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Abstract—Coherent integrated photonic neural network (C-
IPNN) architectures enable light-speed and ultra-low-energy
accelerators for rapidly growing artificial intelligence applications.
Nevertheless, C-IPNNs have a large footprint and suffer from
high tuning power consumption for both training and inference.
Pruning C-IPNNs using model compaction to reduce the number
of weight parameters can potentially alleviate these problems.
However, prior attempts at pruning singular-value-decomposition-
based C-IPNNs (SC-IPNNs) have shown that very few parameters
can be removed without significantly degrading the network
accuracy. In this paper, we present the first hardware-aware
pruning method for SC-IPNNs based on the lottery ticket
hypothesis (LTH). We also discuss the challenges associated with
pruning SC-IPNNs and show that, in addition to the classification
accuracy, model-compaction techniques should be guided by a
reliability assessment of the pruned networks. As a case study,
we prune a multi-layer perceptron-based SC-IPNN with two
hidden layers and show that up to 89% of the phase angles,
which correspond to weight parameters in SC-IPNNs, can be
pruned with a negligible loss in accuracy (smaller than 5%) while
reducing the network (i.e., tuning) power consumption by up to
86%. Therefore, the proposed pruning method paves the way for
realizing compact and energy-efficient photonic neural networks.

I. INTRODUCTION

Silicon photonics can enable compact, ultra-fast, and ultra-
low-energy artificial intelligence (AI) accelerators, realizing
a promising framework for the emerging class of informa-
tion processing machines [1]. In particular, leveraging the
inherently parallel nature and high-speed of optical-domain
computation, coherent integrated photonic neural networks (C-
IPNNs), which operate with a single wavelength, can reduce the
computational complexity of matrix multiplication—the most
compute-intensive operation in deep neural networks (DNNs)—
from O(N2) to O(1) [2]. Using singular value decomposition
(SVD), several C-IPNNs (referred to as SC-IPNNs in this
paper) have been recently proposed [1].

As shown in Fig. 1(a), SC-IPNNs use arrays of Mach–
Zehnder interferometers (MZIs) as their building block. The
phase angles on each MZI can be adjusted based on the weights
in the network and by using training algorithms [3]. Recent
work has shown up to a 70% accuracy loss in SC-IPNNs due to
uncertainties in MZI phase settings [4], and found that such an
accuracy loss is mostly due to the uncertainties in MZIs with
higher adjusted phase angles. Moreover, SC-IPNNs suffer from
large area and tuning power consumption. In particular, the
underlying MZI devices in SC-IPNNs employ lengthy phase
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Fig. 1: (a) A 4×4 linear multiplier realized using MZI arrays,
representing the weights of a four-neuron layer connected to another
four-neuron layer. (b) An MZI with two phase shifters. Here, φ and
θ denote the phase angles. The MZI footprint is limited by the length
of its phase shifters (MZI dimensions obtained from [5]).

shifters (e.g., as long as 135 µm [5]) and consume high power
(e.g., ≈25 mW per MZI, dominated by the tuning power in
MZI phase shifters [6]). A potential solution to alleviate these
problems is to prune SC-IPNNs to reduce the number of bulky
components (e.g., phase shifters in MZIs—see Fig. 1(b)) and
minimize the phase settings in the network.

While software pruning of weights has shown promising
results in electronic implementations of DNNs [7], its applica-
bility to SC-IPNN model compaction is significantly limited.
This is because of the complex mapping between the weights in
the fully connected layer (in software) and the phase angles (in
hardware) in SC-IPNNs: i.e., each weight is mapped to multiple
phase angles and each phase angle is used to realize multiple
weights. Consequently, it is extremely challenging to selectively
prune the phase angles that only affect the non-critical (low
saliency) weights without deviating the critical weights. Prior
efforts on pruning SC-IPNNs using existing techniques have
shown that only up to 30% of the phase angles can be pruned
without significant degradation in the network accuracy [8].

In this paper, we present the first efficient hardware-aware
pruning method for SC-IPNNs based on the lottery ticket
hypothesis (LTH). This hypothesis states that given any
randomly initialized, dense, feed-forward DNN, there exists a
sub-network that—when trained from scratch—can match the
test accuracy of the original DNN [9]. Recent work on model
compaction of software DNNs has empirically demonstrated
the existence of such sub-networks (winning tickets), which
are 10–20% of the size of the original network. By leveraging
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insights from LTH, our pruning method identifies a small subset
of phase angles in SC-IPNNs that are critical for maintaining
the classification accuracy. As a result, we can reduce the
footprint and tuning power consumption in SC-IPNNs either
by removing or power-gating the redundant phase shifters in
SC-IPNNs. We consider an SC-IPNN case study and show
that we can prune up to 89% of the 1374 phase shifters in the
original network, and achieve an 86% reduction in the tuning
power consumption.

Pruning of SC-IPNNs with low accuracy loss is a consider-
ably more challenging problem compared to that in electronic
implementations of DNNs. To the best of our knowledge,
the proposed method is the first to achieve highly sparse SC-
IPNNs with less than 5% accuracy loss. The example SC-IPNN
considered as our case study is compact even in its unpruned
form (only two hidden layers with 16 neurons each). Therefore,
we allow an accuracy loss of up to 5% to show that our method
achieves significant sparsity even in such difficult-to-prune
networks. The main contributions of this paper are:

• Identifying the challenges associated with pruning SC-
IPNNs and the limitations of conventional hardware-
unaware software pruning;

• Developing the first hardware-aware pruning method based
on LTH to generate power- and area-efficient SC-IPNNs;

• Exploring the trade-off between the sparsity of the phase
angles in a pruned SC-IPNN and its sensitivity to random
uncertainties in the (remaining) non-zero phase angles.

The rest of the paper is organized as follows. Section II
covers the fundamentals of SC-IPNNs and LTH and Section
III highlights the challenges in pruning SC-IPNNs. We then
describe a hardware-aware magnitude-based (baseline) pruning
and the proposed LTH-based pruning. We present simulation
results in Section IV and draw conclusions in Section V.

II. BACKGROUND AND MOTIVATION

A. Coherent Integrated Photonic Neural Networks

C-IPNNs operate with a single wavelength and employ
optical phase-change mechanisms in on-chip interferometric
devices (i.e., MZIs) to imprint weight parameters onto the
electrical field amplitude of optical signals [1]. Using SVD, the
weight matrices in linear layers of multi-layer perceptrons can
be factorized into two unitary and one diagonal matrices. Using
the Clements design [10] and considering Fig. 1(a), the weight
matrix of a linear layer can be realized using three MZI arrays
as W = UΣV H , where V H is the Hermitian transpose of V .
An N ×N unitary and diagonal matrix can be implemented by
adjusting the phase angles in an array with N(N − 1)/2 and
N MZIs, respectively. In addition, global optical amplification
(layer β in Fig. 1(a)) is necessary on each output [11]. The
non-linear activation can be performed using opto-electronic
units [12], not shown in Fig. 1(a) for the sake of brevity.

Fig. 1(b) shows a schematic of a 2×2 MZI with two phase
shifters (PSes), where φ and θ are the phase angles. PSes are
used to determine the relative phase difference between the two
optical signals traversing the MZI arms and can be implemented

using microheaters that work based on the thermo-optic effect
in silicon [3]. In a thermo-optic PS, the temperature-induced
phase shift (∆φ or ∆θ) is proportional to the temperature
change (∆T ) based on ∆φ =

(
2πL
λ0

)
·
(
dn
dT

)
· ∆T . Here, L

is the length of the PS and λ0 is the optical wavelength [13].
Also, dn

dT ≈ 1.8 · 10−4 K−1 is the thermo-optic coefficient of
silicon at λ0 = 1550 nm and temperature T = 300 K. The
parameter ∆T can be controlled by applying a DC voltage
using a digital-to-analog converter (see Fig. 1(b)). The tuning
power consumption in the PSes, P , is directly proportional to
∆T : ∆T ∝ P [13]. The MZI also includes two directional
couplers with a nominal splitting ratio of 50:50 (3-dB couplers).

Software training of SC-IPNNs can be performed either
in a hardware-unaware or in a photonic hardware-aware
manner. In the hardware-unaware approach, the optimal DNN
weight matrices are first obtained using training and are then
mapped to different phase angles in the MZIs. In contrast, in
photonic hardware-aware software training, backpropagation is
performed on the phase angles that are adjusted based on the
computed gradients. We employ this approach as it offers more
control on the phase angles during software training. This is
essential for efficient pruning of SC-IPNNs (see Section III).

B. Pruning SC-IPNNs: Motivation

Effective pruning of neural networks can reduce the infras-
tructure costs associated with the storage and computation of
enormous DNNs, thereby enabling their deployment in resource-
constrained environments. Additionally, pruning SC-IPNNs can
improve their area- and power-efficiency, as discussed next.

The phase shifters in SC-IPNNs with MZI arrays consume a
significant portion of the network area and power. In particular,
the size of the constituent thermo-optic PSes in an MZI
determines the size of the device (see Fig. 1(b)). For example,
the state-of-the-art 2×2 MZI proposed in [5] is ≈ 300 µm
long, in which each PS has a length of 135 µm (i.e., ≈ 90%
of the length of the MZI considering the two PSes). Moreover,
as discussed in Section II-A, the required phase shift in a PS
(∆φ) is directly proportional to its length (L) and tuning power
consumption (P ): ∆φ ∝ L · P . Even power-efficient PSes can
consume up to ≈ 25 mW tuning power for a phase shift
of π [6]. As a result, low accuracy-loss pruning approaches
are essential in SC-IPNNs to identify prunable PSes, thereby
reducing the footprint of the network and the tuning power
consumption during inferencing. Note that the phase angles
are adjusted dynamically during software training. However,
we only consider the static tuning power dissipated in the PSes
during inferencing to maintain the trained phase angles in the
hardware platform. Additionally, as lower phase shifts require
lower ∆T (∆φ ∝ ∆T ) , mutual thermal crosstalk between
PSes can be minimized by pruning. The problem of explicitly
reducing thermal crosstalk is beyond the scope of this paper.

C. Lottery Ticket Hypothesis (LTH)

Recent studies have shown that training a pruned model
from scratch is considerably difficult and it often achieves
lower accuracy compared to the original (unpruned) model [7].
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Fig. 2: An example of the bidirectional many-to-one association
(BMA) between the elements of the weight matrix and the MZI array
for a 5×5 unitary matrix. The numbers in each cell of the unitary
matrix denote the MZIs that affect the corresponding matrix element.

Nevertheless, LTH has established that for a given randomly
initialized network, we can always find a smaller sub-network
that—when trained from scratch—can match the accuracy of
the original network within a few training iterations [9]. These
high-performing trainable sub-networks, called the winning
tickets, can be identified by a modified magnitude-based pruning
approach. After the smallest-magnitude weights (below a pre-
determined threshold) are pruned, the remaining non-zero
parameters are reset back to their original values (before
the onset of training). This step is followed by retraining to
recover the network accuracy. Experimental results show that
the winning ticket for a network varies based on the initial
weight values [9]. One possible explanation for this is that the
winning ticket initialization can potentially land in a region-
of-the-loss landscape that enables quick optimization. Model-
compaction techniques have shown that stochastic-gradient
descent seeks out and trains a sub-network. However, LTH
highlights that there exist multiple such sub-networks unique
to different initializations (see [9] for more details on LTH).

III. ENABLING EFFICIENT PRUNING IN SC-IPNNS

A. Challenges in Pruning SC-IPNNs

Hardware-unaware software pruning methods in DNNs aim
at obtaining a sparse weight matrix [7]. A binary mask Mk is
maintained for each DNN layer Lk. An element of the mask,
say Mk

i,j , is 0 (1) iff the corresponding weight Lk
i,j is zero

(non-zero). In each pruning iteration, a fraction of the non-zero
weights—typically those with a smaller magnitude—in each
layer is clamped to zero, and the corresponding mask elements
are updated. During backpropagation in retraining, the gradient
of each weight is multiplied with its respective mask element,
ensuring that the zero weights in each layer are not updated.

Unfortunately, there are several problems with applying such
software pruning techniques to SC-IPNNs. In particular, each
element of the weight matrix of a linear layer in SC-IPNNs is
mapped to multiple phase angles, and each phase angle in an
MZI array affects multiple elements of the weight matrix. Fig. 2
shows an example of this bidirectional many-to-one association
(BMA) between a 5×5 unitary matrix and its corresponding
MZI array. Due to this BMA, if a phase angle in an MZI is
updated to prune a non-critical (low-magnitude) weight, it can
also affect another potentially critical weight, thereby leading
to significant accuracy losses. Moreover, because of BMA, a
sparse weight matrix may not necessarily lead to sparsity in
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Fig. 3: Comparison between the sparsity of 10000 randomly generated
16×16 unitary matrices and the sparsity of the PSes (when phase
angles are zero) in the respective MZI devices. Inset: Comparison of
the matrix sparsity with the sparsity of PSes for 1000 highly sparse
(matrix sparsity >90%) 16×16 unitary matrices. The red, green, and
blue clusters indicate unitary matrices that are mapped to MZI arrays
with low, medium, and high sparsity in the PSes, respectively.

the PSes of the corresponding MZI devices, i.e., when one or
both of the phase angles (φ and θ) are zero and the PSes can
be then removed or power-gated. Fig. 3 compares the sparsity
of 10000 randomly generated 16×16 unitary matrices with
the sparsity of their mapped PSes in the corresponding MZIs.
Observe that a highly sparse (>90%) weight matrix does not
always lead to sparsity in PSes. While software pruning focuses
on a sparse weight matrix, SC-IPNN model compaction should
minimize and prune MZI phase angles to reduce area overhead
and tuning power consumption. The discrepancy between these
two objectives indicates the ineffectiveness of software pruning
in SC-IPNNs and the critical need for hardware-aware pruning.

By leveraging hardware-unaware software pruning, where the
weight matrices are first pruned in software and then mapped
to MZI arrays, [8] showed that no more than 30% of the
phase angles can be pruned without a significant accuracy
loss (≈10%) in SC-IPNNs. To address this, [8] proposed
a pruning-friendly non-SVD-based C-IPNN architecture that
leverages block-circulant matrix representation and performs
matrix-vector multiplication using optical fast Fourier transform
(FFT). However, even this alternative architecture could achieve
a sparsity of only up to 45%.

B. Hardware-Aware Pruning in SC-IPNNs

As discussed in Section III-A, pruning in SC-IPNNs must be
hardware-aware to ensure sparsity in phase angles. However,
as we will show in Section IV, the nonlinear dependence
between the phase angles and the weights in SC-IPNNs—
e.g., weights with large magnitude can be mapped to smaller
phase angles—makes it challenging to identify non-critical
weights that can be safely pruned, even using hardware-aware
techniques. Consequently, simply pruning phase angles based
on their magnitude can be ineffective. In this section, we
first present a baseline approach where we apply conventional
magnitude-based pruning by considering the magnitude of the
adjusted phase angles. Next, we present the LTH-based pruning
technique and show that it can prune a significant fraction of
phase angles with a negligible accuracy loss.
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1) Baseline Method: Phase-Angle-based Magnitude Pruning

In magnitude-based pruning, all the weights in a layer
having magnitudes smaller than a threshold are set to zero.
Next, in post-pruning, the network is retrained to recover the
lost accuracy. However, the pruned weights are kept at zero
during the retraining. There are several ways to determine the
threshold for a layer. For example, in magnitude pruning based
on the mean (standard deviation), the threshold is considered
to be a factor—say α—of the mean (standard deviation) of
the non-zero weights in a layer. Magnitude pruning can be
performed either in one shot or in an iterative manner. In one-
shot pruning, all the weights below a threshold are pruned
in a single step after which retraining (a.k.a. fine-tuning) is
performed. In iterative pruning, weights are gradually pruned
over multiple steps with each step followed by few rounds of
fine-tuning. While extending magnitude pruning to SC-IPNNs,
we implement both the one-shot and the iterative approaches.
We consider photonic hardware-aware software training, and
therefore, during backpropagation, gradients are calculated for
each phase angle (and not layer edge weights). Consequently,
the binary masks used to suppress the gradients for the pruned
phase angles are also maintained for the PSes in the MZI array
corresponding to the weight matrix of each linear layer.

2) Proposed Method: Using LTH to Prune SC-IPNNs

Pruning based on LTH is similar to magnitude pruning, but
with a significant difference: after the weights are pruned, the
remaining non-zero weights are set back to their initial values,
which were stored before training began for the first time. This
step is followed by retraining to recover the lost accuracy. Fig.
4 presents an overview of the proposed LTH-based pruning for
SC-IPNNs. The inputs are the hyperparameters (learning rate
and epochs) for the retraining step, the maximum acceptable
accuracy loss, minimum sparsity, maximum number of pruning
rounds (Rmax), and the pruning rate (k). As a pre-processing
step, we initialize the weights and store their values in a
database. In each round, we check whether the network sparsity
is acceptable, in which case we exit the pruning round and
retrain to achieve acceptable classification accuracy. Otherwise,
we enter the round and retrain the network. Note that the
training hyperparameters should be adjusted in each round
to obtain a sufficiently high accuracy (< 5% accuracy loss—
considered as an example in this paper) before the phase
angles are pruned. After retraining, the bottom k percentile
of the phase angles with small magnitude are pruned and
the respective binary masks are updated. The k-percentile
pruning step can be performed in two ways: in layer-wise LTH
pruning, the bottom k percentile weights in each tier are pruned,
whereas, in global pruning, the bottom k percentile weights
in the entire SC-IPNN are pruned. After pruning, we set the
non-zero weights back to their initial values before proceeding
to the next round. We use LTH to identify the best-performing
winning ticket in an iterative manner over multiple rounds as
it has been shown to yield more sparse subnetworks compared
to the one-shot (single-round) approach [9].

Due to the unique challenges with the pruning of SC-IPNNs
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Fig. 4: An overview of the proposed LTH-based hardware-aware
pruning method for SC-IPNNs. The input parameters are user-defined.

(see Section III-A), we encounter a significant loss in accuracy
after each pruning iteration. However, by resetting the non-
zero phase angles to their initial values after each iteration, our
approach gradually identifies the best solution (with acceptable
sparsity and accuracy) out of the winning tickets in each
iteration. In accordance with LTH, this ensures that the pruned
models obtained using our method can recover the accuracy
loss (due to pruning) more effectively compared to a pruned
model of similar sparsity obtained using the baseline method.
As a result, we are able to achieve significantly higher sparsity
with a negligible accuracy loss, as shown in the next section.
Note that the proposed pruning method should be performed
offline and only once per an SC-IPNN design.

IV. SIMULATION AND EVALUATION RESULTS

We use a fully connected feedforward SC-IPNN with two
hidden layers (i.e., 32 neurons and 1374 PSes) to demonstrate
the performance of the baseline and the proposed LTH-based
pruning methods. Each linear layer is implemented using the
Clements design [10] and is followed by a nonlinear Softplus
function. To model intensity measurement, a modulus squared
nonlinearity is applied after the output layer. This is followed
by a final LogSoftMax layer to obtain a probability distribution.
We use a cross-entropy loss function [14] to train the SC-IPNN
on the MNIST dataset. Similar to [4], we use shifted FFTs
to convert each 28×28 MNIST image to a 16-dimensional
complex feature vector. The nominal inferencing accuracy (on
the test dataset) of the unpruned SC-IPNN is 93.86%. Note that
the proposed method is agnostic to the network (number and
size of linear layers, non-linear activation, and loss functions).

A. Pruning Analysis for SC-IPNNs

Fig. 5(a) shows the simulation results for the one-shot (top)
and iterative (bottom) phase-angle magnitude-based pruning
with the baseline method. In each case, we consider standard-
deviation-based pruning (and not the mean-based one) to
calculate the threshold as it considers the distribution of
the phase angles in each layer. The threshold is given by
α · σlayer. Here, α is a user-defined constant (see Section
III-B1) and σlayer denotes the standard deviation of the non-
zero phase angles in a layer. We consider both one-shot and
iterative approaches as in a few cases (e.g., for α = 0.2), the
former performs better. For iterative pruning, we approach this
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Fig. 5: Fine-tuned accuracy, PS sparsity, and mean phase angle for (a)
one-shot phase-angle magnitude-based (baseline) pruning (top) and
iterative baseline pruning (bottom) with different values of α; and (b)
different rounds of layer-wise (top) and global LTH-based pruning
(bottom). The black-dashed lines show a 5% accuracy loss and the
yellow rectangles highlight the best-performing models (maximum
sparsity with accuracy loss <5%) for each pruning method.

threshold in incremental steps of α · σlayer/10. As can be
seen, in both cases the overall sparsity of the PSes increases
with α. Also, the mean phase angle—averaged over the 1374
PSes to which the weight parameters are mapped—and hence
the tuning power (see Section II-B) decrease as α increases.
However, the inferencing accuracy drops significantly for the
one-shot pruning as α increases. In contrast, in iterative pruning,
the accuracy loss is less than 5% up to α =1 (see the black-
dashed line in Fig. 5(a)). This is because of the gradual pruning
and fine-tuning in iterative pruning, compared to the drastic
pruning and few fine-tuning iterations in the one-shot case. If
one allows for an accuracy loss of 5%, up to 55% (31%) PSes
can be pruned using the iterative (one-shot) approach.

For the LTH-based pruning method, we found that the
performance is better when we start with a low pruning rate
(k) for the first few rounds, before aggressively pruning (high
k) in the final rounds. Accordingly, we consider a pruning
rate of k =10% for the first ten rounds and then increase it
to k =25% for the remaining rounds. To show results over
several rounds, we do not constrain the maximum accuracy
loss, minimum sparsity, and Rmax parameters, and tune the
training hyperparameters to maximize the accuracy. Fig. 5(b)
shows the results for the proposed layer-wise (top) and global
(bottom) LTH-based pruning. Recall that in layer-wise (global)
LTH-based pruning, the non-zero phase angles in the bottom

k percentile of each layer (the entire SC-IPNN) are pruned.
In both cases, the inferencing accuracy is significantly low in
the first round as it is computed before the network is trained
(see Fig. 4). The accuracy also drops sharply in the final round
(round 18 for layer-wise and 11 for global) as the loss function
explodes when a large fraction of phase angles are pruned,
thereby leading to erroneous gradient propagation. As expected,
the PS sparsity increases and the mean phase angle as well
as the tuning power consumption (see Section II-B) decrease
with more rounds of pruning. Yet, the accuracy loss is smaller
than 5% (above the black-dashed line in Fig. 5(b)) for many
rounds, especially for the layer-wise pruning. In fact, up to
89% of the PSes can be pruned with 86% reduction in the
mean phase angles and tuning power consumption using 16
rounds of layer-wise LTH-based pruning. Similarly, up to 57%
of phase angles can be pruned using the global LTH pruning.

The global LTH-based pruning performs worse compared
to the layer-wise pruning as it is biased towards layers with
smaller phase angles, i.e., it is possible that most phase angles
in such layers are pruned away in the initial rounds. This is
highlighted in Fig. 6(a) where we show the sparsity of phase
angles in the three (one input and two hidden) layers of layer-
wise and global LTH-pruned models. In the global model with
the best trade-off between accuracy and sparsity (eight rounds
of pruning, 88.9% accuracy, and 57.6% mean sparsity), the
percentage of pruned (i.e., zero) θ phase angles is considerably
higher than φ. In the global model with maximum sparsity (11
rounds of pruning and 81.2% mean sparsity), up to 98.8% of
θ phase angles are pruned. Extreme sparsity in certain layers
can potentially hinder training and lead to exploding loss. In
contrast, layer-wise pruning (see Fig. 6(a)) ensures that the
sparsity of phase angles is uniform across the different layers.

When considering both high sparsity and low accuracy loss,
the LTH-based pruning outperforms hardware-aware magnitude
pruning (baseline). Fig. 6(b) compares the accuracy loss and
sparsity of pruned SC-IPNNs obtained using different methods.
Here, we consider only those models where the accuracy loss
due to pruning is less than 5%. The unpruned SC-IPNN has
3.03% sparsity based on the initialization (see the magenta
data point). From Fig. 6(b) it is clear that only layer-wise LTH
pruning can offer a sparsity greater than 60%. When very low
accuracy loss (<1%) is acceptable after pruning, the hardware-
aware magnitude pruning (baseline) can be considered, which
achieves a maximum sparsity of 22% under this constraint.
Fig. 6(c) compares the histograms of the phase angles of
the best-performing models obtained using the baseline and
the LTH-based pruning with that of the unpruned SC-IPNN.
Layer-wise LTH-based pruning not only achieves high sparsity
with negligible accuracy loss but minimizes the phase angles,
resulting in significant savings in tuning power consumption
(phase angle and tuning power are linearly proportional).

B. Noise Sensitivity of Pruned SC-IPNNs

As the redundant parameters in a DNN are gradually
discarded during model compaction, the pruned DNN becomes
more sensitive to uncertainties in the (few) remaining parame-
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Fig. 6: (a) Phase-angle sparsity (φ and θ) in the three layers (L0, L1, and L2) of different LTH-pruned models. The x-axis shows the variant
of LTH pruning used with the number of rounds in parentheses. The magenta-dashed lines indicate the mean sparsity over all the layers. (b)
Comparison between the accuracy loss and PS sparsity in pruned models obtained using different methods. (c) Histogram distribution of the
phase angles in the SC-IPNN with baseline and LTH-based pruning (inset shows the same plot with a logarithmic scale on the y-axis).
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Fig. 7: Inferencing accuracy of the unpruned SC-IPNN and the best-
performing pruned models obtained using the baseline and the LTH-
based pruning methods. ∆Accuracy denotes the difference in the
accuracy between the unpruned and the LTH-pruned models.

ters. This is indeed critical for sparse SC-IPNNs because even
original and unpruned SC-IPNNs are sensitive to uncertainties,
especially those in the adjusted phase angles in the network
[4]. Using the SC-IPNN case study in this paper, we consider
1000 Monte Carlo iterations and inject random uncertainties
in the phase angles of the unpruned SC-IPNN and those
of the best-performing models obtained from the iterative
baseline and the layer-wise LTH-based pruning methods. In
each iteration, the uncertainties are sampled from a zero-mean
Gaussian distribution with a standard deviation of σPS ·π. Fig.
7 shows the mean inferencing accuracy—over 1000 Monte
Carlo iterations—for the three models for different values of
σPS . We observe that while all three models are sensitive to
uncertainties, the degradation in accuracy is slightly higher in
sparse networks. The black-triangle line in Fig. 7 shows that
the difference in the accuracy of the unpruned and the LTH-
pruned model can be up to 11.3%. Note that in the absence of
phase uncertainties (σPS = 0), the accuracy of the unpruned
network is only 5% greater than the LTH-pruned model. Under
uncertainties, the baseline-pruned model has slightly higher
accuracy (0.4% on average) than the LTH-pruned model as
it is less sparse. Mitigating uncertainties in SC-IPNNs often
imposes high power-consumption overhead (e.g., when using
tuning mechanisms [2], [3]). Fortunately, LTH-based pruning
offers significant savings in power consumption, facilitating the
deployment of uncertainty-mitigation methods in SC-IPNNs.

V. CONCLUSION

Pruning is challenging in SC-IPNNs because of the bidirec-
tional many-to-one association between the edge weights of
the linear layer and the phase angles. This paper is the first
effort at hardware-aware pruning in SC-IPNNs to minimize
their area overhead and tuning power consumption. We have
presented two hardware-aware pruning methods, including a
conventional magnitude-pruning-based approach for moderate
sparsity (up to 22%) and ultra-low accuracy loss (<1%), and
a novel pruning method based on the lottery ticket hypothesis
to achieve ultra-high sparsity (up to 89%) with an acceptable
accuracy loss (<5%). The insights derived from this paper
pave the way for enabling advanced hardware-software-assisted
design-optimization solutions for realizing compact and energy-
efficient integrated photonic neural networks.
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