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Abstract

Peach tree morphology and vigor has seen renewed interest since development
of new semi-dwarfing rootstocks. Even so, fruit quality, yield, and disease resistance
remain the primary traits of interest in most fruit breeding programs. As such, canopy
morphology and tree architecture remain relatively untapped areas of improvement.
These traits are considered challenging to study and ph€notype because of their
inherent complexity and quantitative nature. challenging, devising
methodologies that can quantify canopy morpholo tree architecture would
greatly aid in alleviating agronomic burdens felt b nd researchers. Better
characterizing tree architecture would allow ier i ification of superior
cultivars/genotypes that would innately requi i

plish this, large amounts of
branching data will be required to sufficiently and quantify tree architecture.
i er are difficult. Most traditional
methods are destructive and/or red ik ounting/recording. Manually
collecting branching data are labor-inte iti
more modern and novel approagh
scanning (TLS) technology, su

g this data are via 3D terrestrial laser
LiDAR (tLiDAR). 3D tLiDAR scanners can
n be virtually modeled. Running multiple

begin better characterizi N e architecture. Our goal was to test these 3D
reconstructive mode heir overall fit when compared to our scanned data.
The field data, alg
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INTRODUCTION

Peaches [Prunus persica (L.) Batsch] are a deciduous fruit tree grown in temperate
regions across the world. In terms of production, peaches rank second only behind apples in
terms of worldwide production, which has increased from 13.2 million tonnes in 2000 to 24.6
million tonnes in 2020, nearly doubling in size. This increase was also seen for the amount of
land used for peach cultivation, growing from 1.27 million hectares in 2000 to 1.49 million
hectares in 2020 (FAOSTAT, 2020). A majority of this growth occurred in China, the world’s
top peach producer. In 2000, China produced 3.8 million tonnes of peaches across 467,000 ha.
This figure has grown massively, with China producing approx. Fifteen million tonnes of
peaches across 780,000 ha. However, the United States peach production and land-use area
has experienced a sharp decrease during the same period. In the year 2000, the US produced
1.4 million tonnes of peaches across 77,000 ha; in 2020, 560,000 tonnes of peaches were
produced across 29,000 ha (FAOSTAT, 2020). This is in part due to declining profit margins,



rising costs of labor and production costs for commercial peach growers across the US. An
increased research and study of peach tree architecture and morphology will potentially
reduce production costs, improve yields/land-area, and lead to the most economical use of
resources.

Peach trees, like most fruit tree crops, require training systems. These training systems
help to control and more efficiently direct the trees’ innate growth, morphology and
architecture as to increase fruit production, and regulate branching patterns and vigor.
Establishing training systems however is laborious, time-consuming, and requires the trees
to undergo regular pruning as additional maintenance. The above listed traits are becoming
of greater importance from an agronomic perspective, due to the increasing costs of pruning
and labor. This leaves ample room to investigate new methods of controlling and selecting for
optimal architectural and morphological traits in peach trees. However, this process of
adapting peach trees to training systems causes stress to tree and necessitates the need for
regular pruning. Another issue that has been affecting US commercial growers in certain areas
is a sub-optimal (or in some cases, negligible) increase in yields in the past 20-30 years
(Marini and Sower, 2000). This nearly stagnant increase in peach yields for some growers has
correlated to a similar stagnation of our orchard management and training systems. In the US,
it seems that the majority of the training and orchard management systems we currently use,
are the same ones since decades past, with little to no adapti@f or change occurring. These
issues however may be addressed in unison with a furt derstanding of the various
. Likewise, finding ways

to categorize and quantify elements of tree architec i understanding such a
highly quantitative and nuanced trait such as a phology. To do this
however, first there needs to be a consistent a i user-friendly methodology to
collect the required data.

arrangement which is entirely comprised -ground surface: from the base of
the stem to the top of the canopy (Lau et ee'architecture encapsulates several
aspects of tree morphology and presents e enges to researchers who study it.
e is the highly quantitative nature of tree
tualizing and modeling a tree’s architecture,
ry data. This is due to the nature of the data,
which is most commonly branc rrent method of gathering branching data are
manual, in-situ collectig counting tree branches and limbs via hand, usually with
the assistance of se i at pegple. This method of data collection is often laborious,
rror (Bucksch, 2014). Our study investigates the use
as a viable alternative approach. TLS is a type of remote
S d several times as an invaluable tool used to better quantify
the architecture of tree ca and assess their composition/biomass (Tanago et al., 2017).
More specifically, terrestrial'LiDAR (tLiDAR) scanning would be utilized to construct a point
cloud representation of several peach trees, from which we could employ the use of several
software modeling packages in order to collect the necessary branching data required, all in-
silico. One such modeling software utilized in this study was TreeQSM, which was developed
by distinguished researchers at Tampere University (Raumonen et al., 2013). TreeQSM allows
us to create quantitative structural models (QSMs). These QSMs are constructed by fitting
cylindrical overlays around the point cloud data provided from our peach tree tLiDAR scans.
From these QSMs, we are then able to generate our in-silico biometric and branching data.

To summarize, the goal of our study is to investigate tLiDAR scanning, point cloud data
analysis, and 3D modeling processes in order to create a feasible means of producing reliable
in-silico branching data. We examined a number of different methods to validate our findings
such as analyzing the residual ground truth data generated from our QSMs in comparison to
the original point cloud data generated. We hope to corroborate our findings further by
comparing in-situ field data and our in-silico generated data.

architecture, or the difficulty i
there is one larger dilemma:



MATERIALS AND METHODS

3D scanning parameters and data collection

The in-silico and in-situ data for this comparison were collected at the Dempsey Farm
at the University of Georgia in Griffin, GA. This site supports the Peach Research and Extension
Orchard. The precise methods for this data collection were previously described in an earlier
manuscript, but will be revisited here for clarification (Knapp-Wilson et al., 2022). Approx. 50
adult trees from the germplasm orchard were scanned while dormant in 2020, 2021 and
2022. These 50 adult peach trees represented 25 different cultivars (2 trees per cultivar)
grafted onto ‘Guardian’ rootstock. Standard production and management guidelines were
followed as recommended in the Southeastern Peach and Plum management guide (Blaauw
etal, 2022). Itis important to note that all the peach trees included in this study were planted
in 2015 and managed using an open-vase training system. This results in roughly 3-5
‘scaffolds’ (large, 1st order branches) being produced from the main trunk of the trees.

All the scans used in this study were taken with a FARO Focus3D X 330 laser scanner
(Faro Technologies, Lake Mary, FL). Field scanning parameters were kept consistent between
all years, with the scan duration being 11:28 per individual scan. The scans were 10240x4267
in relative dimensions, resulting in an approx. average of 43.7 midlion points being generated
per scan (MPts). An approx. average of 0.56 cm was recorded d@8'the distance between points
ina 9.15 m cubic space (30 ft3). Scans were taken between i idual trees, on both sides of a
respective row. This results in scans being collected a 6.1 m. A minimum of 6
spherical targets were used every year during sca rgets helped with the
registration process for cloud point reconstructio :
three of the targets were moved forward while ined behind as references. After
successfully scanning a section of the orchard, the scans were saved and processed in
SCENE v2020.0.1 (Faro Technologies, Lake Mary, FL SCENE, tree scans were processed
using options to remove stray-points a i ithin the scans. After finishing
processing/registering the scans, point cl dividual trees were selected for
reconstruction via TreeQSM. For this stud es from the first two rows of our

germplasm collection were selectet"base n quality and unique architectural features.
These trees, labeled as 1A, 6B, @

ctively, were collected from different peach
cultivars. QSMs were genera longside biometric and branching data in
TreeQSM.

In-situ field branchifig
In-situ data d for adult germplasm trees in 2021 and 2022. This in-situ
data consists of totalis nching orders, as well as the number of branches per

the purpose of in-situ data collection followed procedures outlined by Lau et al. (2018). This
was mostly done to be consistent with the standard practices of justifying bifurcations in
branching, identification of branch nodes, continuation, and termination points of branching
orders, and labeling of parent branches. The data collection was kept standard across all peach
trees.

Optimization of 3D cylinder modeling pipeline TreeQSM for use in peaches

TreeQSM was developed by researchers in Finland for use in forestry. To this extent, it
has been shown to work efficiently and reliably. However, adaptation of TreeQSM for use in
horticulture; specifically in fruit trees, has seen little exposure. There have been previous
studies done been modeling apple trees, although it appears our research is the first
application of utilizing TreeQSM in modeling peaches (Zhang et al., 2020). The feasibility of
using TreeQSM in order to accurately collect in-silico data for peach trees requires a more
precise optimization of parameters than is what regularly used for forestry applications.
These methods of parametrization will be followed as previously described in Knapp-Wilson
etal. (2022). TreeQSM possesses several methods if directly inputting or changing parameters



that are inherent to the modeling reconstruction process. In total there are five main
parameters which effect different aspects of the cylindrical model overlay; however, three of
these parameters are of major concern: PatchDiam1, PatchDiam2Min and PatchDiam2Max.
While these three parameters result in the most drastic changes to how the model is created,
all five of the parameters were ultimately optimized for use in peaches; specifically, in peach
trees trained in an open-vase training system. Once the models are deemed within adequate
parameters, 40 iterations of the modeling processes were executed. This produced 40
respective QSMs for each individual tree, and branching data values being collected per QSM
per tree. Models created from this parameter optimization process are then tested and
evaluated for accuracy to the original point clouds from which they are derived, with examples
of both being shown in Figure 1. This is in order verify the model recreations are as
perceivably true in their depiction of the original point cloud data as possible, which in turn
validates the in-silico data when viewed in comparison to our field collected in-situ data.

Analysis of model-fitting m
To do this, we analyzed tle d truth data from our scans, as TreeQSM gives
us a number of metric owever, the two metrics with the most significance to
our study are: averag@’di om the original point cloud to the cylindrical model
' (%) of the cylindrical model in respects to the origin
avg. cylinder-point distance and avg. surface coverage are
calculated for specific of every QSM generated for respective tree. Treeqsm also
partitions the results fro e metrics into variable section that correspond to different
branching orders of the tree 1n addition to its entirety. These are sections are ‘trunk’, ‘branch’,
“Ibranch, and ‘2branch’; which respectively correspond to measurements from trunk of the
tree, all branching orders of the tree (excluding the trunk), 1st order branches, and 2nd order
branches. This will be discussed further in the results section in more detail when going over
Figure 2.

point cloud. Both of

RESULTS AND DISCUSSION

QSM residual ground truth data

As mentioned previously we focused mainly on the two metrics from our residual data:
avg cylinder-point distance and avg. surface coverage, show in Figure 2 below. The results in
measurements for both metrics being created for the trunk, worth noting the parameters used
when creating these QSMs, and the respectively generated residual data, were standard across
all four-adult tress, across all 40x modeling iteration per tree. An example of residual data
analysis is shown in Figure 2 for adult tree 1A. The average scores for all metrics are shown
across the 40x iterations, with noticeable outliers (one shown in Figure 2), being present in



both the findings of avg. surface coverage and avg. cylinder-point distance. Our findings
showed that the average surface coverage percentages for both the trunk and 1st order
segments of tree 1A were well above 70% (approx. 78 and 82%, respectively). These findings
are above expected results for cylindrical model reconstructions. This is also in line with the
lowest percent coverage segment ‘branch’ (the average of all higher order branches) being
found to be approx. 50%, as it is the area in which our models encounter the highest
percentage of stochasticism and branch occlusion during our modeling processes. The
average measurements across all segments (i.e., entire tree averages) were also computed and
evaluated for all four adult trees. These measurements, shown in Figure 3, were consistent
with earlier preliminary findings when evaluating tree 1A in Figure 2. The four studied trees
were found to be above 60%. Average point-cylinder distance across all adult trees was also
found to be less than 7.5 mm. These findings give confidence in comparing in-situ and in-silico
findings, since having averages less than 7.5 mm, even when considering the higher order
branches, are great modeling standards. This is also considering that TreeQSM will generate
models even with surface coverage %'s that are <20%. These results demonstrate levels of
fidelity in the modeling accuracy when compared to the original point cloud data.
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Figure 2.

distance (right) measurements are shown for adult tree 1A.
These scores gfaveraged across 40 modeling iterations, i.e., from 40 distinct
QSMs. These meftrics are used as a measure of ground truth error in order to
investigate the accuracy of our models.

Next step: comparison of in-situ and in-silico branching data

After the analysis of QSMs created for the adult trees produced reliable results, our next
and final step in verifying the in-silico data we collect for peach trees will be the comparison
of in-situ and in-silico data. Preliminary analyses have already been done in younger peach
trees, wherein no statistically significant difference was found between the in-silico and in-
situ data collected for all respective young trees (data not shown). However, adult trees have
considerably more branching density, higher branching orders, and overall more complexity
in their morphologies when compared to younger trees. Therefore, comparisons between
these two data sets (in-silico and in-situ) need to be considered over the range of multiple
years, across multiple trees. This is our current step and focus of research. However, the
preliminary findings in the young peach trees, as well as the results from our residual data
analyses, give us confidence in results going forward.
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CONCLUSIONS

To summarize, research into tree ar
improve our understanding of these comp
better methodologies for shaping
systems. However, this research

extension, tree morphology) can
S can lead to the development of
ree architecture than our current training
hange to the current method of branch data

in-silico data collection would e ease of which branching data are collected.
To this effect, the focus of our st was investigating the reliability of these models. This was
done by comparing o thie, original point cloud data; effectively demonstrated by
analyzing the resid s over multiple iterations, across four adult trees. The

Similarly, the averagedpoint-cyliider distances for these adult trees were also found to be
within credible levels
proceeding with comparisans of in-situ and in-silico data. This would be the final step in
verifying the authenticity these quantitative structural models in terms of fidelity to their in-
situ counterparts.

By demonstrating the fidelity of these models and the associated in-silico data, we can
suggest the use of tLiDAR scanning and 3D reconstructive analyses from point cloud data as a
practical alternative to collecting branching data manually. This would help in standardizing
branching data collected, as well as making the process as a whole more reliable and freer
from human error. The increased availability of branching data would in turn make
researching tree architecture more accessible and reproducible; allowing for the sharing of
point cloud data and 3D models from orchards across the world. Indeed, the availability of
branching data are instrumental in decoding and identifying agronomically important
architectural traits that can lead to increased resource efficiency, development of high-density
orchards, agronomic production, and improved orchard management. It would seem
appropriate that a method which allows the world to effectively collaborate in such research
be critical for future advancements. In addition, combining all these qualities together opens
new and alluring possibilities for future collaboration on agronomical production layouts and
investigative genetic studies.
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