Impact statement

The phase-field method is an atfractive computational
tool for simulating microstructural evolution during
phase separation, including solidification and spinodal
decomposition. However, they remain computationally
intensive due fo the strict limits on the maximum time
and length scales imposed by the numerical methods.
This research presents a phase-field emulator that will
predict the microstructural evolution observed in phase
separating materials by leveraging the already existing
data sets obtained from traditional phase-field mod-
eling approaches. The phase-field emulator, which for
the first time, couples a fensor representation and non-
parametric tensor methods with microstructure mod-
eling and representation, will enable high-throughput
and facile prediction of the microstructural evolution,
as opposed fo solving computationally intensive phase-
field simulations whenever a new simulation needs to
be performed. Our data-driven microstructure emula-
tor opens new avenues to predict the microstructural
evolution by leveraging phase-field simulations and
physical experimentation where the time resolution is
often quite large due fo limited resources and physical
constraints, such as the phase coarsening experiments
previously performed in microgravity.
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The phase-field method is an attractive computational tool for simulating
microstructural evolution during phase separation, including solidification and
spinodal decomposition. However, the high computational cost associated with
solving phase-field equations currently limits our ability to comprehend phase
transformations. This article reports a novel phase-field emulator based on the
tensor decomposition of the evolving microstructures and their corresponding two-
point correlation functions to predict microstructural evolution at arbitrarily small
time scales that are otherwise nontrivial to achieve using traditional phase-field
approaches. The reported technique is based on obtaining a low-dimensional
representation of the microstructures via tensor decomposition, and subsequently,
predicting the microstructure evolution in the low-dimensional space using Gaussian
process regression (GPR). Once we obtain the microstructure prediction in the low-
dimensional space, we employ a hybrid input-output phase-retrieval algorithm to
reconstruct the microstructures. As proof of concept, we present the results on
microstructure prediction for spinodal decomposition, although the method itself
is agnostic of the material parameters. Results show that we are able to predict
microstructure evolution sequences that closely resemble the true microstructures
(average normalized mean square of 6.78 x 10~7) at time scales half of that
employed in obtaining training data. Our data-driven microstructure emulator
opens new avenues to predict the microstructural evolution by leveraging phase-
field simulations and physical experimentation where the time resolution is often
quite large due to limited resources and physical constraints, such as the phase
coarsening experiments previously performed in microgravity.

Introduction

The phase-field method is a powerful tool to
simulate microstructural evolution in mate-
rials undergoing phase transformations or
degradation.l’6 However, this method,
which typically involves solving nonlinear

partial differential equations over a three-
dimensional (3D) computational domain,
remains computationally intensive due
to the strict limits on the maximum time
and length scales implicitly imposed by
the adopted numerical techniques.” For
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instance, the computational complexity associated with
simulating phase separation in those metallic melts where
dendritic evolution is prevalent, scales as O(S*), where S
is the grid size.® Similarly, to simulate the microstructural
evolution in materials that accompany spinodal decomposi-
tion, the permissible length and time scales are even more
restrictive,> and warrant the application of supercomputers
for solving fourth-order Cahn—Hilliard partial differential
equations (PDEs). Depending on the spatial and time reso-
lution required, the run times for such phase-field simulations
of microstructural evolution in three dimensions, which is a
four-dimensional (4D) problem (considering the time evolu-
tion), can span from several hours to weeks on a supercom-
puting cluster. Current strategies to accelerating phase-field
simulations rely on high-performance graphical processing
units (GPUs) and power-intensive computational resources
as opposed to intelligently leveraging the past simulations
to emulate new ones. As a result, a new simulation needs to
be executed every time a simulation parameter (e.g., atomic
diffusion coefficient) is changed.

Over the past two decades, the increase in computational
power with the emergence of supercomputers such as TSU-
BAME 2.0'” and GPUs such as NVIDIA Tesla C2050," to
some extent, has helped address some of the limitations.'>™'
In addition to high-performance GPUs, various numerical
methods have also been developed such as adaptive mesh-
ing,'®!” time stepping,'®!? and spectral methods®° to speed
up the microstructure simulation. Nonetheless, phase-field
simulations at realistic length and time scales still require
millions of computing core hours even on parallel comput-
ing platforms,?' "> not to mention their high installation and
maintenance costs.

More recently, deep-learning strategies have been explored
for modeling microstructure evolution. For instance, Yang
et al.* implemented a recurrent neural network (RNN) with
eidetic 3D long short-term memory (LSTM) cells to predict
the evolution pattern in four different evolution phenomena,
including plane-wave propagation, grain growth, spinodal
decomposition, and dendrite growth. The methodology
involved training the RNN with microstructure sequences fol-
lowed by predicting the microstructure evolution for a new
initial microstructure. In another work, Montes de Oca Zapiain
et al.> implemented an LSTM network to predict the micro-
structure evolution in phase-field simulation after obtaining a
low-dimensional representation using two-point statistics and
principal component analysis. Although these approaches have
demonstrated the viability of using deep learning for micro-
structure prediction, there are some limitations. First, deep
learning approaches remain data hungry and therefore their
performance is highly contingent on the availability of large
data sets. For instance, the LSTM network trained by Montes
de Oca Zapiain et al.> required 5000 high-fidelity phase-field
simulation each with 60 frames. Another limitation of the
existing approaches is the use of principal component analysis
(PCA) for dimensionality reduction. Although PCA could be
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used to obtain a low-dimensional representation, they make
little sense when dealing with sequence of images. Because
PCA implementation requires unfolding an image data into
a one-dimensional array, the spatiotemporal information is
lost. This is also reflected in the poor reconstruction of the
microstructures.>%°

In this work, we develop a phase-field emulator to predict
the microstructure evolution at arbitrary time scales without
solving costly PDEs. Our approach is based on represent-
ing the microstructure evolution as a tensor and obtaining a
low-dimensional tensor decomposition of the two-point cor-
relation functions representing the evolving microstructures.
The tensor decomposition does not require any unfolding and
simultaneously preserves the spatiotemporal relationships,
therefore overcoming the limitations of PCA. With the low-
dimensional representation at hand, we then employ Gaussian
process regression (GPR)—a nonparametric nonlinear regres-
sion approach—to predict the microstructure evolution in the
low-dimensional space at arbitrary time steps that cannot be
accomplished without running multiple phase-field simula-
tions with distinct time step widths. For training, we generate
spinodal decomposition via high-fidelity phase-field simula-
tions. After we obtain the predictions from GPR, we use a
hybrid input—output phase-retrieval algorithm to reconstruct
the microstructures from the predicted two-point correlation
functions. An outline of the proposed methodology is pre-
sented in Figure 1. Finally, we demonstrate the efficacy of
the methodology on spinodal decomposition of a two-phase
material system.

Results and discussion

To predict the microstructure evolution, we first generate the
training data set by simulating spinodal decomposition using
the Cahn—Hilliard equation given as:

% = MV? %W(2¢3 — 3¢+ ¢) —e*V39|, 1
where ¢ = ¢(x, 1) is the scaled concentration field of the A-B
alloy, M is the mobility of diffusing species, ¢ is the gradient
free energy coefficient, which is related to interfacial energy,
and W is the well height of the double-well potential f(¢)
given as:

1
f@) = ZW“’2“ — )% 2

A detailed description of the phase-field simulation is pro-
vided in the “Methods” section. For simulation, we fixed
e =0.051 and diffusivity D= M3%f(¢)/942 =1. The
temporal discretization was selected using the relationship
8t = 8x* W /2241 )12 % where d equals 2 for two-dimensional
(2D) simulation domains. We set the grid spacing both in x
and y directions as 3x = 0.3 such that the discretization in the
temporal domain is 8¢ = 0.0002. For a given set of simula-
tion parameters, we record the microstructure evolution for
20 frames. The generated microstructures are of sizes 32 x 32,
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Figure 1. Flow sequence outlining our microstructure emulation approach.

256 x 256,512 x 512,and 1024 x 1024 grid points. For dem-
onstration of the methodology and results, we use the micro-
structures of size 32 x 32 grid points. Comparative results for
other grid sizes are presented afterward.

We begin by considering a statistical representation of the
microstructures. Mathematically, a microstructure function m?
is represented as the probability of finding some local state n
at a spatial location s € R? for 2D microstructures. Given the
stochastic nature of microstructures in space, we first obtained
their statistical representation using two-point correlations.

Intuitively, the two-point correlations, denoted as f,,, capture
the likelihood of observing some combination of microstructure
states (n and p) at two randomly selected locations separated
by a distance of ». For a two-state microstructure (say 0 and
1), as we are concerned in this work, there are a total of four
combinations of states (i.e., 00, 01, 11, and 10) and therefore,
four sets of two-point correlations. However, two-point cor-
relation functions have inherent redundancies in them, making
them interdependent. For instance, the probability of observ-

ing states 1 and O in spatial bins separated by a distance of »
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(i.e., f{p) is the same as observing the two states in the reverse
order separated by a distance of —r (i.e., f;" ). Considering
all the redundancies, for a two-state microstructure, we only
need to compute either an autocorrelation or a cross-correlation
function and the remaining correlations could be recovered.?’
Because the two-point spatial correlation summarizes the pair-
wise distribution of local states within the microstructure, they
are particularly useful in tracking microstructure evolution.
Details of the two-point correlation functions are provided in
the “Methods” section. To efficiently calculate the two-point
correlations, we subscribed to discrete Fourier transform (DFT)
of the microstructure function m. We first note that the DFT of
the two-point statistics is given as:

1 o .
F = () = <M1 % M1, 3

where F is the DFT operator, | M}’ | denotes the magnitude com-
ponent, and 67, represents the phase component of the microstruc-
ture function m} for state n. For n = p, the DFT of the two-point
statistic gives us the autocorrelation function and for n # p, the
DFT gives the cross-correlation function. As mentioned ear-
lier, we only need either an autocorrelation or cross-correlation
function for a two-phase microstructure and the rest could be
recovered. In the remainder of the discussion, we work with
the autocorrelation function of one of the states. Figure 2a—b
shows representative examples of the microstructure and its cor-
responding autocorrelation function, respectively. We note that
autocorrelation functions follow a similar evolution trend as their
corresponding microstructures (i.e., they evolve rapidly during
the initial stages and slowly in the later stages of coarsening).

We next look at the tensor representation and decomposi-
tion of the autocorrelation functions. Microstructure evolu-
tion lies in a high-dimensional space (e.g., the evolution of
a 323232 microstructure), which is the smallest data set we
are working with, for just 10 time steps (or samples) lies in a
327,680 dimensional space (Figure 3). To handle such high-
dimensional data structures, microstructures and their relevant
statistics such as two-point correlations have traditionally
been represented via matrix or vector-based methods such as
principal component analysis that require flattening them into
vectors.”>?%28732 However, upon vectorization, microstructure
sequences lose their topological structures and dependencies
across spatial and temporal modes. The absence of an appro-
priate mathematical representation has precluded the develop-
ment of models that can efficiently capture the higher-order
nonlinear patterns in microstructure evolution. In this regard,
we provide a tensor representation of microstructure evolution.
More specifically, we consider microstructure evolution as a
three-way tensor with dimensions of parameter x space x time.
Mathematically, microstructure evolution will be represented
asX : P x S x T,where P, S, and T represent the dimension
of parameter, spatial, and temporal modes, respectively. For
the emulation results reported next, the parameter mode is
kept constant. To obtain a low-dimensional representation of
the microstructure evolution, we employ a tensor decomposi-
tion approach known as canonical polyadic (CP) decomposi-
tion. Tensor decomposition is an extension of conventional
PCA for multiway data sets that do not require any unfolding.
Several methods for tensor decomposition exist such as CP,**
Tucker,* and tensor train.* In this work, we implement CP
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Figure 2. Frame-by-frame comparison of microstructure evolution simulated using phase-field method with the corresponding emulation. The top
row shows the original sequence of the (a) two-point correlation and (b) autocorrelation functions of the phase-field generated data set while the
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Figure 3. Exploratory analysis of the microstructure data in the low-dimensional space. (a) The first rank-one tensor across the temporal dimension
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Figure 4. Variation in the NMSE for microstructure reconstruction
with different tensor ranks.

decomposition as it factorizes the microstructure tensor into
an outer product of rank-one tensors that are simple to handle
using GPR. The number of such rank-one tensors represents

the rank of the original microstructure tensor. Intuitively, rank
of the microstructure tensor increases as the complexity in the
spatiotemporal makeup of the microstructures increases. How-
ever, computing the rank parameter is NP hard and therefore,
we perform a sensitivity analysis to determine the optimal
rank. Essentially, we check the reconstruction error for varying
ranks and select the rank for which the reconstruction error is
within 5% of the lowest reconstruction error. We measure the
reconstruction error using normalized mean squared error (see
Equation 10 in the “Methods” section). Figure 4 shows the
reconstruction error for different ranks. We obtain the lowest
average normalized mean squared error (NMSE) of 86.17 for
a rank of 400. However, for a lower rank of 300, we obtain
the average NMSE of 86.32, which is within 5% of the lowest
NMSE. Therefore, to reduce computational complexity, we
fix the tensor rank to 300 for rest of the discussion. Additional
details on CP decomposition and rank estimation are provided
in the “Methods” section.

Before we present the results on GPR fitting, we provide an
overview of the microstructure data from a low-dimensional
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perspective. Figure 3a shows the first rank-one tensor across
the temporal domain after performing CP decomposition and
its corresponding trend is shown in red. Clearly, the rank-one
tensor component shows a gradual increase as the microstruc-
ture evolves. In Figure 3b, we notice some seasonality effect
that is obtained after removing the trend from the original
data. Because the magnitude of seasonality is almost one-
tenth of the magnitude of the original data, we can assume
these variations to be noise. Furthermore, in Figure 3c—d, we
present the autocorrelation (i.e., correlation between the data
and its lagged version) and the partial autocorrelation function
that is the same as autocorrelation, but without the correla-
tion effect from data in between. From the autocorrelation
plot, we can infer that successive data points are highly corre-
lated, especially for smaller lag values. From a microstructure
standpoint, this indicates that the microstructure sequences
at successive time instants are highly correlated, which is
also evident from Figure 2. The partial autocorrelation plot
in Figure 3d shows a strong correlation if lag is 1 (i.e., for
successive data points), but it drops rapidly afterward. This
again reaffirms our observation that the microstructure images
are strongly correlated.

After we obtain a low-dimensional representation of the
microstructure tensor, we train the data-driven emulator such
that it can predict the microstructure evolution. To demonstrate
the efficacy of the proposed emulator, we first train the emula-
tor using the microstructure evolution obtained at a large time
step and predict the microstructure evolution at smaller time
steps. In particular, we construct the training data by consid-
ering the microstructures at time steps 28¢, including the first
and the last microstructure frames and predict the microstruc-
tures at time steps 8. Every microstructure sequence contains
N = 20 frames and therefore, the training data are comprised
of 11 frames such that the dimension of the microstructure ten-
soris 32 x 32 x 11. The input space after CP decomposition is
11 x 300 in the temporal dimension and 32 x 300 across each
of the two spatial modes. To predict the microstructure evolu-
tion at a smaller time step, we now merely have to perform
training and testing over the temporal mode.

After we obtain the low-dimensional representation of the
microstructures, we use GPR to emulate microstructural evolu-
tion. Details of the GPR and its posterior predictive distribution
are provided in the “Methods” section. To model the covariance
structure, we use a Matérn kernel function given as:

_ )2 2
Kty — (Hﬁ(tdzf)) oxp <_ﬁ<ft>>

o2

where o2 is the length scale parameter. We train one GPR
for each of the rank-one tensors across the temporal dimen-
sion obtained from training frames 0,1,3,5,...,19 and
subsequently, predict the rank-one tensors for frames
0,1,2,...18,19. For every training microstructure sequence,
we perform hyperparameter (62) optimization by maximizing
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the log-marginal likelihood function (see “Methods” section
for details). We tune the hyperparameters individually for
every rank-one tensor. After obtaining the predictions, we
reconstruct the autocorrelations by using the outer product
of the predicted one-dimensional tensors across every mode.
The top row in Figure 2a shows the two-point correlation func-
tions obtained from the phase-field simulator while the cor-
responding predictions obtained from the emulator are plotted
in the bottom row. To demonstrate the advantage of using GPR
over other nonlinear regression methods, we compare the cor-
responding predictions in a representative low-dimensional
representation with that of support vector regression with
two different kernel functions: (1) radial basis kernel and (2)
polynomial kernel. The corresponding predictions are shown
in Figure 5. From the figure, it is evident that GPR is able to
accurately fit the data points, whereas support vector regres-
sion fails to capture the nonlinear behavior.

Once we have predicted the autocorrelation functions, the
last step involves recovery of microstructures from the auto-
correlation functions. This implies extracting phases from the
amplitude information because the phase information is typi-
cally lost during the convolutions performed for determining
autocorrelation functions. Thus, we employ an iterative hybrid
input—output phase-retrieval algorithm,*® based on the widely
known Gerchberg—Saxton algorithm,*’ the details of which
are provided in the “Methods” section and Figure 6. Tradi-
tionally, phase-retrieval methods are known to suffer from
poor reconstruction inaccuracies that depend on the initial
conditions.?>?® To circumvent this issue, we add a padding
around the microstructures before extracting the autocorrela-
tion functions during the training phase. The padding around
each of the microstructures, although increases the computa-
tional complexity, significantly improves the reconstruction
accuracy. In this work, we find the optimal padding on every
side to be equal to the image dimensions such that a computa-
tional microstructure of size 32 x 32 upon padding scales up
to 96 x 96. The value of pixels in the padding is set to zero.
Because the phase-retrieval algorithm is iterative, if the NMSE
of the reconstructed microstructure does not change beyond
5% for five consecutive iterations, the flow sequence exits.
The top row in Figure 2b shows the microstructure frames
that were not included in the training data set, while the cor-
responding predictions obtained from the phase-field emulator
are shown at the bottom. We note that the predicted micro-
structures closely resemble the true microstructures.

The emulated domain size is plotted as a function of time
for distinct 3¢, as shown in Figure 7a. See the “Methods” sec-
tion (Equation 11) for details on the calculation of average fea-
ture size. As indicated by these plots, the scaling dynamics are
found to nearly overlap with the phase-field results. To further
quantify these emulations, we calculate the NMSE (see Equa-
tion 10) of the predicted microstructures for different values of
dt as shown in Figure 7b. The average NMSE for distinct 8 is
equal to 0.0314, 0.0280, 0.0236, 0.0207, and 0.0128.
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Figure 6. Flowchart of the hybrid input—-output algorithm for micro-
structure reconstruction from the predicted autocorrelation functions.

At this point, some important observations are in order:
First, the reconstruction of the microstructures obtained from
our methodology is statistically accurate (with average NMSE
=6.78 x 10~7) as evident from Figure 2a. Next, we notice that
the proposed method is able to predict the microstructure evolu-
tion both in the transient stages initially where the phase sepa-
rating domain size increases rapidly as well as later during the
slow coarsening stage with a sufficiently high accuracy (see Fig-
ure 2b). It is worth emphasizing that predicting microstructural
evolution during the transient stages has proved to be challeng-
ing for recently published algorithms®*?> as the microstructures
evolve rapidly in the initial stages, making it difficult to capture
the evolving microstructural features. In contrast, the tensor-based
phase-field emulator, developed in this research, preserves the
spatiotemporal relationships even in the low dimensions; there-
fore, we are able to accurately predict the microstructural evo-
lution and recover the corresponding scaling dynamics. These
results show that the proposed approach is not only statistically

accurate, but is also able to capture the complex microstruc-
tural features. Finally, we notice that the NMSE of the predicted
microstructures decreases as the spinodal decomposition proceeds
toward the late-stage coarsening regime given that the feature
complexity is higher when the average phase separated domain
size is small. We also observe that the average NMSEs decrease
as the time step width, 8z, for the training data decrease, which
is owing to the larger interpolations that are performed by the
emulator at larger 8¢, causing a relative loss in accuracy.

The phase-field emulator proposed in this work involves
four steps as outlined in Figure 1. The first three steps comprise
the training phase of the emulator, which includes extraction
of the autocorrelation functions, tensor decomposition, and
GPR training. Testing phase involves prediction using GPR
and hybrid input—output algorithm for phase retrieval. For a
microstructure with S grids evolving for 7 time periods and
a tensor rank of R, the computation cost during the training
phase for each of the steps are O(S), O(STR), and O(RT?),
respectively. Note that the computational complexity for ten-
sor decomposition is determined for CP decomposition with
alternating least squares.® For the testing phase, the computa-
tional complexity for a single microstructure image is O(R) for
GPR prediction and O(MS log S) for the hybrid input—output
algorithm considering M iterations. If the rank R of CP decom-
position is fixed, then the computational complexity during the
testing phase scales as O(MS log S), making phase retrieval as
the most resource-intensive step. Table I shows the breakdown
of computational cost for each of the steps. All computations

presented in this work were performed on an Intel(R) Core(T)
19-10900K CPU with 32 GB of RAM without any GPU accel-
eration. The run time for obtaining the microstructure sequence
from phase-field simulation required approximately 0.19 sec
for microstructure of size 32 x 32. For every microstructure
sequence generated from the phase-field simulation, we used
n/2 + 1 of the frames to construct the training data set. The
distribution for each of the steps involved in the phase-field
emulator are as follows: In the training phase, the calculation
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Figure 7. (a) Comparison of the microstructure feature size of the predicted microstructure and the simulated microstructure for different values of
the time step, 3t. (b) Normalized mean squared error for predicted microstructures for different values of time step, 8t.

Table I. Computational run times of emulator and phase-field
simulations (in s).

Domain Training Testing PFS PFS to
Time Time Time Emulator

32 x 32 0.24 0.12 0.19 1.58

256 x 256 0.78 12.98 68 5.24

512 x 512 3.18 64.5 588.97 9.13

1024 x 1024 198.88 289.58 5057.3 17.46

of autocorrelation function consumed 44.4%, CP decomposi-
tion consumed 41.8%, while training the GPR required 13.8%
of the total training time. In the prediction phase, GPR predic-
tions accounted for merely 0.4% and the microstructure recon-
struction from GPR predictions consumed more than 99.6%
of the total run time. We also compare the computational costs
of microstructure prediction with an increase in domain size.
Table I shows the time (in s) for generating one microstructure
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in the sequence for 32 x 32, 256 x 256, 512 x 512, and
1024 x 1024. The last column shows the ratio of time taken
by the phase-field simulator for simulating one microstructure
to the time taken by phase-field emulator for predicting one
microstructure. We note that the proposed emulator is at least
5 x faster as compared to the phase-field simulator. Interest-
ingly, the phase-field emulator performs faster as the domain
size increases. In fact, for the largest domain size of 1024 x
1024, the phase-field emulator is more than 17x faster as com-
pared to the phase-field simulations.

Although the foregoing discussions have employed phase-
field simulations of spinodal decomposition, the proposed
approach is generalizable to other microstructural evolution
scenarios, such as coarsening of precipitates and dendritic
growth. Particularly, the proposed approach could be attractive
for two applications. The first application involves obtaining
the microstructure evolution at arbitrarily small time scales
via phase-field methods. Traditionally, the computational




complexity limits the temporal resolution of phase-field simu-
lations. With the proposed phase-field emulator, it is possible
to obtain the microstructure evolution at a smaller time step
(i.e., higher temporal resolution using just the microstructure
evolution obtained at a larger time scale). Therefore, the emu-
lator would preclude the need for running multiple simula-
tions whenever there is a change in the time step parameter.
The second application will be in physical experiments, such
as those that were performed under microgravity by NASA,
where physical restrictions and resource constraints limit the
number of experiments that could be performed.** Similar
limitations also exist when observing microstructure evolu-
tion in situ using costly high-fidelity measurement techniques
such as a transmission electron microscope* that often limit
the time steps at which the microstructures could be recorded.
Under such circumstances, the proposed emulator could pro-
vide an opportunity to observe the microstructure evolution
at intermediate time steps that could not be recorded by the
measurement system.

We also note some limitations of the proposed approach.
In the current implementation, we first obtain a tensor decom-
position followed by a separate GPR for each rank-one ten-
sor. This two-step approach could be computationally inten-
sive when complex microstructural features are involved that
require higher rank CP decomposition. In our future works,
we aim to develop nonlinear tensor regression methods that
would not require any decomposition. Second, limitation of
the approach originates from the CP decomposition itself. CP
decomposition results in rank-one tensor across each of the
temporal and spatial modes. Because we only predict across
the temporal mode, the information across the spatial mode
is smeared across the temporal mode. As a result, we notice
that the reconstruction errors are higher in the initial stages
of spinodal decomposition when the microstructures are rap-
idly evolving (see Figure 2b). Finally, we also notice some
limitations with the two-point correlations. For two-phase
microstructures (as considered in this work), it was possible
to handle two-point correlations because we can summarize all
the information with just either autocorrelation or cross-cor-
relation. However, for a microstructure with multiple phases,
two-point correlations could be cumbersome and could require
higher-order correlation functions.

Conclusions

In closing, we have presented a tensor-based phase-field
emulator to predict the microstructure evolution at arbitrary
time scales by leveraging the existing phase-field simulations.
Traditionally, the computational complexity of phase-field
simulations limit the smallest time scales that are tractable. In
light of this, the proposed approach provides an alternative to
obtain phase-field simulations at smaller time scales without
the need to run costly simulations. By casting microstructure
evolution as a tensor, the proposed approach preserves the spa-
tiotemporal relationships in the low-dimensional representa-
tions obtained via tensor decomposition. Overall, the proposed
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phase-field emulator is able to predict the microstructures with
average NMSE of 6.78 x 1077, We also highlight that the
phase-field emulator is material agnostic and could be applied
to a wide array of evolving microstructures. Our current and
future works are focused on predicting the microstructure
evolution for different phase-field parameters such as mobil-
ity and gradient free energy. We are also exploring advanced
tensor-on-tensor regression approaches that could be a viable
option, especially when microstructural features are complex.

Methods

Phase-field simulation

For simulating the microstructural evolution during spinodal
decomposition, the total free energy of the system (F) can be
formulated as:

F
—=/ o> (1 — )% +«|V|* par, 5
kBT V| Y~——— ~——

Fbu]k Fimerface

where ¢ = ¢(r, ?) is the composition field of the A-B alloy,
which decomposes into an A-rich and a B-rich stable phase.
Foulk represents the bulk free energy that accounts for the two
stable phases, ¢ = {0, 1} below the critical temperature, T is
the deposition temperature, and « is the gradient energy coef-
ficient, which penalizes gradients in the order parameter. The
kinetic evolution of the conserved order parameter ¢ follows
Cahn—Hilliard dynamics:

9¢ V.MV 6

o T
where M is the composition-dependent mobility proposed by
Bray and Emmott,*! M = Mo(l - ¢2)a and  is the chemi-
cal potential given as u = 8F /3¢ . The exponent equals 0.0
for volume diffusion-limited and 1.0 for interfacial diffusion-
dominated coarsening.*! We nondimensionalize the model
parameters previously described by selecting characteristic
energy scale F’, length scale I, and time ¢/, where F' = kgT,
L' =8x, and ¢’ = My. We solve the dynamic Equation 6 using an
explicit finite-difference method, where the spatial derivatives
are discretized using central difference, which is second-order
accurate in space, and temporal discretization is done using
a first-order Euler method.

Two-point correlation functions

We first begin with a mathematical description of the micro-
structures. For a discrete microstructure as described in the
foregoing (“Results and discussion” section), we denote m/ as
the probability of finding the local staten = 1,2, ..., N at spa-
tial location s = 1,2,...,S such that >, m? = land m} > 0.
Note that for a two-phase microstructure, N = 2. Such a math-
ematical representation allows one to characterize the micro-
structure using various statistical measures such as n-point sta-
tistics, chord length, and nearest-neighbor functions.*> One of
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continues iteratively until

Time

b,

some convergence criterion
is reached. Exact steps of
ALS could be found else-
where.*> A schematic of

s
the CP decomposition

.
br, approach is presented in

ar, Figure 8. In this work, we
implement the PARAFAC
function from the TensorLy

Figure 8. Schematic of tensor decomposition.

package in Python.*®

the most commonly employed statistic is the two-point spatial
correlation that captures the conditional probability of find-
ing a local state p at location s + 7 given that a local state n is
present at location s and is given as:*

11

J
= S 7 Z Dmi Vs, 7
s =1

where S, represents the number of admissible values of r
for a given s and is upper bounded by S. Note that super-
script j = 1,2,...J represents different realizations of the
microstructure.

Low-dimensional representation

CP decomposition also known as PARAFAC decomposition is
a generalization of singular value decomposition to multiway
tensor data sets. Originally proposed by Carroll and Chang,**
CP decomposition aims to decompose a tensor X of dimension
n x n x T into an outer product of rank-one tensors given as:

R
X~ Majob;oc; =[[AA,B,Cll, 8

i=1

where R is a positive number representing the number of rank-
one tensors needed to represent X', A; represents the weights,
a; eR", b; eR", and ¢; € RT represent the rank-one ten-
sors, A = [Aq,...,Ag] and lastly, A, B, and C are the factor
matrices containing the rank-one tensors as columns (i.e.,
A = [ay,...,ag] and likewise for B, C). Ideally, the number
of rank-one tensors required to recover the tensor X is equal
to the rank of X'. However, there is no finite algorithm for
computing the rank of a tensor, leading to the approximation
in Equation 8. To identify the minimum number of rank-one
tensors needed for CP decomposition, we start with an arbi-
trary rank and gradually increase until a good fit (say 95%)
is obtained. With the rank R specified, we use the alternating
least squares (ALS) to identify the rank-one tensors by mini-
mizing the Frobenius norm between the original X and the
reconstructed tensor X (i.e., X = argmin p X — X |F). Fora
three-way tensor as considered in our case, the ALS approach
fixes one of the factor matrices to solve for the other two and
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Gaussian process

regression
Once the microstructure evolution is projected in the rank-
one tensor space, we can learn the microstructural vari-
ations using statistical and machine learning techniques.
In this work, we choose Gaussian process regression, a
nonparametric regression model that is well suited to cap-
ture the nonlinear function variability. The flexibility of
Gaussian process regression arises from the assumption
that the underlying data—in this case rank-one tensors,
a;,b;,ci,i =1,2,..., R—are drawn from a Gaussian process
with mean function 9 (x) and covariance function k(x,x’) (i.e.,
f(x) ~ GPW(x),k(x,x")), where x is the domain for each of
the rank-one tensors. For simplicity, we assume a zero mean
Gaussian process prior in this work.

Let us represent the time step and the target variable for the
ith rank-one tensor be (7, ¢;) = {(t1,¢;i1), (f2,¢i2), . . ., (ty, Cio) }.
For any ¢, & {t1,%2,...,1,}, the posterior predictive distribu-
tion is given as ¢ |7, ¢;, tx ~ N (Cix, cov(cix)) , where:

Cie = K(t, DK (T, T) + *117 ¢
cov(cix) = K (tis ts) — K (1, t) [K(T, T) + > 11K (T, 1)

where K (-, -) is the covariance matrix.

Microstructure recovery

After the microstructure predictions are obtained from GPR,
we reconstruct the microstructure using a two-step procedure.
First, we reconstruct the two-point correlations correspond-
ing to the predicted values of the rank of tensors. With the
corresponding rank-one tensors, the reconstructed two-point
correlation is given as:

R
.QQZZX]aloblocz. 9
=1

To recover the microstructure from reconstructed two-point
correlation X, we use a hybrid input output (hIO) phase-retrieval
algorithm also known as the Gerchberg—Saxton algorithm.?’
Note that traditionally, phase-retrieval methods have been
reported to suffer from poor reconstruction accuracy and are sub-
ject to the initial conditions.?>?® To overcome these challenges,
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we embed a padding with zero pixel value around the micro-
structures, which has been shown to significantly improve the
reconstruction accuracy.*’ For a microstructure of dimension
n x n, we set a padding of n on each of the four sides. We now
present the algorithm that consists of the following steps:

(a) Initialize the microstructure with random 0-1 values,
m7(0).

(b) For a given microstructure mj(t) at iteration T,
obtain the corresponding Fourier transform, that is,
F(my)) = M} Ieiez , where [M}!| and 07 are, respectively,
the amplitude and phase of the Fourier transform. Here,
we removed the iteration number t to simplify the nota-
tions.

(c) Replace the amplitude of the Fourier transform in
step (b) with the amplitude of the autocorrelation
function (X') predicted in the previous step such that

.7% =/ I}'(/'Q)Iei%. Obtain the resulting micro-
structure using inverse Fourier transform, that is,
iy = FV(F ().

(d) Finally, we apply the constraints in the real space. Let us
consider that I'" contains all the spatial locations where the
local state violates the allowable values (e.g., the local
state is negative). We update the microstructure in the
next iteration as:

m'(t) — 9mS (1), s €T

mg(1+1)={’;1‘s;(t), S¢F’

where 0 < ¢ < 1 controls the rate of convergence. Addi-
tionally, if any of the local states exceed 1, then we reas-
sign the state to 1.

(e) Repeat steps (b—d) until the reconstruction error defined
as the Frobenius norm, ||m? (t) — m(t — 1)||F between
successive steps falls below a prespecified threshold.

Note that the amplitude substitution in step (b) is based on
the property of autocorrelation and is a crucial step in ensur-
ing that the guess microstructure gradually converges to the
true microstructure. In particular, it says that the Fourier trans-
form of autocorrelation is equal to the square of the magni-
tude of the corresponding microstructure function. The final
step enforces the nonnegativity constraint before updating the
microstructure function (i.e., m} (t) > 0 at any iteration t). A
schematic of the h1O algorithm is presented in Figure 6.

Performance metrics

Microstructures are stochastic, and therefore, any predictions
obtained from the phase-field emulator not only needs to be
accurate, but also statistically correct. To assess the prediction
accuracy of a microstructure, X, we will employ normalized
mean squared error (NMSE) given as:

Y - X11>
T

NMSE = 10

The average feature size*® was measured by calculating the

inverse of the first moment, k; (¢),*° which in turn, is obtained
from the structure factor, s(, ¢) given as:

Yo k@®sk, 1)
Zk S(k, t) ’

See Reference 41 for details on the structure factor and the
average feature size.

k() = 11
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