Computational Materials Science 224 (2023) 112187

Contents lists available at ScienceDirect

COMPUTATIONAL

/\

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Full length article ' )

Check for

Emulating microstructural evolution during spinodal decomposition usinga [
tensor decomposed convolutional and recurrent neural network
Peichen Wu?, Ashif Sikandar Iquebal *, Kumar Ankit **

a Materials Science & Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe AZ 85287, USA
b School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Ave., Tempe AZ 85281, USA

ARTICLE INFO ABSTRACT

Keywords:

Convolutional and recurrent neural network
Tensor decomposition

Phase-field

Microstructure evolution

Phase-field (PF) models are one of the most powerful tools to simulate microstructural evolution in metallic
materials, polymers, and ceramics. However, existing PF approaches rely on rigorous mathematical model
development, sophisticated numerical schemes, and high-performance computing for accuracy. Although
recently developed surrogate microstructure models employ deep-learning techniques and reconstruction of
microstructures from lower-dimensional data, their accuracy is fairly limited as spatiotemporal information
is lost in the pursuit of dimensional reduction. Given these limitations, we present a novel data-driven
emulator (DDE) for predicting microstructural evolution, which combines an image-based convolutional and
recurrent neural network (CRNN) with tensor decomposition, while leveraging previously obtained PF datasets
for training. To assess the robustness of DDE, we also compare the emulation sequence and the scaling
behavior with phase-field simulations for several noisy initial states. Finally, we discuss the effectiveness of
our microstructure emulation technique in the context of runtime speed-up while also highlighting its trade-off

with accuracy.

1. Introduction

Phase-field methods are one of the most powerful and versatile tools
to simulate microstructural evolution in metallic materials, polymers,
and ceramics [1-4]. The popularity of the phase-field method’s in
modeling morphological evolution is due to the elegance with which
it treats moving boundary problems by obviating the necessity to
explicitly track the interfaces. However, they remain computationally
intensive due to the strict limits on the maximum time and length scales
imposed by the numerical methods [5]. For instance, the computational
complexity associated with simulating spinodal decomposition [3,6]
warrants the application of supercomputers for solving fourth-order
Cahn-Hilliard partial differential equations (PDEs). The finite differ-
ence and the finite element schemes have been extensively employed,
although there are challenges related to numerical implementation [7].
Various techniques have also been employed to shorten the simulation
runtimes, such as adaptive mesh refinement [8,9], load balancing, [10]
and random walker [11]. However, depending on the spatial and time
resolution warranted, simulating the evolution of microstructures in
three dimensions, which is a 4D problem, often spans from several
hours to weeks on a supercomputing cluster. Current strategies to
accelerate phase-field calculations rely on high-performance GPUs and
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power-intensive computational resources [12] as opposed to leverag-
ing the past simulations to emulate new ones. As a result, a new
simulation needs to be performed every time a simulation parameter
is altered. Another limitation of the phase-field method is that it is
not transferable across material systems without extensive parameter
adaptation [13], even though the underlying phase transformation
mechanism may be similar such as spinodally decomposing microstruc-
tures of polymers [14-16] and metallic materials [17-19], both of
which entail up-hill diffusion of atoms. Merriman-Bence-Osher (MBO)
threshold dynamics is another popular algorithm for simulating the
mean curvature motion of interfaces [20,21]. However, this technique
is only first order accurate in a two-phase setting while the accuracy
is known to rapidly degrade in a multi-phase settings. A recent effort
has rendered MBO dynamics to be second order accurate in problems
limited to two-phases [22], however, there are currently no accurate
schemes available for 3D multiphase problems.

In fact, the dilemma of efficiency, computation cost, and accuracy
is not a new topic of interest within the materials modeling commu-
nity. Parallel computation, which utilizes multiple CPUs or GPUs, is
one of the ways by which simulation run-times can be reduced, as
evidenced by its extensive use in molecular dynamics, phase-field, and
finite element simulations [23]. However, the associated computation
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cost is still high and often requires powerful and expensive high-
performance computing resources. Another pathway to dealing with
this issue is the utilization of machine learning. Some of the recent
examples include neural network-aided methodology to design modular
metamaterials [24], potentials for molecular dynamics (DeePMD) [25],
and Behler-Parrinello neural network (BPNN) [26]. Although the pub-
lished literature is replete with techniques that focused on combining
machine learning with molecular dynamics, only a handful of the
works have focused on integrating machine learning with the phase-
field methods [27-32]. These studies primarily rely on incorporating
dimensional reduction, machine learning, and phase reconstruction,
for microstructure emulations. For the dimensional reduction of mi-
crostructural images, Principle Component Analysis (PCA) is typically
employed that has several limitations. Since PCA requires unfolding
an image data into a one-dimensional array which causes loss of
spatiotemporal information, its use is to be best avoided when dealing
with image sequences for e.g. an evolving microstructure. This spa-
tiotemporal loss manifests as poor reconstruction of microstructures.
This is evident from the mismatch between the emulated and simu-
lated spinodal microstructures reported by Zapiain et al. [27]. Another
limitation is that the phase reconstruction adopted by those authors
is not very effective in reconstructing the diffuse interfaces which are
a characteristic of phase-field simulations. Although, reconstruction of
interface may be not be an issue for a majority of solid-state transforma-
tions where the thickness of the interfaces in quite small (below 1 nm),
the above noted limitation is particularly concerning for the case of
solidification microstructures where the solid-liquid interface is known
to be comparatively thicker. As compared to PCA, tensor decomposition
is a better alternative since it does not lead to any spatiotemporal
losses [33] although accurate emulations of microstructures may incur
large computational costs.

The applications of Convolutional Recurrent Neural Networks
(CRNN), which combines CNN (convolutional neural network) with
RNN (Recurrent neural networks) have been limited to speech sepa-
ration [34] and activity recognition [35], to date. However, its utility
in materials science, particularly in the context of microstructure mod-
eling, has never been previously explored. Therefore, in this work, we
report a novel Data-driven Emulator (DDE) using a tensor decomposed
convolutional and recurrent neural network (CRNN) to circumvent
aforementioned issues [36-38], which couples machine learning with
tensor decomposition (TD) and microstructure modeling to enable a
high-throughput and accurate prediction for microstructure evolution.
The developed architecture, as described below, leverages CNN which
extracts image features and learns their spatial relationships within
each image, while the coupled RNN models the temporal relationship
between the subsequent images. For training and validating this al-
gorithm, we utilize the phase-field generated datasets of spinodally
decomposing microstructures.

This paper is organized as follows: In Section 2, the Cahn-Hilliard
phase-field and the DDE models are explained. Section 3 compares
and validates the DDE predictions with the corresponding phase-field
images. Here, we also discuss the trade-off between training efficiency
and prediction accuracy. Section 4 concludes this article.

2. Methods
2.1. Phase-field (PF) model

For the sake of completeness, the well-known Cahn-Hilliard model,
which is used to generate microstructure training datasets is briefly
outlined in this section. Our diffuse interface approach for modeling
the phase separation in binary immiscible alloy (A-B) films adopts a
free energy functional consisting of distinct bulk and interfacial energy
terms [39], written as
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Here, the order parameter, ¢(x,t), denotes the scaled concentration
assumed to be a continuous function of position and time, ranging from
equilibrium concentration of 0 at the A-rich g phase to 1 at the B-rich
a phase. The bulk free energy density, f(¢), is given by

F@) = ZW 1 - o7 @

where W is the well height that puts an energy penalty to all the
states other than 0 and 1. € is the gradient free energy coefficient,
which penalizes large gradients in the order parameter giving rise to
the diffuse nature of phase boundaries. At equilibrium, the interfacial
width, &, and the interfacial energy, y, is governed by an interplay of
the two terms in the free energy functional and scales as § « v/e2/W
and y < Ve2W.

The kinetics of a phase-separating system can be simulated by
solving the Cahn-Hilliard equation,

‘;—‘f =V -MVyu 3
where, p is the chemical potential derived from the variational deriva-
tive of the free energy functional as y = ‘;—F. M is the mobility of the
diffusing species which can be related to the diffusion coefficient as
D=M gz—é, assumed to be 1.0. In the present study, we assume the
kinetic parameter to be independent of the order parameter, thus, the
evolution equation may be rewritten as,
9% _ pv2 oL
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Using Egs. (1) and (2), we arrive at the final form of the Cahn-Hilliard
equation,
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We non-dimensionalize Eq. (5) by using reduced variables which
are defined as: x* = x/Ax, M* = M /(MykpT), V* = (4x)*V, W* =
W [(kgT), € = €/(Ax+\/kgT), and t* = Mot/(Ax)z, where Ax is the
grid spacing, M|, is an arbitrarily defined constant bulk mobility that
is dependent on the temperature, T, and k is the Boltzmann constant.
The final dimensionless form is given by

or*
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We solve Eq. (3) via an explicit finite difference method (FDM) on
a regular square mesh. Alternatively, one could implement a forward
difference Euler scheme for the temporal derivatives and a second-order
central difference for the spatial derivatives. The Cahn-Hilliard Eq. (6)
is solved in two steps. First, the chemical potential u is calculated at
each grid point, while the Laplacian is calculated using a 7-point stencil.
The discretized equation required to compute yu is given by

1
H i =3 W, (=, (1 =2¢ ) 7
> ;+l,j,k + ¢:—l.j,k + ¢:.j+l.k + ¢;,j—l.k + ¢1[',j4,k+l + d);.j.k—l - 6‘1’;,/,1(
—€ h2 .
The Laplacian of y is determined by another central difference scheme

such that the concentration evolution equation in the discretized takes
the following form,
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The square grid dimensions are given by Ax = Ay = 0.3, while the
timestep is defined by 4r = 0.0001. Periodic boundary conditions are
imposed along the x- and the y-directions. Non-dimensional M* = 1.0
allows the phase separating microstructures to coarsen within a reason-
able timeframe so as to limit the training time to below 1.5 h, while
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Fig. 1. Illustration of a Tucker decomposition, in which a tensor X can be decomposed as a core tensor g and factor matrices, F1, F2, and F3, i.e. one for every mode.

W x= 4.0 and ¢* = 0.051 ensure retention of equimolar composition
as the diffuse phase interfaces of width, 6 grid points (64x), devel-
ops. The initial condition used for generating the phase-field training
data comprises an equimolar alloy composition with fluctuations, the
amplitude of which varies in the range of 0.01%-0.50%. Since these
composition fluctuations are seeded randomly, distinct microstructural
evolution sequences are obtained from every simulation run.

2.2. Data-driven emulator (DDE)

2.2.1. Neural network architecture

The data-driven emulator or the DDE proposed in this work is based
on a CRNN framework that employs a tensor decomposed convolutional
neural network (CNN) for image feature extraction which is coupled to
a recurrent neural network (RNN). The latter enables image sequence
prediction based on the series of features extracted over time using
CNN. Here, features refer to the line and curvature within the simu-
lated micrographs generated from phase-field simulations. TD entails
decomposition of a 2D convolutional layer matrix into several smaller
layers. Although the number of layers as a result of decomposition
increases, the total number of floating-point operations and weights
will be smaller than the parent layer. The input and output tensor
dimensions of a tensor decomposed convolutional layer will be the
same as a regular convolutional layer.

In this work, we have employed the most commonly used tensor
decomposition approach known as tucker decomposition [38] which
is shown in Fig. 1. Fig. 2 shows the architecture of the CRNN used
in this work and the tensor-decomposed convolutional layer, which
is referred to as the convolutional layer hereafter. The input to the
layer comprises a series of images extracted from phase-field, that
are processed through the convolutional and max-pooling layers of
the CNN. Since we transfer the features extracted from CNN to RNN,
the fully-connected layers of the CNN are removed. The convolutional
layer of CNN scans using a 2 x 2 filter with strides of 1 x 1 along
the image length and the width. The convolutional layer produces a
different abstraction of the input image by refreshing the layer after
every pass. Within this framework, the convolutional layer, in parallel,
generates 256 filters for every input image. To train the CRNN, we
employ a sequence of microstructure images which are simulated by
phase-field simulations. For every such dataset which corresponds to a
set of microstructures obtained at regular time intervals, the total time
is chosen to be 3000 additional timesteps beyond the end of transient
state i.e. when average domain size starts to scale linearly.

In the current study, we generated datasets of size 324x x 324y as
well as 1284x x 1284y to train the DDE and assess its performance
w.r.t. finite difference solver as the domain size increases. For a digital
micrograph of 324xx324y, no down-sampling is performed, as opposed
to higher resolution data where the micrograph may need to be down-
sampled. Therefore, for an input image of dimension 324x x 324y,
the input to the convolutional layer is a tensor of 10 x 32 x 32,
while the output has dimension of 10 x 32 x 32 x 256. This is repre-
sented as “Tensor decomposed Conv2d-1” in the CRNN architecture

(see Fig. 1). In this algorithmic sequence, the convolutional layer is
followed by a max-pooling layer which is responsible for downsampling
the output produced from the previous layer. A pooling operation is
performed to reduce the CNN framework’s computational cost, which
causes dimensional reduction from 10 x 32 x 32 x 256 to 10 x 16 x
16 x 256. A combination of convolutional and max-pooling layers is
useful in extracting the low-level features, such as the presence of
phase boundaries. We additionally include convolutional “Tensor de-
composed Conv2d-2” and max-pooling layers to extract higher-level
features, such as phase boundary curvature, that enable complete fea-
ture extraction and training. Also, the padding for all the convolutional
and max-pooling layers ensures that the convolved features retain their
dimensions for an entire sequence.

It is relatively well-known that CNN is not very effective in handling
sequential data within a time series. Therefore, to emulate microstruc-
tural evolution, we have combined it with a deep-learning approach.
The output from CNN is fed into a recurrent neural network (RNN)
— a deep learning approach for handling sequential data — to capture
the temporal relationships within image sequences. RNN comprises
a hidden state containing and transmitting the information from the
previous timesteps, acting similar to a data buffer [40,41]. Traditional
RNNs are known to be inefficient in capturing the temporal information
for long sequences, particularly due to the vanishing gradient problem
where information from past time steps decreases exponentially. To
circumvent this issue, Long Short Term Memory (LSTM), which is a
variant of RNN, is incorporated into the present workflow. A detailed
description of the LSTM architecture has previously been reported in
the literature [42].

Within the proposed workflow shown in Fig. 2, the LSTM layer will
output a tensor of size 10 times the total number of LSTM’s repeat mod-
ules. Next, the dense layer will output 10 x 1024 values for every pixel
point. LSTM’s repeat modules consist of hidden and cell states, while
the hidden state carries information from immediately previous events,
the cell state stores and loads information of penultimate events, which
prevent the LSTM gradients from vanishing. Finally, the 10 x 1024
output matrix is converted to the original input size of 10 x32x32x 1
before comparing with the input tensor using a mean square error
(MSE) function given by

n

MSE = 1/n )\(¥, = ¥))?, ©)

i

where Y; is the prediction value, Y; is the actual value, and » is the total
number of predictions.

For microstructure emulation using CRNN, there are several pa-
rameters and hyperparameters that need to be tuned, which requires
prior experience and rounds of trial. Therefore, in the present work,
we incorporated 32, 64, 128, 256, or 512 filters without altering
other parameters and hyperparameters to optimize the losses in the
validation database.
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Fig. 2. CRNN layer structure and the corresponding tensor dimension. The activation function and padding type are also indicated.

2.2.2. Dataset pre-processing

Using the phase-field constitutive equations outlined in Section 2.1,
we first generate the training, validation, and test datasets that are
required to train and validate the proposed CRNN-based algorithm. The
validation dataset is used to tune the neural network while maintaining
the associated losses to a minimum during this process. After achieving
the lowest validation loss, CRNN outputs an image corresponding to
every new microstructural data in the test set, which does not con-
taining any dataset that was used for training or validation. Fig. 3(a)
shows an exemplary training dataset which comprises a series of 40
snapshots of phase separating microstructures obtained every 1000
timesteps using the phase-field method. As shown, the first ten images
represent the first training sample, the next 10, the second sample, and
so on. Therefore, the output corresponding to the first training sample
is overall the eleventh image in sequence. Thus, we have a total of
30 training samples and 30 responses from every image sequence. We
generate 500 such image sequences using different initialization of the
phase-field i.e. seed number, with other material-specific parameters
consistent, such that we have a total of 15,000 training samples. In a
similar fashion, we generate a validation dataset with 300 validation
samples.

In total, we obtain 10 testing datasets, one of which is shown in
Fig. 3(b). The first ten phase-field images are used as input to the
DDE for predicting the microstructure corresponding to t = 11. Then
the phase-field images from ¢+ € {2,10} in addition to the predicted
image are rendered as the second input in sequence for predicting the
microstructure corresponding to the ¢ = 12. In this manner, we continue
to predict the microstructures sequentially until 7 = 40.

The phase-field model that was used to generate microstructures for
the training dataset are coded in C++. The DDE model is constructed

using Keras library in Anaconda Python 3. In the spirit of establishing
a fair comparison between the DDE and phase-field method, both the
codes are serially-coded or executed on a single CPU running Linux OS.

3. Results and discussion

In this section, we discuss the DDE predictions corresponding to
domains of size, 324x x 324y and 1284x x 1284y, while highlighting the
trade-off between accuracy and training efficiency of the novel CRNN
approach for predicting microstructural evolution. Fig. 4 compares
the simulated temporal evolution of microstructures of size 324x X
324y, with the emulated ones at the representative timesteps, starting
from distinct seed numbers. The adjacent plots compare the simulated
with emulated average domain sizes computed based on the scaling
approach reported in the literature [43,44]. At steady state, the average
domain size of microstructures undergoing spinodal decomposition
scales as

S = A" (10)

where, S is the domain size, n is the power exponent, and A is the pre-
factor. The same approach has been traditionally used to obtain the
scaling behavior of phase separating microstructures, one of the more
recent examples being that of vapor co-deposited alloy films [45,46]. It
is found that when the volume of the training database equals 500 im-
age series, the emulated microstructure although visually comparable
shows minor discrepancies with respect to phase-field results, the most
notable being the thinning of the vertical ligament in Fig. 4d. Similar
discrepancies can also be noted in Fig. 4f, where the globule spanning
the right edge does not pinch off unlike in the corresponding phase-field
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Fig. 3. (a) Structure of the training and validation databases. (b) Schematic diagram showing our data-driven emulation methodology.

simulated evolution. However, in either case, we were able to cor-
rectly emulate the microstructural evolution by doubling the training
database volume. Based on a favorable comparison of scaling dynamics
as well as the morphological evolution in Fig. 4, we conclude that
the accuracy of the CRNN-based emulation approach is independent of
the initial condition. At this juncture, we highlight relevant differences
between our approach with respect to recently reported deep learning
approaches [27-29]. For instance, Yang et al. [29] implemented an
RNN with eidetic 3D LSTM cells to predict the evolution pattern in
four different evolution phenomena including plane-wave propagation,
grain coarsening, spinodal decomposition, and dendrite growth. Their
methodology involved training the RNN with microstructure sequences
followed by predicting the microstructure evolution for a new initial
microstructure. In another work, Zapiain et al. [27] implemented a
LSTM network to predict the microstructure evolution by obtaining a
low-dimensional representation using two-point statistics and princi-
pal component analysis. While both these previous approaches have
demonstrated the viability of using deep learning for microstructure
prediction, their application is limited by the following factors: first,
deep learning approaches are known to be data-hungry and therefore
their performance is highly contingent on the availability of large
datasets. For instance, the LSTM network trained by Zapiain et al. [27]
warranted 5000 high-fidelity phase-field simulations, each of which
comprised 60 sequential microstructure datasets. Another limitation of
the above approaches is the use of principal component analysis (PCA)
for dimensionality reduction that has limited applicability in emulating
microstructure sequences, since it entails unfolding images into one-
dimensional arrays. In this operation, the spatiotemporal information
related to phase boundaries, particularly the width and the curvature,
is lost which ultimately manifests as poor reconstruction of emulated
microstructures [27,28]. We emphasize that unlike the work of Zapiain
et al. [27], where the microstructure prediction is limited to the final
timestep, the CRNN approach reported here has predicted the com-
plete microstructure evolution sequence with a reasonable accuracy.
Nonetheless, one of the limitations of our approach is that minor errors
are accumulated as the microstructure prediction is extrapolated for
future time steps. This is an expected outcome since we have utilized
the phase-field generated microstructures from the first 10 time steps
to emulate microstructural evolution for the subsequent 30 time steps.

The microstructural evolution emulated using the DDE in a domain
of size, 1284x x 1284y is found to be visually comparable to the corre-
sponding phase-field simulations, as observed in Fig. 5, and exemplified
by the disappearance of the globular phase separating domains within
the encircled region. To further validate the DDE in accordance with

respect to the benchmark problems reported by Jokisaari et al. [47],
we estimated the total free energy from the emulated micrographs.
Depending on the value of the order parameter specific to every grid
point in the emulated microstructure, the corresponding bulk and the
interfacial energy contributions are added to obtain the total free
energy for the entire microstructure. The temporal evolution trend of
the emulated free energy minimization shows reasonable agreement
with the phase-field free energy minimization as shown in Fig. 6. Minor
discrepancies in emulations of the 1-D interface profiles of ¢ are also
observed when the training database volume is smaller. However, the
emulated interface profile is found to better converge with the phase-
field diffuse interface when the training volume is doubled, as shown in
Fig. 7. Both these findings indicate the importance of selecting a large
training database that ultimately facilitates accuracy in microstructure
emulations.

An another advantage of DDE is the minuscule runtimes as com-
pared to phase-field which are tabulated in Table 1.

This acceleration in run time comes at the cost of accuracy which
is quantified by a metric that measures the average gain per epoch

t—t
Average gain = % x 100, 1)

where ¢ refers to the time needed for running one epoch without
applying tensor decomposition while ¢, corresponds to the runtimes
when tensor decomposition is incorporated. In the present context,
the epoch refers to the number of times that datasets pass in the
forward or in the backward directions per the workflow shown in Fig. 2.
Corresponding gains in runtime, the MSE, and the overall emulation
runtimes are listed in Table 1 for computational domains of size,
32 x 32 and 128 x 128 grid points. We note that the MSE and the
prediction times increase with the computational domain size, since the
latter entails handling a larger input variable matrix that increases the
processing time. Clearly, a trade-off between prediction accuracy and
overall runtime exists in order to predict the microstructural evolution
within a reasonable timeframe. Our current technique of accelerating
the CNN by deploying tensor decomposition, although novel in the
context of emulating microstructural evolution, is essentially motivated
from previous findings where more than eight times improvement
in the training efficiency could be achieved without any significant
decrease in accuracy [49]. One of the ways by which the performance
of the data-driven emulator can be further improved is by lowering
the rank of tensor decomposition based on the prediction accuracy
threshold. Image downsampling, which is known to be compatible with
CRNN approaches, can also be employed for this purpose.
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Fig. 4. Comparing the simulated and the emulated evolution of microstructural evolution at representative timesteps for distinct initial conditions generated by random seeds, as
discussed in Section 2.1. The scaling of the domain size which is obtained by both these techniques is compared in the adjacent plots. Doubling the training volume increases the
accuracy of emulations as evident from (d) and (f). ‘1x training’ refers to training dataset comprising of 500 phase-field simulations whereas ‘2x training’ implies twice as much

i.e. 1000. The black arrows in (d) indicate the regions where the 1D diffuse interface profiles shown in Fig. 7 were plotted.

Table 1

Comparison of the computation costs associated with phase-field calculations employing finite difference and Fourier spectral solvers (for numerical scheme, refer [48]) with
DDE. Training efficiency improved by tensor decomposition (TD) per epoch is also listed. CPU runtime improvement is calculated as the time used for generating the training

datax3600/24. An improvement of 62.55 implies that DDE is around 63 times faster than the finite difference solver.

Simulation Numerical Total number  Total number  Time used for Training time  Average gain for ~ Average loss DDE CPU runtime
domain size scheme of image of training generating without TD each epoch with of validation prediction improvement
series samples training data TD set (MSE) time

32 x 32 Finite 500 15000 0.417 h 13.42 h 44.78% 0.0056 24 s 62.55
difference

32 x 32 2nd order 500 15000 0.549 h 1313 h 43.67% 0.0034 22's 89.84
Fourier
spectral

128 x 128 Finite 400 3000 1.321 h 288.8 h 26.98% 0.0725 79 s 60.20

difference
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Phase field

Fig. 5. The comparison between the phase-field simulation and the data-driven emulation of microstructural evolution at representative timesteps for a simulation box size of size
128 x 128 grid points. Encircled regions compare an instance when the disappearance of globular features seen in phase-field simulations are satisfactorily emulated.
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Fig. 6. Comparison of the temporal minimization of the total free energy obtained
from phase-field simulations and DDE. Both trends conform with the benchmark laid
by Jokisaari et al. [47]. The total free energy for DDE is estimated from the emulated
microstructures by accounting for the bulk and interfacial energy contributions specific
to every grid point depending on the value of the order parameter.

Finally, our study does not discount the importance of phase-field
methodology which still remains the best technique for simulating
microstructure evolution. Machine learning based surrogate models of
microstructure evolution would more often than not completely rely
on phase-field models for the generation of training datasets, therefore,
mastering the latter which entails acquiring well-rounded knowledge of
materials thermodynamics and kinetics, computer programming, and
numerical techniques, remains crucial and irreplaceable.

4. Conclusions

In conclusion, we have introduced a novel CRNN-based approach
for emulating microstructural evolution that accompanies spinodal de-
composition. Our data-driven approach, which leverages phase-field
generated microstructure datasets as input, combines tensor decom-
position and deep learning to predict the morphological evolution
efficiently. Based on a systematic study, we found that a fully trained

1 : , . .
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04 - |
02 r o |

PF data points =
DDE £1x tralnlngg

0 2 DDE (2x training) -

0 1 2 3 4 5 6 7 8 9
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Fig. 7. Comparing the simulated and the emulated 1-D interface profiles of the
conserved order parameter, ¢, plotted along the black arrow (at t=40) in Fig. 4d.

DDE emulator can predict the microstructural evolution 60 times faster
when compared to the phase-field method.

The convolution and recurrent neural network (CRNN) follows an
image-based, nonparametric algorithm, which is capable of extracting
microstructural features and their evolution pattern from phase-field
simulated sequences. The proposed CRNN is material as well as pro-
cess agnostic, and therefore could potentially be used for predicting
microstructural evolution in distinct scenarios as long as the training
data is available. Unlike previous studies [27-29], the present DDE
model, in addition to reproducing the correct scaling dynamics and the
morphological evolution, conserves the characteristic diffuse nature of
the interfaces. However, in order to reproduce the smooth hyperbolic
tangent-like interface profiles which the phase-field predicts, the train-
ing volume needs to be increased. The time required for a trained DDE
to predict microstructural evolution typically spans a minute, which is
minuscule when compared to phase-field simulation run times.

While our work is not the first one to develop a data-driven sim-
ulator for phase field methods, our novel implementation of tensor
decomposition into CNN instead of using low-dimensional projections
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of two-point correlation functions [27,28], accelerates the neural net-
work without significant accuracy losses. In closing, we would like to
emphasize that the development of a microstructure emulation method
such as the one reported here is not aimed at replacing the phase field
models. Rather it is meant to aid in scenarios where obtaining the
solution of partial differential equations is non-trivial, or in those cases
where the complexities related to multiphysics make the formulation
of phase field models, difficult. In numerous scenarios, phase-field
models could be the only means for generating the training data for
DDE. Apparently, the present emulation technique heavily relies on the
development of phase-field models without which the former cannot be
applied.

It is also equally important to note that DDE, unlike numerical
schemes, does not involve solving any partial differential equations. It
is agnostic of the complex multiphysics associated with phase trans-
formations as the morphological evolution that is emulated is entirely
based on image processing and machine learning. Therefore, the full
potential of DDE lies in scenarios where phase-field models that could
possibly encapsulate all the relevant physics are yet to be developed, for
e.g., additive manufacturing. In such cases, training datasets for DDE
can be generated using in-situ experiments.
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