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Characterizing Coherent Integrated Photonic Neural
Networks Under Imperfections

Sanmitra Banerjee

Abstract—Integrated photonic neural networks (IPNNs) are
emerging as promising successors to conventional electronic Al
accelerators as they offer substantial improvements in computing
speed and energy efficiency. In particular, coherent IPNNs use
arrays of Mach—-Zehnder interferometers (MZIs) for unitary trans-
formations to perform energy-efficient matrix-vector multiplica-
tion. However, the underlying MZI devices in IPNNs are susceptible
to uncertainties stemming from optical lithographic variations
and thermal crosstalk and can experience imprecisions due to
non-uniform MZI insertion loss and quantization errors due to
low-precision encoding in the tuned phase angles. In this arti-
cle, we, for the first time, systematically characterize the impact
of such uncertainties and imprecisions (together referred to as
imperfections) in IPNNs using a bottom-up approach. We show
that their impact on IPNN accuracy can vary widely based on the
tuned parameters (e.g., phase angles) of the affected components,
their physical location, and the nature and distribution of the
imperfections. To improve reliability measures, we identify critical
IPNN building blocks that, under imperfections, can lead to catas-
trophic degradation in the classification accuracy. We show that
under multiple simultaneous imperfections, the IPNN inferencing
accuracy can degrade by up to 46 %, even when the imperfection
parameters are restricted within a small range. Our results also
indicate that the inferencing accuracy is sensitive to imperfections
affecting the MZIs in the linear layers next to the input layer of the
IPNN.

Index Terms—Neural networks, phase
variations, quantization errors, silicon photonics.

angles, process

I. INTRODUCTION

HE rapid emergence of Big Data from mobile, Internet
T of Things (IoT), and edge devices and the continuous
growth in computing power have enabled deep neural networks
(DNNs) to perform various complex tasks, such as natural-
language processing, action recognition, game-playing, and
image classification [1]. The primary computational primitive
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while querying such advanced DNNS is the time- and energy-
intensive matrix multiplication operations [2]. To improve DNN
efficiency, recent years have seen a push towards domain-
specific artificial intelligence (AI) accelerators that use tightly
coupled data processing units connected in a systolic array [3].
However, with Moore’s law approaching its end, electronic
accelerators are facing fundamental bottlenecks due to the
slowdown in CMOS scaling and low-bandwidth metallic in-
terconnects [4]. Continued progress in Al development is also
hampered by the high energy overhead associated with training
and inferencing DNNs on electronic processors [5].

Integrated photonic neural networks (IPNNs) based on silicon
photonics can expedite extensive linear operations (i.e., matrix
multiplication) in DNNs [6]. By taking advantage of the nat-
ural parallelism in photonics, computations in IPNNs can be
performed in parallel, hence reducing the complexity of matrix-
vector multiplication in DNNs from O(N?) to approximately
O(1) [7]. Although the energy consumption in IPNNSs increases
with matrix sizes, simulation results have shown that optical
matrix-vector multiplications can even outperform digital irre-
versible computation at the thermodynamic limit [8]. Moreover,
experimental implementations of coherent IPNNs have demon-
strated high accuracy, fast convergence during training, and
the capability to learn non-linear decision boundaries [9]. Such
benefits along with continuous advances in CMOS-compatible
silicon photonics technology have positioned IPNNs as a
promising alternative to electronic Al accelerators [10].

Neurons in an IPNN can be implemented either in a coherent
or a noncoherent manner. Coherent neurons use Mach—Zehnder
interferometers (MZIs) with phase shifters (PhS) and 3-dB
beam splitters (BeS) to modify the phase and amplitude of
the single-wavelength optical signal [11]. The optical phase
shift in such neurons is realized by inducing changes in the
refractive index of the silicon (Si) waveguide using either the
thermo-optic effect [12], electro-optic effect [13], or phase-
change materials [14]. Fig. 1 presents a hierarchical view of a
multi-layer perceptron (MLP)-based IPNN. On the other hand,
noncoherent neurons employ the Broadcast-and-Weight config-
uration to manipulate the power of multiple-wavelength optical
signals [6]. While noncoherent neurons support wavelength-
division multiplexing, they suffer from inter-channel crosstalk
and the dependency between the input and output wavelengths
necessitates energy-intensive wavelength conversion steps [6].
As a result, recent commercial efforts on developing photonic
neural networks have focused on using coherent neurons to
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Fig. 1. Hierarchical schematic of MLP-based coherent IPNNs.

expedite matrix multiplication at a low energy cost [15]. We
explore IPNNs built using coherent neurons in this paper; after
this point, the term IPNN, if not explicitly mentioned otherwise,
denotes a coherent IPNN.

Despite the aforementioned advances, there exist several
roadblocks to the further advancement of IPNNs. In particu-
lar, their performance can be highly impacted by the optical
losses accumulating when cascading MZI devices [16], [17],
and the additional computation needed for mapping the trained
weights—obtained during software training—to the param-
eters (i.e., phase angles) in MZI networks [16]. In addi-
tion, fabrication-process variations (FPVs) and mutual ther-
mal crosstalk due to convective heat transfer between micro-
heaters in thermo-optic PhS [18] (considered in this paper) can
lead to faulty matrix multiplication. FPVs arise from optical-
lithography process non-idealities. For example, changes in the
critical dimensions (e.g., waveguide width and thickness) lead
to incorrect operation of photonic components [19]. IPNNs are
also prone to imprecisions caused by the non-uniform insertion
loss of constituent MZIs [20]. In addition, the resolution of
the phase settings depends on the encoding precision of the
digital-to-analog converter (DAC). For example, using an /V-bit
DAC, only 2% different phase angles in the range [0, 27] can be
realized. This leads to a quantization error in the encoded phase
angles, which, in turn, results in a degraded inferencing accuracy.
All these imperfections highly impact the performance and
operation of IPNNs, and therefore must be fully characterized.

In this paper, we present the first comprehensive study
of the impact of uncertainties and imprecisions (collectively
referred to as imperfections) on the performance of IPNNs.
Our analysis follows a bottom-up approach: we show how
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imperfections in different components affect the functionality of
IPNN’s fundamental devices (i.e., MZIs), and how the affected
MZIs lead to incorrect matrix multiplication, which finally leads
to a degraded inferencing accuracy. We show that this degrada-
tion varies significantly based on the tuned-phase angles, the
position of the affected MZIs, and the nature of the variations
(e.g., whether they are correlated or localized). Moreover, we
show that imprecisions introduced due to non-uniform MZI
insertion losses and quantization error in low-precision phase
encoding have a catastrophic impact when topologically shal-
lower (close to the input) IPNN layers are affected. In particular,
we show that the IPNN accuracy can drop to 10% (accuracy of
random prediction for the MNIST dataset) under expected levels
of uncertainties in PhS and BeS. The main contributions of this
paper are:

® A comprehensive hierarchical analysis of the impact of
uncertainties in phase angles and splitting ratios in the
MZIs in IPNNSs;

® An analysis of the impact of imprecisions due to the non-
uniformity in the MZI insertion loss on IPNN accuracy;

e An analysis of IPNN performance under quantization
errors in the PhS and a comparative study of different phase
encoding methods;

® A modeling framework to identify critical components in
IPNNs where imperfections lead to severe degradation in
the IPNN inferencing accuracy;

e A case study on the inferencing accuracy of IPNNSs in the
presence of multiple simultaneous imperfections.

The remainder of this paper is organized as follows. Section II
reviews the fundamentals of MZI-based coherent IPNNs,
and discusses the different sources of IPNN imperfections
(uncertainties and imprecisions) and prior work. In Section III,
we analyze the impact of uncertainties in the phase angles and
splitting ratios in [IPNN’s and identify the uncertainty susceptible
“critical” components in the network. Section IV focuses on
the IPNN imprecisions; we first characterize the performance
of IPNNSs in the presence of lossy MZIs and then explore how
the IPNN inference accuracy is degraded under low-precision
phase settings. In Section V, we use the imperfection models
proposed in Sections III- IV to demonstrate how the IPNN
performance can be affected in the simultaneous presence
of multiple imperfections. We conclude in Section VI by
summarizing the observations that can guide the design and
manufacturing of reliable next-generation IPNNs.

II. BACKGROUND AND RELATED PRIOR WORK
A. Mach—Zehnder Interferometer (MZI)

As shown in Fig. 1(d), an MZI consists of two tunable phase
shifters (PhS, ¢ and #) on the upper arm and two 3-dB beam
splitters (BeS). The PhS are used to apply configurable phase
shifts and obtain varying degrees of interference between the
input optical signals. They can be implemented using thermal
microheaters, where the refractive index of the underlying
waveguide changes with temperature (i.e., thermo-optic effect),
altering the phase of the optical signal traversing the waveguide.
Moreover, 2 x 2 BeS can be designed using directional couplers,
where a fraction (defined by transmittance) of the optical signal
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atan input port is transmitted to an output port, and the remaining
(defined by the reflectance) is coupled to the other output port
with a phase shift of 7. For symmetric 3-dB (i.e., 50:50) BeS,
both transmittance and reflectance coefficients are % As a
result, the transfer matrix of a 2 x 2 MZI with two PhS and
two 3-dB BeS (see Fig. 1(d)) can be defined as [21]:

Trizr(0,0) = Upes - Upns(0) - Upes - Upns(¢)

N Tll T12 _ e;¢ (ew o 1) %(eie + 1) (1)

To1 T #(eie +1) =2’ —-1))’
where Upg.s and Up}, s denote the transfer matrices for the 3-dB
BeS and the PhS, respectively. Note that the expression for T/ 71
in (1) assumes ideal PhS and BeS. Later, we will augment the

MZI transfer matrix to include the effects of uncertainties in
phase angles and BeS splitting ratios.

B. MZI-Based Coherent IPNNs

A multi-layer perceptron (MLP)-based DNN consists of
several consecutive layers of interconnected neurons. Post
feature-extraction, the input features (X1, . .., X, ) are fed into
a series of fully connected layers, followed by a final LogSoft-
Max activation layer to obtain the probability of each output
class (Y1,...,Yn,). Each connection between the neurons is
assigned a weight that represents its synaptic plasticity and
each neuron is tasked with a multiply-and-accumulate (MAC)
operation followed by passing the resultant output through a non-
linear activation function ( fy 4y7). By introducing non-linearity
in the network, the activation functions (e.g., sigmoid, tanh,
and Rectified Linear Unit) enable the DNNs to learn complex
non-linear relationships [6]. During each training iteration, the
weight of each connection in a DNN is incrementally updated to
minimize the loss function that quantifies the difference between
the expected and the obtained DNN output.

Consider an Ny x N; weight matrix L,, representing the
edge weights connecting a layer with /N7 neurons with a layer
with Ny neurons. Using singular value decomposition (SVD)
and considering Fig. 1(c), we have L,, = ULV, where U
and V are unitary matrices with dimensions Ny x Ny and
N x Ny, respectively. Moreover, VH denotes the Hermitian
transpose of V,,,, and ¥ is a diagonal matrix consisting of the
eigenvalues of L,,.

Recketal. [17] first demonstrated that any unitary transforma-
tion between optical channels can be realized using a triangular
mesh of MZIs. However, Clements et al. proposed an alternative
arrangement of MZIs (see Fig. 1) to implement unitary transfor-
mations with half the physical footprint of the Reck design and
a lower optical loss [16]. Therefore, for a given weight matrix
W = UmEmVnI;I , this paper assumes the Clements design to
represent the unitary matrices U,,, and V,/. The diagonal matrix
> can be realized using an array of MZIs to attenuate each
channel separately without mixing by terminating one input and
one output of each MZI (¥ in Fig. ). As MZIs can only attenuate
optical signals, a global optical amplification is necessary on
each output to represent arbitrary diagonal matrices [22]. This
scaling factor is realized using the optical gain unit (OGU) G
(see Fig. 1) that includes semiconductor optical amplifiers [23].
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C. Imperfections in IPNNs

We classify imperfections in IPNNs into three broad
categories: (1) uncertainties in phase angles and splitting ratios
due to FPVs and thermal crosstalk, (2) non-uniformity in the
insertion loss in MZIs due to FPVs, and (3) quantization errors
in the phase angles due to low-precision DACs. FPVs in silicon
photonic integrated circuits have been studied by comparing
the response of identically designed devices on the same die,
across multiple dies on the same wafer, across different wafers,
and also across different fabrication runs [24]. Selvaraja et al.
observed a non-uniformity of up to +20.7 nm in the top silicon
thickness of dies in a 200 mm SOI wafer in [25]. Variations
in silicon layer thickness and etch depth have also been shown
to result in degraded performance of optical devices, such as
photonic switches, microring resonators [26], and MZIs [27].
IPNNs are also sensitive to mutual thermal crosstalk. During
inferencing in IPNNs, the trained phase settings stored in the
digital memory are converted to voltage inputs to the microheater
coils using a digital-to-analog converter (DAC) and a voltage
driver. The optical phase shift effected by the microheaters
is proportional to the square of the applied voltage. Due to
such thermal crosstalk among proximal microheaters, the tuned
phase shifts may deviate from their expected value [28], thereby
leading to incorrect matrix multiplication and faulty inferencing.
Modeling the effects of thermal crosstalk requires complex func-
tional simulations and extensive experimental measurements on
a taped-out photonic circuit and is beyond the scope of this paper.

Optical signal traversing an MZI experiences coupling
loss [29], absorption loss in the microheaters’ metal planes [30],
and propagation loss in the waveguides [29]. Prior experimental
analysis has shown a loss of up to 1.5 dB in a standalone
MZI [31]. This optical loss is non-unform and can vary across
MZIs due to FPVs. Other major sources of imprecisions are
the low-precision DACs used to encode the phase angles. Low-
precision encoding is especially favored for low-power applica-
tions as the energy efficiency of DACs scales exponentially with
the number of bits [32]. This leads to inevitable quantization
errors in the phase angles and thereby resulting in incorrect
unitary transformations and a degraded inferencing accuracy.
We observe that, while all these imperfections affect the MAC
operations in coherent photonic neurons, the nature of their
impact differs. It is, therefore, necessary to first model them
in a standalone manner before simulating their simultaneous
impact.

IPNNSs are also susceptible to dynamic errors in the phase
shifts due to thermal drifts during programming. Such dy-
namic errors are expected to be more prevalent in the Clements
architecture—this is because the Clements network does not
provide access to the inputs/outputs of individual MZIs and
necessitates complex programming schemes with power sam-
pling (e.g., [33]). However, such errors have not yet been quan-
titatively analyzed and, therefore, should be explored in future
work.

D. Related Prior Work

While the impact of imperfections in silicon photonic devices
and optical interconnects have been studied [24][34], there has
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barely been any prior work to help understand the cumulative
impact of different uncertainties and imprecisions on IPNNs
built using imperfect photonic components. Even in the few
cases where this has been studied, efforts typically focus on
highlighting the impact of one (or in some cases, a select few)
source(s) of imperfections. For example, [20] explored the effect
of non-uniform insertion loss in the MZIs and uncertainties in
the phase angles alone. Both the insertion loss and phase errors
are sampled from zero-mean Gaussian distributions, however,
the respective distributions are assumed to have the same stan-
dard deviation across all the MZIs. The deployment of thermal
actuators to compensate for phase errors was proposed in [35].
However, the micro-heaters in such actuators lead to induced
mutual thermal crosstalk among neighboring waveguides. A
method to counter the impact of uncertainties using a modified
cost function during training and post-fabrication hardware cali-
bration was presented in [36]. However, this method only focuses
on uncertainties in the phase angles, ignoring the considerable
impact of inevitable errors in BeS (=50% reduction in network
accuracy as we will show later). Moreover, the required hardware
calibration necessitates extraction of the effects of FPVs on
each MZI in the network using a differential test. But this step
becomes increasingly compute-intensive as the network scales
up. The modified training also results in up to a 5% loss in the
inferencing accuracy, which is unacceptable for many critical
applications (e.g., autonomous driving).

In our preliminary work [37], we modeled the impact of
uncertainties in the phase angles and splitting ratios in MZIs
on the IPNN accuracy and showed that their impact can vary
widely based on the position and the tuned phase angles in
the affected MZIs. In [38], we leverage the non-uniqueness of
SVD under reflections to propose an optimization technique to
improve the IPNN performance in the presence of uncertainties
in phase angles while ensuring that the trained weights remain
unaffected, thereby guaranteeing no loss in the nominal infer-
encing accuracy. This paper extends our analysis in [37], [38] by
considering, for the first time, the impact of spatially correlated
uncertainties in PhS and BeS, non-uniform MZI insertion loss,
and quantization error in PhS.

This paper presents a hierarchical and comprehensive anal-
ysis of the impact of various uncertainties and imprecisions
that can affect IPNNs. These imperfections can stem from
various sources, e.g2., FPVs, run-time thermal crosstalk, and
low-precision DACs used for phase encoding. Fig. 2 shows
an overview of the proposed bottom-up approach using which
we model each of these imperfections. We also present a case
study of an IPNN under multiple simultaneous imperfections
and demonstrate how its inferencing accuracy is affected under
several different realistic scenarios.

III. UNCERTAINTIES IN PHASE ANGLES AND SPLITTING
RATIOS: A BOTTOM-UP CHARACTERIZATION

In this section, we systematically analyze the impact
of uncertainties in the phase angle and splitting ratio in
MZIs on the inferencing accuracy of IPNNs in a bottom-up
approach.
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A. Component-Level: Phase Shifters and Beam Splitters

We consider using thermo-optic PhS in IPNNs, which
have been widely employed in coherent IPNNs [20][31]. The
temperature-dependent phase change (®) in a thermo-optic
phase shifter can be modeled as [18]:

2
H — 2rl\ (dn) AT. 2)
Ao dr
Here, [ is the length of the thermo-optic phase shifter and X is the
dn

optical wavelength. Also, 9% ~ 1.8X 10~* K~ is the thermo-
optic coefficient of silicon at Ay = 1550 nm and temperature
T = 300 K [39], and AT is the temperature change. Under
FPVs, the length [ of the phase shifter can change. This, in turn,
results in a deviated phase angle. From (2), observe that with
all other parameters remaining constant and for a small shift,
Al, in the length, A®/® = Al/l. Therefore, an % shift in [
leads to an 2% shift in ®. During in-situ training of IPNNs,
the phase angles in PhS are applied using thermal actuators (i.e.,
microheaters). Let AT be the change in temperature and P be the
corresponding heater power consumption required for a phase
shift ®. From [18], we then have AT = ﬁ. Here, G denotes
the thermal conductance between the heated waveguide and the

heat sink and A denotes the cross-sectional area traversed by the
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heat flow. If the heater coil has a resistance R, the voltage from
the DC source is given by AT = %. Leveraging (2), we
therefore have:
2ml dn V2 9
(I)_<A0> (dT) Gar_ Vo )
where K is a constant of proportionality that depends on the
structure of the phase shifter. Changes in the supply voltage
V' (due to voltage droop and IR loss) lead to a deviated .
From (3), we have, for a small voltage shift AV, A®/P =
2 - (AV/V). Therefore, an 2% shift in V results in a 22% shift
in ®. Additionally, mutual thermal crosstalk among neighboring
actuated waveguides, which are placed in proximity in IPNNs,
imposes phase errors in ¢ and 6 (see Fig. 1(d)). While methods
such as [35] have been proposed to mitigate thermal crosstalk
during the transient state (training), prior work does not address
random perturbations in the phase angles during steady-state
inferencing. Due to perturbations in the phase angles (6 and ¢
in (1)), Thrz; will deviate from its intended form, resulting in
faulty matrix multiplication.
Considering the classical, lossless 2 x 2 beam-splitter
schematic shown in Fig. 1(d), the electric fields at the output

E’O /1 can be attributed to the transmitted electric-field £y and
the reflected electric-field /1 based on [21]:

Eio _ .7"00 itio ) [ Eo . @)
E, itor 711 E,

Here, r and ¢ denote the reflectance and transmittance asso-
ciated with each path, respectively. Note that 13, +t3; = 1
and r?, +t2, = 1. For symmetric BeS, ro9 = r1; = r and
to1 = t10 = t. Additionally, for ideal 3-dB BeS, r =1t = %
However, under uncertainties, r and ¢ will deviate from %; this
results in unbalanced and imperfect BeS [24], [40]. Unlike PhS,
BeS are passive devices and once fabricated, we cannot actively
change their r and ¢ values during IPNN training (e.g., in a
passive directional coupler).

Prior studies have shown an error of ~0.21 rad in the tuned
phase angles in PhS for mature fabrication processes [41]. This
corresponds to % x 100 ~ 3.3% of the maximum possible
phase angle, 2. Taking this into consideration, we perturb 6 and
¢ using a Gaussian distribution with mean () set to their nom-
inal tuned values (obtained from training) and multiple values
of standard deviation in the range 0.005 - 27 < o < 0.05 - 27.
Although a deviation of only 3.3% of 27 is expected in mature
fabrication processes, we consider this wider range to demon-
strate IPNN accuracy for emerging immature processes. While a
deviation of 1-2% is typically expected in the r and ¢ parameters
in BeS [41], we vary them using a similar distribution as PhS—
Gaussian with 1 = \% and 0.005 - % <0<0.05- %—for a
fair comparison of their impact. In the rest of the paper, oppg
refers to % for PhS, and o .5 refers to v/20 for BeS.

B. Device-Level: MZIs

Variations in 6 (Af) and ¢ (A¢) phase angles in PhS can
result in deviations in the MZI transfer matrix (1, z) defined
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in (1). Such deviations can be modeled as:

0Tnz1(6, ) OTviz1(6,¢)
50 AG + 29

et (6+0) e

_ 2 2
= | _eilernr e A

2 2

b
ie (610 _ 1) 0
2v
+ (_e; @0+ 1) 0) Ag. )

ATwnz1(0,0) = Ag¢

Let the relative changes in 6 and ¢ be Ky = 4 and K, =
%, respectively. We assume Ky = K, = K as the two PhS,
corresponding to € and ¢, are in proximity (see Fig. 1(d)).
This assumption is made to simplify the analyses only in this
subsection. In all subsequent analyses independent variations

are considered in 6 and ¢. Thus, from (5), we have:

0 4 )i giet_pei?
ATwnzi(0,0) = K (6+9) J0+) ) Lo i
_(9+¢) D) - ¢ 2 —0 2

(6)

Using (1) and (6), Fig. 3 shows the magnitude of deviation
for each of the four elements in T,z (i.e., 111, 112, T51, and
T55) relative to the modulus of their nominal values for different
values of 0 and ¢ with K = 0.05, chosen as an example. We
find that the relative deviation increases monotonically as 6 and
¢ increase. This indicates that the transfer matrix of an MZI
with higher tuned phase angles is more sensitive to phase errors.
This observation holds for all K at the standalone device-level.
However, we will later show that when MZIs are connected in
an array, the accuracy of the resulting unitary transformation
depends on both the tuned phase angles and the position of the
affected MZIs.

The proposed Th;z; model in (1) assumes ideal 3-dB BeS
with rgg = 711 = tg1 = t10 = \% However, under uncertain-
ties in BeS, this model changes to:

sl 4,160 )
wr'te’ + it r) e

rrl et (0+0) _ 40l

it'ret0®) 4 iprlet  —ti'el? 4y’

Taz1(0,¢) = (

where r and 7’ denote the reflectances of the first and the
second beam splitter, respectively, while ¢ and ¢’ denote their
transmittances, with each of these deviated from 1/ V2. We
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Fig. 4. (a) Average RV D for four random 5 X 5 unitary matrices with one

MZI under variations at a time. (b) An MZI array (including the MZI numbers)
to represent any 5 X 5 unitary matrix (see Fig. 1).

replace the ideal MZI transfer matrix (in (1)) with its general
form (in (6)) for the rest of our analysis.

C. Layer-Level: MZI Array

Under uncertainties in PhS and BeS, T,z deviates, and con-
sequently, the matrix represented by the array can vary from the
intended unitary matrix. We use the relative-variation distance
(RVD) as a figure-of-merit to quantify the difference between
the intended unitary matrix (U) and the deviated unitary matrix
(U). This is given by:

Um n Um,n

RVDU,U) =3 >" ’_

m n Um n

5

; ®)

where U, ,, and Umm denote the element at the m™ row and
n™ column of unitary matrix U and U, respectively.

Different elements of a unitary transfer matrix are affected
by different subsets of MZIs in the array. Therefore, variations
in each MZI will have varying impacts on the overall RV D
defined in (8). This is indeed the case as is shown in Fig. 4. We
consider four randomly generated 5 x 5 unitary matrices with
uncertainties in the PhS and BeS. For each matrix, we introduce
variations in one MZI at a time. For each MZI, we perform 1000
Monte Carlo iterations and calculate the average RV D. In each
iteration, the MZI parameters (6, ¢, 7, 1/, t, t') corresponding to
the faulty MZI are chosen from a Gaussian distribution with
opns = 0pes = 0.05. From Fig. 4 we observe that there is
a significant variation in the average RV D corresponding to
different MZIs representing the same unitary matrix. Note also
that the distribution of average RV D across the MZIs differs
across the four example unitary matrices. Clearly, the impact of
uncertainties in an MZI on the accuracy of the unitary transfor-
mation varies based on both the tuned phase angles in the MZI
and its position in the array. As a result, the resilience of different
IPNN’s against uncertainties may also vary even though they are
structurally mapped to the same MZI array. Therefore, any study
on the reliability of IPNNs must be performed post-training in
order to consider the tuned phase angles.

D. System-Level: Coherent IPNNs

Uncertainties in the MZI parameters lead to faulty matrix
multiplication in the linear layers, hence imposing inferencing
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Fig. 5. Illustration of the 16-dimensional complex feature vector extraction
from an MNIST image using shifted FFT.

accuracy loss in IPNNs. To better understand the impact of such
uncertainties, we present a case study of an IPNN handling the
MNIST hand-written digit classification task. To convert the
28 x 28 = 784 dimensional real-valued images in the MNIST
dataset to complex-valued vectors, we consider the shifted
fast Fourier transform (FFT) of each image. This results in a
784-dimensional complex-valued vector for each image (see
Fig. 5). To compress the feature vector, we consider the values
within the 4 x 4 region at the center of the frequency spectrum.
Compared to the baseline accuracy of 94.12% with the 28 x 28
feature vector, the 4 x 4 case results in a negligible 0.26%
accuracy loss.

In the IPNN architecture considered in the case study, fully
connected feedforward networks with one input layer and two
hidden layers of 16-complex valued neurons are implemented
using the Clements design [16]. Each linear layer is followed
by the nonlinear Softplus function applied to the modulus of the
complex numbers. To model intensity measurement, a modulus
squared nonlinearity is applied after the output layer. This is
followed by a final LogSoftMax layer to obtain a probability
distribution. We use a cross-entropy loss function during train-
ing [42].

We implement the three weight matrices corresponding to the
neurons in the input and the two hidden layers in the IPNN using
MZI arrays. Based on the network architecture, the dimensions
of the weight matrices are 16 x 16 (input layer, LO), 16 x 16
(first hidden layer, L.1), and 10 x 16 (second hidden layer, L2).
Note that uncertainties in PhS and BeS in IPNNs may have
different distributions and correlations. Therefore, we design
three experiments (X Ps) to analyze the impact of uncertain-
ties in the MZI arrays on the IPNN inferencing accuracy under
different uncertainty scenarios:

e FE X P;: Uncertainties from the same distribution are

present across all the MZIs in an IPNN.

e EXP,: Uncertainties from the same distribution are
present across most MZIs, with localized uncertainties of
higher magnitude affecting a few proximal MZIs. Such
scenarios may arise as a result of a thermal hotspot in the
network or due to manufacturing defects.

e F X Ps: Spatially correlated uncertainties where proximal
MZIs encounter correlated magnitude of uncertainties.
Such scenarios have often been observed in experimental
studies on FPVs in integrated photonic circuits [43].

1) EXP;: Global Uncertainties: In this experiment, we

simulate the uncertainty scenario in which all the MZIs have
random uncertainties sampled from the same Gaussian
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distribution; uncertainties are considered in PhS only, BeS only,
and both PhS and BeS. For the PhS-only case, we select several
opns (see Section II1.A) and consider 6 g, = 0. Foreach o py, g,
we perform 1000 Monte Carlo iterations. In each iteration, we
calculate the inferencing accuracy using the 10,000 test images
in the MNIST dataset. The use of 1000 Monte Carlo iterations is
formally justified based on the fact that with a 95% confidence
interval, the maximum margin of error in the mean of the
inferencing accuracy is 6.27%, which is within the acceptable
range [44]. The same steps are repeated for the BeS-only case
(o0 pns =0), and for the both PhS and BeS case (0 pps = 0es),
the results of which are shown in Fig. 6. For all these cases, the
accuracy declines steeply as o pjg Bes increases; this indicates
the high sensitivity of the IPNNs to random uncertainties. As
expected, the inferencing accuracy drops the most when uncer-
tainties are present in both PhS and BeS. We also observe that
uncertainties in PhS have a higher impact on IPNN accuracy
compared to those in BeS. Therefore, techniques to improve
IPNN robustness should prioritize countering uncertainties in
PhS over those in BeS. It helps that, contrary to the static BeS,
PhS are tunable. In prior work [38][45] [46], we have shown
that IPNNs can indeed be made more robust by optimizing the
phase angles.

2) EXPs: Global Uncertainties With Regional Perturba-
tions: To find the impact of localized uncertainties on the [IPNN
accuracy, we divide the IPNN into different regions, each con-
sisting of four MZIs (considered as an example) arranged in
a 2 x 2 grid. We insert random perturbations with oppgs =
oBes = 0.1 in a selected region while the remaining regions
have uncertainties with opps = oes = 0.05. Note that we
consider a high o for the localized uncertainties to simulate the
impact of catastrophic manufacturing defects (e.g., microheaters
permanently turned off, thermal hotspots, and lattice defects
in SOI waveguides [47]). For each selected region, we again
consider 1000 Monte Carlo iterations (similar to £ X P;) and
calculate the reduction in the mean inferencing accuracy from
the nominal case.

The three linear layers in our IPNN (L0, L1, and L2) can be
represented by six unitary multipliers. The impact of regional
perturbations in these unitary multipliers on the classification
accuracy (experiment F.X P») is presented as heatmaps in Fig. 7.
Fig. 7(a)-(b) correspond to the U and V¥ matrices of LO
while Fig. 7(c)—(d) and Fig. 7(e)—(f) correspond to L1 and L2,
respectively. Note that for all these cases, the diagonal matrix 3
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is assumed to be error-free with the singular values arranged in
random order. Each box in the heatmaps corresponds to a region
(i.e.,a2 x 2 MZI grid with four MZIs) with the height (width) of
the layer increasing vertically (horizontally). The value (color) in
each box signifies the accuracy loss when a regional perturbation
is applied to the corresponding region. From experiment £ X P;
(Fig. 6), we know that the reduction in IPNN accuracy under
a global uncertainty of opps = 0pes = 0.05 is 74.98%. Fig. 7
shows that even under regional perturbations, the accuracy loss
hovers around 74.98%. However, in some regions, the regional
perturbations result in a decreased accuracy loss (e.g., the region
inrow 2 column 5 in Fig. 7(a)), whereas in others they exacerbate
the impact of global uncertainties (e.g., the region in row 3
column 0 in Fig. 7(f)). In fact, Fig. 7(a) shows an example where
accuracy losses due to regional perturbations in two contiguous
regions differ by more than 10%. Moreover, note that the low-
and high-impact regions are arranged randomly in each unitary
multiplier. This shows that the impact of localized uncertainties
in MZIs can differ significantly and some MZIs are more critical
than others (see also Fig. 4). Such an analysis of the impact
of localized uncertainties can, therefore, help IPNN designers
to develop reliability measures targeted toward MZIs in the
high-impact regions in the network.

3) EXPs: Spatially Correlated Uncertainties: Uncertain-
ties in phase angles and splitting ratios originating from
fabrication-process variations and thermal crosstalk can be spa-
tially correlated. Experimental studies have shown that prox-
imal devices on a wafer encounter, to some degree, similar
variations in waveguide thickness and width [34]. Similarly,
thermal crosstalk is also expected to be localized where a hotspot
formed on a chip can affect neighboring devices. However,
considering such spatially-correlated uncertainties has proven
to be challenging for silicon photonic integrated circuits [48].
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Fig. 8. MZIs connected in an array to represent a 16 x 16 unitary multiplier.
A typical MZI has an aspect ratio of ~ 2:1 [50]. Therefore, the MZlIs in this
multiplier can be represented in a 15 units x 32 units grid as shown. Each MZI is
assumed to be 2 units long and 1 unit wide. In our analysis, one unit corresponds
to Iarz1/2, where Iy 7 is the length of an MZI. Note that while we consider
MZIs with a 2:1 aspect ratio, our approach is applicable for any MZI dimensions.

The Monte-Carlo approach where we apply the same random
variation to all the IPNN components (FX P;) solely captures
the common-mode variability while ignoring spatially corre-
lated uncertainties. This is extended in EX P, to allow for
differential variations within a 2 x 2 region in an MZI array.
This approach is appropriate for electrical devices that are
significantly smaller than operation wavelengths. Therefore,
differential uncertainties need to be considered only for a few
components that require matching (e.g., matching resistor pairs
in differential amplifiers) [49]. As photonic devices are much
larger than the operation wavelength, small changes in wave-
guide dimensions can result in large uncertainties in the device
performance. As a result, uncertainties in all (and not just in a
few) components in photonic integrated circuits are expected to
be spatially correlated [43].

Prior work (e.g., [43]) has shown that accurately capturing
correlated uncertainties requires O(N?) correlation parameters
for N components, and determining these parameters from a
physical layout has proven to be challenging. We address this
by proposing an approach that simulates the impact of such
correlated uncertainties in IPNNs by defining the correlation
parameters (in our case, correlation length) in terms of the MZI
dimensions. As a result, this approach is agnostic to optical
lithography and can be extended to all emerging IPNNs.

Recall that the weight matrices in the IPNN case study are
16 x 16 (input layer), 16 x 16 (first hidden layer), and 10 x 16
(second hidden layer). Therefore, post SVD, the MZI arrays
are used to represent five 16 x 16 and one 10 x 10 unitary
matrices. To apply correlated uncertainties to these MZI arrays,
we consider the MZIs to be arranged in a grid (see Fig. 8). For
any N x N unitary matrix, it can be shown that the MZIs can
be arranged in a (N — 1) units x 2N units grid, where one unit
corresponds to half the length of an MZI. Fig. 8 shows such a grid
for a 16 x 16 unitary matrix. Therefore, to analyze the impact
of correlated uncertainties, we create (N — 1) units X 2N units
variation maps. Fig. 9(a) shows an example of an uncorrelated
15 x 32 variation map with oppg = 0.025. Note that this is an
approximate model where we assume that MZIs that are topolog-
ically adjacent will also be physically adjacent in the floorplan
to minimize the waveguide length. However, our approach will
remain applicable if the layout of MZIs differs from the array
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topology to satisfy routing and design-rule check constraints.
Details on how different variation maps are generated can be
found in the Appendix.

Prior experimental efforts (e.g, [34] and [51]) have reported
that for some uncertainties—especially those due to FPVs—
the non-uniformity increases radially from the center of a
wafer towards its edges (i.e., the wafer center experiences
less variations). Fig. 9(b) shows one such randomly generated
15 x 32 uncorrelated radial variation map with o ppgs = 0.025.
Fig. 9(d)—(f) show the spatially correlated variation maps ob-
tained when the uncorrelated variation map (Fig. 9(a)) is con-
voluted with Gaussian kernels with L = 2, 4, and 8 units,
respectively. Observe that as L increases, the uncertainties in
the variation maps are spread out over larger contiguous areas.
Similarly, Fig. 9(g) shows the correlated variation map when the
uncorrelated radial variation map (Fig. 9(b)) is convoluted with
a Gaussian kernel with L = 4. Observe also that, as expected,
regions towards the periphery of the correlated radial variation
maps are more prone to experience higher levels of uncertainties
(red and blue regions in Fig. 9(g)).

The uncertainty associated with each 1 unit x 1 unit block
in a correlated variation map is applied to the phase angle (or
splitting ratio or both) of the corresponding MZI and the IPNN
inferencing accuracy is obtained. This procedure is repeated
for 1000 iterations to obtain the mean inferencing accuracy
under correlated variations. Fig. 10(a)—(c) show the mean IPNN
inferencing accuracy when spatially correlated non-radial uncer-
tainties with different Ls are introduced in PhS, BeS, and both,
respectively. We observe that in all cases, under similar o, the
accuracy is lower when the uncertainties are spatially correlated,
compared to the uncorrelated scenario. Note also that as L
increases, the accuracy degrades further in all cases. This is an
interesting observation given prior studies on correlated uncer-
tainties in integrated photonic circuits for Datacom applications
(e.g., [34], [43]) that showed the impact of uncertainties on a
system performance becomes less catastrophic as the correlation
length increases. In other words, a higher correlation length
results in better frequency matching (i.e., inter-device match-
ing) among apart devices (e.g., microring resonators in [52]).
Nevertheless, coherent IPNNs based on MZIs do not neces-
sarily benefit from inter-device matching. Highly correlated
uncertainties in IPNNs lead to a large deviation in the IPNN
parameters in one direction. For example, all PhS in an extended
region (based on the large correlation length) may experience a
positive shift in the phase angles. As a result, the optical signal
traversing a cascade of deviated PhS in MZIs experiences a
larger undesired phase shift, resulting in higher performance
degradation. Conversely, in the presence of more localized
uncertainties (i.e., shorter correlation lengths), parameters in
cascaded MZIs will likely experience deviations in different
directions and will likely cancel each other (e.g., a positive phase
shift on an optical signal cancels a prior negative phase shift).
Therefore, such localized uncertainties will potentially have a
lower impact on IPNN accuracy, as shown by the blue lines in
Fig. 10.

This trend demonstrates an interesting aspect of random un-
certainties in IPNNs. The uncorrelated variation maps shown
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Fig. 10. Impact of spatially correlated non-radial and radial uncertainties on IPNN inferencing accuracy. Here, L denotes the correlation length defined in units.

One unit corresponds to [ 7 z7/2, where I ;71 denotes the length of an MZI.

in Fig. 9(a)-(b) have a few MZIs with extremely high levels
of uncertainties (hotspots), while most other MZIs have very
low variations. Upon convolution with the Gaussian kernel,
which is a smoothing filter, the high levels of variations at these
hotspots are distributed across adjoining blocks. Consequently,
while we have very few (if any) hotspots in the correlated
variation maps, many more blocks have somewhat high lev-
els of variations. Our simulation results show that given two
distributions of uncertainties, one where a few MZIs experience
extreme uncertainties (low correlation length) and another where
several MZIs experience moderate-to-high uncertainties (high
correlation length)—the latter is expected to have more impact

on the IPNN accuracy. Therefore, efforts to improve the toler-
ance of IPNNs should consider addressing the uncertainties in
all the MZIs in an array, rather than being targeted towards a
select few MZIs with catastrophic uncertainties.

Fig. 10(d)—(f) show that the aforementioned trend also holds
for spatially correlated radial uncertainties. Observe also that for
similar o, the IPNN accuracy is higher for radial uncertainties
compared to non-radial uncertainties. Recall that in the radial
case, the magnitude of uncertainties experienced by each block
in the array is scaled based on its Euclidean distance from the
center of the grid. Therefore, only the MZIs at the grid edges have
o = opps, while for all other blocks o < opps. In contrast, for
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non-radial cases, all MZlIs in the gridhave 0 = o ppg. Asaresult,
every MZI in a radial variation map is expected to have smaller
(or at most equal) uncertainties compared to the corresponding
MZI in a non-radial variation map.

IV. OPTICAL LOSS AND QUANTIZATION ERRORS

In addition to uncertainties in phase angles and splitting ratios,
MZIs are prone to imprecisions due to inevitable optical losses
and quantization errors introduced in the phase angles when
they are encoded using low precision DACs. In this section,
we present an analytical model to capture the impact of optical
losses in IPNNs and, for the first time, quantify IPNN perfor-
mance degradation when the optical losses in different MZIs
have different statistical distributions (different standard devi-
ations). We also identify different ways in which phase angles
can be encoded and simulate the impact of quantization errors
on the IPNN accuracy.

A. IPNNs Under Non-Uniform MZI Insertion Loss

A drawback of coherent IPNNs is the increased chip size
due to the bulky MZIs [53]. The large footprint of MZIs can
be attributed to the relatively small thermo-optic coefficient
of most opto-electronic materials. As a result, an optical path
length of hundreds of micrometers is necessary for a required
phase change [54]. In fact, state-of-the-art MZIs, such as the
one proposed in [20], are as long as ~ 300um, with the majority
of the footprint occupied by the two phase shifters (each up to
135 pm long). Optical signal traversing such bulky MZIs can
experience optical losses in the 3-dB BeS, absorption loss due
to the microheaters’ metal planes, and propagation loss in the
waveguides. Prior work showed that a total insertion loss of up to
1.2 dB per MZI is expected, even for state-of-the-art MZIs [53].
During the training of IPNNs (in software), we consider lossless
MZIs. However, the on-chip insertion loss can lead to a degraded
inferencing accuracy.

Consider an MZI with two BeS (see Fig. 1). The transfer
matrix of a lossless 3-dB beam splitter is given by (4) with rgg =
ri1 = to1 = tig = % Suppose in the input splitter the optical
signal amplitude in the top arm is attenuated by a factor of 3,
while the one in the bottom arm is attenuated by (3. The transfer
matrix of this lossy beam splitter is:

Bu/V2  iBw/V2
iBu/V2  Puw/V2
Similarly, note that the attenuation factors in the top and bottom

arms of the output splitter are given by 3,.+ and 3,4, respectively.
The transfer matrix of the lossy MZI is given by:

9)

N BrtBiee’ 0T —BvBire’®  iBrtBine’®+iBrb B
TMZI(97¢): Cﬁ 8 Pi(9+¢)2+itﬂ Brret® —Bri B 9%9+B~ 8 .
\ rtPIte 5 rbPIte rt lb‘2 rbPlt
(10)
In a special case when 8 = B = Byt = Bry = 5, Tyl =
B2Thrz1. This overall amplitude attenuation of B2 corresponds

to a power attenuation of B%. Therefore, the insertion loss, in
dB, is given by IL = 10 log;, 3*. Note that the loss modeled
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Fig. 11.  Impact of MZI insertion loss on the IPNN accuracy.

for an MZI (in terms of 3) represents the total MZI insertion loss,
including the waveguide propagation loss, PhS metal absorption
loss, and BeS coupling loss).

To analyze the impact of non-uniform MZI insertion loss on
the IPNN inferencing accuracy, we perform 1000 Monte Carlo
iterations. In each iteration, the insertion loss for each MZI is
sampled from a Gaussian distribution, IL = 7, +N(0,0%;,).
We take the mean of the 1000 classification accuracies as the
final classification accuracy. Fig. 11 shows the mean inferenc-
ing accuracy in the IPNN case study in the presence of lossy
MZIs. We observe that when MZIs in all layers are lossy, the
accuracy degrades significantly with increasing p7 7. Even when
prr = 0dB, the accuracy falls sharply with increasing o .. This
shows that increasing non-uniformity in the insertion loss across
MZIs (i.e., with increasing o 1,) can be catastrophic to the IPNN
performance, even when the mean insertion loss is zero. To high-
light the impact of insertion loss in different layers, we consider
lossy MZlIs in the three hidden layers (L0, L1, and L2), one layer
at a time (see Fig. 11). When insertion loss is introduced in one
layer, the MZIs in the other layers are assumed to be lossless.
We observe that for similar levels of insertion loss, the IPNN
accuracy is the least when MZIs in LO (first hidden layer) are
lossy, followed by when MZIs in L1 and those in L2 are lossy.
This trend can be attributed to the fact that errors due to insertion
loss in the first hidden layer affect the matrix multiplication
in all subsequent layers and are propagated across the highly
interconnected MZI array, thereby highly degrading the IPNN
accuracy. Alternatively, errors introduced due to insertion loss
in the final layer are not propagated widely and have a relatively
localized impact.

From the above discussion, it is clear that the IPNN classi-
fication accuracy is sensitive to MZI insertion loss. Therefore,
reducing the MZI loss is critical, especially for ultra-deep IPNN's
trained for more complex tasks. Moreover, even for a low pyy,
the IPNN accuracy decreases with increasing non-uniformity
(o) in the insertion loss of different MZIs. This indicates
that FPVs, which lead to such non-uniformity in the loss, also
need to be minimized. We have also shown that insertion loss
in the initial (i.e., closer to the input) IPNN layers has a high
impact on the IPNN inferencing accuracy. To compensate for
the MZI insertion loss, we should ideally include additional
semiconductor optical amplifiers (SOAs) after each layer in the
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IPNN. However, due to strict area constraints, we may be able
to afford amplification only after selected layers. Our analysis
shows that, in such cases, SOAs should preferentially be placed
after the initial IPNN layers.

B. IPNNs With Low-Precision Phase Encoding

Thermo-optic PhS utilize the high thermo-optic coefficient of
silicon to apply tunable phase shifts to the optical signal travers-
ing a waveguide. Recall from Section III. A that the temperature-
dependent phase change in PhS is given by (2). The microheaters
in PhS are controlled by applying a tuned voltage across the
heater coil. The voltage is supplied from a direct current (DC)
source based on a digital-to-analog converter (DAC). The preci-
sion of the temperature shift AT, and in turn, the phase angle is
limited by the quantization error in the DAC. The magnitude of
this quantization error increases with decreasing bit-precision in
a DAC. The power consumption of a DAC with a precision of
Ny;¢s 1s proportional to % [32]. Therefore, low-precision
DACs, which are susceptible to quantization errors, are often
required for low-power applications. In addition, phase angles
encoded with lower Vy;+s can also help lower memory overhead.

Recall from (3), for a phase shift of ® we have ® = K - V2,
where K is a constant of proportionality that depends on the
structure of the phase shifter. The voltage required for a phase
shift of 7, given by V, = /%, is used as a figure of merit
for PhS. Among existing PhS, the one proposed in [12] offers
the minimum of V; = 4.36 V, and has been considered for the
simulations in this paper. With V; =4.36 V, we use (3) to obtain
K = 0.165. Therefore, to realize phase angles 0 < ¢ < 27 in
an MZI, we need a voltage 0 < V < 6.166 V. For an encoding
with Ny, bits in the voltage driver, we can have 2Nbits voltage
intervals in the range [0, 6.166 V]. The voltage drivers (see
Fig. 1(d)) can assign the input voltage (V) at these 2Vvits steps
in one of following three ways:

¢ Equidistant voltage steps (EVS): 2/Vvits equidistant voltage

steps are considered in the range [0, 6.166 V] with a step-

size of % V. In this case, the voltage driver simply
amplifies the output from the DAC. While EVS is easier
to implement, we will show that it underperforms for low

Nyits.

e Equidistant phase steps (EPS): 2™Vvis equidistant phase
steps are considered in the range [0, 27] with a step size

of (21\,37,”_1) radians. The voltages corresponding to these

2Nvits phase values are considered as the 27Vvits voltage
steps in the driver and are not equidistant. In this case, the
voltage driver needs to perform additional computation on
the DAC output to generate the voltage supplied to the
microheater.

e K-means clustering (KC): Using K-means clustering, we
divide the weights in the IPNN into 2Vbits clusters. The
voltage values corresponding to the median phase angle of
each cluster constitute the 2™Vvi= voltage steps. Therefore,
the voltage driver needs to supply the voltage correspond-
ing to the median phase angles for each of the 2Vvits
clusters and therefore, requires additional computation and
memory (to store the median phase angles).
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Note that the above finite-precision settings are applied during
inferencing; we assume that the software training has been
performed in full precision. Fig. 12 shows the IPNN inferencing
accuracy under these finite-precision settings. We observe that
for both EVS and EPS, IPNN achieves the full-precision accu-
racy (93.86%) with Np;s =7. This signifies that we require only
128 voltage steps in the range [0, 6.166] V to maximize IPNN
accuracy. Alternatively, with KC, we can achieve full-precision
accuracy with just Np;:s = 6. Fig. 12(d) compares the three
settings and shows that KC offers the maximum accuracy at low
precision. This is because it takes the distribution of the trained
weights into account. However, the voltage steps obtained from
KC are unique to each trained IPNN. Therefore, KC involves ad-
ditional computation and hardware overhead. Note also that for
a given Ny, EPS typically offers a higher accuracy compared
to EVS. We know from (3) that the phase angles are proportional
to V2. Therefore, in EVS, the gap between the phase steps
(corresponding to the equidistant voltage steps) increases with
the phase angle. Consequently, the higher phase angles (more
important weights) have a higher quantization error. In contrast,
all phase angles have similar quantization errors in EPS, thereby
leading to a higher accuracy under low precision.

We also analyze the performance of EVS, EPS, and KC when
they are applied to an individual layer in the IPNN. Recall
that we obtain full-precision accuracy (93.86%) for Ny;rs > 7.
Therefore, when we vary Ny;.s for one layer, all the weights in
the remaining layers are quantized using Ny;¢s = 8; this ensures
that the loss in accuracy is solely due to quantization errors in the
layer of interest. We observe that for all the three methods, the
reduction in accuracy is maximum when low-precision settings
are applied to the initial (i.e., closest to the input) layer LO.
Recall from Section I'V-A that we have a similar observation for
MZlI insertion loss: the IPNN accuracy is affected the most when
MZIs in the initial layers are lossy. Both these observations are
likely due to the same reason as errors due to lossy MZIs and
low-precision PhS in initial layers can spread across the MZI
arrays, thereby leading to a higher accuracy loss.

In summary, even though IPNNSs can offer high accuracy with
just a 7-bit quantized DAC, they are sensitive to low-precision
settings. KC can be used to improve the accuracy, but it involves
additional computation and hardware overhead. Moreover, PhS
in the initial layers are more prone to the catastrophic impact of
low-precision phase encoding.

V. CASE STUDY: IPNNS UNDER SIMULTANEOUS
UNCERTAINTIES AND IMPRECISIONS

In practice, IPNNs will likely encounter multiple uncertainties
simultaneously while experiencing optical loss and quantization
errors. Sections III and IV comprehensively explore the impact
of each of the different imperfections considered in this paper,
including uncertainties in phase angles and splitting ratios, non-
uniform MZI insertion loss, and low-precision phase encoding.
In this section, we present a case study of a representative [IPNN
and show how its inferencing accuracy deviates under different
situations of multiple simultaneous imperfections. We show that
the loss in inferencing accuracy in each situation cannot be
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Fig. 12.

predicted by simply superposing the impact of each standalone
imperfection (i.e., the accuracy losses under standalone imper-
fections are not additive). As a result, an understanding of IPNN
reliability necessitates a detailed case study similar to the one
we present in this section.

For this case study, we apply imperfections in the three-layer
(one input and two hidden) feed-forward IPNN described in
Section III.D and measure its inferencing accuracy for differ-
ent imperfection parameter sets. Next, we define some terms
that will help us represent the simultaneous imperfections and
quantify their impact on the IPNN inferencing accuracy.

Definition 1: An imperfection parameter set P = {ops,
0Bes, L,orr, Npits } is defined as the ordered quintuplet of the
parameters quantifying the different IPNN imperfections under
which inferencing is performed.

Fora given P, the correlation length L and the phase-encoding
Nyt s are deterministic, while o p,g, 0 geg, and oy, describe the
distribution of uncertainties in the phase angles, uncertainties
in the splitting ratios, and non-uniformity in the MZI insertion
loss, respectively. Note that, in the interest of brevity, we only
consider radial uncertainties phase angles and splitting ratios. To
obtain the accuracy loss for a particular P, we perform Monte-
Carlo simulations by randomly sampling several imperfection
instances.

Definition 2: For a given P = {opps,0Bes, L, 015, Npits }
and a trained IPNN, an imperfection instance p is defined as a
version of the IPNN where in each MZI

e the phase angles and splitting ratios are perturbed based

on variation maps described by upps(z,y, L, opps) and
upes(z,y, L, 0pes), respectively;

¢ the insertion loss is sampled from a Gaussian distribution

N(0,0%,); and

e the phase angles are encoded as 2™ equidistant voltage

steps in the range [0, V. ].

Here, (z,y) denotes the position of the PhS or BeS (see
Section III.D.3 and Fig. 8), and upps and up.s denote the
correlated variation maps for phase angles and splitting ratios,
respectively (see Appendix). Also, recall from Section IV.B
that V. for a phase shifter denotes the voltage from a direct
current (DC) source required for a phase shift of 7. Across all
our simulations, for a given P, we perform inferencing using
n, = 10randomly generated p’s and obtain the mean inferencing
accuracy. The simulated accuracy loss, SALqo(P), is then
given by the difference between the nominal IPNN accuracy,

(b) Equidistant phase steps (EPS)

2 3 4 5 6 7

1 2 3 4 5 6 7
# bits in phase encoding (Np;zs)

1
# bits in phase encoding (Nbits)

(c) K-means clustering (KC) (d) Comparison

The impact of different phase encoding approaches on the IPNN inferencing accuracy under low-precision settings.

Ophs Oges L O SALo (%) AALy (%)

. <50% J

SALjo (%)  AALyo (%)

(b)

Fig. 13.  (a) SAL1p and AAL;( for 2000 imperfection parameter sets (Ps)
where each imperfection parameter varies over a wide range. The curve cor-
responding to each parameter set is color-coded based on its SALjg (see
legend). (b) Median of the imperfection parameters, SALjg, and AAL1q for
the imperfection parameter sets in each SAL1g band in (a).

which is 93.86% in our case study, and the mean inferencing
accuracy under imperfections. We also define the aggregated
accuracy loss for a P as follows.

Definition 3: For a given P, the aggregated accuracy loss
for an IPNN is given by:

AAan (P) = SAan ({O’phs, O7 O, 0, O})
+ SAL,,({0,0Bs,0,0,0}) + SAL,,({0,0,L,0,0})

+ SAan ({0, 07 0, OIL, 0}) + SAan({O, 0, 0, 0, Nbits})-

(1)
In(11), AAL,,(P) is simply the sum of the standalone SAL,,
of each imperfection parameter. In Fig. 13(a), we use a parallel
coordinates plot with cubic Bezier curves to compare the SAL1¢
and A ALy for 2000 different imperfection parameter sets. Each
curve in the plot corresponds to an imperfection parameter set
and is color-coded based on its SALqq (see legend in Fig. 13).
The vertical axes in the plot are oriented such that a higher
intercept on an axis signifies a larger deviation from the ideal
IPNN parameters (hence, leading to a higher SAL;(). There-
fore, the values of opys, 0Bes, L, o1, SAL1g, and AALq,
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increase from bottom to top, while the reverse is true for Np;s
(recall that a lower number of bits in phase encoding leads to
a higher SALqy). Note also that we limit the range for each
imperfection parameter to a subset of their respective ranges in
the Sections III-IV. This ensures that we have enough imperfec-
tion parameter sets (P’s) where the SALjg is not so high that
the inferencing accuracy of the IPNN is less than the probability
of arandom choice (10% for the MNIST dataset). However, our
analysis can be easily extended to any user-defined range of the
imperfection parameters. From Fig. 13(a), we observe up to a
46% simulated accuracy loss (SAL1g) due to simultaneous im-
perfections within the parameter ranges considered. We also find
that for all P’s, AAL1o(P) > SALyo(P), i.e., the sum of the
standalone accuracy losses due to each imperfection parameter
is higher than the accuracy loss when they are simultaneously
present. In fact for some P’s, AALy is greater than SAL( by
up to 20%, while the mean difference between the two (over all
the 2000 Ps)is ~ 10.5%. Fig. 13(b) highlights the median values
of each parameter, SAL1g, and AAL1q across the different Ps
in each SALq band.
We extend our case study further and perform additional
simulations to answer the following questions (Qs) related to
IPNN performance under simultaneous imperfections:
® Q1I1: How does the IPNN accuracy vary under catastrophic
imperfections from a single source while the imperfections
from the remaining sources are restricted (but non-zero)?

® (Q2: With respect to phase angles and splitting ratios,
are localized imperfections with a large magnitude more
critical than small correlated imperfections?

® (Q3: How critical are imperfections affecting the PhS (e.g.,

phase angle variations and quantization errors due to low-
precision phase encoding) compared to the other imperfec-
tions?

® Q4: Given a maximum tolerable accuracy loss, can we

define a tolerable limit for each imperfection parameter?

Simulation results in Fig. 14 answer Q1 by showing the
IPNN performance when one imperfection parameter varies
over a larger range (see respective subfigures) while the other
present imperfections are restricted within a tolerable limit. For
better understanding, each color band spanning a 10% accuracy
range in Fig. 13 has been divided into two sub-bands, with
the lighter shade denoting the lower 5% in each band (see
the legend in Fig. 14(a)). We observe that with all the other
imperfections within tolerable limits, variations in the phase
angles (quantified by oppg) alone can result in up to a 30%
loss in the inferencing accuracy. Note that this is in agreement
with our earlier observation in Fig. 6, where the blue-dashed line
shows an accuracy loss of ~30% for opps = 0.02. However,
in P’s where parameters other than oppg are dominant, the
corresponding SAL1o(P)’s are significantly lower. This shows
that random variations in the phase angles have a dominant
impact compared to the other imperfections. Observe also that in
Fig.14,SAL1o(P) ~ AALyo(P) acrossall P’s. This is because
in each case, only one of the imperfection parameters has a
significant contribution to the SAL.

Similarly, Fig. 14(a)—(c), corresponding to the scenarios
where o prs, 0Bes, and L vary over a large range, respectively,
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Fig. 14. SALjo and AAL;o for 2000 randomly generated imperfection

parameter sets where (a) oppg, (b) oBes, (¢) L, (d) orr, and (e) Npits
individually vary over a wide range, respectively (shown in bold red font). In
each case, the remaining parameters are restricted within a tolerable limit. All
the subplots use the legend shown below (a).

answer Q2. We find that large uncorrelated (L. = 1) variations
in phase angles and splitting ratios lead to a significantly higher
S ALy compared to tolerable but highly correlated (L. = 4) vari-
ations. In other words, large localized uncertainties in PhS and
BeS are more critical than distributed negligible uncertainties.
Again, from Fig. 14(e) (corresponding to Ny, ), we observe that
in the scenarios where other imperfection parameters are within
tolerable limits, SAL(P) < 10% for all P’s with N5 > 7.
This is in agreement with Fig. 12 above.

In Section III, we showed that with o pj, s and o g5 remaining
constant, uncertainties with a higher correlation length (L) lead
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Fig. 15. SALjo and AALjp for 2000 uncertainty parameter sets with
(a) large uncorrelated and (b) small correlated variations in PhS and BeS.

to a higher inferencing accuracy loss (see Fig. 10). However,
Fig. 15 shows that large simultaneous uncorrelated uncertain-
ties in PhS and BeS (high opps and op.g with low L) are
more catastrophic than highly correlated (widespread) uncer-
tainties of smaller magnitude (low opps and op.gs with high
L). Uncorrelated (L =1) variations with large ocpps and opcs
result in up to 35% S ALg. In contrast, most highly correlated
variations (L =4) withopps = 0ges =0.01 resultina SALg
of only 10%. Next, we answer Q3. Fig. 16(a) shows the case
where the phase angles deviate significantly from their tuned
values—they are prone to large localized variations (o pps) and
suffer from low-precision encoding (/Vy;¢s). We find that for such
P’s the SALyg can be up to 35%. In contrast, from Fig. 16(b)
observe that if the phase variations can be restricted within a
limit (cpps < 0.0025) and the phase angles are encoded using
Ny;ts = 16 bits, the maximum S AL across all P’s is less than
25%. To quantify the resilience of different IPNN architectures
against imperfections, designers may need to find the maximum
tolerable level of different imperfection parameters under which
the inferencing accuracy loss remains below a threshold—a
higher tolerance limit denotes a more resilient architecture. To
answer Q4, we define the maximal imperfection parameter set
for an IPNN as follows:

Definition 4: For a given IPNN, the maximal imperfection
parameter set P*(maz, p) = {0ppg: Ohess L 071 Niis b
is given by the multi-objective optimization problem:

1
max {O’PhS,UBeSaLvava_
P Noits

st. SAL, (P) < G- (12)

Here, a4, denotes the maximum tolerable inferencing
accuracy loss, which is application dependent, and n,, denotes
the number of imperfection instances considered to obtain
SALjg. Note that the objective function includes the reciprocal
of Ny;¢s, as alower Ny, denotes a higher level of imperfections
in the phase encoding. We should also mention here that P* is
defined in a probabilistic manner. It can not be claimed, with
absolute certainty, that under any imperfection instance p where
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Fig. 16.  (a) SAL19 and AAL¢ for 2000 randomly generated imperfection
parameter sets where o pp g and Np;+¢ vary over a wide range while the other
parameters are restricted within a tolerable limit. (b) SAL1o and AAL;q for
2000 imperfection parameter sets where opes, L, and oyr,) vary over a wide
range while o py, g and Ny, are restricted within a tolerable limit. (c) Maximal
imperfection parameter set P*(ctpmq, = 10%,n, = 10) obtained using trial-
and-error. All the subplots use the legend shown below the top subplot.

the parameter values are within the P*, the IPNN accuracy loss
will be less than ;.. This is because, in each imperfection
instance, the correlated uncertainty maps uppg and up.s (see
Section III-D.3) and the insertion loss I L are randomly sampled
from a continuous Gaussian distribution. However, note that n,,
is crucial in this aspect. Recall that the accuracy loss over ny, p’s
are averaged to obtain SAL,, . Therefore, by the law of large
numbers, the larger the n,, the higher should be the probability
that any imperfection instance with parameters within the range
defined by P* should lead to an accuracy loss below a4

Finding P* for a given IPNN is a non-trivial problem primarily
because the constraint SAL,, , (P) < @paq is anoracle (or black
box) and does not have a closed-form expression. Additionally,
the problem is mixed in nature. Indeed, L and Ny, can only
take discrete values (i.e., discrete variables) while opys, 0Bes,
and oy, are continuous in nature (i.e., continuous variables).
Taking these challenges into consideration, we can use a grid-
search method to approximate P*. Fig. 16(c) shows an example
where we approximate P* for our IPNN with av,,4, = 10% and
np = 10. In this case, 0, ¢ = 0.0025, 0.5 = 0.015, L = 4,
orr, = 0.2, and Ny;es = 8. Evidently, these are rough estimates
as we can see that there are a few P’s within the stipulated range,
for which the SAL1y’s do exceed 10%. In addition, the grid-
search method becomes intractable as the step size decreases.
Therefore, future research should focus on a computationally
efficient search method for P*.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:01:42 UTC from IEEE Xplore. Restrictions apply.



1478

VI. CONCLUSION

‘We have presented the first comprehensive characterization of
the inferencing accuracy of a trained IPNN under imperfections
that arise from several sources, including spatially correlated and
localized uncertainties in phase angles and splitting ratios, non-
uniform MZI insertion loss, and low-precision phase encoding.
We have analyzed these imperfections in a bottom-up approach
where uncertainties are introduced in the optical components and
their impact is observed at the component, device, layer, and
system level. Considering different uncertainty scenarios, we
have demonstrated that the degradation in the IPNN accuracy
due to an uncertainty depends not only on the magnitude and
distribution of the uncertainties but also on the position of the
affected component. Based on the extensive simulations in our
study, the main observations that can guide the development of
reliable IPNNs are as follows:

® Theinferencing accuracy loss due to multiple simultaneous
imperfections is lower than the sum of the accuracy losses
due to each standalone uncertainty — the individual effects
of IPNN imperfections are not additive;

e Under similar levels of uncertainties in phase shifters and
beam splitters (standard deviations o pj, s and 0 g s remain-
ing constant), the IPNN accuracy decreases with increasing
the correlation length (L) in uncertainties;

® Uncorrelated uncertainties in PhS and BeS with a large
opnps and op.g are more catastrophic than highly corre-
lated variations with a small opj5 and o geg;

® Tuned phase angles should be encoded in memory using a
precision of at least 7 bits;

e Deviation in the tuned phase angles (e.g., due to process
variations, thermal crosstalk, and low-precision DACs) has
a dominant impact among the IPNN imperfections;

e The IPNN accuracy is more sensitive to insertion loss
and quantization error in the MZIs in the initial layers —
mitigative steps should focus on the initial IPNN layers.

We have also shown that the problem of finding the maximum
acceptable limits of different imperfections to ensure a minimum
IPNN accuracy is non-trivial and necessitates a computationally
efficient search algorithm. Based on simulation results, we have
observed that the criticality of MZIs in an IPNN depends on their
position and tuned phase angles. Consequently, for a different
application (other than MNIST), the set of critical MZIs can
vary. However, as all IPNNs are, fundamentally, cascaded linear
multipliers, we expect that the trends of the impact of imper-
fections observed in this stuy will still hold. Also, the proposed
analysis framework can be easily extended to additional datasets
and design-time and run-time uncertainties and can help IPNN
designers to model the performance of IPNNs under multiple
simultaneous uncertainties and to develop efficient compensa-
tion methods during design time.

APPENDIX

To realize correlated uncertainties, let us consider a (N —
1) x 2N MZI grid corresponding to a N x N unitary matrix
with uncertainties introduced only in the phase angles. Given
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ophs, a random uncorrelated variation map for this grid is:
2 2
vprs(z,y,0png) ~ N (0, 47 UPhs)

VO<z<2N-1,0<y<N —2. (13)

Here, x and y denote the coordinates of PhS, measured in units
from the lower-left corner of the array (see Fig. 8). To model such
radial variation maps, we scale the standard deviation of each
cell in the grid based on its Euclidean distance from the center
of the grid (coordinates (15.5, 7) for the 15 x 32 grid). As a
result, devices equidistant from the grid center will experience
similar uncertainties. The random uncorrelated radial variation
at any point (x, y), in this case, is given by:

VPhS,rad (T, Y, OPRS) ~

N <0 SN ke o Ul N))

(B (G2

VO<z<2N-1,0<y< N —2.
(14)
Fig. 9(b) shows one such randomly generated 15 x 32 uncor-
related radial variation map with opps = 0.025. The random
variation map v (Or v,4q) is then convolved with a Gaussian
kernel, g(x,y), given by:

2 2(z- 2124y N22)2
- 2

2 2
g(z,y,L) = VAL

e L ;
where L denotes the correlation length of the uncertainties
measured in terms of units, with one unit denoting the width
of an MZI (see Fig. 8). Fig. 9(c) shows the Gaussian kernel
with L = 4 which denotes a correlation length of 4 units. The
spatially correlated variation map is then given by:

5)

UPhS($7y7L,UPhS):g(af,va)*U(xa%UPhS)’ (]6)

where * denotes the convolution operation. Figs. 9(d)—(f)
show the spatially correlated variation maps obtained when the
uncorrelated variation map (Fig. 9(a)) is convoluted with Gaus-
sian kernels with . = 2,4, and 8 units, respectively. Observe that
as L increases, the uncertainties in the variation maps are spread
out over larger contiguous areas. Similarly, Fig. 9(g) shows the
correlated variation map when the uncorrelated radial variation
map (Fig. 9(b)) is convoluted with a Gaussian kernel with L = 4.
Note that the correlated variation map for the splitting ratios,
upes(x,y, L,opes) is similarly obtained using the random
uncorrelated variation maps given by:

'UBeS(-/anvo-BeS) NN(O>U2BeS/2) 5 (17)

UBeS,rad(xa Y, OBeS)

N (0, Thes (# = 25) + ( N22>2> s

-
2 (BT (AR
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