IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

6101013

Pruning Coherent Integrated Photonic
Neural Networks

Sanmitra Banerjee ”, Mahdi Nikdast

, Senior Member, IEEE, Sudeep Pasricha, and Krishnendu Chakrabarty

(Invited Paper)

Abstract—Coherent integrated photonic neural networks
(IPNNs) are increasingly being explored for rapidly growing ar-
tificial intelligence applications. However, the principal roadblocks
in the scalability of IPNNs are their large area footprint and high
tuning power consumption during both training and inferencing.
In deep neural networks (DNNs), software techniques to prune re-
dundant weights are often utilized to reduce resource (e.g., memory,
computation, and power) overheads. However, due to the complex
nature in which the software weights are mapped to the building
blocks of IPNNS, prior efforts to apply existing pruning approaches
to IPNNs have been ineffective. We present CHAMP and LTPrune,
two novel hardware-aware pruning techniques for IPNNs. Using a
case study of three IPNNs with different footprints, we show that
both these methods can prune more than 99% of the phase angles
(which are similar to the weight parameters in DNNs). We also
analyze the performance of the pruned IPNNs under phase uncer-
tainties and present a comparative analysis of the two methods to
enable advanced hardware-software-assisted design-optimization
techniques for IPNNs. To expedite pruning, we also propose Hy-
bridPrune, where CHAMP and LTPrune are used in conjunction
to obtain similar network sparsity as standalone-LTPrune but with
up to 78.3% fewer retraining epochs.

Index Terms—Mach-Zehnder interferometer, machine learning,
neural networks, pruning, silicon photonics.

I. INTRODUCTION

EEP neural networks (DNNs) have seen remarkable ad-
D vances and are being widely deployed for speech and
action recognition, image classification, and natural-language
processing. The primary computational primitive while query-
ing such advanced DNNSs is the time- and energy-intensive ma-
trix multiplication operation. Leveraging the inherently parallel
nature and high-speed of optical-domain computation, coherent
integrated photonic neural networks (IPNNs), which operate

Manuscript received 8 August 2022; revised 2 November 2022 and 15
December 2022; accepted 3 January 2023. Date of publication 7 February 2023;
date of current version 29 March 2023. This work was supported by the Na-
tional Science Foundation (NSF) under Grants CCF-1813370, CCF-2006788,
and CNS-2046226. (Corresponding author: Sanmitra Banerjee.)

Sanmitra Banerjee is with the NVIDIA Corporation, Santa Clara, CA 94086
USA (e-mail: sanmitrab@nvidia.com).

Mahdi Nikdast and Sudeep Pasricha are with the Department of Electrical
and Computer Engineering, Colorado State University, Fort Collins, CO 80523
USA (e-mail: mahdi.nikdast@colostate.edu; sudeep.pasricha@colostate.edu).

Krishnendu Chakrabarty is with the School of Electrical, Computer, and
Energy Engineering, Arizona State University, Tempe, AZ 85287 USA (e-mail:
krish@duke.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSTQE.2023.3242992.

Digital Object Identifier 10.1109/JSTQE.2023.3242992

with a single wavelength, can reduce the computational com-
plexity of matrix multiplication from O(N?) to O(1) [1]. Using
singular value decomposition (SVD), several IPNNs have been
recently proposed [2].

The weight matrix corresponding to a linear multiplier in
the fully-connected layer of a multi-layer perceptron can be
factorized into two unitary matrices and one diagonal matrix
using singular value decomposition. Several approaches for rep-
resenting the unitary matrices using an array of Mach-Zehnder
interferometers (MZIs) have been proposed in prior work [3],
[4]. Similarly, a diagonal matrix can be realized using a single
layer of MZIs. Essentially, MZIs are the building blocks of
IPNNSs, and each MZI consists of two phase shifters [with phase
angles ¢ and @ in Fig. 1(d)] and two 50:50 beam-splitters.
The phase angles in an array of MZIs can be tuned to realize
different unitary transformations; during backpropagation in
IPNN training, the phase angles are iteratively updated using
an optimizer (e.g., stochastic gradient descent) to minimize the
loss function.

While IPNNs can perform high-speed matrix multiplication,
they suffer from high static power consumption in the thermo-
optic PhS in the MZIs. The power consumption in such PhS
is directly proportional to the tuned phase angle [5]. In fact,
even in power-efficient PhS, up to 25 mW tuning power can
be dissipated for a phase shift of 7 [6]. Additionally, PhS with
high phase angles are more susceptible to inevitable uncertain-
ties phase uncertainties due to fabrication process variations
and thermal crosstalk. In prior work [7], we have shown that
such uncertainties can result in up to a 70% reduction in the
inferencing accuracy. In addition to the high tuning power con-
sumption, the large area footprint of MZIs is a crucial roadblock
in the scalability of IPNNs. High-performance MZIs proposed
in recent work (e.g., [8]) have a footprint of 300 pm. Such
footprint is exceedingly high compared to electronic circuits,
where sub-5 nm transistors are now commonly used. Clearly, an
IPNN will have a higher area footprint compared to an electronic
DNN that is trained on the same workload (and, therefore, has
similar architectural complexity).

A potential solution to both the aforementioned problems
can be to prune redundant PhS from the MZI arrays in the
IPNN. Such PhS can either be removed from the array or
power-gated to reduce the tuning power consumption. Addi-
tionally, PhS account for a significant portion (up to 90%) of
the area footprint in an MZI [8]). Pruning PhS can thereby

1077-260X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1136-9220
https://orcid.org/0000-0003-4930-2985
https://orcid.org/0000-0003-4475-6435
mailto:sanmitrab@nvidia.com
mailto:mahdi.nikdast@colostate.edu
mailto:sudeep.pasricha@colostate.edu
mailto:krish@duke.edu
https://doi.org/10.1109/JSTQE.2023.3242992

6101013

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

LT T \
Optical-Interference ~ Optical-Gain Nonlinear-Activation Il 04 ¢ (e 5 1) l(2+ fj I 1
Unit (OIU) Unit (OGU) Unit (NAU) g] =il 2 g] 1
okm-17 S p 1 o 1 —— Lm : 2 O2] {ficio(ei® +1) (1—e®) [12 1
Loy H : :
oy QYNxN]L &Nxn] (V> Ols;n : Digital Memory f
Too = H

J 11 By~ A -
U,V Unitary Matrices i Eo \4— . [DACH \efoltage Driver |—| ¥

— t 6 1
4 - H': Hermitian Transpose 1 _ILHL tho: transmittivity W ” « il
. ’:U:— - X: Diagonal Matrix : E; 4 avegut ctFFFIEFl.\ 6 x V2 :

>ate (H

Optical Terminator MZI ____________________: _________ >

Fig. 1.

considerably reduce the area footprint of IPNNs, particularly for
edge devices where the IPNN application workload is known and
remains fixed. Moreover, a sparse IPNN (where most of the PhS
have a zero phase angle) can be defined by fewer parameters
(e.g., tuned phase angles). Therefore, incremental retraining
of such pruned IPNNs has a lower memory overhead. This is
particularly crucial for edge applications (e.g., automotive ICs),
where the phase angles may need to be updated in-field when the
application workload changes. Prior attempts at pruning [PNNs
have primarily focused on a software-based approach. In such
methods, a DNN is first trained in software and pruned using
magnitude-based techniques (e.g., [9]). The DNN weights in
the sparse network are then mapped to tuned phase angles in the
IPNN. However, as we show in Section II-D, due to the complex
bidirectional many-to-one mapping between the DNN weights
and the IPNN phase angles, a sparse weight matrix may not
always lead to sparse phase angles. Moreover, simply pruning
the phase angles post-training leads to a significant accuracy loss
due to the unretrainability of the IPNN [10].

To enable efficient pruning in IPNNs, we propose two novel
hardware-aware pruning techniques. The first method, CHAMP,
uses photonic-training, where we perform backpropagation on
the phase angles rather than the edge weights of the fully con-
nected layers; consequently, we have increased control over the
phase angles and obtain higher sparsity with lower accuracy loss.
The second method, LTPrune, builds upon CHAMP and lever-
ages the lottery ticket hypothesis to identify sparse subnetworks
in IPNNs. Using two example IPNNs of different footprints,
we show that CHAMP and LTPrune can both prune more than
99% of the phase angles (89% in the smaller IPNN) with an
accuracy loss of less than 5%. We also propose HybridPrune for
high-speed in-field IPNN pruning — this method can achieve a
similar sparsity as LTPrune with up to 78.3% lower run-time
necessary to retrain the pruned network.

The main contributions of this paper are as follows:

* Highlighting the challenges associated with conventional
hardware-unaware software DNN pruning when applied to
IPNNs;

® CHAMP, a hardware-aware magnitude pruning technique
for coherent IPNNs;

® LTPrune, a hardware-aware pruning technique based on
the lottery ticket hypothesis to obtain power- and energy-
efficient IPNNss;

Schematic of a linear layer in MLP-based coherent IPNNs. Right: detailed view of an MZI.

e Comparing the sparsity of the pruned models obtained
using CHAMP and LTPrune on IPNNs with different foot-
prints;

® Analyzing the trade-off between the sparsity of the PhS in
a pruned IPNN and its sensitivity to random uncertainties
in phase angles when the pruned PhS are power-gated or
removed;

e HybridPrune, an in-field pruning technique to obtain sparse
general-purpose IPNNs with few retraining epochs.

The rest of the paper is organized as follows. Section II
presents the fundamentals of IPNNs and motivates the need
for pruning IPNNs to improve the power-efficiency and reduce
the area overhead. Furthermore, we highlight the challenges in
pruning IPNNs using existing hardware-unaware DNN prun-
ing approaches. In Section III, we propose CHAMP and LT-
Prune, two novel hardware-aware IPNN pruning techniques.
We present simulation results using three example IPNNs in
Section I'V. In Section V, we present a hybrid pruning approach
that achieves a high PhS sparsity with few retraining epochs
by combining CHAMP and LTPrune. We draw conclusions in
Section VI.

II. BACKGROUND AND RELATED PRIOR WORK
A. Mach-Zehnder Interferometers (MZIs)

MZIs are used to determine the relative phase difference be-
tween collimated optical signals [4], [11]. Fig. 1 shows the MZI
structure considered in our work. Each MZI consists of two tun-
able PhS (¢ and 6 in Fig. 1) —these are used to apply configurable
phase shifts and obtain varying degrees of interference between
the input optical signals. They can be implemented using thermal
microheaters [12], where the refractive index of the underlying
waveguide changes with temperature (i.e., thermo-optic effect),
altering the phase of the optical signal traversing the waveguide.
Each phase shifter in the MZlI is followed by a passive 50:502x2
beam splitter (BeS). Each BeS can be designed using directional
couplers, where a fraction (defined by transmittance) of the
optical signal at an input port is transmitted to an output port,
and the remaining (defined by the reflectance) is coupled to the
other output port with a phase shift of 5. For symmetric 50:50
BeS, both transmittance and reflectance coefficients are —=. As
a result, the transfer matrix for an MZI with two PhS and two

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: PRUNING COHERENT INTEGRATED PHOTONIC NEURAL NETWORKS

50:50 BeS (see Fig. 1) can be modeled as [11]:
Trzr(0,9) = Upes - Upns(0) - Upes - Upns(9)

_ (T T2 _ %(ew 1) 5(e”+1))
T21 T22 %(619 + 1) —%(619 — 1) ’
where Up.s (Uppg) is the BeS (PhS) transfer matrix.

B. MZI-Based Coherent IPNNs

A multi-layer perceptron (MLP)-based DNN consists of sev-
eral consecutive layers of interconnected neurons. Post feature-
extraction, the input features (Xi,...,Xn,) are fed into a
series of fully connected layers, followed by a final LogSoft-
Max activation layer to obtain the probability of each output
class (Y1,...,Yn,). Each connection between the neurons is
assigned a weight that represents its synaptic plasticity and
each neuron is tasked with a multiply-and-accumulate (MAC)
operation followed by passing the resultant output through a non-
linear activation function (fn 4¢7). By introducing non-linearity
in the network, the activation functions (e.g., sigmoid, tanh,
and Rectified Linear Unit) enable the DNNs to learn complex
non-linear relationships [2]. During each training iteration, the
weight of each connection in a DNN is incrementally updated to
minimize the loss function that quantifies the difference between
the expected and the obtained DNN output.

Consider an Ny x Ny weight matrix L, representing the
edge weights connecting a layer with N7 neurons with a layer
with N5 neurons. Using singular value decomposition (SVD)
and considering Fig. 1, we have L,, = U SV, where U and V
are unitary matrices with dimensions Ny X Ny and N7 X Ny,
respectively. Moreover, V' denotes the Hermitian transpose of
Vo, and X is a diagonal matrix consisting of the eigenvalues of
Ly,.

Reck et al. [3] first demonstrated that any unitary transforma-
tion between optical channels can be realized using a triangular
mesh of MZIs. However, Clements et al proposed an alternative
arrangement of MZIs (see Fig. 1) to implement unitary trans-
formations with half the physical footprint of the Reck design
and a lower optical loss [4]. Therefore, for a given weight matrix
Wi = U2, V. | this paper assumes the Clements design to
represent the unitary matrices U,,, and V,/. The diagonal matrix
> can be realized using an array of MZIs to attenuate each
channel separately without mixing by terminating one input and
one output of each MZI (X in Fig. 1). As MZIs can only attenuate
optical signals, a global optical amplification is necessary on
each output to represent arbitrary diagonal matrices [13]. This
scaling factor is realized using the optical gain unit (OGU) G
(see Fig. 1) that includes semiconductor optical amplifiers [14].

C. Motivation for Pruning IPNNs

With the increasing applications of DNNs to complex prob-
lems, software-based magnitude pruning approaches are be-
ing increasingly explored to minimize the resources necessary
for the storage and training of large-scale DNNs. In particu-
lar, such approaches are crucial for edge applications, where
the network parameters (weights in the case of DNNs) may

6101013

need to be updated in-field when the application workload
changes.

The phase shifters in IPNNs with MZI arrays consume a
significant portion of the network area and power. In partic-
ular, the size of the constituent thermo-optic PhS in an MZI
determines the size of the device (see Fig. 1). For example, the
state-of-the-art 2x2 MZI proposed in [8] is &~ 300 pum long, in
which each PS has a length of 135 um (i.e., = 90% of the length
of the MZI considering the two PhS). Moreover, as discussed in
Section II-A, the required phase shift in a PS (A¢) is directly
proportional to its length (L) and tuning power consumption
(P): A¢ x L - P. Even power-efficient PhS can consume up to
~ 25 mW tuning power for a phase shift of 7 [6]. As a result,
low accuracy-loss pruning approaches are essential in IPNNs
to identify prunable PhS, thereby reducing the footprint of the
network and the tuning power consumption during inferencing.
Note that the phase angles are adjusted dynamically during
software training. However, we only consider the static tuning
power dissipated in the PhS during inferencing to maintain the
trained phase angles in the hardware platform. Additionally,
as lower phase shifts require lower AT (A¢ < AT), mutual
thermal crosstalk between PhS can be minimized by pruning.
The problem of explicitly reducing thermal crosstalk is beyond
the scope of this paper.

Note that recent work has shown that, as an alternative to
pruning the redundant PhS, high-radix matrix multiplications
can be mapped to multiple cascaded small-radix photonic tensor
cores [15]. Simulation results have shown that using such ten-
sorized decomposition, the number of MZIs in an IPNN can be
reduced by up to 79 x. While this approach can lead to a consid-
erable reduction in the footprint, such networks cannot be easily
reconfigured to perform a different matrix multiplication (e.g.,
where the dimensions of the synaptic interconnections change).
However, the redundant components can be power-gated (and
not removed) during pruning; consequently, the MZI arrays can
be easily reconfigured when the application workload changes.

D. Challenges in Pruning IPNNs

Hardware-unaware software pruning methods in DNNs aim
at obtaining a sparse weight matrix [9]. A binary mask M¥ is
maintained for each DNN layer L*. An element of the mask,
say MZ-’fj, is 0 (1) iff the corresponding weight Lf’ ; 1s zero
(non-zero). In each pruning iteration, a fraction of the non-zero
weights—typically those with a smaller magnitude—in each
layer is clamped to zero, and the corresponding mask elements
are updated. During backpropagation in retraining, the gradient
of each weight is multiplied with its respective mask element,
ensuring that the zero weights are not updated. Unfortunately,
conventional software pruning approaches fail to achieve high
sparsity in IPNNs. This can be attributed to the bidirectional
many-to-one association (BMA) between the elements of the
weight matrix of the linear layers in the IPNN and the phase
angles in the MZI arrays. Each weight matrix element is mapped
to multiple PhS and, conversely, each PhS in an MZI array
affects multiple weight matrix elements [16], [17]. Fig. 2 shows
an example of this BMA for a 5x5 unitary matrix and its

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

6101013

PhS in multiple MZIs = Single element in the unitary matrix
3,4,5,7,|3,4,5,7,(3,4,5,6,|3,4,5,6,
8,10 8,10 7,8,9 7,8,9
3,4,5,7,|3,4,5,7,|3,4,5,6,|3,4,5,6,
8,10 8,10 7,8,9 7,8,9
1,2,4,5,11,2,4,5,11,2,4,5,| 1,2,4,5,
7,8,10 | 7,8,10 | 6,7,8,9|6,7,8,9
1,2,4,5,(1,2,4,5,(1,2,4,5,| 1,2,4,5,
7,8,10 | 7,8,10 | 6,7,8,9 | 6,7,8,9
2,5,8,10(2,5,8,10(2,5,6,8,92,5,6,8,9

3,4,5,6

3,4,5,6

1,2,4,5,6] -

5%5 Unitary Matrix

1,2,4,5,6

Array with 10 MZIs

2,5,6

Each phase shifter € Multiple elements in the unitary matrix

Fig. 2. An example of the bidirectional many-to-one association (BMA)
between the elements of the weight matrix and the MZI array for a 5x5 unitary
matrix. The numbers in each cell of the unitary matrix denote the MZIs that
affect the corresponding matrix element.

100 4 1004 ov
S g0 ®
e © °
2 |
o 01 mw
]
2 404 20 °
g 24 °
wn

0_ (889 1(0 (919199 91908 $08]9)5 58 S8, 5 -

0 20 40 60 80 100

Sparsity of 16X16 Weight Matrix (%)

Fig. 3. Scatter plot comparing the sparsity of 10000 randomly generated
16x 16 unitary matrices and the sparsity of their corresponding mapped MZI
arrays. The inset shows a similar comparison for highly sparse (>90% sparsity)
unitary matrices. The red, green, and blue clusters denote the unitary matrices
with low, medium, and high PhS sparsity.

corresponding mapped MZI array. Observe also that the bidi-
rectional dependence is largely asymmetric in nature—certain
MZIs (e.g., MZI# 8) affect several matrix elements (20 in this
case), whereas others (e.g., MZI# 1) affect fewer elements (10 in
this case). Similarly, some weight matrix elements depend on
fewer phase angles than others. As a result of the asymmetric
BMA, a sparse weight matrix (obtained using software pruning
approaches) may not always be mapped to a sparse MZI array
(where many PhS have zero tuned phase angle) and vice versa. In
Fig. 3, we compare the weight matrix sparsity of 10000 randomly
generated 16 x 16 unitary matrices with the phase sparsity of their
corresponding mapped MZI arrays. The inset shows a magnified
view of the unitary matrices with matrix sparsity >90%. Observe
that for many sparse weight matrices, the corresponding MZI
arrays have sparsity below 20%.In fact, in some cases, the MZI
array sparsity can be as low as 0%. Indeed, this discrepancy
between the weight matrix sparsity and the phase sparsity is
observed for unitary matrices of all dimensions, as we show in
Fig. 4. We also observe that this discrepancy is more pronounced
for larger unitary matrices (compare the red and green bars in
Fig. 4). Therefore, it is expected that the effectiveness of soft-
ware pruning will reduce as the size and complexity of IPNNs
scale. In order to minimize the tuning power and area overhead

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

g % 45 100%
< <
‘£ 800 800 o= Sw=TH0
<
=
~—
E" 600
()
E 400 |
]
)
S 200 mm 16X%16
E = 256X256
Z
0L ‘
0 20 40 60 80 100
Sparsity of PhS (%)

Fig.4. Histogram comparing the sparsity of the PhS in the mapped MZI arrays
for 3000 randomly generated weight matrices of different dimensions (1000 of
each dimension) with sparsity s,,, where 80%< s,, <100%. The inset shows a
similar plot for 95%< s,, <100%.

of IPNNSs, pruning approaches should be hardware-aware and
should directly target the tuned phase angles.

In [10], the authors showed that no more than 30% of the
phase angles can be pruned post-training without a significant
accuracy loss (=10%) in IPNNs. To address this, [10] proposed
a pruning-friendly non-SVD-based C-IPNN architecture that
leverages block-circulant matrix representation and performs
matrix-vector multiplication using optical fast Fourier transform
(FFT). However, even this alternative architecture could achieve
a sparsity of only up to 45%. Unlike in IPNNs, hardware-
unaware software pruning is applicable to noncoherent [PNNs.
In [18], pruned noncoherent IPNNs demonstrate a classification
accuracy of up to 93.49% on the MNIST dataset. Using layer-
wise pruning and weight clustering, the noncoherent photonic
accelerator proposed in [19] obtains a sparsity of up to 50%.

III. HARDWARE-AWARE PRUNING APPROACHES FOR IPNNS

As discussed above, efficient pruning approaches for IPNNs,
that can minimize the associated tuning power and area overhead
must be photonic hardware-aware and should target the tuned
phase angles (not the software weights). However, to minimize
the accuracy loss while pruning, we should ideally prune only the
benign PhS—these are the phase angles that affect the weights
with lower saliency. Prior work has shown that, in conventional
DNNss, the saliency of a weight and its magnitude are corre-
lated [9]. Therefore, magnitude-based approaches, where the
low-magnitude weights in each layer are pruned, are able to
achieve high sparsity with a low accuracy loss in electronic
DNNs. However, due to the non-linear dependence between the
phase angles and weights in IPNNs, weights with large magni-
tude (and hence, high saliency) can be mapped to smaller phase
angles. As a result, pruning smaller phase angles based on their
magnitude can lead to degraded accuracy. Recall also that, due
to the BMA between the phase angles and the weight matrix ele-
ments, it is unlikely that a single phase shifter will exclusively af-
fect low-saliency weights. However, our simulation results show
that magnitude-pruning, if applied in a hardware-aware fashion,
where we target the phase angles themselves, can still lead to
a high sparsity, especially in easy-to-prune over-parameterized
IPNNs. We propose this hardware-aware magnitude pruning as

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: PRUNING COHERENT INTEGRATED PHOTONIC NEURAL NETWORKS

a baseline approach, CHAMP. Next, we present an improved
pruning technique, LTPrune, where we use the lottery ticket
hypothesis to prune a significant fraction of phase angles with
negligible accuracy loss. LTPrune is particularly efficient for
compact and difficult-to-prune IPNNs.

A. CHAMP: Coherent Hardware-Aware Magnitude Pruning
of IPNNs

In conventional hardware-unaware pruning techniques, the
weights in each layer are sorted based on their magnitude and
a fraction of the weights with small magnitude are pruned. To
recover the lost inferencing accuracy due to pruning, the network
is then retrained while clamping the pruned phase angles to zero.
During this step, the phase sparsity is maintained by zeroing
out the gradients corresponding to the pruned phase angles.
However, based on our discussion in Section II-D, the software
approach may not necessarily lead to sparse phase angles. Given
that the advantages associated with pruning (e.g., lower tuning
power and area overhead) are dependent on the sparsity of
the phase angles (and not that of the weight matrix elements),
hardware-unaware techniques are largely inefficient [10].

The main difference between existing hardware-unaware
magnitude pruning techniques and CHAMP lies in the train-
ing approach. As discussed earlier, conventionally to obtain
the tuned phase angles in an IPNN, a DNN is first trained in
software and the trained weights are then mapped to the phase
angles using singular value decomposition-based approaches
(e.g., [4]). Observe that, in this training flow, we only have
control over the weight matrix elements and not the phase
angles. This is because the phase angles are deterministically
obtained from the trained weight matrices. Consequently, this
flow is unlikely to obtain sparse PhS. On the other hand, in
CHAMP, we propose a photonic training approach. In each
training epoch, we calculate the gradients of the loss with respect
to the phase angles themselves and iteratively tune them based
on this gradient and the learning rate. This gives us increased
control over the phase angles and allows us to obtain sparse PhS
(instead of sparse weight matrices). We apply CHAMP on an
IPNN trained using this photonic approach — in each pruning
round, the phase angles below a threshold are pruned while the
remaining phase angles are retrained to recover the inferencing
accuracy. This threshold can be determined in different ways;
however, a common approach is to consider a fraction, say «
of the standard deviation of the phase angles in the layer. This
takes into consideration the distribution of the phase angles,
and we have used this approach for thresholding for our sim-
ulation results. We have considered two different variants of
CHAMP - in the one-shot (OS) approach, all the phase angles
below a threshold (corresponding to some «) are pruned at
once after which retraining (a.k.a. fine-tuning) is performed.
Alternatively, in the iterative (IT) variant, we perform pruning
over several steps by gradually increasing . Each pruning step
is followed by a round of retraining to recover the inferencing
accuracy.

OS CHAMP s typically faster than the IT variant as it involves
a single pruning step and fewer retraining epochs. However,

6101013

due to the lack of extensive retraining, the maximum sparsity
that can be achieved without a significant accuracy loss is
also lower than that of IT CHAMP. Therefore, we propose a
hybrid approach where OS CHAMP is first used to quickly
ramp up the sparsity. This is followed by IT CHAMP, where
the sparsity is gradually increased further, with intermittent
retraining. Fig. 5 presents a flowchart of the CHAMP approach.
In addition to generating the input model for the IT variant, OS
CHAMP also provides a starting point for « for the subsequent
iterative flow. The inputs to the OS flow include the trained
IPNN, the minimum acceptable inferencing accuracy acc?% ,
and K different values of a’s (akos, k=0,1,..., K—1).
Note that the K different OS runs are mutually independent
and can, therefore, be launched in parallel. Also, we consider
the same initialization and the same model architecture for the
K runs. After the K OS CHAMP-pruned models are obtained,
we identify the “best-performing” model — this is the one that
has the maximum phase sparsity while having an inferencing
accuracy greater than acc?? . The inputs to the IT CHAMP
flow include this best-performing model along with the initial
« (ozéT), the increment in « in each iteration (Ac«), and the
minimum acceptable inferencing accuracy (acclZ). Note that,
for our simulations, we have considered equal increments in
the o in each iteration: a!T = afT, + A«, where i denotes
the iteration number. However, we can also use non-uniform
step sizes, especially if we find that the sparsity or inferencing
accuracy requirements are not satisfied. For example, if the
accuracy remains low even after retraining, we may reduce the
rate by which « is incremented.

B. LTPrune: Pruning IPNNs Using LTH

Efforts on improving the efficiency of neural networks have
largely focused on the inferencing step. This is because training
such networks is a one-time operation and the associated costs
are amortized over high-volume production. However, with
the advent of general-purpose accelerators, which are often
incrementally retrained in-field, there has been considerable
interest in minimizing the training time. It has been shown that
training a magnitude-pruned model from scratch is considerably
difficult and achieves lower accuracy compared to the unpruned
model [9].

The lottery ticket hypothesis (LTH) postulates that for any
neural network, there exists a sparse subnetwork that, when
trained from scratch, can achieve similar accuracy as that of the
unpruned network in a significantly lower number of training
epochs [20]. For any given network, such easy-to-train sub-
networks (a.k.a. winning tickets) can be obtained using a modi-
fied magnitude pruning approach. In each pruning iteration, after
the weights with a magnitude below a threshold are clamped to
zero, the remaining weights are reset back to their initial values
(before the onset of training). Following this, the network is
retrained to recover the inferencing accuracy while ensuring
that the pruned weights remain zero. In LTH-based pruning,
the obtained sparse sub-network depends on the architecture of
the original network, the dataset on which the network is trained,
and the initial values of the weights.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

6101013

e e e Em e e e = = =

One-shot (OS)

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

K parallel OS runs

|
Initialize L Calculate layer- N Prune phase angles Fine-tune and save Identify best-
% accOS wise threshold and update masks checkpoint model performing model 1
k > min

|

e ,'
__ N
> |
(it iteration) !
Prune phase angles Calculate 1 S YES Inli%ialize :

culate layer- IT _ IT ave
and update masks [€] wise threshold [¢] @' = aily +Aa [— checkpoint %o ,ea’ a
ACCoin :
1 NO]
Final | :)]
prlllrrlli d i I Return checkpoint model ||< Iterative (IT) |
model N 4
Fig.5. An overview of the proposed CHAMP method.
Acceptable
accuracy?
______________________________ ,
R , Prun I
@—) Heiueliors e sisoice Acceptable Y1 percentileeolf)(l))tlgrs% ,efngles !
S e accuracy? (layer-wise/global) '
1
fmmmm e e v)
I Input [Update binary masks | :
| _parameters | Training hyperparameters | i
: Max. I Restore initial weights I :
1

accuracy loss

I Min. sparsity I I Romax I

Fig. 6. A flowchart of the proposed LTPrune method.

In this paper, we propose LTPrune, a novel technique where
LTH-based pruning is extended to IPNNs. Note that, LTPrune
is different from the conventional LTH-based pruning proposed
in [20]. Given the BMA between the weights and the phase
angles in IPNNs, LTPrune is hardware-aware and targets the
phase angles and not the weights by leveraging photonic training
(similar to CHAMP). Fig. 6 presents a flowchart for LTPrune.
Given the network architecture (number of layers, neuron count
in each layer, etc.), we initialize the phase angles and store their
values in a database. In each of the R,,,, pruning rounds, we
check whether the IPNN has acceptable sparsity and accuracy.
To increase the sparsity, we first retrain the IPNN to obtain
a sufficiently high inferencing accuracy. In our simulations,
retraining is performed till we obtain an inferencing accuracy
within 5% of the nominal accuracy. Post retraining, a fraction
of phase angles are pruned and the remaining are reset to their
initial values. We consider two ways to identify the phase angles
to be pruned: in layer-wise LTPrune, the bottom k-percentile of
the phase angles (with the lowest magnitudes) in each layer are
pruned, whereas, in global LTPrune, the bottom k-percentile
of the phase angles in the entire IPNN are pruned. Note that,
while global LTPrune can lead to different sparsity in each IPNN

layer, the layer-wise approach ensures uniform sparsity levels
across all layers. In Section IV-A, we will show that this uniform
distribution of the pruned PhS across all the layers allows us to
obtain a higher overall sparsity level. On the other hand, in global
LTPrune, a majority of the pruned PhS are from a few layers,
and this leads to alower overall sparsity (compared to layer-wise
LTPrune) for the same accuracy loss. Once the phase angles
are pruned, the binary masks associated with the phase angles
are updated — the mask elements corresponding to the pruned
(unpruned) phase angles are updated to 0 (1). Consequently,
during retraining in the next round, when the gradients computed
from backpropagation are multiplied with these binary masks,
the pruned phase angles are not updated. This iterative process
continues for R,,, rounds or till we reach the target sparsity.
Recall that, due to the BMA between the phase angles and
the weights of the linear layers in the IPNNs, pruning a single
phase angle can affect several weight matrix elements, some
of which may have high saliency. Therefore, post pruning,
we often observe a significant loss in the inferencing accuracy.
The hyperparameters for retraining, which are inputs to the
LTPrune flow, may need to be adjusted in each round to ensure
that acceptable accuracy is achieved. In the next section, we will

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: PRUNING COHERENT INTEGRATED PHOTONIC NEURAL NETWORKS

TABLE I
DESCRIPTION OF THE IPNNS CONSIDERED IN OUR SIMULATION RESULTS.
FC(X,Y): FULLY CONNECTED LAYER WITH X INPUTS AND Y OUTPUTS, SP:
SOFTPLUS ACTIVATION, LSM: LOGSOFTMAX ACTIVATION

Model Architecture
Network-1 | FC(16,16)-SP-FC(16,16)-SP-FC(16,10)-LSM
FC(64,256)-SP-FC(256,100)-SP-
Network-2 FC(100,10)-LSM
FC(64,256)-SP-FC(256,256)-SP-
Network-3 FC(256,128)-SP-FC(128,128)-SP-
FC(128,100)-SP-FC(100,10)-LSM

demonstrate that LTPrune can efficiently identify highly sparse
sub-networks in IPNNs and can outperform CHAMP, especially
for difficult-to-prune compact IPNNs.

IV. SIMULATION RESULTS

We consider three fully-connected feedforward IPNNs with
different footprints (see Table I) to demonstrate the performance
of CHAMP and LTPrune. Network-1 and Network-2 are trained
on the MNIST dataset while Network-3 is trained on the CIFAR-
10 dataset. Network-1 has a smaller footprint with an input layer
with 16 neurons, two hidden layers consisting of 16 neurons
each, and an output layer with 10 neurons (corresponding to
the 10 classes in the MNIST dataset). Note that, in addition
to the MZIs in the OIUs, N standalone MZIs are necessary
before the Vi and after the Uy« x multipliers to realize the
weights in an N x N fully-connected layer. The inferencing
accuracy drops significantly when the PhS in these MZIs are
pruned; therefore, we do not consider them as prunable PhS
in our simulations. In total, Network-1 has 1380 prunable PhS.
Each 28 x28 =784 dimensional MNIST image is compressed to
16-dimensional compressed feature vectors by considering the
4x4 region at the center of its shifted fast Fourier transform.
For the larger Network-2 (with 155,214 prunable PhS), we use a
64-dimensional complex feature vector by considering the 8 x8
region at the center of the frequency spectrum. Consequently,
Network-2 consists of a 64-neuron input layer, followed by two
hidden layers with 256 and 100 neurons, and an output layer with
10 neurons. We convert the images in the CIFAR-10 dataset to
gray-scale and compress them to a 64-dimensional feature vector
using shifted fast Fourier transform. Network-3 (with 351,822
prunable PhS) consists of a 64-neuron input layer, followed by
five hidden layers with 256, 256, 128, 128, and 100 neurons, and
an output layer with 10 neurons.

A. Sparsity of Pruned IPNNs

Fig. 7(a)—(c) shows the simulation results when the one-
shot and iterative CHAMP methods are applied to Network-1,
Network-2, and Network-3. In each case, the pruning threshold,
which is the magnitude below which all phase angles are pruned,
is given by « - 0y4y¢,. Here, « is a user-defined constant, and
Olayer denotes the standard deviation of the non-zero phase an-
gles in each layer. We consider both the one-shot and the iterative
pruning approaches — this is because, for the smaller Network-1,

6101013
100 T o 5% accuracy loss] 100 [2.25
80 | —e= Inferencing Accuracy N 50 IREER
< 60 | == Sparsity of PhS (%) 60 g R
g Mean Phase Anele (rad — r125 5 §
< 40 |—* Mean Phase Angle (rad.) e 40 gt g5
g 5 P 0 & [075 £ 2
3 e Onesshot CHAMP | 20 2 | "~ o &
% L d o 025 ¢ E
20]00 100 i F2.05 <tu 5
S 80 Z T 39
g S E 5
5 6 gt =2
= 125 &
= 40 I SE
- r0.75
20 e Herative CHAMP 20 |
0L*" . . . ' - —10 F0.25
0.0 02 04 0.6 0.8 1.0 12
a
(a) Network-1
100 =100 24
80 80 18
60 I
S AL 22
S 40 0 S
) S g
g 20 0 SO0 E4
5 21 g3
3 ZH0O o &
< 0.0 05 1.0 15 20 25 30 3]
2100 100 21004 < 5
3 T 22
g 80 99.5 £10035 £ &
3] wn | A n
< 60 s g
5 99 003 § £
40 . e
20 98.5 »0.025
0 98 0.02
3 4 5 6 7
a
(b) Network-2
100 = —7100 24
80 18
60 12 2B
8 40 T EE
Z 20 Blos E 3
& wn = 38
3 £loo 5 £
< 0.0 1.0 20 3.0 4.0 3 2y
2100 100 z105 <3
13} —e— e g =me =l z gz
5 80 LI 0375 £ 85
2 60 90 P ==
= 025 §E
40 . s | =g
20 e 80 0.125
+=*""Iterative CHAMP
0L : : ‘ A 0.0
3 35 4.0 4.5 5.0 55 6.0
a
(c) Network-3
Fig. 7. Fine-tuned inferencing accuracy, sparsity of PhS, and mean phase

angle for one-shot and iterative CHAMP when applied to (a) Network-1,
(b) Network-2, and (c) Network-3 for different values of . The black-dashed
lines show a 5% accuracy loss and the yellow rectangles highlight the best-
performing models (maximum sparsity with accuracy loss <5%) in each case.

the one-shot approach performs better than the iterative approach
for some cases [e.g., for &« = 0.2 in Fig. 7(a)]. For the larger
Network-2, while iterative CHAMP outperforms the one-shot
approach in terms of sparsity, we use the one-shot approach to
ramp up the initial values of o quickly. The best-performing
one-shot model [yellow rectangle corresponding to aw = 2.5 in
Fig. 7(b)] is used as an input model for the iterative CHAMP.
Similarly, for Network-3, the best-performing one-shot model
[a = 3.0 in Fig. 7(c)] has a sparsity of 77.3% and is used as the
input model for the iterative flow.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

6101013

For all these cases, the pruning threshold in each layer in-
creases with increasing «; consequently, the sparsity of the
PhS increases, and the mean phase angle—averaged over the
1380 PhS in Network-1, the 155,214 PhS in Network-2, and
the 351,822 PhS in Network-3, to which the weight parameters
are mapped— decreases. Note, however, that in the one-shot
case, the accuracy drops steeply with increasing . In fact, for
an allowable accuracy loss of 5%, one-shot CHAMP leads to a
maximum sparsity of 31.1% in Network-1, 85.7% in Network-2,
and 77.3% in Network-3. On the other hand, with iterative
CHAMP, the accuracy loss is less than 5% up to a =1 (for
Network-1), & =6 (for Network-2), and o =5.6 for Network-3.
Consequently, for a 5% accuracy loss, 55% PhS in Network-1,
99.48% PhS in Network-2, and 91.3% PhS in Network-3 can be
pruned. We obtain a significantly higher sparsity using iterative
CHAMP as the models are pruned and retrained over several
epochs gradually, compared to the drastic pruning and few
fine-tuning epochs in the one-shot case. Note also that using the
same approach and with the same allowable accuracy loss, the
sparsity obtained in Network-2 is higher than that in Network-1.
This can be attributed to the fact that while both the networks are
trained for the same task, Network-2 has a significantly higher
number of PhS, and is therefore highly over-parameterized.
However, despite the larger PhS count in Network-3, the max-
imum sparsity achieved is lower than that of Network-2. This
is indeed expected, as the CIFAR-10 task is more complex than
MNIST, and, hence, necessitates more parameters for learning.
We also observe that while, in most cases, the mean phase angle
decreases with increasing PhS sparsity, the reverse occurs from
a = 1.0 to @ = 1.2 in Fig. 7(a). This is due to the fine-tuning
step where some of the few remaining non-zero phase angles
may increase in magnitude to account for the additional pruning.
However, our simulations show that such scenarios are, indeed,
quite rare and even when they occur, the increase in the mean
phase angle is negligible.

Fig. 8(a)—(c) show the fine-tuned inferencing accuracy, spar-
sity of the PhS, mean phase angle, when layer-wise and global
LTPrune are applied to the three networks. The performance of
LTPrune depends on how the pruning rate, k, is scheduled over
the different pruning rounds. For the smaller Network-1, we
found that a high PhS sparsity at a low accuracy loss is achieved
when we start with a low k for the first few rounds, followed
by aggressive pruning (high k) in the final few rounds. The
top and bottom subfigures in Fig. 8(a)—(c) show the simulation
results when we apply layer-wise LTPrune and global LTPrune,
respectively. For Network-1, we use k£ =10% for the first ten
rounds and k =25% for the remaining rounds. However, for
Network-2, we obtained the best pruning performance by using
a moderate k =25% for the first five rounds, followed by a
high k£ =50% in the next four rounds, and then a low £ =10%
for the remaining rounds. Clearly, the optimal schedule of the
pruning rate k£ can vary based on the network architecture and
the dataset. For Network-3, we use k& =30% for the first three
rounds, k =25% for the next five rounds, followed by £k =10%
for the remaining rounds. A trial-and-error-based approach is,
therefore, necessary to find the optimal £ schedule for a given
IPNN.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

100 — — 7100 225
- [
50 e 80 175
- j2)
g " 0 tisE®
E el " @’07553
S 5 755 &
3 20 */‘/ Layer-wise LTPrune 20 2| L E
I = 0% 0B P
S =i
o 100 T o = 225 <(U QB)
‘3 o 7 g
g 80 e 80 Elinit
5 60 wom it ” 60 & | - 2
E L, H12s5 § 2
40 - 40 L s g
-~ r0.75
200 Global LTPrune | 20
0% H025
2 4 6 8 10 12 14 16 18
Rounds
(a) Network-1
100 [p—= -\;‘5‘.“:'-1 e = 100 24
80 s N 80 s
Pl : PP
S 60 // 60 1.2 é %;“
B wgl?Es
I o [06 = &
£ 20 20 g |00 52
2 T loo By
5 100 1003 5y <5
2 80 80 Elig 28
3] =3 A o
8 60 60 & =
= 12 g'g
40 40 o s E
20 0
20 Global LTPrune
0 ' 0.0
2 4 6 8 10 12 14 16 18
Rounds
(b) Network-2
100 - ﬁ__‘_-a— 100 2.00
80 80 075 _
~ 60 29
g° 60 0.50 ;g =
E 40 40 g g c
£ 20 20 @ [0 =2 z
g 100 % 000 2%
%L IOO 0 00— - | R el oz' L 200 f) §
3 80 R 80 2 1g7s £2
5 60 60 o o 2
= 050 § 'S
= 40 40 sE
- 025 7
20 20
+” Global LTPrune
0 0.00
1 3 5 7 9 11 13 15 17 19
Rounds
(¢) Network-3
Fig. 8. Fine-tuned inferencing accuracy, sparsity of PhS, and mean phase

angle for layer-wise and global LTPrune when applied to (a) Network-1,
(b) Network-2, (c) Network-3.

We observe that for both layer-wise and global LTPrune
(across all networks), the inferencing accuracy is only ~10%
in the first round. This is because the accuracy in each round is
recorded before the training in that round (see Fig. 6). After the
training in the first round, the accuracy improves in all four cases.
As pruning progresses, the mean phase angle decreases, and the
sparsity of the phase angles increases, as expected. Recall that
the tuning power consumption in the PhS is directly proportional
to the phase angle; therefore, a reduction in the mean phase angle
signifies a proportional reduction in the tuning power. We find
that with global LTPrune, we reach the maximum achievable
sparsity in a few pruning rounds (eight for Network-1, five
for Network-2, and ten for Network-3). Beyond this point, the

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: PRUNING COHERENT INTEGRATED PHOTONIC NEURAL NETWORKS

100 100 o5
80 ¥l I
9 0.375
60
§ 40 80 _
7 2 Iterative CHAMP < g
5 * 70 2100 3£
8 35 40 4.5 50 55 6.0 A~ Ty
< 100 & w1100 1 900 Z 5
= el] 2 ' i 4
K= o —— 0¥ = Q
2 80 e 80 Z1lp75 28
) « g [[SP-Y)
8 60 e 60 « = £
& < F050 §E
40 rd 40 r S e
/ L oo ~
20| #) 0 [0
/" Layerwise LTPrune
0 0.00
1 3 5 7 9 1 13 15 17 19
Rounds
Fig.9. Fine-tuned inferencing accuracy, sparsity of PhS, and mean phase angle

for iterative CHAMP and layer-wise LTPrune on Network-3 where we only use
the inferencing accuracy of 10 k images (out of the 20 k total test dataset)
for validation. The test accuracies for the best-performing models (yellow
rectangles) are 80.12% and 79.73%, respectively. The validation accuracies are
82.34% and 81.14%, respectively.

inferencing accuracy drops steeply. Using global LTPrune, we
obtain a maximum sparsity of 57% for Network-1, 68% for
Network-2, and 73% for Network-3. In contrast, with layer-wise
LTPrune, the inferencing accuracy remains within 5% of the
nominal accuracy for 16 pruning rounds for all three networks.
Using this approach, we can prune up to 89% of the PhS in
Network-1, 99% of the PhS in Network-2, and 93% of the PhS
in Network-3.

Fig. 9 shows the results of iterative CHAMP and layer-wise
LTPrune, when applied to Network-3 where we only use the
inferencing accuracy of 10 k images (separate from the test
dataset) for validation. The best-performing models obtained
using iterative CHAMP and layer-wise LTPrune demonstrate
inferencing accuracies of 80.12% and 79.73%, respectively, for
the remaining 10 k test images. These correspond to a less than
7% drop in the inferencing accuracy compared to that of the
unpruned model (86.67%). Therefore, CHAMP and LTPrune
are able to obtain sparse IPNNs that offer high test accuracy,
even when we use a separate validation dataset.

The global LTPrune performs worse compared to the layer-
wise pruning as it is biased towards layers with smaller phase
angles, i.e., it is possible that most phase angles in such layers
are pruned away in the initial rounds. This is highlighted in
Fig. 10 where we show the sparsity of phase angles in the
three (one input and two hidden) layers of layer-wise and
global LTPruned models, for Network-1 and Network-2. For
Network-1, the global model with the best trade-off between
accuracy and sparsity (eight rounds of pruning, 88.9% accuracy,
and 57.6% mean sparsity), the percentage of pruned (i.e., zero)
0 phase angles is considerably higher than ¢. In the global
model with maximum sparsity (11 rounds of pruning and 81.2%
mean sparsity), up to 98.8% of 6 phase angles are pruned.
This holds for the LTPruned models for Network-2 as well —
99.93% of the 6 phase angles are pruned in the global model
with maximum sparsity. Extreme sparsity in certain layers can
potentially hinder training and lead to exploding loss. In contrast,
layer-wise pruning [see Fig. 11(a)] ensures that the sparsity of

6101013

Percentage of Zero Phase Angles

Y

Global (8)
LTPruned Model

(a) Network-1

Layer-wise (16) Global (11)

- 94.3%
99.0% =2

Percentage of Zero Phase Angles

N

|
7
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
g
/

Global (5)
LTPruned Model

(b) Network-2

Layer-wise (16) Global (7)

Fig. 10. Phase-angle sparsity (¢ and 0) in the three layers (LO, L1, and L2)
of different LTPruned models for (a) Network-1 and (b) Network-2. The x-axis
shows the variant of LTPrune used with the number of rounds in parentheses.
The magenta-dashed lines indicate the mean sparsity over all the layers.

phase angles is uniform across the different layers. This leads
to a lesser likelihood of exploding loss (and consequently, ex-
ploding gradient) of layer-wise LTPrune, even at higher levels of
sparsity.

Next, we present a comparative study of the performance
of CHAMP and LTPrune when applied to Network-1 and
Network-2. Fig. 11(a), (b) compares the histogram distributions
of the phase angles of the best-performing models obtained
using iterative CHAMP and layer-wise LTPrune with that of the
unpruned IPNN. Observe that LTPrune outperforms CHAMP
by a significant margin for Network-1, we obtain a sparsity
of 55% using CHAMP compared to a sparsity of 89% using
LTPrune. However, their performance for the larger Network-2
is similar. In fact, CHAMP offers a slightly higher sparsity
(99.48%) compared to that of the best-performing LTPrune
model (99.02%). This indicates that while LTPrune outperforms
CHAMP when applied to difficult-to-prune compact networks,
their effectiveness is similar while pruning highly overparam-
eterized IPNNs. Recall also that, in LTPrune, all the unpruned
phase angles are reset to their initial values and retrained from
scratch after every pruning round; consequently, each round
of LTPrune necessitates a higher number of retraining epochs.
Therefore, taking the higher retraining time associated with
LTPrune, it is recommended that for large over-parameterized
IPNNs, we should preferentially use CHAMP. In contrast, for
compact IPNNs, where retraining is faster, we can use LTPrune
for higher sparsity.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

6101013

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

1200

~ 150k @ZABefore Pruning 5 88.89% sparse, 4.99% accuracy loss ”‘
: @z Before Pruning < . . . e
; = [iterative CHAMP S High sparsity — -
2 1000 Eterative CHAMP g 125k R = using Laver- /4
s L ise LTP: S [JLayer-wise LTPrune| P 4 $ g Lay
S [Layer-wise rune’ S 3 wise LTPruné
ke 2, 100k 10° > s . /
o = 104 g3 R e
< < £ =g
o 2 75k 103 S ol
2 < < < 2
< = 246 &
= A 10? 20 £ 3
£ ERELS £ =8 —*— One-shot CHAMP
N o] 1ot 5 112 s N @~ Iterative CHAMP
5 2 2 HEEN D
E E 25k | 10° s BV / —#— Layer-wise LTPrune
= z 0 " 2m B /] =8~ Global LTPrune
“ 0 I Ill BAA g 0 Unpruned IPNN
0 2 s 3n/2 2n 0 w2 T 3m/2 2m 0 20 40 60 80
Tuned Phase Angles (radians) Tuned Phase Angles (radians) Sparsity of PhS (%)
(a) (b) (©
5 High sparsit A 100 100
=#= One-shot CHAMP ghsparsity —p /@ | LT
S 4 {|=m— Iterative CHAMP using Layer- 1 Unpruned == Unpruned
N ise LTP —&— OS-CHAMP
2 —#— Layer-wise LTPrune wise r}me < 80 ~ 80 —&— OS-CHAMP
2 N Global TP and Iterative = —4— IT-CHAMP R —4— IT-CHAMP
= =@~ Global rune > el
> CHAMP § o =t Layer-LTP §‘ 78.3% lowe) —#— Layer-LTP
g g] & 78.3%
§ 2 3 Global-LTP § 60 accuracy loss @— Global-LTP
2 <1% accuracy loss / - ~80% accuracy <
@ 1 e / § 40 loss 5 40
8 0 5] =
Q i - i
5 | & 8
so01@ | = 5 Pruned PhS power-gated E Pruned PhS removed
] Unpruned } \ o
T 1] IPNN |
0
0 20 40 60 80 100 0.0 003 006 009 0.12 0.15 00 003 006 009 0.12 0.15
Sparsity of PhS (%) Ophs Ophs
(@ © ®

Fig. 11.

(a)-(b) Histogram distribution of the phase angles in Network-1 and Network-2 with CHAMP and LTPrune pruning (inset shows the same plot with a

logarithmic scale on the y-axis). (¢)-(d) Comparison between the accuracy loss and sparsity of PhS in pruned Network-1 and Network-2 models obtained using
different methods. (e)-(f) Accuracy of the unpruned, best-performing one-shot (OS)-CHAMP, best performing iterative (IT)-CHAMP, best-performing layer-wise
LTP, and best-performing global LTP models under random phase uncertainties when the pruned PhS are (e) power-gated and (f) removed.

Fig. 11(c), (d) presents compares the accuracy and sparsity
of pruned IPNNs (Network-1 and Network-2, respectively)
obtained using different methods. Here, we only consider those
models where the accuracy loss (from the respective unpruned
models) is less than 5%. The magenta data points in each figure
denote the unpruned models. From Fig. 11(c), it is clear that for
Network-1, only layer-wise LTPrune can offer a sparsity greater
than 60%. When very low accuracy loss (<1%) is acceptable
after pruning, CHAMP can be considered, which achieves a
maximum sparsity of 22% under this constraint. Similarly, for
Network-2 [Fig. 11(d)], layer-wise LTPrune offers the maximum
sparsity of 96.91% for a <1% accuracy loss. Observe also that
contrary to Network-1, in the case of Network-2, both iterative
CHAMP and layer-wise LTPrune offer a high sparsity fora <5%
accuracy loss.

B. Characterizing Pruned IPNNs Under Uncertainties

In [21] and [22], we have shown that the IPNN inferencing
accuracy is sensitive to several imperfections such as uncer-
tainties in the MZIs, insertion loss, and low-precision drivers.
In particular, expected levels of uncertainties in the phase an-
gles due to fabrication process variations and thermal crosstalk
have a catastrophic impact on performance. As an IPNN is
gradually pruned, we essentially discard the redundant phase
angles. Consequently, the non-zero phase angles in the obtained
sparse IPNN have a high saliency, and small uncertainties in

these components can lead to a large accuracy loss. To demon-
strate this, we consider the larger IPNN (Network-2) and inject
uncertainties in the phase angles of the unpruned IPNN and those
of the best-performing models obtained from one-shot CHAMP,
iterative CHAMP, layer-wise LTPrune, and global LTPrune. We
perform 1000 Monte Carlo (MC) iterations; in each iteration,
the uncertainties are sampled from a zero-mean Gaussian distri-
bution with a standard deviation of o pg - 7. Fig. 11(e), (f) shows
the mean inferencing accuracy—over 1000 MC iterations—for
the five models for different values of opg.

Note that the redundant PhS identified during pruning can be
handled in two ways: (1) they can be power-gated (turned-off)
and left in the network [Fig. 11(e)], or 2) they can be alto-
gether removed from the IPNN [Fig. 11(f)]. We observe that
in the first case (power-gated PhS), compared to the unpruned
model, the pruned networks are slightly more susceptible to
phase uncertainties because even small uncertainties in other-
wise zero phase angles lead to a large relative deviation in the
MZI operation. For all models, the accuracy drops steeply with
opns- In contrast, removing pruned PhS reduces the number of
uncertainty-susceptible components and leads to significantly
higher accuracy (up to 78.3%) under uncertainties. Additionally,
removing the redundant PhS leads to a lower area overhead, and
lower optical loss (due to reduced network depth). Therefore, in
situations where physical modifications in the IPNN are feasible,
the pruned PhS should be removed. Alternatively, for general-
purpose photonic accelerators, which may need to be retrained

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: PRUNING COHERENT INTEGRATED PHOTONIC NEURAL NETWORKS

when the application workload changes, hardware modifications
are infeasible. In such cases, it must be ensured that the phase
uncertainties are minimized.

V. HYBRIDPRUNE: IN-FIELD PRUNING USING A
CHAMP-LTPRUNE HYBRID APPROACH

While layer-wise LTPrune offers a high sparsity, it neces-
sitates a large number of retraining epochs to recover the in-
ferencing accuracy in the pruned IPNNs. This is because, in
each LTPrune iteration, in addition to all the pruned weights
being clamped to zero, the unpruned weights in each layer are
reset back to their initial (pre-training) values. As a result, the
correlation between the features and the labels is learned slowly
(compared to conventional training). Note that this is in contrast
to prior observations in DNNs where LTPruned networks have
been shown to be more easily trainable. This can potentially
be attributed to the BMA between the phase angles and the
weights in IPNNs; LTPrune in IPNNs generates sparse phase
angles and not easily trainable sparse subnetworks with few
non-zero weights. The large training time and computational
overhead associated with LTPrune are typically not a concern
for application-specific IPNNs; pruning such networks is a one-
time operation and the associated costs will be amortized by
the reduction in tuning power and area overhead in high-volume
production. However, for general-purpose IPNNs, which can be
reused for multiple application workloads, pruning needs to be
repeated in-field based on the respective tuned phase angles of
each application. Consequently, pruning approaches for general-
purpose IPNNs must be fast and have a low computational
overhead.

Note that, contrary to LTPrune, the unpruned weights in each
iteration in CHAMP are not reset back to their initial values.
Consequently, retraining in CHAMP requires fewer epochs
compared to that in LTPrune. For example, in our simulations,
iterative CHAMP required a maximum of 10 retraining epochs
across all iterations. On the other hand, layer-wise LTPrune
required at least 15 retraining epochs across the different rounds.
Clearly, while LTPrune is likely to offer a higher phase sparsity,
CHAMP is the faster of the two. Therefore, this tradeoff be-
tween the performance and the run time needs to be explored
while determining the optimal pruning approach for a given
IPNN. It is expected that for larger (over-parameterized) IPNNs,
that are typically easy to prune, CHAMP and LTPrune will
offer similar PhS sparsity. In fact in our simulations results
for Network-2, the maximum sparsity obtained using CHAMP
(99.48%) is marginally higher than that obtained using LTPrune
(99.02%). Therefore, in such IPNNSs, it is recommended to use
CHAMP to perform fast in-field pruning. However, for small
IPNN:Ss, the sparsity obtained using LTPrune is higher than that
from CHAMP; consequently, analyzing the erstwhile tradeoff
between sparsity and pruning run time becomes crucial. For
example, while CHAMP can prune only up to 55% of the PhS
in Network-1, we obtain a sparsity of up to 89% using LTPrune.

To enable efficient in-field pruning of small (difficult-to-
prune) IPNNs, we propose HybridPrune, a novel approach that
leverages both CHAMP and LTPrune. In HybridPrune, we first

6101013
100 100 2.00
A o—o —s: - F0)
g R e Layer-wise LTPrune 80 —~ 175 S &
- \ & S g S
) ‘\A 4 < 11.50 = 2
Z 60 Yy 60 £ v &
20 X Y
fu i \\ LTPrune: 240 epochs, i 1.00 <35
£ 40 L 88.9% sparse N 40 =7 gz
5 o g1075 £ 5
2] Ty 20 g £
E + /"\ « HybridPrune: 52 epochs, 050 & 5
al 9 = =
(HybridPrune 86.3% sparse sl]y 025~
0 50 100 150 200 250
Epochs
Fig. 12. Comparison of the fine-tuned inferencing accuracy, sparsity of PhS,

and mean phase angle when Network-1 is pruned using layer-wise LTPrune
(solid lines) and the CHAMP-LTPrune hybrid approach (dashed lines, shaded
region). The X-axis shows the number of retraining epochs necessary to fine-tune
the inferencing accuracy. Simulation results show that with the hybrid approach,
up to 86.3% sparsity can be obtained with only 52 retraining epochs. While
layer-wise LTPrune offers a slightly higher sparsity of 88.9%, it necessitates
significantly more (= 240) retraining epochs.

ramp up the PhS sparsity using iterative CHAMP. Note that,
as we are using CHAMP, each iteration here typically requires
only a few retraining epochs. Iterative CHAMP is repeated till
the finetuned inferencing accuracy falls below 5% of the nominal
accuracy. The best-performing CHAMP model, with maximum
PhS sparsity and a <5% accuracy loss, is then used as an input
for layer-wise layer-wise LTPrune. We run LTPrune for multiple
rounds, till the inferencing accuracy falls below 5% of the nomi-
nal accuracy. While each LTPrune round will necessitate several
retraining epochs, the number of such rounds will be limited
given that the input model to LTPrune had a high initial sparsity
(obtained using CHAMP). Note also that, based on the IPNN
architecture and the tuned phase angles, we may need to perform
more than one run of CHAMP and LTPrune each. In other
words, instead of the CHAMP-LTPrune sequence mentioned
above, we may need to perform CHAMP-LTPrune-CHAMP-
LTPrune or another similar sequence. Essentially, the idea is
that CHAMP should be used for a quick ramp-up in the sparsity
of easy-to-prune networks, whereas the time-intensive LTPrune
should be used for the difficult-to-prune cases. Therefore, as the
prunability of the intermediate IPNN changes during pruning,
we can determine whether to use CHAMP or LTPrune. The
number of retraining epochs can be further reduced by keeping
track of the inferencing accuracy in each iteration/round; using
this information, the retraining in each iteration/round can be
stopped once a threshold inferencing accuracy is obtained.

Fig. 12 compares the inferencing accuracy, PhS sparsity,
and the mean phase angle for different numbers of retraining
epochs when Network-1 is pruned using the HybridPrune and
layer-wise LTPrune. In HybridPrune, we first perform iterative
CHAMP with o« = 0.2 for six iterations. In each iteration, the
retraining is done till an inferencing accuracy within 5% of the
nominal accuracy (93.86%) is obtained. Based on this policy, we
obtain a PhS sparsity of 67.27% with only 25 retraining epochs
distributed over the six pruning iterations. This model is then
used as an input to the LTPrune phase of HybridPrune where we
perform three rounds of pruning with k& =25%. Using layer-wise
LTPrune, we obtain a sparsity of up to 86.34% with only 27

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

6101013

additional retraining epochs spread over the three rounds. In
total, HybridPrune requires only 52 retraining epochs to achieve
a sparsity of 86.34%. This translates to a 78.3% reduction in the
run time compared to the standalone layer-wise LTPrune that
necessitates 240 retraining epochs to obtain a sparsity of 88.9%.

In Section IV-B, we show that the pruned PhS can either be
power-gated or removed from the IPNN. In both these cases, the
tuning power consumption is reduced in the pruned network;
however, the area overhead is reduced only when the PhS are
removed. Also, recall from simulation results in Fig. 11(e), (f)
that the reliability of the pruned IPNNs under random phase
uncertainties improves when the pruned PhS are removed,
whereas it remains similar to the nominal IPNN when the PhS
are power-gated. For the general-purpose IPNNs, which should
be trainable for different application workloads, the pruned PhS
can not be removed. Consequently, HybridPrune for such IPNNs
does not lead to a reduced area or improved reliability under
uncertainties. In spite of these drawbacks, HybridPrune is a
promising in-field alternative to the standalone CHAMP and
LTPrune due to the reduction in the retraining time, especially
for difficult-to-prune IPNNs.

VI. CONCLUSION

Due to the bidirectional many-to-one mapping between the
software weights and the phase angles in [PNNs, conventional
DNN pruning techniques, when applied to IPNNs, prove to
be inefficient. We propose CHAMP and LTPrune, two novel
hardware-aware pruning techniques for IPNNs, and show that,
for large IPNNs, we can achieve more than 99% sparsity with
an accuracy loss of less than 5% using these methods. We have
also shown that for smaller IPNNs, CHAMP can be used to
obtain a moderate sparsity (up to 22%) and ultra-low accuracy
loss (<1%) and LTPrune can achieve ultra-high sparsity (up to
89%) with an acceptable accuracy loss (<5%). Using these ap-
proaches, we can improve the power efficiency (by up to 98.2%)
and enhance the robustness of IPNNs under uncertainties in the
phase angles. While LTPrune offers the maximum sparsity, it
necessitates several retraining epochs to recover the inferencing
accuracy. To address this, we propose HybridPrune where we
combine CHAMP and LTPrune to obtain highly sparse IPNNs
with up to 78% fewer retraining epochs compared to standalone
layer-wise LTPrune.

ACKNOWLEDGMENT

Sanmitra Banerjee worked on this paper as a Ph.D. student
at Duke University. His work at NVIDIA is unrelated to the
contents of this paper.

REFERENCES

[1] Q. Cheng et al., “Silicon photonics codesign for deep learning,” Proc.
IEEE, vol. 108, no. 8, pp. 1261-1282, Aug. 2020.

[2] F. P. Sunny, E. Taheri, M. Nikdast, and S. Pasricha, “A survey on silicon
photonics for deep learning,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 17, pp. 1-57,2021.

[3] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental
realization of any discrete unitary operator,” Phys. Rev. Lett., vol. 73, no. 1,
1994, Art. no. 58.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

[4] W.R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and
1. A. Walmsley, “Optimal design for universal multiport interferometers,”
Optica, vol. 3, no. 12, pp. 1460-1465, 2016.

[S] M. Jacques et al., “Optimization of thermo-optic phase-shifter design and
mitigation of thermal crosstalk on the SOI platform,” Opt. Exp., vol. 27,
no. 8, pp. 10456-10471, 2019.

[6] N. C. Harris et al., “Efficient, compact and low loss thermo-optic phase
shifter in silicon,” Opt. Exp., vol. 22, no. 9, pp. 10487-10493, 2014.

[7] S. Banerjee, M. Nikdast, and K. Chakrabarty, “Optimizing coherent in-
tegrated photonic neural networks under random uncertainties,” in Proc.
IEEE/OSA Opt. Fiber Commun. Conf. Exhib.2021, pp. 1-3.

[8] F. Shokraneh, M. S. Nezami, and O. Liboiron-Ladouceur, “Theoretical
and experimental analysis of a 4x 4 reconfigurable MZI-based linear
optical processor,” J. Lightw. Technol., vol. 38, no. 6, pp. 1258-1267,
Mar. 2020.

[9] S.Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in Proc. Int. Conf. Learn. Representations, 2016, pp. 1-14.

[10] J.Guetal., “Towards area-efficient optical neural networks: An FFT-based
architecture,” in Proc. IEEE 25th Asia South Pacific Des. Automat. Conf.,
2020, pp. 476-481.

[11] M. Y.-S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, and
M. R. DeWeese, “Design of optical neural networks with component
imprecisions,” Opt. Exp., vol. 27, pp. 14009-14029, 2019.

[12] M. Bahadori et al., “Thermal rectification of integrated microheaters for
microring resonators in silicon photonics platform,” J. Lightw. Technol.,
vol. 36, no. 3, pp. 773-788, Feb. 2018.

[13] M. J. Connelly, Semiconductor Optical Amplifiers. Berlin, Germany:
Springer, 2007.

[14] B. Haq et al., “Micro-transfer-printed III-V-on-silicon C-band semicon-
ductor optical amplifiers,” Laser Photon. Rev., vol. 14, no. 7, 2020,
Art. no. 1900364.

[15] X. Xiao et al., “Large-scale and energy-efficient tensorized optical neural
networks on III-V-on-silicon MOSCAP platform,” APL Photon., vol. 6,
no. 12, 2021, Art. no. 126107.

[16] S. Banerjee, M. Nikdast, S. Pasricha, and K. Chakrabarty, “CHAMP:
Coherent hardware-aware magnitude pruning of integrated photonic neural
networks,” in Proc. IEEE/Optica Opt. Fiber Commun. Conf. Exhib., 2022,
pp. 1-3.

[17] S. Banerjee, M. Nikdast, S. Pasricha, and K. Chakrabarty, “Pruning
coherent integrated photonic neural networks using the lottery ticket
hypothesis,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2022,
pp. 128-133.

[18] Q. Zhang, Z. Xing, and D. Huang, “Implementation of pruned backprop-
agation neural network based on photonic integrated circuits,” Photonics,
vol. 8, no. 9, 2021, Art. no. 363.

[19] F. Sunny, M. Nikdast, and S. Pasricha, “SONIC: A sparse neural network
inference accelerator with silicon photonics for energy-efficient deep
learning,” in Proc. IEEE Asia South Pacific Des. Automat. Conf., 2022,
pp. 214-219.

[20] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. Int. Conf. Learn. Representations,
2019, pp. 1-42.

[21] S. Banerjee, M. Nikdast, and K. Chakrabarty, “Modeling silicon-photonic
neural networks under uncertainties,” in Proc. Des., Automat. Test Eur.
Conf. Exhib., 2021, pp. 98-101.

[22] S. Banerjee, M. Nikdast, and K. Chakrabarty, “Characterizing coherent
integrated photonic neural networks under imperfections,” IEEE J. Lightw.
Technol., vol. 41, no. 5, 2023, pp. 1464-1479.

Sanmitra Banerjee received the B.Tech. degree
from the Indian Institute of Technology, Kharagpur,
Kharagpur, West Bengal, in 2018, and the M.S. and
Ph.D. degrees from Duke University, Durham, NC,
USA, in 2021 and 2022, respectively. He is currently
a Senior DFX Methodology Engineer with NVIDIA
Corporation, Santa Clara, CA, USA. His research
interests include machine learning-based DFX tech-
niques, and the fault modeling and optimization of
emerging Al accelerators under process variations
and manufacturing defects.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

BANERIJEE et al.: PRUNING COHERENT INTEGRATED PHOTONIC NEURAL NETWORKS

Mahdi Nikdast (Senior Member, IEEE) received the Ph.D. degree in electronic
and computer engineering from the Hong Kong University of Science and
Technology, Hong Kong, in 2014. He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering, Colorado State University
(CSU), Fort Collins, CO, USA. From 2014 to 2017, he was a Postdoctoral Fellow
jointly with McGill University, Montreal, QC, Canada, and Polytechnique
Montreal, Montreal, QC, Canada. He is the Director of the Electronic-PhotoniC
System Design (ECSyD) Laboratory, CSU. His research interests include var-
ious topics related to integrated photonics and high-performance computing.
Prof. Nikdast is also an Associate Editor for IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION SYSTEMS. He was the recipient of various awards,
including the National Science Foundation (NSF) CAREER Award in 2021.

Sudeep Pasricha received the Ph.D. degree in computer science from the
University of California at Irvine, Irvine, CA, USA, in 2008. He is currently
a Professor and the Chair of Computer Engineering with the Department of
Electrical and Computer Engineering, Colorado State University, Fort Collins,
CO, USA. His research interests include optical computing, chip-scale network
and memory architectures, hardware-software co-design for machine learning,
and optimizations for energy, reliability, and security in embedded systems.
He was the recipient of the 16 best paper awards and Nominations at various
IEEE and ACM conferences, including at DAC, ASPDAC, NOCS, GLSVLSI,
SLIP, AICCSA, and ISQED. He was also the recipient of other notable awards
including, the 2019 George T. Abell Outstanding Research Faculty Award,
2016-2018 University Distinguished Monfort Professorship, 2016-2019 Walter
Scott Jr. College of Engineering Rockwell-Anderson Professorship, 2018 IEEE-
CS/TCVLSI Mid-Career Research Achievement Award, 2015 IEEE/TCSC
Award for Excellence for a Mid-Career Researcher, 2014 George T. Abell
Outstanding Mid-Career Faculty Award, and 2013 AFOSR Young Investigator
Award. He is currently the Vice Chair of ACM SIGDA and a Senior Associate
Editor for the ACM Journal of Emerging Technologies in Computing.

6101013

Krishnendu Chakrabarty received the B.Tech. de-
gree from the Indian Institute of Technology, Kharag-
pur, Kharagpur, West Bengal, in 1990, and the M.S.E.
and Ph.D. degrees from the University of Michigan,
Ann Arbor, MI, USA, in 1992 and 1995, respectively.
He is currently a Fulton Professor of microelectronics
with the School of Electrical, Computer and En-
ergy Engineering, Arizona State University (ASU),
Tempe, AZ, USA. Before moving to ASU, he was a
John Cocke Distinguished Professor of electrical and
computer engineering and the Department Chair of
ECE with Duke University, Durham, NC, USA. He is a Research Ambassador
with the University of Bremen, Bremen, Germany, and Hans Fischer Senior
Fellow with the Institute for Advanced Study, Technical University of Munich,
Munich, Germany, during 2016-2019. His research interests include design-
for-testability of 3D integrated circuits, Al accelerators, microfluidic biochips,
hardware security, Al for healthcare, and neuromorphic computing systems.
Prof. Chakrabarty was the recipient of the National Science Foundation CA-
REER Award, Office of Naval Research Young Investigator Award, Humboldt
Research Award from the Alexander von Humboldt Foundation, Germany, IEEE
Transactions on CAD Donald O. Pederson Best Paper Award in 2015, IEEE
Transactions on VLSI Systems Prize Paper Award 2021, ACM Transactions on
Design Automation of Electronic Systems Best Paper Award in 2017, multiple
IBM Faculty Awards and HP Labs Open Innovation Research Awards, and over
adozen best paper awards at major conferences. He was also the recipient of the
IEEE Computer Society Technical Achievement Award in 2015, IEEE Circuits
and Systems Society Charles A. Desoer Technical Achievement Award in 2017,
IEEE Circuits and Systems Society Vitold Belevitch Award in 2021, Semicon-
ductor Research Corporation (SRC) Technical Excellence Award in 2018, SRC
Aristotle Award in 2022, IEEE-HKN Asad M. Madni Outstanding Technical
Achievement and Excellence Award in 2021, and IEEE Test Technology Tech-
nical Council Bob Madge Innovation Award in 2018. He was the 2018 recipient
of the Japan Society for the Promotion of Science (JSPS) Invitational Fellowship
in the Short Term S: Nobel Prize Level category. He is a Fellow of ACM and
AAAS, and Golden Core Member of the IEEE Computer Society. He was a
Distinguished Visitor of the IEEE Computer Society during 2005-2007 and
2010-2012, Distinguished Lecturer of the IEEE Circuits and Systems Society
during 2006-2007 and 2012-2013, and an ACM Distinguished Speaker during
2008-2016. Prof. Chakrabarty was the Editor-in-Chief of IEEE DESIGN & TEST
OF COMPUTERS during 2010-2012, ACM Journal on Emerging Technologies
in Computing Systems during 20102015, and IEEE TRANSACTIONS ON VLSI
SYSTEMS during 2015-2018.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 30,2023 at 01:03:33 UTC from IEEE Xplore. Restrictions apply.

