. Downloaded on April 29,2023 at 23:04:13 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Examples of the six different severity levels for the 19 different noise types. Severity 0 represents the original clean image whereas severity 5
corresponds to the most severe corruption (Best viewed in color).

III. BENCHMARKING NEURAL NETWORK ROBUSTNESS

A. Common Corruptions (CIFAR10-Corruption) Dataset

Hendrycks et al. established rigorous robustness bench-
marks, which standardize and broaden the issue of corruption
robustness for image classification [37]. Their benchmarks can
be used to assess performance of neural networks on common
corruptions and perturbations, which can be helpful in identify-
ing networks that can be robustly generalized. The CIFAR10-
Corrupted dataset from their benchmarks, contains 19 different
forms of algorithmically generated corruptions from noise,
blur, weather, and digital categories. Each corruption includes
five levels of severity with varying intensities. For instance,
there are five levels of severity for blur. Examples of these
five levels of severity on the 19 types of noise are shown
in Figure 4. The example with severity level zero has the
least corruption, while the one with severity level five has the
highest level of corruption.

We utilize CIFAR10-C to examine the robustness and
sensitivity of the CL models trained in the class incremental
learning (CIL) setting against these 19 forms of noise. We
utilized the CIFAR10-C dataset to assess (i.e, to evaluate
empirically) the impact of the features on which the model was
trained. We found that the model that does not base its learning
on robust features throughout the learning phase would suffer
the most (see the result Section). Furthermore, testing the CL
models on such a dataset would emphasize the algorithm’s
capability/applicability for use in safety-critical applications.
Although the CIFAR10-C dataset was well suited to assess
the CL algorithm’s performance on natural corruptions and
perturbations, it does not address the worst-case adversarial
perturbations.

B. Adversarial robustness

An adversarial image is a clean image that was perturbed
by a small change - carefully designed to confuse the classifier
into making an erroneous decision. It has been demonstrated
that neural networks are vulnerable to attacks on their input,
which leads to incorrect classification [38]. In particular, most
neural networks are highly vulnerable to attacks based on these
small modifications of the input at test time [39], [40], [41].

Various algorithms have been developed to search for the
smallest additive distortions in input space that confuse classi-
fiers [42], [40], [43]. These algorithms create attacks (slightly
perturbed input) that can be used to test (or exploit) the
vulnerability of neural networks. Thus, adversarial distortions
serve as a type of worst-case analysis for network robustness.
Figures 1 and 5 present images from the clean CIFAR10
and adversarially created CIFAR10 datasets, respectively. The
adversarially created dataset was created using the PGD and
FGSM algorithms. The adversarial attack is stronger as the
size of the perturbation (i.e, level of attack ϵ) increases. For
example, in Figure 5, we can see that the dataset in row 1
was constructed with level of attack (ϵ) 1/255 and is easily
accurately identified by the algorithm, as opposed to Row
17, with level of attack (ϵ) of 64/255, where the images are
considerably more perturbed and distorted. To examine the
stability of CL models trained on robust or non-robust features,
in class incremental settings, we created 23 perturbed datasets
using PGD-Linf , PGD-L2 and FGSM with varying level of
attacks (ϵ), with min 1/255 and max of 224/225 [43]. As it
has been shown in adversarial machine learning, the features
of the input data play a prominent role in the robustness of
the model [44]. Similarly, in CL learning, evaluating the five
CL models against worst-case scenarios, the features of the
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input are also impacting the model’s robustness and average
accuracy; hence, they should be carefully selected (see the
results and discussion Section for more information.)

IV. EXPERIMENTS

A. Datasets

Three datasets were used to train all the models summa-
rized in Table I. The first is standard CIFAR10(D), robust
CIFAR10(R), and non-robust CIFAR10(N ). Figures 1, 2, and
3 present examples for CIFAR10, robust CIFAR10, and non-
robust CIFAR10, respectively. All three datasets are publicly
available and can be found at CIFAR101, robust CIFAR102

and non-robust CIFAR103.

B. Creating adversarial datasets

We built adversarial examples using an independent VGG16
[45] model trained on the CIFAR10 dataset to compare the
adversarial robustness of the five models. The adversarial
datasets were created using PGD-Linf , PGD-L2 [43] and
FGSM [40] algorithms for different values of the level of
attacks (ϵ). The hyperparameter ϵ is defined as the maximum
allowable perturbation to the original input in the optimization
settings of PGD and FGSM attacks. In particular, ϵ determines
the strength of the adversarial attack; the higher the value,
the stronger the adversarial attack and the more perturbed the
input image. The dataset created with PGD-Linf can be seen
in Figure 5.

C. Evaluation Metrics

We trained all five models in the class incremental learning
(CIL) setting of continual learning. The first task consists of
two classes, then one class was added sequentially for each
following task. In total, we have nine tasks. We computed the
average accuracy as follows:

ACC =
1

T

T∑
i=1

RT,i, (4)

where R stands for the average accuracy, while the i stands
for task index.

D. Protocols

Van et al. proposed three settings in continual learning
[46]. In order of increasing complexity, they are task incre-
mental learning (TIL), domain incremental learning (DIL),
and class incremental learning (CIL). These settings allow for
algorithms to be fairly compared to one another. We trained
five models in the class incremental learning setting where
groups of classes are sequentially observed. The CIL setting
is significant as it assumes incoming data of new tasks and
evaluates performance degradation of previous classes without
a limit on the number of tasks; the CIL scenario is quite
common in real-world situations.

1CIFAR10: https://www.cs.toronto.edu/ kriz/cifar.html
2Robust CIFAR10: https://github.com/MadryLab/constructed-datasets
3Non-robust CIFAR10: https://github.com/MadryLab/constructed-datasets

E. Training

In total, five models were trained using three versions of
the CIFAR-10 dataset: standard, robust and non-robust (see
Figures 2 and 3). The average accuracies of the five models
are outlined in Table I. The model f(D,DD) was trained on the
standard CIFAR-10 dataset and the replay buffer contained
only samples from the standard dataset. Model f(D,DR) was
also trained on the standard CIFAR-10 dataset; however, the
replay buffer contained an equal number of samples from the
robust dataset along with the standard. Model f(D,DN ) was
also trained on the standard data set similar to Models f(D,DD)

and f(D,DR); however, this model’s replay buffer contains
samples from the non-robust CIFAR-10 dataset along with the
standard. Model f(R,RD) was trained on the robust CIFAR-10
dataset and its replay buffer consists of an equal number of
samples from the standard and robust datasets. Model f(N ,ND)

was trained on the non-robust CIFAR-10 dataset and its replay
buffer contained samples from the standard and the non-robust
data sets. The replay buffer size (i.e, 16000) was kept equal
during training of all models. The experiments were performed
using the either Adam or SGD optimizer with learning rate
of 0.01 or 0.1, respectively [47]. Random horizontal flipping
was used as data augmentation during training for all five
models. To make the comparison as fair as possible, we kept
the number of epochs per task (i.e., 16), batch size (256),
network architecture (i.e., WideResNet [48]), and momentum
(i.e, 0.9) the same in the training of all five models. Each
experiment was repeated five times with a different seed to
achieve a better approximation. The optimum values of hyper-
parameters were determined using the grid search strategy.

V. RESULTS AND DISCUSSION

Figure 6 shows the average validation accuracy of all five
models outlined in Table I. Model f(D,DD) obtained the
highest accuracy on clean data followed by model f(D,DR)

and then model f(D,DN ). These three models were trained
on the same standard dataset but differ in the replay buffers.
Model f(N ,ND) had the lowest accuracy. Models f(R,RD) and
f(N ,ND) were not trained on the standard datasets. However,
when models f(R,RD) and f(N ,ND) completed learning all
nine tasks, their average accuracy was comparable to models
f(D,DD), f(D,DR) and f(D,DN ). Interestingly, model f(N ,ND)

has the lowest accuracy on the first task but as it learned
more tasks, it progressively increased its average accuracy. Its
average accuracy was comparable to models f(D,DD), f(D,DR)

and f(D,DN ) at the end of learning task nine, even though it
was trained solely on non-robust features. The unique behavior
of model f(N ,ND) suggests that it is accumulating transferable
knowledge during the sequential learning of these tasks. Model
f(N ,ND)’s average accuracy on task one was approximately
45%. After learning task two, its average accuracy jumped
to approximately 52% (as opposed to the decreasing accuracy
observed in the other four models). This phenomenon is called
backward transfer. This empirically demonstrates that non-
robust features carry transferable knowledge across tasks. The
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Fig. 5. Adversarial examples created using PGD-Linf . On the x-axis, we can see the different adversarially perturbed images from the dataset. The different
strengths of the level of the attacks (ϵ) are plotted in the y-axis. The level of the attack (ϵ) determines the strength of the adversarial attack; the higher the
value, the stronger the adversarial attack and the more perturbed the input image (Best viewed in color).

TABLE I
THE AVERAGE ACCURACIES OF ALL 5 MODELS. D = STANDARD CIFAR10, R = ROBUSTIFIED CIFAR10 AND N = NON-ROBUSTIFIED CIFAR10. IN

MODEL f(X,Y Z) : THE FIRST ENTRY REPRESENTS THE TRAINING DATA SET, THE SECOND SET OF LETTERS DENOTES THE REPLAY BUFFER DATASETS
SAMPLED EQUALLY.

Model Training set Replay buffer (size = 16000) Average
accuracy

f(D,DD) CIFAR10 (D) CIFAR10 (D) + CIFAR10 (D) 88.20±0.48

f(D,DR) CIFAR10 (D) CIFAR10 (D) + Robustified CIFAR10 (R) 85.99±0.77

f(D,DN ) CIFAR10 (D) CIFAR10 (D) + Non-Robustified CIFAR10 (N ) 82.72±0.49

f(R,RD) Robustified CIFAR10 (R) Robustified CIFAR10 (R) + CIFAR10 (D) 83.12±1.9

f(N ,ND) Non-Robustified CIFAR10 (N ) Non-Robustified CIFAR10 (N ) + CIFAR10 (D) 80.40±1.6

model will be able to acquire more generalizable knowledge
among tasks as the task sequence grows larger.

Similarly, Model f(D,DN ) contained non-robust features in
its replay buffer. It shows a similar overall trend to model
f(N ,ND) in that as it learns more tasks it is able to increase
its average accuracy. We do see a dip reaching up to task five,
which can be attributed to the small sample size of non-robust
features contained in the replay buffer, so there is not as much
transferable knowledge that the model is able to collect. As
the model learns more than five tasks, it increases its accuracy.

These experiments were based on learning nine tasks. How-
ever, given the trends shown in Figure 6, we can hypothesize
that if the number of tasks was significantly greater than
nine, then a model trained solely on non-robust features could
continuously build its transferable knowledge and perform the
same, or better, than the standard model (Model f(D,DD)).

Model f(R,RD) performed equal to the highest performing

model on task one. However, as it learned the second task,
there was a steep decrease in its average accuracy. This is
because there is not much transferable knowledge in robust
features; they are more class-specific and sparse as compared
to non-robust features. Of note, model f(R,RD) was still able
to learn using robust features while maintaining a higher
overall accuracy on all tasks compared to the model trained
on non-robust features (model f(N ,ND)).

A. Evaluating robustness against common corruptions

All five models were trained on varying datasets and replay
buffers, as mentioned in Table I. In Figure 7, we tested these
five models against the 19 types of noise. The x-axis of each
graph shows the severity level, ranging from 0-5, 0 being a
clean image and 5 being the most severe corruption. The y-axis
displays the average accuracy. The model trained on robust
features, f(R,RD), obtained the highest average accuracy in 12
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Fig. 6. The average accuracy of the 5 models f(D,DD), f(D,DR), f(D,DN ),
f(R,RN ) and f(N ,ND) as they incrementally learn a sequence of 9 tasks
in CIPHAR10. Where D = Standard CIFAR10, R = Robustified CIFAR10
and N = Non-robustified CIFAR10 datasets (Best viewed in color).

out of the 19 types of noise. The non-robust models f(D,DN )

and f(N ,ND) performed the worst in all 19 types of noise.
As the severity of the noise increases, the robust model

shows its strength by maintaining its average accuracy. Model
f(D,DR) had lower average accuracies than model f(D,DD) but
performed better than the other three models (i.e, f(D,DD),
f(N ,ND) and f(D,DN )) because its replay buffer contained
robust features.

Model f(D,DD) - the standard model - performed better than
the non-robust models (f(D,DN ) and f(N ,ND)) under all 19
forms of noise. However, it performed worse than the robust
models (f(D,DR) and f(R,RD)) on 12 noise types.

B. Evaluating robustness against adversarial examples

Figure 8, 9 and 10 show the average accuracies of the
five models under adversarial examples generated using PGD-
Linf , PGD-L2 and FGSM algorithms. Observe that model
f(R,RD), trained on robust features, performed the best against
adversarial perturbations compared to all other models. The
second best performing model was f(D,DR). That is, the
models that contained some robust features, whether in the
training set or the replay buffer performed the best. The models
that performed the worst trained on non-robust features. Model
f(D,DD) was right in between the four models. As we work
on training models in continual learning, it is vital that we pay
attention to the feature selection involved during the training
process as it directly influences the strength of the model
against perturbations. As shown in Figure 6, models can be
trained on any type of features; however, it is important to
note that inclusion of robust features results in more robust
models.

VI. CONCLUSION

Recent approaches in continual learning focus on extracting
various types of features from multi-task datasets to prevent
catastrophic forgetting — without formally evaluating the

quality, robustness and usefulness of these features. In this
paper, we presented an empirical and exhaustive study to
demonstrate the crucial role of features in the context of
class incremental learning (CIL) under various noise and
perturbation environments. Our experiments demonstrate that
a set of models trained on the standard (a mixture of both
robust and non-robust) features obtained a higher accuracy on
clean data compared to the models trained either using robust
features or non-robust features. However, the models trained
using standard and non-robust features performed poorly in
noisy and adversarial conditions as compared to the model
trained using robust features. The model trained using non-
robust features performed the worst in noisy conditions and
under adversarial attacks. Our study underlines the significance
of using robust features in CIL. Our code is available at
https://github.com/hikmatkhan/ARCL
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