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Abstract—Silicon-photonic neural networks (SPNNs) and ar-
tificial intelligence (AI) accelerators have emerged as promising
successors to electronic accelerators by offering orders of mag-
nitude lower latency and higher energy efficiency. Nevertheless,
the underlying silicon photonic devices in SPNNs are sensitive to
inevitable fabrication-process variations (FPVs) stemming from
optical lithography imperfections. Consequently, the inferencing
accuracy in an SPNN can be highly impacted by FPVs—e.g., can
drop to below 10 % —the impact of which is yet to be fully studied.
In this article, we, for the first time, model and explore the impact
of optical phase noise due to FPVs in the waveguide width, silicon-
on-insulator (SOI) thickness, and etch depth in coherent SPNNs
that use Mach-Zehnder interferometers (MZIs). Leveraging such
models, we propose a novel variation-aware, design-time optimiza-
tion solution to improve MZI tolerance to different FPVs in SPNNs.
Simulation results for two example SPNNs of different scales under
realistic and correlated FPVs indicate that using the optimized
MZIs can lead to significant improvements in the network infer-
encing accuracy. The proposed one-time optimization imposes low
area overhead and hence is applicable even to resource-constrained
designs.

Index Terms—Silicon photonic integrated circuits, fabrication-
process variations, deep learning, optical neural networks.

I. INTRODUCTION

ACHINE learning algorithms are being utilized in a
M wide range of applications ranging from autonomous
driving, real-time speech translation, and network anomaly
detection to pandemic growth and trend prediction. With the
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rising demand for advanced neural networks to address even
more complex problems, artificial intelligence (Al) accelerators
need to consistently deliver better performance and improved
accuracy while being energy-efficient. Unfortunately, in the
post-Moore’s law era, electronic Al accelerator architectures
face fundamental limits in their processing capabilities due to
the limited bandwidth and low energy efficiency of metallic
interconnects. Silicon photonics can alleviate these bottlenecks
by enabling chip-scale optical interconnects with ultra-high
bandwidth, low-latency, and energy-efficient communication,
and light-speed chip-scale optical computation [1]. Leveraging
silicon-photonic-enabled optical interconnect and computation,
many integrated silicon-photonic neural networks (SPNNs) have
been recently proposed [1].

Prior work has shown that the complexity of matrix-
vector multiplication can be reduced from O(N?) to O(1) in
SPNNs [2]. Also, as SPNNs use photons for computation, there
is negligible latency associated with inferencing. Such benefits
have positioned SPNNs as a promising alternative to tradi-
tional electronic neural networks [3]. Nevertheless, fabrication-
process variations (FPVs) due to inevitable optical lithography
imperfections lead to undesired changes in the critical dimen-
sions of SPNNs’ building blocks (e.g., waveguide width and
thickness in Mach—Zehnder interferometers (MZIs) in coherent
SPNNs), imposing inaccuracies during matrix-vector multipli-
cation. In [4], we have shown that random uncertainties due to
FPVs and thermal crosstalk can result in up to a catastrophic
70% accuracy loss, even in mature fabrication processes. Exist-
ing approaches for improving the resilience of SPNNs against
FPVs largely rely on compensating their impact by individually
calibrating MZIs in the network [5], [6]. However, such solutions
impose additional calibration (i.e., tuning) power overhead and
are not scalable as their complexity grows with the number of
devices in SPNNs.

The main contribution of this article is in developing, to the
best of our knowledge, the first comprehensive analysis of the
impact of physical-level FPVs on coherent SPNN performance.
We consider variations in the waveguide width, silicon-on-
insulator (SOI) thickness, and etch depth, which impacts the
slab thickness, based on realistic FPV maps developed using
different correlation lengths in the variations and experimental
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measurements. We model the impact of FPVs at the device
level for MZI performance and at the network level for arrays
of cascaded MZIs in SPNNs. At the system level, we explore
the impact of variations on SPNN inferencing accuracy while
considering different FPVs and variation correlation lengths.
Leveraging our detailed device-level models, we also develop a
novel design optimization solution to improve MZI performance
in SPNNs under different FPVs. Our simulation results for two
example SPNNs (with 1380 and 20,580 phase shifters) under
FPVs show that while inferencing accuracy can drop to as low
as 7.73% under different variations, using our optimized MZIs
can significantly improve the inferencing accuracy (e.g., by up to
72% on average in a large SPNN). Note that this article does not
consider the impact of thermal crosstalk and FPVs in directional
couplers in MZIs.

The rest of the article is organised as follows. Section II
presents a background on MZIs and SPNNs and a summary
of prior related work. In Section III, we analyze the impact
of FPVs on MZIs (device level) and array of cascaded MZIs
(network level) in SPNNs. Section IV presents our MZI design
optimization solution to design devices with improved tolerance
to different FPVs. Section V presents simulation results that
highlight how the optimized MZIs can improve the accuracy of
the unitary transformation (at the layer level) and the inferencing
accuracy (at the system level), in the presence of FPVs. Last, we
draw conclusions in Section VI.

II. BACKGROUND AND PRIOR RELATED WORK

This section summarizes fundamentals of MZIs and coherent
SPNNs designed based on MZIs. Also, it presents some prelim-
inary models to help understand the impact of FPV's on photonic
waveguides, and reviews some prior related work.

A. Mach—Zehnder Interferometer (MZI)

A2 x2MZlin an SPNN consists of two tunable phase shifters
(¢ and 0) on the upper arm and two 50:50 beam splitters as shown
in Fig. 1(c). The phase shifters are used to apply configurable
phase shifts and obtain varying degrees of interference between
the optical signals traversing the MZI arms. In SPNNSs, phase
shifters are often implemented using thermal micro-heaters for
lower optical loss, where the effective index of the underlying
waveguide changes with temperature (i.e., due to thermo-optic
effect of silicon), hence altering the phase of the optical signal.
Note that the proposed analyses in this article are independent
of the phase-shift mechanism in the MZI. Moreover, 2 X 2 beam
splitters can be designed using directional couplers (DCs) where
a fraction of the optical signal (defined as ) at an input port is
transmitted to an output port, and the remaining signal is coupled
to the other output port, as shown in the inset of Fig. 1(c). The
ideal transfer matrix (7 z 1) for an MZI with two phase shifters
(6 and ¢) and two 50:50 beam splitters can be defined as [7]

(Fig. 1(¢)):

cid i0 7 0
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Fig.1. (a)Overview of singular value decomposition (SVD) of a weight matrix
related to a fully connected layer (L,,) with N7 as the number of input ports
and N2 as the number of output ports. (b) An optical-interference unit (OIU).
(c) A 2 x 2 MZI structure with two integrated phase shifters (6 and ¢) and two
beam splitters based on directional couplers (DCs).

B. Coherent SPNNs Based on MZIs

Compared to non-coherent SPNNs, coherent SPNNs—
considered in this paper—use a single wavelength and MZI
devices, in which the adjusted phase shifts in the phase shifters
denote the dynamic weight parameters. Fig. 1(a) shows an
example of a coherent SPNN. A fully connected layer in a
deep neural network (L,,) can be realized with n,, neurons.
Each layer performs a linear matrix-vector multiplication and
accumulation (MAC) and passes the outputs to the next layer.
The output vector of L,, can be mathematically modeled as
orm>*t = £ (Wy, x Onmit Xl). Here, f,, is a non-linear acti-
vation function (performed by non-linear activation unit (NAU)
in Fig. 1(a)) of L,,,, and W, is the corresponding weight matrix
of L,,. Given a weight matrix W,,, which can be obtained by
training the network and mapped to MZIs using singular value
decomposition (SVD), each weight matrix W,,, can be writ-
ten as W, = Ulm>Xm Y nmXnm |/ Hinmxnm - Here, {J7m*nm
and VH:nm>xnm are the unitary matrices with dimension of
Ny, X Ny, and 7= >"m g a diagonal matrix with dimension
of n,, X n,,. Also, VJI{ MmXTmig the Hermitian-transpose of
Vnm>xnm A unitary matrix can be realized by using a cascaded
array of 2 x 2 MZIs. As shown in Fig. 1(a) and (b), this unit is
called the optical-interference unit (OIU) and is responsible for
performing the MAC operation.

Several approaches have been proposed to design the archi-
tecture of MZI arrays to perform MAC operations in the optical
domain [8], [9], [10]. Out of these, the Clements design, due its
symmetric nature, has a low optical loss and footprint. Therefore,
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we use the Clements design [9] to transform each unitary matrix
(Unm>nm and VHnmxnm) to a cascaded MZI array with a
specific phase setting per MZI in the network. In the Clements
method, each unitary matrix will be mapped to a cascaded MZI
array with a total number of W MZlIs, where N is the size
of the designated unitary matrix. Note that the diagonal matrix
(Zm>mm ) can be realized with an array of MZIs with one input
and one output terminated. The optical-amplification unit (OAU)
inFig. 1(a), which is required to obtain arbitrary diagonal matrix,
can be realized using semiconductor optical amplifiers (SOAs).

C. Fabrication-Process Variations (FPVs)

FPVs in silicon photonics originate in optical-lithography
process imperfections, contributing to changes in the waveguide
width, SOI thickness (dominated by the host wafer), and slab
thickness (in case of a ridge waveguide). Such changes devi-
ate the effective index (ncyy) in a waveguide and in turn the
propagation constant () which determines the optical phase of
the signal traversing the waveguide. Considering Fig. 1(c) and
as an example, the effective index (n.yy) in a ridge waveguide
depends on the optical wavelength and the critical dimensions of
the waveguide [11], i.e., width (w), SOI thickness (), and slab
thickness (h) in Fig. 1(c). Note that h = 0 for a strip waveguide.
The relation can be defined as:

A
neff(A-,w,t, h’) = (2> B()\,U),t, h)7 (2)
0
where X is the optical wavelength. Here, 5 can be defined as
B =1 /L, where v is the single pass phase-shift induced in a
waveguide of length L. Leveraging (2), propagation constant
changes (Af) in a ridge waveguide under FPVs is given by:

o 21 6neff 6neff 0neff
AB—A< 50 Pt T Pt ) B

Here, p.,, pt, and py, are the variations in the waveguide width,
SOI thickness, and slab thickness, respectively. When using a
strip waveguide, d%ehf L = pp, = 0. Note that, in this article, we

do not consider the variations in L (see Section I'V).

D. Related Work on FPV Analysis in SPNNs

Our prior work in [4] studied the impact of random phase noise
due to FPVs and thermal crosstalk at the system level in SPNNs
by developing a framework that identifies critical components
in the network. In [7], imprecisions were introduced in SPNNs
after software training such that pre-fabrication training tends to
be more scalable in terms of network size and volume. This helps
designing precise and cost effective MZIs, when compared to
re-configurable ones, which can be exploited for Al applications
to perform matrix multiplication. A method was presented in [5]
to counter the impact of both FPVs and thermal effects using
modified cost functions during training with added benefits of
post-fabrication hardware calibration. The impact of FPVs can
also be reduced by minimizing the tuned phase angles in an
SPNN; this can be done by leveraging the non-uniqueness of
SVD as it was shown in [12]. The work in [6] proposed a circuit-
level hardware error correction solution for SPNNs in which

TABLE I
PARAMETERS USED TO GENERATE FPV MAPS

Design Parameter
Waveguide width
SOI thickness
Slab thickness

Correlation Length ()
1 mm and 100 pm
1 mm and 100 pum
1 mm and 100 pum

Standard Deviation (o)
ow = 5 nm
ot = 2 nm
op = 2.5 nm

local error correction requires characterization of each phase
shifter and passive splitter in the photonic circuit while relying
on detectors in the output to calibrate the parameters.

The aforementioned methods focus on mitigating deviations
in SPNNs post-fabrication by either post-fabrication training
methods to compensate for any additionally introduced phase
noises, which might impact the network accuracy [5], or cali-
brating each noisy component, where additional error-detection
phases are required and the complexity can increase as the
SPNN scales up [6]. In this work, we focus on exploring and
optimizing the physical design of MZI devices in coherent
SPNNs under FPVs prior to fabrication, hence improving the
network tolerance under different FPVs. We show that by ex-
ploring and optimizing MZI device physical-level design, we can
improve the relative-variation distance (RV D) in SPNNs, which
quantifies the deviation between the intended unitary matrix and
the deviated unitary matrix, to enhance the overall inferencing
accuracy.

III. MODELING FPVSs IN COHERENT SPNNS

This section presents a detailed bottom-up analysis of the
impact of FPVs in the waveguide width, SOI thickness, and slab
thickness at the device level (i.e., MZI devices) and network
level (OIU in Fig. 1(b)) in coherent SPNNs. We show the
impact of FPVs on SPNN inferencing accuracy (system level)
in Section V.

A. Device Level: MZI Performance Under FPVs

To study the impact of FPVs on MZI devices, we should first
model FPVs in silicon photonics and explore how MZI devices
experience such FPVs. In our prior work [13], we have developed
realistic wafer variation maps that model radial-variation effects
and correlation among different variations—both of which are
critical to realistically model FPVs in silicon photonics—in SOI
wafers. Such maps were developed based on mean, standard
deviation (o), and correlation lengths (/) experimentally char-
acterized in collaboration with CEA-Leti in [13]. Table I sum-
marizes different parameters considered to generate FPV maps
for our calculations, which are based on analyzing experimental
data from characterizing actual 200-mm wafers at CEA-Leti.
Fig. 2-top shows examples of wafer and die maps generated
using our in-house FPV wafer map simulator with a resolution
of 10 um %10 pm (i.e., the mesh size in the map—see Fig. 2).

MZIs are bulky devices (e.g., ~340 pm in length [14]),
and hence every section of the device will experience slightly
different FPVs (see Fig. 2). Such a difference changes with
the correlation length in the variations (e.g., long-range versus
short-range correlated variations). As a result, it is critical to
analyze the impact of the non-uniformity of FPVs in MZI
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Fig.2. An MZI device structure with waveguide tapers mapped to FPV maps
(top), based on [13], with a mesh size of 10 pum. The MZI can use strip
waveguides or ridge waveguides, both with the SOI thickens of 220 nm and
varying waveguide width (w) on each arm. The design of slab thickness (150 nm)
in the ridge waveguide is discussed in Section IV. Note that variation-free
directional couplers (DCs) are considered.

devices. Considering the MZI shown in Fig. 2 with its four arms
labeled (Arm1-Arm4), we average the width, SOI thickness,
and slab thickness (when using a ridge waveguide in the MZI)
variations observed on each MZI arm, separately over the section
colored on each arm.

Considering the MZI in Fig. 2, the optical signals traversing
the two opposite arms of the device—before the input DC (i.e.,
Arms 1 and 2) and output DC (i.e., Arms 3 and 4)—should
only experience the desired phase change ¢ or 6, adjusted after
the network training. Note that the phase shifters are integrated
on the top of the silicon waveguides. However, due to the
impact of non-uniform FPVs on each individual arm, the optical
signals experience some undesired phase changes. Assuming
thateacharm’slength (Ly = Ly = Lgand Ly = Ly = Lg) does
not undergo any variations, the optical phase difference between
the two optical signals traversing the opposite arms (Arms 1-2
and Arms 3-4) and interfering at the input of DC1 (A®poq)
and DC2 (AP peo) is:

APpcy = ¢+ |AB1Ly — ABsLs|,
A@DCQ =0+ ‘ABng — A64L4| .

Here, ApB1, ABs, ApBs, and Ap, are, respectively, the prop-
agation constant changes on MZI’s Arms 1-4, which can be
calculated using (3).

Leveraging (3) and (4), and assuming variation-free DCs,
the MZI transfer matrix in (1) can be updated to take into
consideration the impact of FPVs on MZI arms, resulting in
undesired optical phase noises:

(4a)
(4b)

TJ/WZI(ev ¢)
V2,i(0+ABsLs) V2 iABaLs
— 2 2
- Z’ﬁei(0+A53L3) @elﬁml@
2 2

L ioTARLY) Y2 iR L
M@ +ABLY)  2eiABLy | )
where, as shown in Fig. 2, L1 = Ly = Ly and Ls = L4 = Lg.
In this article, we assume Ly = Lg ~ 135 pm, considered as
an example based on [14]. Leveraging (5), we can capture the
impact of non-uniform variations in the waveguide width, SOI
thickness, and slab thickness in any MZI design in coherent
SPNNs. Note that FPVs will deviate the splitting ratio, which
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ideally should be 50:50, in the input and output directional
couplers (DC1 and DC2 in Fig. 2), hence affecting the network
accuracy [4]. However, this article focuses on the optical phase
noise due to FPVs in MZIs and considers variation-free DCs in
SPNNs. Also, note that the analyses proposed in this section are
independent of the example MZI considered in Fig. 2.

B. Network Level: OIU Performance Under FPVs

Here, we model the impact of FPVs on the performance of
an OIU, shown in Fig. 1(b). Note that in this article we do
not consider the impact of FPVs in the OAUs and NAUSs (see
Fig. 1(a)) as they are often implemented either electronically or
opto-electronically [2], [15]. Recall from Section II-B that, given
a weight matrix W = USVH the matrices U, ¥, and V can be
decomposed to € and ¢ phase values on each MZI in an OIU
using Clements decomposition [9]. Under FPVs, the transfer
matrix of each MZI in the OIU will deviate in a manner that can
be calculated using (5). To analyze the impact of such variations
at the network level, we use relative-variation distance (RV D).
RV D determines the deviation between an intended matrix and
a deviated matrix [4]. We found that there is a strong correlation
between network-level RV D and system-level inferencing ac-
curacy in SPNNs (we will discuss this in Section V). RV D can
be defined as:

S S [ WM — W
S W

m,n’

RV D (VV, W) = 6)
where |.| denotes the absolute value of a complex number. W
is the nominal weight matrix and W is the deviated weight
matrix under FPVs related to a fully connected layer. W™
denotes the element at the m™ row and n™ column of W. Each
MZI in the OIU has a unique impact on each element of the
weight matrix. Accordingly, variations related to each MZI in
the network have a unique effect on the overall RV D. Higher
RV D means the actual weight matrix is more deviated from
the intended one, which can be interpreted as observing a lower
inferencing accuracy at the system level.

To compute W in (6), we first need to analyze the impact of
non-uniform FPVs in the waveguide width, SOI thickness, and
slab thickness on each individual MZI in an OIU. As the first
step, we calculate the total dimension of an OIU based on the
length of an individual MZI (I, z ) and the distance between its
input and output ports (gasz7). In this work and as an example,
we consider ly; 77 = 340 pm and gpsz; = 30 pm, and based on
the phase shifter length in [14] (i.e., ~135 pum). Accordingly and
using the Clements design for the OIU [9], the total dimension
of the OIU can be calculated. As the second step, we use
our in-house FPV wafer map simulator (see Section III-A) to
generate a die map that matches the size of OIU. We then place
the OIU on the die map and extract FPV information for each
individual MZI in the OIU. Note that each MZI itself experiences
different variations (non-uniform variations across a single de-
vice; a.k.a. intra-device variations), and the FPVs between two
different MZIs are also different. All such non-uniformities are
considered in our device-level (Section III-A) and network-level
analyses. By capturing FPVs for each individual MZI in an OIU,
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we can calculate the deviated W in (6) based on:
W =Upm X S x VH, (7)

Here, U, and W are the deviated unitary transfer matrices
and X,, is the deviated diagonal matrix under FPVs. They can
be calculated based on multiplying MZI transfer matrices under
FPVs (the model in (5)), and in a specific order determined by
the Clements design [9]. For example, for U ,,, we have:

Un=2D H TJI\IZI,m,n ) )

(m,n)es

where m and n should be calculated based on the mapping
method (e.g., Clements [9]) used to map the weight matrices
to cascaded MZI arrays. Also, S is the order of multiplication
which again should be determined by the mapping method.
Moreover, D is a diagonal matrix with unity magnitude and is
not related to the physical placement of MZIs. Similarly, we can
calculate V21 and ,,,. Although we considered the Clements
method for mapping the weights to phase settings of a cascaded
MZI array in OIUs, our network-level models in this section can
work with any mapping method.

IV. SPNN DESIGN OPTIMIZATION UNDER FPV's

In this section, we explore the design space of MZI devices
under different FPVs to optimize their performance in SPNNs. In
particular, we focus on minimizing the impact of FPVs on MZI
arms that imposes undesired optical phase noises in the device,
leading to faulty matrix-vector multiplication. As discussed in
Section III, FPVs also deviate the splitting ratio in DCs in
an MZI. Nevertheless, the design optimization solution in this
section assumes ideal DCs. Note that FPV-tolerant DCs can be
designed based on the method proposed in [16].

Considering (4), one can alleviate the impact of FPV-
induced optical phase noise in an MZI by implying |ASy Ly —
ABsLs| — 0and |[ABsLs — AByLy| — 0. Accordingly, to ob-
tain a phase-noise-free MZI, we should have:

Lo _ABy Ly A%

Ly  Ap Ly ABs
This indicates that the length ratio between any two opposite
arms in the MZI should be inversely proportional to the ratio
of the changes in their waveguide propagation constants (Af),
under non-uniform FPVs. In this section and for brevity, we
assume L, = Lo = L3 = L4 and without variations. As a result
and based on (9), we should minimize |AS; — AfBs| and |ABs —
AB4| under different FPVs. In other words, we should make sure
that the propagation constant changes on the two opposite arms
in an MZI are as small as possible (i.e., Af; — 0, ABy — 0,
Aps — 0, and ABy — 0), or the propagation constant changes
on the two opposite arms are as close as possible (i.e., Af; —
Aﬁg and Aﬁg — AB4)

Considering (3), AS is proportional to the rate of changes in
the waveguide’s effective index under FPVs (i.e., ag;f , Where
X denotes the design parameter under FPVs: i.e., X = w for
width, X = t for SOI thickness, and X = h for slab thickness

(©))

x10° x10°

—— Width
—— SOI Thickness
—— Slab Thickness

—— Width
4 —— SOI Thickness 4

an_/OX (1/nm)
an,/OX (1/nm)

0 0
400 600 800 1000 1200 400 600 800 1000 1200
Waveguide width (nm) Waveguide width (nm)

(a) Strip waveguide (b) Shallow-etched ridge waveguide

Fig. 3. Rate of changes in waveguide effective index (see the strip and ridge
Oneyy

waveguides in Fig. 2) under FPVs —5~, where X shows the design parameter
under FPVs, in (a) a strip and (b) a shallow-etched ridge waveguide, when the
waveguide width (w) increases from 350 to 1200 nm. Results are for ¢ =220 nm
and h = 150 nm (for the ridge waveguide in (b)).

variations. In our prior work [13], we found that as the waveguide
width increases, ag;«f decreases, especially under waveguide
width variations (i.e., when X = w). This is because as the
waveguide width increases, a bigger portion of the optical mode
is confined in the waveguide core (and the confinement is also
stronger), and hence the variations in the waveguide width will
create less distortion in the optical mode in the waveguide.
Also, note that increasing the waveguide width helps reduce the
propagation loss in strip and ridge waveguides [13]. Fig. 3(a)
shows the rate of changes in the effective index of a strip
waveguide with ¢ =220 nm (see Fig. 2) and when the waveguide
width (w) changes from 350 nm to 1200 nm, both considered as
an example. As it can be seen, as the waveguide width increases,

ag% decreases sharply but 875? L decreases sightly and stays
Oneyy
9

higher than =52~ under different waveguide widths. While
waveguide width can be changed during the design time, the
SOI thickness cannot be changed; this parameter is determined
by the host SOI wafer.

As it can be seen from Fig. 3(a), both 67§tf £ and ag% are still
high in strip waveguides. To address this, we also explore the
design of MZIs using a shallow-etched ridge waveguide with a
slab thickness (h) of 150 nm, as shown in Fig. 2. We simulated
different slab thicknesses from 60 nm to 180 nm (results are not
shown in the article), and A = 150 nm returned the best results.
Such aridge waveguide is common in the design of grating struc-
tures [17]. By adding the slab to a strip waveguide (i.e., making
it aridge waveguide), the optical mode is pulled mostly towards
the slab region, hence SOI thickness variations should have less
impact on the optical mode. Similar to Fig. 3(a), Fig. 3(b) shows
the rate of changes in the effective index of the shallow-etched
ridge waveguide with ¢ = 220 nm and ~ = 150 nm, and when
the waveguide width (w) changes from 350 nm to 1200 nm.

Observe that, compared to the strip waveguide, both ag% and

a"aetf L are smaller in the ridge waveguide. The shallow-etched

ridge waveguide also suffers from variations in its slab thick-

ness. Nevertheless, as it is shown by Fig. 3(b), 07;{- £ is much
Oneyy

smaller than —5:*- in the shallow-etched ridge waveguide, and

it decreases sharply as the waveguide width increases.
Considering the results in Fig. 3, designing MZIs with wider

strip and shallow-etched ridge waveguides should help minimize
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Fig. 4. Minimum taper length required to keep the optical transmission be-
tween two waveguides of different widths consistent (i.e., at 1 in the figure) and
to avoid mode distortion. The inset zooms in the results for the taper length of
0-2 pm.

the changes in the propagating constant on each MZI arm (see
(3) and (9)). Moreover, to increase the waveguide width, an
important design consideration is to include waveguide tapers
on the MZI arms as shown in Fig. 2. Waveguide tapers are
essential to avoid optical mode distortion and higher order mode
excitation when moving from the nominal waveguide width (i.e.,
470 nm in this paper—see Section V) to a wider waveguide and
vice versa [18]. In particular, the taper length should be long
enough to avoid any optical transmission and mode distortion.
Using Lumerical MODE [19], we simulated the fundamental
mode transmission between two waveguides of different widths
in Fig. 4. As it can be seen, a waveguide taper length of ~1 ym
will be sufficient for every 100 nm width difference between
two waveguides of different widths (see Fig. 2). This helps us
calculate the area overhead when we optimize MZIs with wider
waveguide widths.

Considering different FPVs in the waveguide width, SOI
thickness, and slab thickness, modeled based on FPV wafer
map models in [13], we consider two scenarios based on which
the design of MZIs in an SPNN can be optimized. First, in
the region-based-tolerant MZI design, we assume a designer
may have some a priori knowledge of the FPVs. This is a
valid assumption as silicon photonics foundries can provide
some FPV maps, with different variation data resolutions, to the
designers using their fabrication processes. Second, we assume a
worst-case-tolerant MZI design scenario, where a designer may
have very little to no a priori knowledge of the FPVs, and hence
the MZIs in an SPNN are designed considering the worst-case
FPV scenarios (e.g., corner analysis). In such a scenario, we
design the worst-case-tolerant MZIs with the largest possible
waveguide widths, and equal widths on all the arms, while
considering the area overhead in the MZIs. This is discussed
further in Section V.

For the region-based-tolerant MZI design, we can define
different regions of different sizes (i.e., number of MZIs) in
an SPNN, an example of which is shown in Fig. 5. Such
regions group the MZIs that are spatially close on the die with
one another. We assume that the designer has some a priori
knowledge of the FPVs for all (and not the individual) MZIs
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Fig. 5. Different region sizes (R1, R3, and R6) and related MZIs in a single 8
x 8 OIU unit. R12 (not shown) can be obtained similarly. Each MZI block size
is 30 x 340 um?.

grouped in the same region. As a result, the smaller the region
size (e.g., R1 with a single MZI in Fig. 5), the more detailed
FPV information is available to the designer and vice versa
(e.g., R6 with six MZIs in Fig. 5). Accordingly, we consider the
average observed non-uniform variations in a region to design
region-based-tolerant MZIs by performing an exhaustive search
for the MZI waveguide widths (using results in Fig. 3) while
considering the area overhead in the MZIs imposed by adding
the tapers. Here, we might have different waveguide widths
(between the search range of 350 nm to 1200 nm—see Fig. 3)
on each MZI arm.

As we will show in Section V, our region-based-tolerant and
worst-case-tolerant MZI designs minimize optical phase noises
in MZIs under different FPVs, hence they improve the network
accuracy in SPNNs. Nevertheless, it is important to note that
our device-level design optimization solutions proposed in this
section do not aim at completely eliminating, if at all feasible,
the impact of FPVs in SPNNs. That being said, our optimization
will reduce the impact of FPVs in SPNNs sufficiently so that
the overhead and complexity of dynamic calibration techniques
(e.g., [6]) to eliminate the impact of such variations in SPNNs
will be significantly reduced.

V. SIMULATION RESULTS AND DISCUSSIONS

FPVs lead to undesired optical phase noises, which, in turn,
lead to faulty matrix-vector multiplication in the fully connected
layers of an SPNN. The sensitivity of a standalone MZI to FPVs
depends on its physical design parameters (see Fig. 3), among
which only the MZI waveguide width can be freely altered
during the design time. Leveraging realistic and correlated FPV
maps developed based on [13] (see Fig. 2-top) and the proposed
MZI design optimization in Section IV, we explore and optimize
the nominal waveguide widths in the MZIs in SPNN case studies
considered in this section, to improve their tolerance under
different FPVs.

Prior to evaluating the impact of the proposed MZI optimiza-
tion on SPNN accuracy under FPVs, let us explore whether such
an optimization is independent of the model and the dataset. To
examine this, Fig. 6(a) considers 100 randomly generated 16 x
16 unitary matrices—each of which belongs to a different weight
matrix—and presents a box plot of the distribution of RV D’s
between the nominal and the deviated unitary matrices under
FPVs, and for different region sizes. Recall from Section IV
that to design the region-based-tolerant MZIs, we take the mean
variations affecting a region on the FPV map with 1, 3, 6, or
12 MZIs into consideration (see Fig. 5). All the MZIs in a
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Fig. 6. (a) RV D for different region sizes and under FPVs with different
correlation lengths. (b) High R? values denote a strong linear correlation
between RV D and accuracy. FPVs are based on the parameters in Table 1.
We consider the linear correlation as an example to calculate R2.

TABLE II
ARCHITECTURES OF THE SPNNS CONSIDERED
Model Architecture # PhS
Network-1 | FC(16,16)-SP-FC(16,16)-SP-FC(16,10)-LSM 1380
Network-2 | FC(64,64)-SP-FC(64,64)-SP-FC(64,10)-LSM | 20,580

FC(X,Y): fully connected layer with X inputs and Y outputs, SP: softplus
activation, LSM: logsoftmax activation, PhS: phase shifters.

particular region are replaced with the optimized region-based-
tolerant MZI, designed using shallow-etched ridge waveguides
(see Figs. 2 and 3(b)). As it is shown in Fig. 6(a), in all cases
(i.e., R1-R12), the mean RV D is significantly reduced when
optimized MZIs are used. In particular, the interquartile ranges
(IQRs) in the box plots are consistent among all the unitary
matrices in a region: this shows that the proposed optimization
is effective independent of the considered unitary matrix. Also,
the mean RV D decreases with decreasing the region size (i.e.,
when a designer has access to more detailed FPV data from the
foundry), and it is the highest when MZIs are not optimized.
To explore the impact of our proposed MZI design opti-
mization on SPNN accuracy, we consider a case study of two
fully connected SPNNs with different footprint (see Table II)
trained on the MNIST dataset. To compress the 28 x 28 = 784
dimensional feature vector in the MNIST dataset, we take the
shifted fast Fourier transform of each image. The compressed
16-dimensional feature vector for Network-1 is then obtained
by considering the values within the 4 x 4 region at the center
of the frequency spectrum. Similarly, for the larger Network-2,
we use a 64-dimensional feature vector by considering the 8 x
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Fig.7.  Accuracy of two SPNNs in Table I under correlated FPVs in width, SOI

thickness, and slab thickness before and after the optimization. Here, ST and RG
denote strip and shallow-etched ridge waveguide, respectively. The parameters
listed inside (.) show the variations considered, with W, T, and H denoting
waveguide width, SOI thickness, and slab thickness variations, respectively.
Note that results for ST (W+T) and RG (W+T+H) are the same for R1. The
second y-axis shows the average difference between No Optim. accuracy (i.e.,
using the conventional MZI) and the accuracy obtained using RG (W+T+H) for
R1, R3, R6, and R12.

8 region at the center of the frequency spectrum. In Fig. 6(b),
we show the linear correlation between the accuracy and the
mean RV D, averaged over the 6 unitary matrices (two in each
of the three OIUs) and normalized over the number of phase
shifters in each network. Given such a strong linear correlation,
our method should improve the accuracy of all SPNNs under
FPVs, irrespective of the nominal phase angles.

By applying realistic and correlated FPV maps—generated
using our prior work in [13] and considering parameters in
Table I—to Network-1 and Network-2, Fig. 7 shows the infer-
encing accuracy in each network with conventional MZIs (No
Optim.) and optimized region-based-tolerant MZIs, which can
have different waveguide widths on each arm. For the conven-
tional MZI, we designed an MZI using strip waveguides with
t =220 nm and w = 470 nm and variation-free ~10-pm-long
DCs with a 200 nm gap, to obtain 50:50 splitting ratio in the
MZI. In each plot in Fig. 7, we consider three different standard
deviations for the waveguide width, SOI thickness, and slab
thickness variations: 0.5x, 1x, and 2x the expected standard
deviations (o, oy, op) in Table 1. Moreover, the variation
maps are generated for two correlation lengths of 100 ym and
1 mm. Considering Fig. 7(a)—(d), with no MZI optimization
(i.e., No Optim.; red bars), the SPNN accuracy is always the
least (e.g., 7.73% with 1 x ¢ in Fig. 7(d)). Considering optimized
region-based-tolerant MZI design with strip or shallow-etched
ridge waveguides under all the variations and R1 (i.e., when
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regions include a single MZI—see Fig. 5), the network accuracy
in Fig. 7(a)—(d) is almost the same as the nominal accuracy. This
is because each individual MZI has been optimized considering
its exact FPV profile. This is for an ideal case when a designer has
full access to variation data affecting each MZI in the network,
so it may be impractical in most cases (R1 results are shown to
indicate the efficiency of our optimization in such rare cases).

Considering more realistic and practical region sizes (R3,
R6, and R12) and a region-based-tolerant MZI design using
strip waveguides, Fig. 7(a)—(d) show the SPNN accuracy when
considering (i) both waveguide width and SOI thickness varia-
tions (W+T; light green bars), and (ii) width variations only (W;
magenta bars)—when SOI thickness variations are negligible,
e.g., through SOI thickness uniformity improvement [20]. Ob-
serve that with (i), the optimized MZI can help retrieve some
accuracy, which also decreases as the region size increases.
But overall, the gain in accuracy in this case is small. This
is due to the fact that optimized MZIs designed using strip
waveguides are not sufficiently tolerant to thickness variations
(see Fig. 3(a)). Considering (ii), the optimized MZI designed
using strip waveguides achieves better accuracy improvements
(and higher than (i)) in both the networks.

Fig. 7(a)—(d) also show the network accuracies with the
optimized region-based-tolerant MZIs designed using shallow-
etched ridge waveguides, under the presence of (i) waveguide
width and SOI thickness variations (W+T; yellow bars), and
(i1) all the variations (W+T+H; dark blue bars). Observe that
with both (i) and (ii), the optimized MZIs using shallow-etched
ridge waveguides perform much better compared to those using
strip waveguides (i.e., ST (W+T)). Comparing (i) and (ii)—when
considering slab thickness variations—the network accuracy is
(slightly) lower in some cases. Nevertheless, considering the av-
erage difference between No Optim. accuracy and the accuracy
obtained with (ii) for R1, R3, R6, and R12 (orange bars; second
y-axis), using optimized MZIs designed with shallow-etched
ridge waveguides under all the variations can significantly im-
prove the network accuracy (e.g., by up to 72% in Network-2
with 0.5x¢). This shows that the proposed optimization can
improve the resilience of SPNNs to FPVs.

Another observation is how the network accuracy in Fig. 7(a)-
(d) seem to change across different region sizes and FPV corre-
lation lengths. In fact, when the correlation length in variations is
shorter, variations tend to “change more” within a region with a
given size, and as the region size increases, they change even
more across the region. This imposes a higher error for the
region-based-tolerant MZIs designed per region. Therefore, the
accuracy results are generally a bit lower in Fig. 7(a) and (c)
compared to those in Fig. 7(b) and (d).

To assess SPNN accuracy using the optimized worst-case-
tolerant MZI design (see Section IV), we consider, as an exam-
ple, Network-2 with FPVs of different correlation lengths and
standard deviations in Table I. In this experiment, we assume
no a priori FPV knowledge and using strip waveguides in the
design of the optimized worst-case-tolerant MZIs while consid-
ering waveguide width variations only. The worst-case-tolerant
MZI is optimized by widening all the MZI arms together—i.e.,
MZI arms all have the same width after optimization—while
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TABLE III
NETWORK-2 ACCURACY WITH WORST-CASE-TOLERANT MZIS DESIGNED
USING STRIP WAVEGUIDES UNDER WIDTH VARIATIONS

Area Correlation | Width Arm Pre-Opt Post-Opt
Overhead Length (nm) Length | Accuracy | Accuracy
(pm)
% | oum | 5P | 159 | 55 | 708
2% | ogum | | 13619 | s5q | sean
| o | % |18 | 5500 | oring
5 | oum | 850|188 | s5g | oy
16% | ogpm | 11| M| S5 | oansg
2% | ooy | 1200|1923 | 5500 | a4

considering the resulting area overhead due to the required
waveguide tapers (see Figs. 2, 3(a), and 4). Results for this
experiment (before and after the optimization) are shown in
Table III for different area overhead. We observe that even
with 1% area overhead, the accuracy improves. However, the
improvements are significant only when the area overhead is
greater than 8% for both the correlation lengths.

VI. CONCLUSION

In this article, we have analyzed the impact of FPVs in the
waveguide width, SOI thickness, and slab thickness on coherent
SPNN:S. In particular, we have modeled undesired optical phase
noises due to such variations at the MZI device level, and how
such phase noises contribute to the performance degradation, for
which we have considered relative variation distance (RV D)
at the network level in optical unitary multipliers built using
MZlIs. Furthermore, we have proposed physical-level design
optimization solutions to enhance MZI device tolerance under
correlated FPVs in SPNNs. Our simulation results for two
SPNN case studies of different sizes and considering realistic
FPV maps show that the proposed physical-level optimization
can help significantly improve the SPNN inferencing accuracy.
In addition, the results in this article indicate the importance
of considering variations during the design-phase of SPNNs
to facilitate the application of online and dynamic calibration
mechanisms in these networks, which are often complex and
power- and area-hungry.
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