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Emulating the evolution of phase 
separating microstructures 
using low‑dimensional tensor 
decomposition and nonlinear 
regression
Ashif S. Iquebal,* Peichen Wu, Ali Sarfraz, and Kumar Ankit*

The  phase-field method is an attractive computational tool for simulating 
microstructural evolution during phase separation, including solidification and 
spinodal decomposition. However, the high computational cost associated with 
solving phase-field equations currently limits our ability to comprehend phase 
transformations. This article reports a novel phase-field emulator based on the 
tensor decomposition of the evolving microstructures and their corresponding two-
point correlation functions to predict microstructural evolution at arbitrarily small 
time scales that are otherwise nontrivial to achieve using traditional phase-field 
approaches. The reported technique is based on obtaining a low-dimensional 
representation of the microstructures via tensor decomposition, and subsequently, 
predicting the microstructure evolution in the low-dimensional space using Gaussian 
process regression (GPR). Once we obtain the microstructure prediction in the low-
dimensional space, we employ a hybrid input–output phase-retrieval algorithm to 
reconstruct the microstructures. As proof of concept, we present the results on 
microstructure prediction for spinodal decomposition, although the method itself 
is agnostic of the material parameters. Results show that we are able to predict 
microstructure evolution sequences that closely resemble the true microstructures 
(average normalized mean square of 6.78× 10

−7 ) at time scales half of that 
employed in obtaining training data. Our data-driven microstructure emulator 
opens new avenues to predict the microstructural evolution by leveraging phase-
field simulations and physical experimentation where the time resolution is often 
quite large due to limited resources and physical constraints, such as the phase 
coarsening experiments previously performed in microgravity.

Introduction
The phase-field method is a powerful tool to 
simulate microstructural evolution in mate-
rials undergoing phase transformations or 
degradation.1–6 However, this method, 
which typically involves solving nonlinear 

partial differential equations over a three-
dimensional (3D) computational domain, 
remains computationally intensive due 
to the strict limits on the maximum time 
and length scales implicitly imposed by 
the adopted numerical techniques.7 For 
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Impact statement
The phase-field method is an attractive computational 
tool for simulating microstructural evolution during 
phase separation, including solidification and spinodal 
decomposition. However, they remain computationally 
intensive due to the strict limits on the maximum time 
and length scales imposed by the numerical methods. 
This research presents a phase-field emulator that will 
predict the microstructural evolution observed in phase 
separating materials by leveraging the already existing 
data sets obtained from traditional phase-field mod-
eling approaches. The phase-field emulator, which for 
the first time, couples a tensor representation and non-
parametric tensor methods with microstructure mod-
eling and representation, will enable high-throughput 
and facile prediction of the microstructural evolution, 
as opposed to solving computationally intensive phase-
field simulations whenever a new simulation needs to 
be performed. Our data-driven microstructure emula-
tor opens new avenues to predict the microstructural 
evolution by leveraging phase-field simulations and 
physical experimentation where the time resolution is 
often quite large due to limited resources and physical 
constraints, such as the phase coarsening experiments 
previously performed in microgravity.
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instance, the computational complexity associated with 
simulating phase separation in those metallic melts where 
dendritic evolution is prevalent, scales as O(S4) , where S 
is the grid size.8 Similarly, to simulate the microstructural 
evolution in materials that accompany spinodal decomposi-
tion, the permissible length and time scales are even more 
restrictive,5,9 and warrant the application of supercomputers 
for solving fourth-order Cahn–Hilliard partial differential 
equations (PDEs). Depending on the spatial and time reso-
lution required, the run times for such phase-field simulations 
of microstructural evolution in three dimensions, which is a 
four-dimensional (4D) problem (considering the time evolu-
tion), can span from several hours to weeks on a supercom-
puting cluster. Current strategies to accelerating phase-field 
simulations rely on high-performance graphical processing 
units (GPUs) and power-intensive computational resources 
as opposed to intelligently leveraging the past simulations 
to emulate new ones. As a result, a new simulation needs to 
be executed every time a simulation parameter (e.g., atomic 
diffusion coefficient) is changed.

Over the past two decades, the increase in computational 
power with the emergence of supercomputers such as TSU-
BAME 2.010 and GPUs such as NVIDIA Tesla C2050,11 to 
some extent, has helped address some of the limitations.12–15 
In addition to high-performance GPUs, various numerical 
methods have also been developed such as adaptive mesh-
ing,16,17 time stepping,18,19 and spectral methods20 to speed 
up the microstructure simulation. Nonetheless, phase-field 
simulations at realistic length and time scales still require 
millions of computing core hours even on parallel comput-
ing platforms,21–23 not to mention their high installation and 
maintenance costs.

More recently, deep-learning strategies have been explored 
for modeling microstructure evolution. For instance, Yang 
et al.24 implemented a recurrent neural network (RNN) with 
eidetic 3D long short-term memory (LSTM) cells to predict 
the evolution pattern in four different evolution phenomena, 
including plane-wave propagation, grain growth, spinodal 
decomposition, and dendrite growth. The methodology 
involved training the RNN with microstructure sequences fol-
lowed by predicting the microstructure evolution for a new 
initial microstructure. In another work, Montes de Oca Zapiain 
et al.25 implemented an LSTM network to predict the micro-
structure evolution in phase-field simulation after obtaining a 
low-dimensional representation using two-point statistics and 
principal component analysis. Although these approaches have 
demonstrated the viability of using deep learning for micro-
structure prediction, there are some limitations. First, deep 
learning approaches remain data hungry and therefore their 
performance is highly contingent on the availability of large 
data sets. For instance, the LSTM network trained by Montes 
de Oca Zapiain et al.25 required 5000 high-fidelity phase-field 
simulation each with 60 frames. Another limitation of the 
existing approaches is the use of principal component analysis 
(PCA) for dimensionality reduction. Although PCA could be 

used to obtain a low-dimensional representation, they make 
little sense when dealing with sequence of images. Because 
PCA implementation requires unfolding an image data into 
a one-dimensional array, the spatiotemporal information is 
lost. This is also reflected in the poor reconstruction of the 
microstructures.25,26

In this work, we develop a phase-field emulator to predict 
the microstructure evolution at arbitrary time scales without 
solving costly PDEs. Our approach is based on represent-
ing the microstructure evolution as a tensor and obtaining a 
low-dimensional tensor decomposition of the two-point cor-
relation functions representing the evolving microstructures. 
The tensor decomposition does not require any unfolding and 
simultaneously preserves the spatiotemporal relationships, 
therefore overcoming the limitations of PCA. With the low-
dimensional representation at hand, we then employ Gaussian 
process regression (GPR)—a nonparametric nonlinear regres-
sion approach—to predict the microstructure evolution in the 
low-dimensional space at arbitrary time steps that cannot be 
accomplished without running multiple phase-field simula-
tions with distinct time step widths. For training, we generate 
spinodal decomposition via high-fidelity phase-field simula-
tions. After we obtain the predictions from GPR, we use a 
hybrid input–output phase-retrieval algorithm to reconstruct 
the microstructures from the predicted two-point correlation 
functions. An outline of the proposed methodology is pre-
sented in Figure 1. Finally, we demonstrate the efficacy of 
the methodology on spinodal decomposition of a two-phase 
material system.

Results and discussion
To predict the microstructure evolution, we first generate the 
training data set by simulating spinodal decomposition using 
the Cahn–Hilliard equation given as:

where φ ≡ φ(x, t) is the scaled concentration field of the A–B 
alloy, M is the mobility of diffusing species, ε is the gradient 
free energy coefficient, which is related to interfacial energy, 
and W is the well height of the double-well potential f (φ) 
given as:

A detailed description of the phase-field simulation is pro-
vided in the “Methods” section. For simulation, we fixed 
ε = 0.051 and diffusivity D = M∂2f (φ)/∂φ2

= 1  .  The 
temporal discretization was selected using the relationship 
δt = δx4W/22d+1

M ε2,9 where d equals 2 for two-dimensional 
(2D) simulation domains. We set the grid spacing both in x 
and y directions as δx = 0.3 such that the discretization in the 
temporal domain is δt = 0.0002 . For a given set of simula-
tion parameters, we record the microstructure evolution for 
20 frames. The generated microstructures are of sizes 32× 32 , 
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256× 256 , 512× 512 , and 1024× 1024 grid points. For dem-
onstration of the methodology and results, we use the micro-
structures of size 32× 32 grid points. Comparative results for 
other grid sizes are presented afterward.

We begin by considering a statistical representation of the 
microstructures. Mathematically, a microstructure function mn

s
 

is represented as the probability of finding some local state n 
at a spatial location s ∈ R2 for 2D microstructures. Given the 
stochastic nature of microstructures in space, we first obtained 
their statistical representation using two-point correlations. 

Intuitively, the two-point correlations, denoted as f r
np

 , capture 
the likelihood of observing some combination of microstructure 
states (n and p) at two randomly selected locations separated 
by a distance of r. For a two-state microstructure (say 0 and 
1), as we are concerned in this work, there are a total of four 
combinations of states (i.e., 00, 01, 11, and 10) and therefore, 
four sets of two-point correlations. However, two-point cor-
relation functions have inherent redundancies in them, making 
them interdependent. For instance, the probability of observ-
ing states 1 and 0 in spatial bins separated by a distance of r 

Figure 1.   Flow sequence outlining our microstructure emulation approach.
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(i.e., f r
10

 ) is the same as observing the two states in the reverse 
order separated by a distance of −r (i.e., f −r

01
 ). Considering 

all the redundancies, for a two-state microstructure, we only 
need to compute either an autocorrelation or a cross-correlation 
function and the remaining correlations could be recovered.27 
Because the two-point spatial correlation summarizes the pair-
wise distribution of local states within the microstructure, they 
are particularly useful in tracking microstructure evolution. 
Details of the two-point correlation functions are provided in 
the “Methods” section. To efficiently calculate the two-point 
correlations, we subscribed to discrete Fourier transform (DFT) 
of the microstructure function mn

s
 . We first note that the DFT of 

the two-point statistics is given as:

where F  is the DFT operator, |Mn

k
| denotes the magnitude com-

ponent, and θn
k
 represents the phase component of the microstruc-

ture function mn

s
 for state n. For n = p , the DFT of the two-point 

statistic gives us the autocorrelation function and for n  = p , the 
DFT gives the cross-correlation function. As mentioned ear-
lier, we only need either an autocorrelation or cross-correlation 
function for a two-phase microstructure and the rest could be 
recovered. In the remainder of the discussion, we work with 
the autocorrelation function of one of the states. Figure 2a–b 
shows representative examples of the microstructure and its cor-
responding autocorrelation function, respectively. We note that 
autocorrelation functions follow a similar evolution trend as their 
corresponding microstructures (i.e., they evolve rapidly during 
the initial stages and slowly in the later stages of coarsening).
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We next look at the tensor representation and decomposi-
tion of the autocorrelation functions. Microstructure evolu-
tion lies in a high-dimensional space (e.g., the evolution of 
a 323232 microstructure), which is the smallest data set we 
are working with, for just 10 time steps (or samples) lies in a 
327,680 dimensional space (Figure 3). To handle such high-
dimensional data structures, microstructures and their relevant 
statistics such as two-point correlations have traditionally 
been represented via matrix or vector-based methods such as 
principal component analysis that require flattening them into 
vectors.25,26,28–32 However, upon vectorization, microstructure 
sequences lose their topological structures and dependencies 
across spatial and temporal modes. The absence of an appro-
priate mathematical representation has precluded the develop-
ment of models that can efficiently capture the higher-order 
nonlinear patterns in microstructure evolution. In this regard, 
we provide a tensor representation of microstructure evolution. 
More specifically, we consider microstructure evolution as a 
three-way tensor with dimensions of parameter × space × time. 
Mathematically, microstructure evolution will be represented 
as X : P × S × T  , where P, S, and T represent the dimension 
of parameter, spatial, and temporal modes, respectively. For 
the emulation results reported next, the parameter mode is 
kept constant. To obtain a low-dimensional representation of 
the microstructure evolution, we employ a tensor decomposi-
tion approach known as canonical polyadic (CP) decomposi-
tion. Tensor decomposition is an extension of conventional 
PCA for multiway data sets that do not require any unfolding. 
Several methods for tensor decomposition exist such as CP,33 
Tucker,34 and tensor train.35 In this work, we implement CP 

Figure 2.   Frame-by-frame comparison of microstructure evolution simulated using phase-field method with the corresponding emulation. The top 
row shows the original sequence of the (a) two-point correlation and (b) autocorrelation functions of the phase-field generated data set while the 
emulations are plotted in the bottom row.
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decomposition as it factorizes the microstructure tensor into 
an outer product of rank-one tensors that are simple to handle 
using GPR. The number of such rank-one tensors represents 

the rank of the original microstructure tensor. Intuitively, rank 
of the microstructure tensor increases as the complexity in the 
spatiotemporal makeup of the microstructures increases. How-
ever, computing the rank parameter is NP hard and therefore, 
we perform a sensitivity analysis to determine the optimal 
rank. Essentially, we check the reconstruction error for varying 
ranks and select the rank for which the reconstruction error is 
within 5% of the lowest reconstruction error. We measure the 
reconstruction error using normalized mean squared error (see 
Equation 10 in the “Methods” section). Figure 4 shows the 
reconstruction error for different ranks. We obtain the lowest 
average normalized mean squared error (NMSE) of 86.17 for 
a rank of 400. However, for a lower rank of 300, we obtain 
the average NMSE of 86.32, which is within 5% of the lowest 
NMSE. Therefore, to reduce computational complexity, we 
fix the tensor rank to 300 for rest of the discussion. Additional 
details on CP decomposition and rank estimation are provided 
in the “Methods” section.

Before we present the results on GPR fitting, we provide an 
overview of the microstructure data from a low-dimensional 

Figure 3.   Exploratory analysis of the microstructure data in the low-dimensional space. (a) The first rank-one tensor across the temporal dimension 
(referred as original data) and the corresponding trend, (b) seasonality in the original data, (c) autocorrelation function, and (d) partial autocorrelation 
function.

Figure 4.   Variation in the NMSE for microstructure reconstruction 
with different tensor ranks.
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perspective. Figure 3a shows the first rank-one tensor across 
the temporal domain after performing CP decomposition and 
its corresponding trend is shown in red. Clearly, the rank-one 
tensor component shows a gradual increase as the microstruc-
ture evolves. In Figure 3b, we notice some seasonality effect 
that is obtained after removing the trend from the original 
data. Because the magnitude of seasonality is almost one-
tenth of the magnitude of the original data, we can assume 
these variations to be noise. Furthermore, in Figure 3c–d, we 
present the autocorrelation (i.e., correlation between the data 
and its lagged version) and the partial autocorrelation function 
that is the same as autocorrelation, but without the correla-
tion effect from data in between. From the autocorrelation 
plot, we can infer that successive data points are highly corre-
lated, especially for smaller lag values. From a microstructure 
standpoint, this indicates that the microstructure sequences 
at successive time instants are highly correlated, which is 
also evident from Figure 2. The partial autocorrelation plot 
in Figure 3d shows a strong correlation if lag is 1 (i.e., for 
successive data points), but it drops rapidly afterward. This 
again reaffirms our observation that the microstructure images 
are strongly correlated.

After we obtain a low-dimensional representation of the 
microstructure tensor, we train the data-driven emulator such 
that it can predict the microstructure evolution. To demonstrate 
the efficacy of the proposed emulator, we first train the emula-
tor using the microstructure evolution obtained at a large time 
step and predict the microstructure evolution at smaller time 
steps. In particular, we construct the training data by consid-
ering the microstructures at time steps 2δt  , including the first 
and the last microstructure frames and predict the microstruc-
tures at time steps δt . Every microstructure sequence contains 
N = 20 frames and therefore, the training data are comprised 
of 11 frames such that the dimension of the microstructure ten-
sor is 32× 32× 11 . The input space after CP decomposition is 
11× 300 in the temporal dimension and 32× 300 across each 
of the two spatial modes. To predict the microstructure evolu-
tion at a smaller time step, we now merely have to perform 
training and testing over the temporal mode.

After we obtain the low-dimensional representation of the 
microstructures, we use GPR to emulate microstructural evolu-
tion. Details of the GPR and its posterior predictive distribution 
are provided in the “Methods” section. To model the covariance 
structure, we use a Matérn kernel function given as:

where σ2 is the length scale parameter. We train one GPR 
for each of the rank-one tensors across the temporal dimen-
sion obtained from training frames 0, 1, 3, 5, . . . , 19 and 
subsequently, predict the rank-one tensors for frames 
0, 1, 2, . . . 18, 19 . For every training microstructure sequence, 
we perform hyperparameter ( σ2 ) optimization by maximizing 

� 4K(t, t′) =

(
1+

√

3(t − t
′)2

σ2

)
exp

(
−

√

3(t − t
′)2

σ2

)
,

the log-marginal likelihood function (see “Methods” section 
for details). We tune the hyperparameters individually for 
every rank-one tensor. After obtaining the predictions, we 
reconstruct the autocorrelations by using the outer product 
of the predicted one-dimensional tensors across every mode. 
The top row in Figure 2a shows the two-point correlation func-
tions obtained from the phase-field simulator while the cor-
responding predictions obtained from the emulator are plotted 
in the bottom row. To demonstrate the advantage of using GPR 
over other nonlinear regression methods, we compare the cor-
responding predictions in a representative low-dimensional 
representation with that of support vector regression with 
two different kernel functions: (1) radial basis kernel and (2) 
polynomial kernel. The corresponding predictions are shown 
in Figure 5. From the figure, it is evident that GPR is able to 
accurately fit the data points, whereas support vector regres-
sion fails to capture the nonlinear behavior.

Once we have predicted the autocorrelation functions, the 
last step involves recovery of microstructures from the auto-
correlation functions. This implies extracting phases from the 
amplitude information because the phase information is typi-
cally lost during the convolutions performed for determining 
autocorrelation functions. Thus, we employ an iterative hybrid 
input–output phase-retrieval algorithm,36 based on the widely 
known Gerchberg–Saxton algorithm,37 the details of which 
are provided in the “Methods” section and Figure 6. Tradi-
tionally, phase-retrieval methods are known to suffer from 
poor reconstruction inaccuracies that depend on the initial 
conditions.25,26 To circumvent this issue, we add a padding 
around the microstructures before extracting the autocorrela-
tion functions during the training phase. The padding around 
each of the microstructures, although increases the computa-
tional complexity, significantly improves the reconstruction 
accuracy. In this work, we find the optimal padding on every 
side to be equal to the image dimensions such that a computa-
tional microstructure of size 32× 32 upon padding scales up 
to 96× 96 . The value of pixels in the padding is set to zero. 
Because the phase-retrieval algorithm is iterative, if the NMSE 
of the reconstructed microstructure does not change beyond 
5% for five consecutive iterations, the flow sequence exits. 
The top row in Figure 2b shows the microstructure frames 
that were not included in the training data set, while the cor-
responding predictions obtained from the phase-field emulator 
are shown at the bottom. We note that the predicted micro-
structures closely resemble the true microstructures.

The emulated domain size is plotted as a function of time 
for distinct δt , as shown in Figure 7a. See the “Methods” sec-
tion (Equation 11) for details on the calculation of average fea-
ture size. As indicated by these plots, the scaling dynamics are 
found to nearly overlap with the phase-field results. To further 
quantify these emulations, we calculate the NMSE (see Equa-
tion 10) of the predicted microstructures for different values of 
δt as shown in Figure 7b. The average NMSE for distinct δt is 
equal to 0.0314, 0.0280, 0.0236, 0.0207, and 0.0128.
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At this point, some important observations are in order: 
First, the reconstruction of the microstructures obtained from 
our methodology is statistically accurate (with average NMSE 
= 6.78× 10

−7 ) as evident from Figure 2a. Next, we notice that 
the proposed method is able to predict the microstructure evolu-
tion both in the transient stages initially where the phase sepa-
rating domain size increases rapidly as well as later during the 
slow coarsening stage with a sufficiently high accuracy (see Fig-
ure 2b). It is worth emphasizing that predicting microstructural 
evolution during the transient stages has proved to be challeng-
ing for recently published algorithms24,25 as the microstructures 
evolve rapidly in the initial stages, making it difficult to capture 
the evolving microstructural features. In contrast, the tensor-based 
phase-field emulator, developed in this research, preserves the 
spatiotemporal relationships even in the low dimensions; there-
fore, we are able to accurately predict the microstructural evo-
lution and recover the corresponding scaling dynamics. These 
results show that the proposed approach is not only statistically 

accurate, but is also able to capture the complex microstruc-
tural features. Finally, we notice that the NMSE of the predicted 
microstructures decreases as the spinodal decomposition proceeds 
toward the late-stage coarsening regime given that the feature 
complexity is higher when the average phase separated domain 
size is small. We also observe that the average NMSEs decrease 
as the time step width, δt , for the training data decrease, which 
is owing to the larger interpolations that are performed by the 
emulator at larger δt , causing a relative loss in accuracy.

The phase-field emulator proposed in this work involves 
four steps as outlined in Figure 1. The first three steps comprise 
the training phase of the emulator, which includes extraction 
of the autocorrelation functions, tensor decomposition, and 
GPR training. Testing phase involves prediction using GPR 
and hybrid input–output algorithm for phase retrieval. For a 
microstructure with S grids evolving for T time periods and 
a tensor rank of R, the computation cost during the training 
phase for each of the steps are O(S) , O(STR) , and O(RT 3) , 
respectively. Note that the computational complexity for ten-
sor decomposition is determined for CP decomposition with 
alternating least squares.38 For the testing phase, the computa-
tional complexity for a single microstructure image is O(R) for 
GPR prediction and O(MS log S) for the hybrid input–output 
algorithm considering M iterations. If the rank R of CP decom-
position is fixed, then the computational complexity during the 
testing phase scales as O(MS log S) , making phase retrieval as 
the most resource-intensive step. Table I shows the breakdown 
of computational cost for each of the steps. All computations 
presented in this work were performed on an Intel(R) Core(T) 
i9-10900K CPU with 32 GB of RAM without any GPU accel-
eration. The run time for obtaining the microstructure sequence 
from phase-field simulation required approximately 0.19 sec 
for microstructure of size 32× 32 . For every microstructure 
sequence generated from the phase-field simulation, we used 
n/2+ 1 of the frames to construct the training data set. The 
distribution for each of the steps involved in the phase-field 
emulator are as follows: In the training phase, the calculation 

Figure 5.   Comparison of prediction in a representative low-dimensional space obtained from (a) Gaussian process regression (GPR) with support 
vector regression (SVR) using (b) radial basis function (rbf) kernel and (c) polynomial kernel. The y-axis is unlabeled as it may not have physical 
significance in the low-dimensional space.

Figure 6.   Flowchart of the hybrid input–output algorithm for micro-
structure reconstruction from the predicted autocorrelation functions.
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of autocorrelation function consumed 44.4%, CP decomposi-
tion consumed 41.8%, while training the GPR required 13.8% 
of the total training time. In the prediction phase, GPR predic-
tions accounted for merely 0.4% and the microstructure recon-
struction from GPR predictions consumed more than 99.6% 
of the total run time. We also compare the computational costs 
of microstructure prediction with an increase in domain size. 
Table I shows the time (in s) for generating one microstructure 

in the sequence for 32× 32 , 256× 256 , 512× 512 , and 
1024× 1024 . The last column shows the ratio of time taken 
by the phase-field simulator for simulating one microstructure 
to the time taken by phase-field emulator for predicting one 
microstructure. We note that the proposed emulator is at least 
5 × faster as compared to the phase-field simulator. Interest-
ingly, the phase-field emulator performs faster as the domain 
size increases. In fact, for the largest domain size of 1024 × 
1024, the phase-field emulator is more than 17× faster as com-
pared to the phase-field simulations.

Although the foregoing discussions have employed phase-
field simulations of spinodal decomposition, the proposed 
approach is generalizable to other microstructural evolution 
scenarios, such as coarsening of precipitates and dendritic 
growth. Particularly, the proposed approach could be attractive 
for two applications. The first application involves obtaining 
the microstructure evolution at arbitrarily small time scales 
via phase-field methods. Traditionally, the computational 

Figure 7.   (a) Comparison of the microstructure feature size of the predicted microstructure and the simulated microstructure for different values of 
the time step, δt . (b) Normalized mean squared error for predicted microstructures for different values of time step, δt.

Table I.   Computational run times of emulator and phase-field 
simulations (in s).

Domain Training 
Time

Testing 
Time

PFS 
Time

PFS to 
Emulator

32 × 32 0.24 0.12 0.19 1.58

256 × 256 0.78 12.98 68 5.24

512 × 512 3.18 64.5 588.97 9.13

1024 × 1024 198.88 289.58 5057.3 17.46
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complexity limits the temporal resolution of phase-field simu-
lations. With the proposed phase-field emulator, it is possible 
to obtain the microstructure evolution at a smaller time step 
(i.e., higher temporal resolution using just the microstructure 
evolution obtained at a larger time scale). Therefore, the emu-
lator would preclude the need for running multiple simula-
tions whenever there is a change in the time step parameter. 
The second application will be in physical experiments, such 
as those that were performed under microgravity by NASA, 
where physical restrictions and resource constraints limit the 
number of experiments that could be performed.39 Similar 
limitations also exist when observing microstructure evolu-
tion in situ using costly high-fidelity measurement techniques 
such as a transmission electron microscope40 that often limit 
the time steps at which the microstructures could be recorded. 
Under such circumstances, the proposed emulator could pro-
vide an opportunity to observe the microstructure evolution 
at intermediate time steps that could not be recorded by the 
measurement system.

We also note some limitations of the proposed approach. 
In the current implementation, we first obtain a tensor decom-
position followed by a separate GPR for each rank-one ten-
sor. This two-step approach could be computationally inten-
sive when complex microstructural features are involved that 
require higher rank CP decomposition. In our future works, 
we aim to develop nonlinear tensor regression methods that 
would not require any decomposition. Second, limitation of 
the approach originates from the CP decomposition itself. CP 
decomposition results in rank-one tensor across each of the 
temporal and spatial modes. Because we only predict across 
the temporal mode, the information across the spatial mode 
is smeared across the temporal mode. As a result, we notice 
that the reconstruction errors are higher in the initial stages 
of spinodal decomposition when the microstructures are rap-
idly evolving (see Figure 2b). Finally, we also notice some 
limitations with the two-point correlations. For two-phase 
microstructures (as considered in this work), it was possible 
to handle two-point correlations because we can summarize all 
the information with just either autocorrelation or cross-cor-
relation. However, for a microstructure with multiple phases, 
two-point correlations could be cumbersome and could require 
higher-order correlation functions.

Conclusions
In closing, we have presented a tensor-based phase-field 
emulator to predict the microstructure evolution at arbitrary 
time scales by leveraging the existing phase-field simulations. 
Traditionally, the computational complexity of phase-field 
simulations limit the smallest time scales that are tractable. In 
light of this, the proposed approach provides an alternative to 
obtain phase-field simulations at smaller time scales without 
the need to run costly simulations. By casting microstructure 
evolution as a tensor, the proposed approach preserves the spa-
tiotemporal relationships in the low-dimensional representa-
tions obtained via tensor decomposition. Overall, the proposed 

phase-field emulator is able to predict the microstructures with 
average NMSE of 6.78× 10

−7 . We also highlight that the 
phase-field emulator is material agnostic and could be applied 
to a wide array of evolving microstructures. Our current and 
future works are focused on predicting the microstructure 
evolution for different phase-field parameters such as mobil-
ity and gradient free energy. We are also exploring advanced 
tensor-on-tensor regression approaches that could be a viable 
option, especially when microstructural features are complex.

Methods
Phase‑field simulation
For simulating the microstructural evolution during spinodal 
decomposition, the total free energy of the system (F) can be 
formulated as:

where φ ≡ φ(r, t) is the composition field of the A–B alloy, 
which decomposes into an A-rich and a B-rich stable phase. 
Fbulk represents the bulk free energy that accounts for the two 
stable phases, φ = {0, 1} below the critical temperature, T is 
the deposition temperature, and κ is the gradient energy coef-
ficient, which penalizes gradients in the order parameter. The 
kinetic evolution of the conserved order parameter φ follows 
Cahn–Hilliard dynamics:

where M is the composition-dependent mobility proposed by 
Bray and Emmott,41 M = M0

(
1− φ2

)α and µ is the chemi-
cal potential given as µ = δF/δφ . The exponent equals 0.0 
for volume diffusion-limited and 1.0 for interfacial diffusion-
dominated coarsening.41 We nondimensionalize the model 
parameters previously described by selecting characteristic 
energy scale F ′ , length scale L′ , and time t′ , where F ′

= kBT  , 
L
′ = δx , and t′ = M0 . We solve the dynamic Equation 6 using an 

explicit finite-difference method, where the spatial derivatives 
are discretized using central difference, which is second-order 
accurate in space, and temporal discretization is done using 
a first-order Euler method.

Two‑point correlation functions
We first begin with a mathematical description of the micro-
structures. For a discrete microstructure as described in the 
foregoing (“Results and discussion” section), we denote mn

s
 as 

the probability of finding the local state n = 1, 2, . . . ,N  at spa-
tial location s = 1, 2, . . . , S such that 

∑
n
m
n

s
= 1 and mn

s
≥ 0 . 

Note that for a two-phase microstructure, N = 2 . Such a math-
ematical representation allows one to characterize the micro-
structure using various statistical measures such as n-point sta-
tistics, chord length, and nearest-neighbor functions.42 One of 

� 5
F

kBT

=

�

V




φ2(1− φ)2� �� �

F
bulk

+ κ|∇φ|2� �� �
F
interface




dr,

� 6
∂φ

∂t
= ∇ ·M∇µ,
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the most commonly employed statistic is the two-point spatial 
correlation that captures the conditional probability of find-
ing a local state p at location s+ r given that a local state n is 
present at location s and is given as:43

where Sr represents the number of admissible values of r 
for a given s and is upper bounded by S. Note that super-
script j = 1, 2, . . . J  represents different realizations of the 
microstructure.

Low‑dimensional representation
CP decomposition also known as PARAFAC decomposition is 
a generalization of singular value decomposition to multiway 
tensor data sets. Originally proposed by Carroll and Chang,44 
CP decomposition aims to decompose a tensor X  of dimension 
n× n× T  into an outer product of rank-one tensors given as:

where R is a positive number representing the number of rank-
one tensors needed to represent X  , �i represents the weights, 
ai ∈ Rn , bi ∈ Rn , and ci ∈ RT  represent the rank-one ten-
sors, � = [�1, . . . , �R] and lastly, A,B , and C are the factor 
matrices containing the rank-one tensors as columns (i.e., 
A = [a1, . . . , aR] and likewise for B,C ). Ideally, the number 
of rank-one tensors required to recover the tensor X  is equal 
to the rank of X  . However, there is no finite algorithm for 
computing the rank of a tensor, leading to the approximation 
in Equation 8. To identify the minimum number of rank-one 
tensors needed for CP decomposition, we start with an arbi-
trary rank and gradually increase until a good fit (say 95%) 
is obtained. With the rank R specified, we use the alternating 
least squares (ALS) to identify the rank-one tensors by mini-
mizing the Frobenius norm between the original X  and the 
reconstructed tensor X̂  (i.e., X̂ = argmin

X̂
||X̂ − X ||F  ). For a 

three-way tensor as considered in our case, the ALS approach 
fixes one of the factor matrices to solve for the other two and 

� 7f
np

r
=

1

Sr

1

J

Sr∑

s

J∑

j=1

(j)
m
n

s

(j)
m
p

s+r
,

� 8X ≈

R∑

i=1

�iai ◦ bi ◦ ci = [[�,A,B,C]],

continues iteratively until 
some convergence criterion 
is reached. Exact steps of 
ALS could be found else-
where.45 A schematic of 
the CP decomposition 
approach is presented in 
Figure 8. In this work, we 
implement the PARAFAC 
function from the TensorLy 
package in Python.46

Gaussian process 
regression

Once the microstructure evolution is projected in the rank-
one tensor space, we can learn the microstructural vari-
ations using statistical and machine learning techniques. 
In this work, we choose Gaussian process regression, a 
nonparametric regression model that is well suited to cap-
ture the nonlinear function variability. The flexibility of 
Gaussian process regression arises from the assumption 
that the underlying data—in this case rank-one tensors, 
ai, bi, ci, i = 1, 2, . . . ,R—are drawn from a Gaussian process 
with mean function ϑ(x) and covariance function k(x, x′) (i.e., 
f (x) ∼ GP(ϑ(x), k(x, x′)) , where x is the domain for each of 
the rank-one tensors. For simplicity, we assume a zero mean 
Gaussian process prior in this work.

Let us represent the time step and the target variable for the 
ith rank-one tensor be (T , ci) = {(t1, ci1), (t2, ci2), . . . , (to, cio)} . 
For any t∗ �∈ {t1, t2, . . . , to} , the posterior predictive distribu-
tion is given as ci∗|T , ci, t∗ ∼ N (ci∗, cov(ci∗)) , where:

where K(·, ·) is the covariance matrix.

Microstructure recovery
After the microstructure predictions are obtained from GPR, 
we reconstruct the microstructure using a two-step procedure. 
First, we reconstruct the two-point correlations correspond-
ing to the predicted values of the rank of tensors. With the 
corresponding rank-one tensors, the reconstructed two-point 
correlation is given as:

 
To recover the microstructure from reconstructed two-point 

correlation X̂  , we use a hybrid input output (hIO) phase-retrieval 
algorithm also known as the Gerchberg–Saxton algorithm.37 
Note that traditionally, phase-retrieval methods have been 
reported to suffer from poor reconstruction accuracy and are sub-
ject to the initial conditions.25,26 To overcome these challenges, 

c
i∗ = K(t∗, T )[K(T , T )+ σ2I ]−1

c
i

cov(c
i∗) = K(t∗, t∗)− K(t∗, t∗)

′
[K(T , T )+ σ2I ]−1

K(T , t∗)

� 9X̂ =

R∑

l=1

�lal ◦ bl ◦ cl .

Figure 8.   Schematic of tensor decomposition.
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we embed a padding with zero pixel value around the micro-
structures, which has been shown to significantly improve the 
reconstruction accuracy.47 For a microstructure of dimension 
n× n , we set a padding of n on each of the four sides. We now 
present the algorithm that consists of the following steps: 

(a)	 Initialize the microstructure with random 0–1 values, 
m
n

s
(0).

(b)	 For a given microstructure mn

s
(τ) at iteration τ  , 

obtain the corresponding Fourier transform, that is, 
F(mn

s
) = |M

n

k
|e
iθn
k , where |Mn

k
| and θn

k
 are, respectively, 

the amplitude and phase of the Fourier transform. Here, 
we removed the iteration number τ to simplify the nota-
tions.

(c)	 Replace the amplitude of the Fourier transform in 
step (b) with the amplitude of the autocorrelation 
function ( X̂  ) predicted in the previous step such that 

F̃(mn

s
) =

√
|F(X̂ )|eiθ

n

k  . Obtain the resulting micro-
structure using inverse Fourier transform, that is, 
m̃
s

n
= F−1(F̃(mn

s
)).

(d)	 Finally, we apply the constraints in the real space. Let us 
consider that Ŵ contains all the spatial locations where the 
local state violates the allowable values (e.g., the local 
state is negative). We update the microstructure in the 
next iteration as: 

 where 0 < ϑ < 1 controls the rate of convergence. Addi-
tionally, if any of the local states exceed 1, then we reas-
sign the state to 1.

(e)	 Repeat steps (b–d) until the reconstruction error defined 
as the Frobenius norm, �mn

s
(τ)− m

s

n
(τ− 1)�F between 

successive steps falls below a prespecified threshold.

Note that the amplitude substitution in step (b) is based on 
the property of autocorrelation and is a crucial step in ensur-
ing that the guess microstructure gradually converges to the 
true microstructure. In particular, it says that the Fourier trans-
form of autocorrelation is equal to the square of the magni-
tude of the corresponding microstructure function. The final 
step enforces the nonnegativity constraint before updating the 
microstructure function (i.e., mn

s
(τ) ≥ 0 at any iteration τ ). A 

schematic of the hIO algorithm is presented in Figure 6.

Performance metrics
Microstructures are stochastic, and therefore, any predictions 
obtained from the phase-field emulator not only needs to be 
accurate, but also statistically correct. To assess the prediction 
accuracy of a microstructure, X, we will employ normalized 
mean squared error (NMSE) given as:

m
n

s
(τ+ 1) =

{
m
n

s
(τ)− ϑm̃s

n
(τ), s ∈ Ŵ

m̃
s

n
(τ), s /∈ Ŵ

,

� 10NMSE =

||X − X̂ ||
2

√

||X ||

.

The average feature size48 was measured by calculating the 
inverse of the first moment, k1(t),49 which in turn, is obtained 
from the structure factor, s(k, t) given as:

See Reference 41 for details on the structure factor and the 
average feature size.
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