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Abstract—Cloud computing creates new possibilities for con-
trol applications by offering powerful computation and storage
capabilities. In this paper, we propose a novel cloud-assisted
model predictive control (MPC) framework in which we sys-
tematically fuse a cloud MPC that leverages the computing
power of the cloud to compute optimal control based on a high-
fidelity nonlinear model (thus, more accurate) but is subject to
communication delays with a local MPC that relies on simplified
linear dynamics due to limited local computation capability (thus,
less accurate) while has timely feedback. Unlike traditional cloud-
based control that treats the cloud as a powerful, remote, and sole
controller in a networked control system setting, the proposed
framework aims at seamlessly integrating the two controllers for
enhanced performance. In particular, we formalize the fusion
problem for finite-duration tasks with explicit consideration for
model mismatches and errors due to request-response commu-
nication delays. We analyze stability-type properties of the pro-
posed cloud-assisted MPC framework and establish approaches
to robustly handling constraints within this framework in spite
of plant-model mismatch and disturbances. A fusion scheme is
then developed to enhance control performance while satisfying
stability-type conditions, the efficacy of which is demonstrated
with multiple simulation examples, including an automotive
control example to show its industrial application potentials.

Index Terms—Cloud computing, model predictive control,
control fusion.

I. INTRODUCTION

Cloud computing is a computing paradigm that has evolved
significantly over the past few years. In general, cloud comput-
ing is the availability of computer system resources to provide
on-demand computing power and data storage services to users
[1]. The “infinite” computing capacity of the cloud has opened
up new possibilities for industrial automation [2], [3] and
control applications [4]-[7], especially for optimization-based
and learning-based control strategies, such as model predictive
control (MPC), that are computation and/or data intensive [8],
[9]. Meanwhile, moving onboard computations to the cloud
has given rise to new problems related to communication
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delays [10], [11], connection and/or packet losses [12]-[14],
as well as privacy and cybersecurity issues [15].

The majority of existing work on cloud-based control sys-
tems has focused on high-level abstraction and design of
computation and control architectures [16]-[19], with scarce
attention paid to field-level approaches and solutions. “Field-
level” refers to the level of physical devices and functions,
and the main goal of this level is “to provide interactions
between the cyberspace (cloud) and the physical world (real
field devices)” [2]. In particular, comprehensive theoretical
study on field-level cloud-enabled/assisted control strategies
is largely missing.

One notable exception is the cloud-assisted MPC approach
proposed in [12] and [13]. In this approach, a constrained
linear-quadratic MPC problem is solved in the cloud to
generate constraint-admissible control at each sample time
instant. An unconstrained linear-quadratic regulator is used as
a backup local controller to ensure uninterrupted stabilization
of the plant when connectivity is lost or the cloud MPC control
is not returned within a prescribed deadline. To address the
same issue, in [14], a remote linear-quadratic MPC executes
in the cloud at high frequency as the nominal controller,
while the same MPC problem is solved at low frequency on
the local device as a backup controller. The work of [12]-
[14] has focused on practical strategies to handle connectivity
loss and cloud service latency. However, control performance
and constraint enforcement in the presence of plant-model
mismatch as well as connectivity, latency or feasibility issues
are not addressed.

Note that networked control system (NCS) is a related
but different concept from cloud-assisted control. An NCS is
a spatially distributed system for which the communication
between sensors, actuators, and controllers is supported by
a (typically wireless) network [20], [21]. Although NCS and
cloud-assisted control both use wireless networks for com-
munication and data exchange, one distinguishing feature of
cloud-assisted control is that cloud computing is used as the
remote, sole controller in NCS while cloud-assisted control
aims at integrating both cloud and local computations for
enhanced performance.

In this paper, we propose a novel cloud-assisted nonlinear
MPC approach for finite-duration control tasks. Although
nonlinear MPC can explicitly handle system constraints for
complex nonlinear systems, its implementations require sub-
stantial computation power to address non-convex optimiza-
tion problems, which hinders the deployment of nonlinear
MPC in many cyber-physical systems with limited onboard
resource. Considering this issue, in the proposed approach the
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cloud is introduced to execute the nonlinear MPC that relies on
a high-fidelity model. This cloud-based nonlinear MPC is then
systematically combined with a computationally-lighter linear
MPC that is executed on the local device to mitigate issues re-
lated to communication delays, disturbances, and plant-model
mismatch and thereby achieve enhanced control performance.
This paper focuses on finite-duration control tasks. Note that
finite-duration control tasks are frequently encountered in the
automotive and aerospace fields (e.g., autonomous vehicle lane
change [22], spacecraft orbital transfer and landing [23], [24],
etc.), indicating that the proposed approach has broad appli-
cation potentials. Compared to previous work, our approach
is unique by the following features: First, different from the
approaches of [19], [25] that solely rely on cloud-computed
control, we investigate a systematic fusion of cloud-computed
control and locally-computed control, where the cloud is used
as a value-added service to improve control performance when
connectivity is available. Second, in our approach, the system
requests a service from the cloud only at the initial time of
the control task, instead of requesting cloud service at every
sample time instant over the control task duration as in the
approaches considered in [12]-[14]. This strategy is motivated
by the widely adopted pay-per-use model of cloud computing
services [1], i.e., the user pays for every cloud request and
thereby it is desirable to minimize cloud request times. This
strategy also implies that our approach does not rely on a
low-latency connection to the cloud over the entire control
task duration, i.e., our approach requires a lower connection
quality and thereby has a wider range of applications. Note
that this strategy does not imply our control approach is
open-loop. Instead, the local MPC provides feedback by
recomputing control based on new measurement of system
state at every sample time instant, and therefore, after cloud-
local MPC fusion, the resulting control has feedback and is
closed-loop. Third, our approach considers a general nonlinear
system, with no restrictions to linear models and quadratic
cost functions as considered in [12]-[14]. Furthermore, our
approach explicitly addresses model prediction errors due to
plant-model mismatch and disturbances, including constraint
enforcement in the presence of such prediction errors, which
is not addressed in [12]-[14].

Note that the cloud-assisted MPC framework proposed in
this paper is also different from the classic two-layer integra-
tion of real-time optimization (RTO) and MPC in the process
industries. First, the proposed scheme aims at integrating two
MPC-based controllers, one executed in the cloud and the
other executed on the local device, to leverage one’s strengths
to offset the other’s weaknesses and hence achieve enhanced
performance after the integration. In this scheme, the two
MPCs are in the same layer and compensate each other. In
typical integration of RTO and MPC, RTO is in the upper
layer and determines the targets/set-points for the MPC in the
lower layer. Second, the cloud and local MPCs in the proposed
scheme both use dynamic models for prediction and control
optimization. In typical integration of RTO and MPC, RTO
makes higher-level decisions based on a steady-state model
and MPC takes care of dynamic control. Furthermore, the
control signals generated by the cloud and local MPCs in the
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proposed scheme have the same time scale. Specifically, each
element of the cloud/local MPC generated control sequence
represents a control signal over one sampling period. In typical
applications of RTO + MPC in the process industries, RTO and
MPC execute on different time scales: RTO usually executes
on a hour time scale and MPC on a minute time scale [26].
We refer the readers to [26] for a comprehensive review of
RTO.

With the aforementioned distinguishing features, the contri-
butions of this paper include:

1) We propose a unified framework for cloud-assisted MPC
design (see Fig. 1), with a focus on finite-duration con-
trol tasks. The proposed novel framework systematically
integrates cloud and local controls to achieve improved
performance.

2) We rigorously analyze the feasibility and robust con-
straint satisfaction for the considered paradigm in the
presence of disturbances and cloud/local model predic-
tion errors.

3) We develop a switching-based fusion policy to system-
atically combine cloud-computed control trajectory with
local shrinking-horizon MPC solutions to minimize the
worst-case cost-to-go for enhanced performance.

4) We verify our theoretical results and demonstrate the
effectiveness of our cloud-assisted MPC approach in
terms of improving control performance with multiple
simulation examples, including an automotive control
example to illustrate potential practical application of
our approach.

The remainder of this paper is organized as follows. Sec-
tion II introduces the types of systems and control tasks to
be treated as well as the models used by the cloud and
local devices to compute controls. We describe the cloud
MPC and local MPC designs and analyze their properties in
Section III. We then develop a switching-based fusion scheme
to systematically combine cloud and local MPC controls for
enhanced performance in Section IV. We use multiple simula-
tion examples to verify the theoretical results and demonstrate
the effectiveness in terms of improving overall control per-
formance of our cloud-assisted MPC approach in Section V.
Conclusions and future work are discussed in Section VI.

The notations used in this paper are standard. In particular,
we use || -|| to denote an arbitrary vector norm and its induced
matrix norm, and use || - ||q with a positive-definite symmetric
matrix ) to denote a quadratic norm, i.e., ||-|lo = /(-) TQ(").
The symbols & and ~ denote, respectively, the Minkowski
sum operation and the Minkowski/Pontryagin difference oper-
ation between sets [27].

II. SYSTEM AND MODELS

In this paper, we investigate a new cloud-assisted control
paradigm that is illustrated in Fig. 1. Unlike conventional
networked control systems that exploit only one (remote)
controller, the considered paradigm seamlessly integrates two
complementary computing platforms (cloud and onboard com-
putation units). Specifically, the MPC optimizations are per-
formed both on the cloud and on the local processor (e.g.,
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Fig. 1: Ilustration of the architecture of the proposed cloud-
assisted control framework based on MPC.

automotive electronic control unit). On the cloud side, the
cloud can support an MPC with a high-fidelity model but is
subject to communication delays. On the local agent side, the
onboard controller runs an MPC with a simplified model due to
limited onboard computations but with negligible time delays.
In this work, the two controllers are systematically designed
and integrated for enhanced performance.

More specifically, we consider a plant that can be repre-
sented by the following discrete-time state-space model,

Tiy1 = A.It + BUt + f(ﬂft,ut) + wy, (1)

where x; € R™ denotes the state of the system at the discrete
time instant ¢ € Ny, u; € R™ denotes the control input at %,
A and B are matrices of appropriate dimensions, f : R™ x
R™ — R”™ is a nonlinear function, and w; € RP represents
unmeasured disturbances acting on the system.

We make the following assumptions about system (1):

Al. f is a Lipschitz continuous function such that
I/ (ew) — F@',u)]| < Lylle — /|| + Myllu — /| for all
z,2’ € R" and u,u’ € R™, where Ly, My > 0 are known
Lipschitz constants of f; and f(0,0) = 0.

Note that the second condition of Al, f(0,0) = 0, is
equivalent to saying that (z,u) = (0,0) is a nominal steady-
state pair and the matrices A, B correspond to a linear model
of the system around the steady-state pair (z,u) = (0,0).

A2. The disturbance input w; takes values in a known
bounded set W C R? and sup,, ¢y [|w| = w.

The control objective is to minimize the following cost

function,
N—1

J =" ¢, u) +(an), )
t=0
where N is the optimization horizon that corresponds to the
end time of a finite-duration control task (i.e., t =0,1,..., N
corresponds to the control task duration). The following as-
sumption is made about the cost function (2):

A3. ¢(-,-) and ®(+) are both Lipschitz continuous in z, i.e.,
satisty [¢(x, u) —¢(a’,u)| < Lyllo—a'| and [i)(x) —(a)| <
Lyllxz — 2’| for all z, 2’ € R™, where Ly, Ly, > 0 are known
Lipschitz constants of ¢ and ), respectively.

Being globally Lipschitz is in general a strong assumption
on the functions ¢ and . For example, the commonly used

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

quadratic cost function is not globally Lipschitz. However, if
the system state is known to stay within or needs to be con-
strained within a bounded domain during the system operation,
then the global Lipschitz conditions in A3 can be replaced with
local Lipschitz conditions for later developments, which are
easier to satisfy. For instance, every continuously differentiable
function is Lipschitz continuous on every compact set [28].

Meanwhile, constraints that represent hard operational spec-
ifications are ubiquitous. Two types of constraints are most
common: pointwise-in-time constraints, i.e., constraints that
must be satisfied for all time ¢t = 0,..., NV, and terminal
constraints, i.e., constraints that must be satisfied at the ter-
minal time ¢t = V. For instance, pointwise-in-time constraints
are frequently used to represent safety-related requirements,
such as variable bounds in chemical processes and collision
avoidance in autonomous driving, while terminal constraints
are frequently used to represent terminal control objectives in
the case of finite-duration tasks and used for stability reasons.
In this paper, we consider state constraints taking the following
form:

.%'TEXT:{J)ER"ZG;JISQTJ‘,]’:1,...,pT}, (3)

where T denotes the time instant where the constraints are
imposed and it takes values in 1,2,..., N, G ; € R", g7 ; €
R, and pr is the total number of linear inequalities defining the
constraint set X. Note that in what follows we treat the case
where state constraints are imposed at a single time instant 7'
to simplify the exposition. The case where state constraints are
imposed at multiple time instants can be treated similarly (for
instance, if (3) needs to be satisfied at 7' = T; and T = 15,
then in the cloud MPC problem the tightened constraint (17)
will be imposed for both 7' = T} and T' = T5). In this case,
since T' can take any values in 1,2,..., N, (3) can represent
both pointwise-in-time and terminal state constraints.

As shown in Fig. 1, the cloud MPC exploits the following
higher-fidelity model to compute control for the system,

P ‘%t+1 = A.’i’t + But + f(:%hut). (4)

Here, we use the “hat” notation to represent predicted states
in the cloud MPC. This model includes the nonlinear term
f(&¢,u;) and necessarily leads to a nonlinear and non-convex
optimization problem, which can be computationally intensive.
Nevertheless, due to access to powerful cloud computations,
we assume this can be solved efficiently on the cloud.

On the other side, due to limited onboard resources, the
following lower-fidelity model is used by the local MPC to
compute control for the system,

El : i’t+1 = Ai’t + But, (5)

which is a linear model and thereby yields easier optimization
problems that can be handled by onboard computing devices.
We use the “bar” notation to represent predicted states in the
local MPC.

Our cloud-assisted nonlinear MPC approach is featured by
a cloud MPC problem solved at the initial time of the control
task, a sequence of shrinking-horizon local MPC problems
solved at each sample time instant over the control task
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duration, and a fusion strategy to systematically combine cloud
and local MPC solutions. These components are introduced
and analyzed sequentially in the following two sections.

III. CLoUD AND LocAL MPC DESIGNS

In this section, we introduce the cloud MPC and the local
MPC designs and analyze their properties.

A. Cloud MPC Design

When a control task is assigned, we assume that the local
system can request the cloud to solve a nonlinear MPC prob-
lem based on the higher-fidelity model (4). Note that this pro-
cess incurs a “request-response delay,” i.e., there will be a time
difference between the local system submitting its computation
request to the cloud and receiving the computation results from
the cloud, as illustrated in Fig. 2. In the sequel, we refer
to such delays as communication delays. While there exist
different ways to handle the incurred delays, in this paper, we
adopt a “prediction-ahead-of-time” approach. Specifically, let
At denote the maximum delay due to cloud communication.
Upon cloud MPC request at time instant ¢t = k — At, the cloud
will predict the state At time ahead, &((k— At)+At) = &(k),
by assuming state remaining constant over the time interval At
or by running forward simulation based on system model (4).
The predicted state & (k) is then used as the initial condition
for the cloud MPC and the obtained optimal control trajectory
is downloaded to the local system for use starting at time
instant ¢t = (k — At) + At = k to avoid any outdated control
inputs. This delay treatment strategy essentially converts the
effect of communication delays to initial state uncertainty,
which is illustrated in Fig. 2. We note that there exist reliable
methods for estimating the request-response delay At in a
given cloud service scenario, for instance, estimating the up-
link + downlink delay through a “ping” test and estimating the
computation delay according to the cloud available computing
power and the problem complexity [29].

e -
oo el -

4
2l Computation "

Uplink
State x l
fe——-

x(k — At)

Downlink

e(k) = 2(k) — x(k)

Dynamics

t=k-At t=k Time

Fig. 2: Tllustration of cloud state propagation error due to
request-response delays.

Without loss of generality, we consider that at time instant
t = —At, the local system requests the cloud to perform a
nonlinear MPC based on the cost function (2), the model (4),
and an estimate of state at ¢ = 0, Zy. For now, we assume
generic constraints on the predicted states &, and controls ..
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In particular, the cloud is requested to solve the following
optimization problem,

N-1
min J =Y $(&r,ur) + 9(iy) (6a)
7=0
S.t. -%t+l = Aii’t + B’U,t + f(i’t, Ut), (6b)
({a-}on {ur 175 € 55 (60)

with the initial condition Z(. Note that (6c) can represent any
constraints on Z, and u,. We will elaborate (6¢) later on to
enforce specific state constraints in the form of (3) in a robust
manner (i.e., ensuring satisfaction of (3) by the actual system
in spite of model prediction errors).

By solving (6), the cloud computes and transmits to the local
system an optimal control trajectory available starting from

time 0, {ao, t1,...,UN—1}, an associated prediction of state
trajectory, {2, &1,..., %2 N}’ and a corresponding sequence of
cost-to-go, {Jo, J1,...,JJn}, where
N-1
T = O(dr, i) +(En). (7
T=k

Note that if the controls {dg,1,...,%n—1} are applied
to the actual system (1), the resulting actual state trajectory
{zo,x1,...,xn} will be different from the predicted trajec-
tory {Zo,&1,...,2n}, due to the disturbances w; acting on
the actual system (1) and errors between Zy and x( caused
by imperfect prediction (shown in Fig. 2). Correspondingly,
the predicted cost-to-go jk, for £k = 0,...,N, will have
some errors from the actual cumulative cost over the steps
T =k,...,N, which is defined as follows:

N—1
JE =" ¢lardr) +d(an), ®)
=k
where x, denotes the actual state at time 7 under the control
input sequence {dq, 1, ..., Ur_1}.

The following proposition establishes bounds on the errors
between Z, and z, and between jk and J, which will be
exploited later to develop an approach for robust constraint en-
hancement and to design our cloud-local MPC fusion scheme.

Proposition 1. Suppose at time k, k € {0,1,..., N — 1}, the
difference between the predicted state Ty, and the actual state
X IS €, = Tk — x) and the control sequence {Uy, ..., Un_1}
is applied to the actual system (1) over all future steps T =

k,...,N — 1. Then, the error between the predicted state I,
and the actual state ., for r = k+1,..., N, can be bounded
as

T—1
&7 — a0l < (a+ L) e+ 3 a+ L), (©)
=k

where a = ||A||, e = |lex|l, and w = sup,, ey [|w]| (see A2).

Meanwhile, the error between the predicted cost-to-go Ji and

the actual cumulative cost J can be bounded as

| = il <

My ((a+ Lp)N=F —1)—(N — k) Lyw
(a + Lf) -1

(10)

+L¢6k(a + Lf)N_k,
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where
L¢w

My =1L L —_—.
k $€k T ww+(a+Lf)—1

(11

Proof: Mathematical induction is exploited to prove that
(9) holds for 7 =k +1,..., N. Firstly, using (1) and (4) we
obtain

|Zk41 — gl =

|Azy + Big + f(Zk, ) — Az — By — f(2k, Gr) — wi||
<A@k — zi)ll + 1 f @k, @) — f(@r, @) || + [wiell

< A+ L)k — 2kl + [lwsl]

<(a+Lyf)ex +w, (12)

where we have used the definition of matrix norm and the
Lipschitz continuity assumption of f (i.e., Al) to derive the
inequality in the fourth line. This proves (9) for 7 = k + 1.
We now assume (9) holds for 7 = o, ie., [T, — 25| <
(a+Lys)" *ep+37 " (a+Ls)7 "~ Lw. In this case, following
(12) we can obtain

|41 = Topall < (a+ Lf)l3s — zo| +w

o—1

<(a+Ly) ((a +Ly)" e + Z(a + Lf)"_l_lw> +w
1=k
o—1

= (a + Lf)UJrl*kEk + Z(a + Lf)ailw +w
=k

=(a+ Lf)ngl*kEk + Z(a + Lf)gilo.),
=k

13)

where we have used the upper bound of ||Z, — z,| (i.e., the
inequality (9) for 7 = o + 1) to derive the second line. This
proves (9) for 7 = 0+ 1. Combining the base case in (12) and
the induction step in (13), (9) is proved for all 7 = k+1,... | N
by induction.

We now estimate the error between .J;, and Ji:

N-1

[Te= TRl < D 16(r, r) = G, i) |+ |9(En) — (@)

7=k

N-1
< Y Lollir — 2o + Lyllén — 2|

3
Il
™

2

T—1
< Ly ((a-i—Lf)T_kEk+Z(G+Lf)7_l_lw>

=k

3
Il
>

N-1

+ Ly ((a + Lf)Nikek + Z (a+ Lf)Nllw>
=k

k

(a+Lf)71 (aJrLf)fl
(a+ LN F-1

(a+Lf)—1
L¢w (a + Lf)N_k -1
= (L L
( »€k T ¢w+(a+Lf)1>

(a + Lf) —1
(N—]{?)L¢w _
_m‘f‘Lwﬁk(a"FLf)N k.

N-1 X
(a—i—Lf)N_k—l (a—i—Lf)T_ -1
+L¢w E
7=k

+ Lwek(a + Lf)N_k + Lyw

(14)
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Therefore, we have shown the bound in (10). |

Note that the above results hold true for generic constraints
on the predicted states ., and controls u.. imposed in the cloud
MPC optimization problem (6). We now consider specific state
constraints in the form of (3). Note that imposing the constraint
(3) directly in the cloud MPC problem (6) does not guarantee
(3) will be satisfied by the actual state, due to prediction errors
discussed above. Therefore, in what follows we develop an
approach to robustly enforcing (3).

We assume that at the initial time ¢t = 0, the error between
the state estimate Z, (i.e., the initial condition of the cloud
MPC problem (6)) and the actual state 2y can be bounded as

120 — zoll < o, (15)

where dq is a known constant. Note that when the system state
is assumed to be locally measured, the error between Zy and
T is mainly caused by the delay due to cloud communication,
which includes uplink, downlink, and computational delays, as
illustrated in Fig. 2. In this case, it is possible for the cloud
to estimate a bound for ||£y — x| according to maximum
delay length (which is estimable using the methods described
in the first paragraph of Section III-A) plus system dynamics
and disturbance characteristics (such as Lipschitz constants of
the dynamic equation and disturbance bounds in an approach
similar to that in Proposition 1).
Under the assumption (15), we define

k-1
Or=(a+Lp)"0+> (a+ L) lw,  (16)
1=0
for k = 1,2,...,T, and impose the following constraint in
the cloud MPC problem as (6¢):
2y € Xp ~ Bs,, (17)

where ~ denotes the Minkowski/Pontryagin difference opera-
tion [27], and Bs, = {z € R" : ||z|| < ér}.

By tightening the constraint according to (17), we can
guarantee the original constraint (3) to be satisfied by the
actual state xp. This result is formalized in Lemma 1 in
Section IV. Furthermore, suppose the support function for unit
ball B={z € R": ||z|| <1}, hp : R" — R, is available, the
constraint (17) can be expressed as

Gp;dr < gr;— 0r ha(Gr;),

which are linear inequality constraints on the predicted
state Z.

We note that constraint tightening is a common approach to
realizing robust constraint enforcement in the MPC literature
[30]-[32]. Although for linear systems it is possible to accu-
rately estimate the worst-case effect of a bounded disturbance
via direct propagation of the disturbance set W through the
dynamic equation [30], for nonlinear systems this is typically
not possible and therefore it is common to leverage function
characteristics such as Lipschitz constants to overbound the
disturbance effect and tighten the constraints accordingly [31],
[32], which is also pursued in our approach [see (16) and
(17)]. From an MPC practical implementation perspective,
various strategies are available to reduce disturbance effect and

j:17"'7pT7 (18)
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the required amount of constraint tightening. As one strategy,
one can first stabilize the system using a local controller!
and treat the stabilized system as the plant (1) where wu;
represents an adjustment to the nominal control signal that is
determined by MPC to achieve optimal control and constraint
enforcement [33]. When designing the local controller, one
can enforce a + Ly < 1. In this case, the error bound J, in
(16) grows slowly and is upper bounded by dy + ﬁ (.e.,
O < 0o + ﬁ for all k). Such a strategy can effectively
reduce the constraint tightening in (17) and avoid infeasibility
of the cloud MPC problem.

B. Local MPC Design

At each time instant ¢ = 0,1..., N — 1, the plant computes
locally an optimal control based on the cost function (2), the
model (5), and a measurement of current state x;. As before,
we start with considering the case with generic constraints on
the predicted states ZT,, and controls u,;. In this case, the
following shrinking-horizon local MPC problem is solved at
each t to compute control,

N-1
min Jt = Z (b(i.‘f"t)u‘l"t) + 1/)(EN|t)

(192)

T=t
S.t. j‘r—‘rl‘t = Aﬂ_let —+ BuTlt? (19b)
Te|t = Tt (19¢)
({fr\t}'zjy:l’ {u‘r\t}j—vz_ol) € Efﬁ (19d)

In the above expressions, we use (-);; to denote a pre-
dicted value of the variable (-), with the prediction made
at the time instant t.> The constraint (19d) can represent
any constraints on Z,; and u.; and will be elaborated to
robustly enforce specific state constraints in the form of
(3) later on. By solving (19), an optimal control trajectory,
{@4), Ugg1)ts - -, Un—1pt}, an associated prediction of state
trajectory, {Ty|¢, Ty11t,- -+, TN}, and a corresponding cost
value, J;, are obtained.

Note that similar to the case of cloud MPC, if the
control sequence {y|¢, Ut1ft,---,UN—1j¢} 1S applied to
the actual system (1), the resulting actual state trajectory
{zt,Z¢41,...,xn} will be different from the predicted tra-
jectory {Z¢|¢, Teq1)t, - - - TNt )» due to plant-model mismatch
and the disturbances w, acting on the actual system (1). Cor-
respondingly, the predicted cost value .J; will have some error
from the actual cumulative cost over the steps 7 =t¢,..., N,
which is defined as follows:

N—1

1 _
TE=Y" b(wr, ) + ¥(zn), (20)
T=t
where x, denotes the actual state at time 7 under the control
input sequence {@y|¢, Ugy1|es - - - Ur—1j¢ }-
The following proposition establishes bounds on the errors
between T,; and x, and between J; and Jtl.

IThis controller is not necessarily an optimal controller and therefore does
not need to be optimization-based.

2We did not use such notations for cloud MPC variables because the cloud
MPC problem is solved only once at the initial time ¢t = 0.
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Proposition 2. Suppose the local MPC control sequence

{Ty¢, ..., Un_1pt} is applied to the actual system (1) over the
steps T =1t,...,IN — 1. Then, the error between the predicted
state T,y and the actual state ., for r=t+1,..., N, can

be bounded as:

T—1

1T =l < D (a+ L) (L l@ell+-My |yl +w)

1=t o)
where a = ||A|| and w = sup,,cy ||w| (see A2). Meanwhile,
the error between the predicted cost value J; and the actual
cumulative cost Jé can be bounded as:

[T = Ji| <
N—-1 T—1
Ly Y (Z(a + L) (Lp e | + Ml + w))
T=t+1 =t
N-—1
+ Ly (Z (a4 L)™' (L ll@yell + My + W)> :
=t
(22)

Proof: Mathematical induction is exploited to prove that
(21) holds for T =t+1,..., N. Firstly, using (1) and (5) we
obtain

1Zeg1)e — Tt |

= ||AZy; + By, — Awy — Bliyy — f (24, Ugpe) — we]
< f (e, @) — £0,0)[| + [Juw]

< Lyllwell + M ||tgge]| + w

= Ly||Zopell + Myl[tgpe]| + w, (23)

where we have used Z;; = x; and f(0,0) = 0 (see Al) to
obtain the third line, used the Lipschitz continuity assumption
of f (i.e., Al) to obtain the fourth line, and used Z;; = z¢
again to obtain the last line. This proves (21) for 7 = ¢ + 1.
We now assume (21) holds for 7 = o, ie., ||Z,; — 25| <

7o @+ L) 7 N (L || @y || + My ||| +w). In this case,
following (23) we can obtain

H9_3<r+1|t - xa+1||

= ||AZ,; + Bl — Axg — Blg)y — (%0, Ug)t) — Wol|
<NAZg) — xo)|| + 1 f (20, Ugle) — £(0,0)]] + [Jwo ||

< allZo — 2ol + LillTo — Tole + Topell + My ||tg))]| +w
<(a+LpllZoie — 2ol + Lyl|Zopll + Myl|top)ll +w

o—1
< (a+Ly) <Z(G+Lf)”“ (Lsllzgell + My || +w)>

1=t
+ Lij”(ﬂt” + MfH’U’J\t)H +w

= (a+Lp) (Ll @l + Myllay) +w)
=t

(24)

where we have used the upper bound of ||Z,; —z.|| (i.e., the
inequality (21) for 7 = o) to derive the fifth line. This proves
(21) for 7 = o + 1. Combining the base case in (23) and the
induction step in (24), (21) is proved forall T =¢t+1,... N
by induction.
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Using the Lipschitz continuity assumptions of ¢ and ¢ (i.e.,
A3), we can bound the difference between J; and Jtl according
to

[ Je = Ji| =

N-1

Z (d)(jﬂtaaﬂt) - d)(x‘ra aﬂt)) + (w(2N|t) - 7vZJ(ZI:N))

T=t

A

N-1
< Z |¢(jr|taa‘r\t) - ¢(x77ﬂ7|t)| =+ |¢(53N|t) - 7#(HUN)|

N-—1
< Ly Z |Zr)e — @7 | + Lyl ZN)e — 2N
T=t

N-1

=Ly Z Hfrlt — x|+ Ly||z N — |,
T=t+1

(25)

where we have used 7;; = z; to drop the term for 7 = ¢ in
the sum and obtain the last line. Then, using the bounds for
|Z7)¢ — x| in (21) for 7 =t +1,..., N, we can obtain the
bound for |J; — J!| in (22). n

Remark 1. The bounds in (21) and (22) depend on the
predicted states Ty, and controls uy;. Note that once the local
MPC problem (19) is solved, Z;; and 1w, for | =t,..., N,
are available. This means the bounds in (21) and (22) are
available once (19) is solved.

Remark 2. Proposition 2 represents a strategy for estimating
the actual cost J! corresponding to the control sequence
{@e, Ueyaye, - Un—1)¢} using a cost value predicted by the
lower-fidelity linear model (5), J;, which is obtained along
with the control sequence {Ty, Ui 1t, - -, Un—1]¢ } When the
local MPC problem (19) is solved. An alternative strategy is to
compute another estimate of J; via the higher-fidelity model
(4) by applying the local MPC obtained control sequence
{ty)e, Uggr)ts - -, Un—1t} to (4). Note that this alternative
strategy involves an additional step of simulating the higher-
fidelity model (4), which may take non-negligible effort of local
onboard computation units especially for high-dimensional
models. Further investigation of this alternative strategy is left
to our future work.

Note that the above results hold true for generic constraints
on the predicted states T, and controls u,, imposed in
the local MPC optimization problem (19). We now elaborate
(19d) to address specific state constraints in the form of
(3). Similarly as in cloud MPC, in order to guarantee (3)
to be satisfied by the actual system (1), robust constraint
enforcement techniques for local MPC are needed and are
developed in what follows.

To begin with, we consider the following polyhedral ap-
proximations of unit ball,

X={zeR": Gz <g},
U={ueR™: Hu<h}, (26)
such that ||z|| < 1 for all x € X and ||u| < 1 for all u € U.

We then impose the following constraints on the predicted
states and controls in the local MPC problem,

j7|t € Qr|t X? ﬂTlt € BT\tzja (27)
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forT =t,...,T—1, where a|; and 3|, are auxiliary decision
variables (i.e., to be optimized together with the state and
control variables in the local MPC problem). The constraints
in (27) can be expressed as the following linear inequalities

in (i'7'|taa7'\t) and (ﬂ’T‘t7BT‘t):

(28)

Under (27) or (28), we have [|Z,:]| < ar and ||t | <
Byt for 7 =t,...,T — 1. Then, using (21), the difference
between the predicted state Z7; and the actual state z7 can
be bounded as

T-1
|27y — 2l < (a+ L)' (Lyouy + MyBys +w) .

1=t 29)

To ensure the constraint (3) will be satisfied by the actual

state 7, we finally impose the following constraint in the
local MPC problem:

(30)

where Be,, = {z € R" : ||z|| < &7} and &7y, denotes the
bound for ||Zp; — 27| on the right-hand side of (29).

Similar to (18), the constraint (30) can be expressed as the
following linear inequalities in (Z7¢, {or e, Br(¢}r=t,... 7—1)
using the support function for unit ball hg:

G &rp + hs(Gr ) éry = G Ty

T-1
+ hg(Gr,;) < Z(a + Lf)Tilil (Lfa”t + Mfﬂl\t + w))

=t

jT\t € Xr ~ BET“,

y PT- (31)

The robust constraint enforcement property of the (state-)
constrained local MPC problem (i.e., (19) with the generic
constraint (19d) elaborated as (27) and (30)) is further for-
malized in Lemma 2 in Section IV. Note that this problem is
reformulated according to the current state measurement x; at
every sample time instant £ = 0,1..., N — 1. It may not be
feasible at all times. If the constrained local MPC problem is
infeasible at some time ¢, as a fail-safe solution, we let

SgT,_ﬁ _]:1,

(32)

for r =t,..., N — 1, i.e.,, whenever the local MPC problem
is infeasible, we take the remaining control sequence obtained
from the previous feasible time as the solution for the current
time. This fail-safe solution ensures that the local controller
produces a control signal for the plant to apply at every time
step.

a'r\t = ﬂTlt—l)

IV. SWITCHING-BASED CONTROL FUSION

A distinguishing component of our cloud-assisted nonlinear
MPC approach is a fusion scheme to systematically combine
the cloud and local MPC controls obtained in Sections III
to achieve enhanced performance. We describe our proposed
switching-based fusion scheme in this section. We first present
a simpler version of our fusion policy for the case without state
constraints in Section I'V-A, then present a modified version for
the case with state constraints in Section IV-B, together with
analysis of its feasibility and constraint satisfaction properties.
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A. Switch Policy for Unconstrained Case

At each time instant £ = 0,1..., N — 1, two candidate
controls, @; from cloud MPC and Uyt from local MPC,
are available. The goal is to systematically fuse them to
achieve enhanced performance. The fundamental idea of the
proposed switching-based fusion strategy is to minimize future
cumulative cost: one should apply 4 if J& < J} and apply
g otherwise. However, only the estimates of J¢ and J, ! e,
jt and J;, but themselves, are available, and these estimates
have errors. Therefore, following the idea of minimizing the
worst-case cost, we propose the following switching policy for
the case without state constraints:

w — Qp, i Jp 4+ < Ty + s
t — _
ut\ta

otherwise,
where 7, denotes the bound for |.J, — J¢| on the right-hand
side of (10) and 7j; denotes the bound for |J, — J/| on the
right-hand side of (22). This switching policy completes the
unconstrained version of our proposed cloud-assisted MPC
approach to finite-duration control tasks.

The switching policy (33) uses the bounds 7j; and 7, devel-
oped in (10) and (22) based on Lipschitz constants of relevant
functions to estimate the worst-case costs and determine an
appropriate control to apply. The proposed switching strategy
is essentially based on the worst-case performance bounds
and thus may not be the optimal policy (i.e., the policy that
minimizes the actual cumulative cost). Note that computation
of optimal policies requires exact evaluation of disturbance
effects propagating through the nonlinear system (1), which
is in general a difficult task, if not impossible. On the other
hand, we show through simulation examples in Section V
that our switching policy (33) can lead to improved control
performance than using solely cloud MPC or local MPC
controls. Investigation into methods to compute/approximate
optimal policies is left to our future work.

(33)

B. Switch Policy Accounting for Constraints

To guarantee satisfaction of the constraint (3) by the actual
state x, we modify the switch policy (33) for 0 <t <T —1
to the following policy:

Ut,
Ut = § _
Ut|t,

where §; is defined in (16) and we let J; = +oo if the local
MPC problem is infeasible at ¢.

We now discuss the constraint satisfaction property of the
policy (34). Our main result, Proposition 3, is built upon two
intermediate results, Lemmas 1 and 2, which formalize the
robust constraint enforcement properties of the cloud and local
MPC problems, respectively.

Lemma 1. Suppose (i) (17) is enforced in the cloud MPC
problem (i.e., when the cloud MPC controls {ug,...,UN_1}
are computed at the initial time of the control task), (ii) at time
k, for some 0 < k <T — 1, the difference between the cloud
predicted state &y, and the actual state xy, satisfies || T —xy| <

if Jp + 7 < Jp + 7 and ||@; — x4 < 0,
otherwise,
(34)
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Ok, with &y defined in (16), and (iii) the cloud MPC controls
{tg,...,Ur_1} are applied to the actual system (1) over the
steps T =k, ..., T — 1. Then, the following two results must
hold true: (I) the difference between the cloud predicted state
Zr and the actual state xr satisfies ||ir — x| < op, and
(1l) the constraint (3) is satisfied by the actual state xr.

Proof: The proof of (I) follows similar steps as (12) and
(13), with ¢, replaced by d. Then, since (17) is enforced and
|Z7 — z7| < ér, we must have zp € &7 ® Bs,. C (Xp ~
Bs,) ® Bs, C Xr, where @ denotes the Minkowski sum
operation [27]. This proves (II). [ ]

Lemma 2. Suppose at time t, 0 <t < T — 1, the constraints
(27) and (30) are enforced in the local MPC problem and a
sequence of (feasible) optimal controls {ﬁt“, ... ,ﬁN,l‘t} are
obtained. Then, if {tUy, ..., Up_y;} are applied to the actual
system (1) over the steps T =1,...,T — 1, the constraint (3)
is necessarily satisfied by the actual state .

Proof: Let us denote the o, B, values associated with
the solution {@ys, ..., Un_1)¢} as @, G- and let

T-1

Ere=Y (a+Lp)" 1 (Lpaye + My +w) . (35)
=t

If {&¢, ..., Ur—1)¢} are applied to the actual system over the
steps 7 =t,...,T — 1, then according to (29) we have

|27 — 22l < Epye (36)

where T7; denotes the local MPC predicted state corre-
sponding to the controls {, ..., %r—_1}¢}. Meanwhile, the
constraint (30) ensures

37
(X ~ Bngt) &)
||

T € Xp ~ Bngt.

Therefore, we have z7 € T, © Bgm -
Bngt C Xr. This proves the result.

On the basis of the above two results, we now show that
the modified switching policy (34) leads to the following
constraint satisfaction result:

Proposition 3. Suppose (i) at the initial time t = 0, the state-
constrained cloud MPC problem (i.e., (6) with the generic
constraint (6¢) elaborated as (17)) is feasible, and (ii) at each
time instant t = 0, ..., T —1, the control that is applied to the
actual system (1) is determined by the switching policy (34).
Then, the constraint (3) is necessarily satisfied by the actual
state .

Proof: Firstly, following the proof of Lemma 1(I), it can
be shown that if ||Z; —x¢|| < d; holds at some ¢,0 < ¢ < T—1,
and uy = Uy, then the resulting actual state x;,; must satisfy
|Z¢41 —@p1|| < O¢41. In this case, according to the switching
policy (34), if the control is switched from cloud MPC control
to local MPC control at some ¢ (i.e., us—1 = Uz—1 and uy =
Uy)¢), it must hold that Ji + e < jt + 7, which implies
Ji < 400, i.e., the constrained local MPC problem is feasible
at t.
Let us now consider two cases for the control at time
t=T-—1: (a) If up_y = dp_1, according to (34), it must
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hold that ||#7_1 — x7—1|| < dr—1. In this case, according
to Lemma 1(II), we must have x7 € Xp. (b) If up_1 =
Up_1)7—1, according to the analysis in the first paragraph of
this proof, there must exist some 7, 0 < 7 < T — 1, such
that 7 is the last time instant where the constrained local MPC
problem is feasible. Moreover, according to the fail-safe policy
(32), we must have u; = Urr, Ury1 = Urpijrg1 = Urii|rs
> UT—1 = Up_17—1 = Ur_1jr- TO see this more clearly,
if the constrained local MPC problem is feasible at 7" — 1,
then 7 = T — 1 and the above statement holds true. In the
case where the constrained local MPC problem is infeasible
at T — 1, the analysis in the first paragraph of this proof
says that ur_o cannot take the cloud MPC control up_o
(because in that case the control would not switch to local
MPC control at ¢ = T — 1 when the local MPC problem is
infeasible at 7" — 1). Therefore, in this case we must have
Ur—2 = Ur_gT—2, and, according to the fail-safe policy
32), ur_1 = anl\Tfl = 'U/T71|T72- By Continuing this
analysis, we can show the statement above. Then, according to
Lemma 2, we must have z7 € Xp. This completes the proof.
|

Remark 3. All of our above developments and theoretical
results, including Propositions 1-3, apply to the cases with or
without control constraints u; € U. Such control constraints
can be handled by imposing them directly in the cloud and
local MPC optimization problems without extra treatments.

Remark 4 (Closed-Loop Stability-Type Property). The robust
constraint enforcement approaches based on constraint tight-
ening developed in Sections IlII-A, -B, and IV-B can be used
to establish closed-loop stability-type properties of the system
in continued operation. Specifically, one can design a local
controller, w, = m(x;), together with a set, Xy, such that the
controller 7 stabilizes the system for states within the set Xjy.
Note that due to consistent perturbation by the disturbance
signal wy, it is in general not easy to achieve stability (in
the sense of Lyapunov), in particular, x; — 0, by a state-
feedback controller u; = 7 (x;). Therefore, by stabilization we
mean regional input-to-state stability (ISS) [34] or ultimate
boundedness, i.e., limsup,_, . ||z:|| < p, where the bound p
depends on the disturbance set W and the controller. Then,
one can impose Xy as a terminal constraint set and apply the
approaches developed above to robustly enforce xy € Xj.
Proposition 3 shows that, under the assumption of initial
feasibility, the system state x necessarily enters Xy att = N.
After x; enters Xy, the local controller w can be activated
to take over the control and stabilize the system. For more
detailed discussion about such an approach to establishing
closed-loop stability-type properties through a local stabilizing
controller and a terminal set, the readers are referred to the
MPC survey article [35].

Remark 5. Our approach and associated theoretical results,
including the error bounds in Propositions 1 and 2 and the
robust constraint satisfaction property in Proposition 3, can be
extended and used to treat time-varying systems of the form

Tpp1 = Agy + Boug + fir(me, we) + wy, (38)
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by defining a = max;—o,. n—1 ||A¢ll, Ly = maxs—o,.. N1
Ly and My = maxy—g,... n—1 My with Ly and My, being
the Lipschitz constants of fi. Such a treatment based on over-
bounding may lead to conservative control performance and
is thus not a focus of this paper. However, this fact can be
useful in some applications.

V. SIMULATION EXAMPLES

In this section, three simulation examples are presented to
demonstrate the effectiveness of our proposed cloud-assisted
nonlinear MPC approach. The simulations are implemented in
MATLAB 2019b. All computations are performed on a laptop
with an Intel i7-10710U CPU with 6 cores, 1.6 GHz clock
rate and 16 GB RAM. The cloud-assisted MPC framework is
designed for finite-duration control tasks, in which the cloud
MPC problem is solved only once at the initial time while the
shrinking-horizon local MPC problem is solved at each sample
time instant. MATLAB Model Predictive Control Toolbox
is used to facilitate the MPC formulation, and the induced
optimization problems are solved with MATLAB fmincon
function. We note that in real implementation, the cloud MPC
problem can be handled in the cloud by standard nonlinear pro-
gramming solvers (such as derivatives-based algorithms [36]
or evolutionary algorithms [37]). The best solver choice may
depend on specific problem and cloud computing architecture,
the investigation of which is left to future research.

A. Example 1: First-order system
As the first example, we consider a first-order system in the
form of (1) with the following parameters:
A =0.75,
|wt\ < 0027

B=1, f(xs,ut)=0.1a; —sin(0.1x¢),

Xrog = —]_0, Eo = .’)3'() — Xg = —0.5. (39)

We consider a control task defined by the following cost
function to minimize:

N-1
I =3 (ol + V5wl ) + V2], @0)
t=0

where N = 10 corresponds to the end time of the control
task. Note that we consider such a cost function because it is
globally Lipschitz, i.e., satisfying our assumption A3 globally,
and thereby facilitates the implementation of our approach and
the validation of our theoretical results. Moreover, we assume
the control input, u;, and the system state at the terminal time,
x N, are subjected to the following constraints:

ueU={ueR:|u <3}, t=0,1,...,N —1,

zy € Xy ={x eR:|z| <2.5}. 41)

From (39), it can be obtained that ’g—i‘ = 0.1 —
0.1cos(0.1z)] < 0.2 and % = 0, indicating that L = 0.2 and
My = 0. The cost function in (40) is Lipschitz continuous with
Ly=1and Ly = \/2. Based on these Lipschitz constants, the
constraint handling techniques presented in Section III can be
used to robustly enforce the constraints in (41). For instance,
at the initial time ¢ = 0, the tightened constraint sets defined

in (17) and (30) are Xnx ~ Bs, = {z € R: |z] <2.0401}
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Fig. 3: Simulation results of Example 1: State trajectories.

TABLE I: Mean regulation errors and actual cost values of
different MPC approaches

cloud + local cloud local
MRE 1.5822 1.6219 2.2344
cost 29.9165 30.7720  32.8074

and Xy ~ Bey,, = {z €R:|z| <0.3510}, respectively.
To clearly demonstrate that our proposed strategy of fusing
the cloud and local MPC controls using the switching policy
(34) can effectively improve the overall control performance,
we also implement “sole cloud MPC” and “sole local MPC”
(i.e., the cloud/local MPC solutions are applied over the entire
control task duration without switching) for comparison.

Fig. 3 shows the simulated trajectories of system state
x; corresponding to different MPC schemes. It can be seen
that our proposed approach of combining cloud and local
MPC controls leads to the best transient response. The mean
regulation error (MRE = ﬁ Zi\’:o |z¢]) and the resulting
actual cost value of each method are summarized in Table I,
where it can be seen that our cloud and local MPC fusion
strategy achieves the smallest MRE and cost.

Fig. 4 illustrates the actual cost-to-go values .J!, J¢, their
worst-case estimates J;, + ﬁt,jt + ¢, and the cloud-local
switching sequence. Recall that in the constrained version
of our switching policy, (34), which control to apply is
determined by two conditions. We have found that the second
condition, |#; — x¢| < 0y, is always satisfied in this example,
and in this case switching is determined by the sign of

60 _ N sign(Ji + 1 — Ji — )
Y — .- ---sign(J} — Jf)
—Jf—-Ji+al & 1
40 &
- g
g0
20 §
2
0

(a) (b)

Fig. 4: Simulation results of Example 1: (a) Cost-to-go values
and their estimates, (b) Switching sequences.
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Fig. 5: Inverted pendulum on a cart.

(Je+1¢) — (jt +1;). In particular, sign(.J; + 7; — Jp— M) =1
indicates that the cloud MPC control 4, is applied and
sign(J; + 7y — Jp — ft) = —1 indicates that the local MPC
control 1y, is applied. As discussed in the last paragragh of
Section IV-A, our switching policy based on the worst-case
cost-to-go estimates J; +7j; and J +17); may not be the optimal
policy. The optimal policy that minimizes the actual cost-to-
go can be determined by the sign of J! — J¢. Nonetheless,
the switching sequence determined by our policy matches
the optimal switching sequence for 80% of the time instants,
indicating that our policy is a reasonably good approximation
of the optimal policy. Note that J} and J§, which determines
the optimal policy, cannot be pre-computed but can only be
computed after the actual state trajectories from current time
t to terminal time N corresponding to cloud and local MPC
implementations have been revealed.

B. Example 2: Inverted pendulum on a cart

As shown in Fig. 5, this example considers an inverted
pendulum mounted to a cart. The system state is defined as
v=[r1 x> a3 904]T =[z 2 ¢ é]T, where z is the
cart position and 6 is the pendulum angle. The continuous-time
model of the inverted pendulum system is given by [38]:

X2
F—Kda:g—anendei sin(xs)+Mmpendg sin(xs) cos(xs)
Meart+Mpend sin?(x3)
Ty
&g cos(xg)+gsin(xz)
L

+ w,

(42)
where meq¢ = 1 kg is the cart mass, mpeng = 1 kg is the
pendulum mass, L = 0.5 m is the length of the pendulum,
K4 = 10 Ns/m is the damping parameter, ¢ = 9.81 m/s?
is the gravity acceleration, and w is the external disturbance.
The system is controlled by a variable force F'. We discretize
the continuous-time model (42) with a sampling period of
AT = 0.1 s, and the derived discrete-time model is used by
the cloud MPC to compute the control sequence. The lower-
fidelity model used by the local MPC is obtained by linearizing
(42) around the equilibrium z = [0 0 0 0] . The system
is subjected to random disturbance w; which is bounded within
W = {weR*: —0.0011; < w < 0.0011, }, where Iy € R*
is a vector with all entries being one. It can be obtained that
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Fig. 6: Simulation results of Example 2: State trajectories.
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Fig. 7: Simulation results of Example 2: Switching sequences.

wy is bounded by |jw|l2 < 0.002, where || - |2 denotes the
Euclidean norm. The upper bound of the error between the
state estimate 2y and the actual state x is chosen as g = 0.04.
The cost function is selected as

—

=2 (lztlle + lutllr) + lznlle;
0

t=

(43)

where z; = [zt Zy 0y ét]T, w = F, Q =
diag(3,0.4,3,0.4), and R = 1 x 10~°. Based on the discrete-
time model of the inverted pendulum system, it can be derived
that Ly = 4.6291 and My = 0.4031. The cost function defined
in (43) implies that Ly = Ly, = /3.

The system state trajectories corresponding to different
MPC schemes are presented in Fig. 6, and it can be seen that
only our approach of combined cloud + local MPC achieves
satisfactory convergence. Recall that the local MPC relies on
a linearized model, which is accurate only for states within
a small neighborhood of the linearization point. Because the
initial condition zy is far from the linearization point, the
local MPC fails to stabilize the inverted pendulum. Similarly,
the cloud MPC also fails to stabilize the inverted pendulum
due to an accumulation of errors over time. Recall that the
cloud MPC, with its control trajectory computed only at the
initial time ¢ = 0, is essentially an open-loop control scheme,
and therefore cannot counteract such errors through feedback.
Fig. 7 shows the switching sequences of (.J; 4 7j;) — (J; + ¢ )
and J! — J¢ with a 86.67% match.
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Fig. 8: Kinematic bicycle model.

C. Example 3: Autonomous vehicle path following

This example considers the path following of an au-
tonomous vehicle as presented in Fig. 8. The kinematic model
of the vehicle is described by [39]:

2 v cos(y)
py = ’USiIl((p) + w, (44)
¢ 7 tan(¢)

where (p,,p,) denotes the position of the vehicle, ¢ is
the yaw angle, [ is the wheelbase, and w is the external
disturbance. The speed v and steering angle ¢ are the control
variables for the vehicle. Denote z™ = [ ref pref ref]T

x Py ¥
and v = [vref Cref]T as the reference path to follow

and its corresponding control variables. Then, by letting
T

v = tan(¢) (v = tan(¢™)), @ = [ﬁx Py @] =
ref ref ref T ~ ~ 1T
[pw—px py—py_l_ ®—@ ] ,and u = [v 7] =
[v—v™" 5 —~*] " the model (44) can be written as
i=AZ+ Bi+ f+w, (45)
where
0 0 —vefsin(pr) cos(¢™) 0
A=10 0 v®cos(¢™) | ,B= sin(¢™) 0 ,
00 0 o
] 1
COS(@-‘r ref) COS((pref ) (1~}_~_,Uref)+vrefsin(¢ref)¢
f_ (Sin(@-‘r@mf) Sll’l(gﬂrCf)lh(ﬂ—F’Umf)—UrCfCOS(gDrCf)Qb

The continuous-time model (45) is discretized with a sam-
pling period of AT = 0.05 s as the higher-fidelity model
for cloud MPC, while the linear model used by the lo-
cal MPC is obtained by neglecting the nonlinear term f.
The disturbance w; acting on the system is bounded within
W = {weR¥: -0.01]5 <w < 0.0113}, indicating that
lwe]l2 < 0.0173. The upper bound of the error between the
state estimate a::() and the actual state Z is set as o = 0.0346.
Furthermore, for tracking the reference path, the cost function
is design as

=

J= ) (e +llallr) + IZnlle,
0

t=
where Q = diag(3,3,0.01) and R = 0.0015x2. Note that the
system parameters A, B, and f are related to the time-varying
signal u™'. In this case, we derive the constants L and M for

(40)
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Fig. 10: Simulation results of Example 3: Switching se-

quences.

cost estimation according to Remark 5, where Ly = 0.5 and
My = 0.3357. The cost function defined in (46) is Lipschitz
continuous with Ly = Ly = /3.

The position trajectories of the vehicle corresponding to
different MPC methods are illustrated in Fig. 9, and it is
clear that our cloud + local MPC approach achieves the most
accurate path following. Furthermore, Fig. 10 presents the
switching sequences of (.J; + ;) — (J; + 7;) and J' — J¢
with a 81.67% match.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a cloud-assisted model pre-
dictive control (MPC) framework for finite-duration control
tasks. In this framework, cloud-computed control trajectory
based on a higher-fidelity nonlinear model and local shrinking-
horizon MPC solutions based on a lower-fidelity linear model
are fused by a switching policy to achieve improved control
performance in the presence of cloud/local model prediction
errors (due to plant-model mismatches and cloud request-
response/communication delay effects). We analyzed prop-
erties of the proposed cloud-assisted MPC framework and
established approaches to robustly handling constraints within
this framework in spite of model prediction errors. We then
demonstrated the effectiveness of the framework in terms of
improving overall control performance using multiple simu-
lation examples, including an automotive control example to
illustrate its potential industrial applications.

For future work, we will investigate methods to refine our
switching policy as well as investigate other fusion schemes

. © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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to achieve further improved control performance. We will also
extend our cloud-assisted MPC framework from finite-duration
control tasks to a broader range of application scenarios.
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