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A B S T R A C T

Origami has evolved into a framework for creating engineering systems at vastly different scales: from large
deployable airframes to architected materials to small DNA machines. These emerging applications require
us to develop high-fidelity models that can simulate and examine folding-induced mechanical responses,
especially those involving significant facet rotation, non-uniform deformation, and complex dynamics. To
this end, this study formulates and experimentally validates a new origami mechanics model based on
Absolute Nodal Coordinate Formulation (ANCF), which has unique advantages for predicting the nonlinear
dynamics of multibody systems with large rotation and deformation. This new model treats origami facets
as ANCF thin plate elements rotating around compliant creases. Moreover, Torsional Spring Damper Actuator
(TSDA) connectors are developed to represent crease folding. After careful calibration with experimentally
measured constitutive material properties, this study provides the first reported quantitative agreement
between simulation predictions and experiment results involving complex and non-uniform facet deformation
and transient dynamic responses. Therefore, this model can help deepen our knowledge of folding-induced
mechanics and dynamics, fostering future applications for origami.

1. Introduction

Origami – the ancient craftsman art of paper folding – has evolved
into a framework for designing and constructing various engineering
systems, such as deployable airframes [1–3], multi-functional struc-
tures [4–6], architected materials [7,8], soft robots [9,10], medical
devices [11,12], and DNA machines [13]. The increasing complexities
of these applications require us to thoroughly understand the kinemat-
ics, mechanics, and dynamic characteristics of foldable structures and
materials [14–16]. To this end, high-fidelity and computationally effi-
cient simulation models are crucial because they can quickly uncover
the rich correlations between origami design and the correspond-
ing mechanical properties before time-consuming and labor-expensive
experiment efforts.

Over the past decade, many models have been formulated to sim-
ulate origami’s kinematic motions and mechanical properties. No uni-
versal modeling approach exists to address every simulation problem
because each model has its scope, advantages, and limitations [1,
17–20]. Moreover, different studies typically aim to achieve widely
different simulation objectives. For example, some studies focus on
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designing for a desired kinematic motion, while others target physical
properties. An obvious example is the popular Freeform Origami model,
which allows users to easily design new origami by customizing the
vertices locations [21]. It is a powerful tool for kinematics analysis;
however, it assumes that the origami facets are rigid panels and creases
are like hinges, so this model does not incorporate any constitutive
material properties.

A critical development in origami’s mechanics and dynamics mod-
eling is the addition of torsional springs to the crease lines. This way,
one can estimate the internal bending moments from folding the consti-
tutive sheet materials while continuing to assume rigid facets [22,23].
Such a seemingly simple approach turned out to be surprisingly pow-
erful in revealing the physical principles behind many folding-induced
mechanical responses like nonlinear stiffness [24,25], multi-stability [4,
26], and complex dynamics [27,28]. Moreover, if the origami is not
rigid-foldable – meaning folding would incur facet deformations – one
could add ‘‘virtual folds’’ to segment the deformed facet into a few
smaller but rigid parts connected by spring hinges [29,30].
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The bar-hinge modeling approach is a more complex method to
incorporate facet deformations, including in-plane shearing and out-
of-plane bending and twisting. This approach places stretchable bar
elements along the creases and across facet diagonals, discretizing
the continuous origami into a pin-jointed truss frame system. Both
linear [6,31] and nonlinear [32,33] versions of bar-hinge models have
been developed with many successes in analyzing the global defor-
mation of origami, such as soft modes beyond rigid-folding [34,35]
and snap-through response between distant stable equilibria [5,36,37].
The bar-hinge approach is quite versatile: It can be quickly adapted
to different origami designs and further expanded for more complex
deformations. For example, while the original bar-hinge models still
assume the creases behave like hinges with torsional springs, one can
analyze more complex crease deformations by adding additional bar
elements [38,39], spring elements [40–42], or even plate elements for
the creases [43]. Moreover, by assigning discrete point-mass inertia
at the vertices, one can advance the bar-hinge model to simulate the
dynamic response of folded systems [44–47].

Bar-hinge models are powerful in uncovering the fundamental prin-
ciples underpinning folding-induced mechanics and dynamic proper-
ties. However, they sometimes struggled to provide quantitatively ac-
curate predictions compared to physical experiments, especially when
transient dynamics and complex facet deformations are involved. To
this end, finite element simulation has the advantage. Typically, the
origami facets are meshed by shell elements. The creases can be as-
sumed rigid if there is no significant folding [48–53]; otherwise, they
can be modeled using spring-hinge elements [7,54,55], or additional
shell elements [52,56–59]. However, the disadvantages of finite ele-
ment simulations are also evident. Building the geometry and executing
the simulation can be very time-consuming. More importantly, the tra-
ditional shell element might experience convergence issues when large
and dynamic rotations occur. This limitation can be constraining be-
cause large-amplitude rotations are commonly seen in origami-inspired
systems.

Therefore, this paper aims to establish a high-fidelity model capable
of accurately predicting the dynamic responses of origamis with com-
plex deformations. To achieve this goal, we adopt the Absolute Nodal
Coordinate Formulation (ANCF hereafter). This formulation is widely
used to study the nonlinear motions of flexible multibody systems
with large displacements and deformation. It uses position and position
gradients (aka. slope coordinates) as the nodal coordinates instead of
displacements and rotations as in the conventional finite element [60].
Coordinate transformation is not needed in the ANCF because the nodal
coordinates are defined in the global coordinate system.

The ANCF approach has several unique advantages for simulating
the dynamic responses of origami. First, it applies no assumptions on
the rotation and deformation magnitude within the elements [61–65].
It can accurately present the complex and curved facet deformation
because it uses position gradients, whereas conventional rotation-based
finite element models require more elements to achieve the desired
smoothness [66–68]. According to recent investigations, ANCF gives
more accurate results than the conventional finite element in the
case of soft materials and large deformation [69,70]. Second, ANCF
generates constant mass matrices with simple expressions for the inertia
forces and without Coriolis/centrifugal forces [61,68], making it com-
putationally efficient to solve origami’s dynamic equations of motion.
Finally, the continuum mechanics framework adopted by ANCF can
account for all geometric non-linearity in the system [61,63,64,71].
Recent developments, advantages, and justifications for using ANCF
can be found in these investigations [68,72,73]. These advantages
make ANCF an ideal framework to simulate the nonlinear, transient
dynamic responses of large origami folding involving complex facet
deformations and significant rotations.

This study formulates and validates a new origami dynamics model
based on ANCF. This new model describes the origami facets as ANCF

thin plate elements rotating around compliant creases, and we devel-
oped a new Torsional Spring Damper Actuator (TSDA hereafter) for the
overlapping crease nodes between interconnected facets. We validate
the new model’s accuracy by comparing its prediction to the traditional
finite element simulation and experimental results. To the author’s best
knowledge, this study provides the first reported quantitative agreement
between simulation predictions and experimental results involving non-
uniform and complex facet deformation as well as transient dynamic
responses.

In what follows, Section 2 briefly reviews the fundamentals of the
ANCF thin plate element and then details the formulation of the new
torsional spring damper actuator. Section 3 describes the application
of the ANCF framework to origami simulations, with particular at-
tention to crease modeling. Section 4 discusses the accuracy of the
ANCF origami model based on two experimental case studies. Finally,
Section 5 concludes this paper with a summary and discussion.

2. Fundamentals of absolute nodal coordinate formulation

In continuum mechanics, one can use twelve modes to fully describe
an infinitesimal spatial volume: three rigid translations, three rigid rota-
tions, and six deformation modes assigned to the cross-sections [74,75].
In the ANCF approach, the three rigid rotations and the six deformation
modes can be described accurately by nine position gradients. These
nodal coordinates are sufficient to accurately describe the rigid body
motion and the cross-section deformation involving large deformation.

2.1. ANCF thin plate element

Since the origami facets are typically very thin compared to their
overall size, we use the gradient-deficient, ANCF thin plate element to
model the facets [76]. This element ignores the thickness deformation
and eliminates the high-frequency modes. In addition, it can avoid the
locking issues that may arise from using fully parameterized ANCF ele-
ments for thin structures [62,73,77–79]. As a result, thin plate elements
offer better computational efficiency and convergence performance
than the fully parameterized ANCF plate elements [76,80].

The global position vector r of an arbitrary point in the plate’s
mid-surface is (Fig. 1a):

r(x, t) = S(x)e(t), (1)

where S is the element shape function:
S(x) =

⌅

s1I s2I s3I s4I s5I s6I s7I s8I s9I s10I s11I s12I
⇧

. (2)

Here, I is the 3 ù 3 identity matrix and the shape functions si
(i = 1, 2, 3,… , 12) are available in the Supplement Materials.

Denote x =
⌅

x y
⇧⇧ as the spatial coordinates of a point defined in

the element coordinate system (note that there is no spatial coordinate
z because the deformation of the plate thickness is negligible), one
can write the vector of element nodal coordinates e at node j of any
thin-plate element as (Fig. 1a):

ej =
⌅

(rj )⇧ (rjx)⇧ (rjy)⇧
⇧⇧ , j = 1, 2, 3, 4, (3)

where j is the node number. rj represents the global position vector
of node j defined in the global coordinate system. The position vector
gradients are defined by rjx = )rj_)x and rjy = )rj_)y. The third
position vector gradient, which differentiates the global position vector
with respect to the spatial coordinate z, is not considered in the thin
plate element. Therefore, the thin plate element is considered as a
gradient-deficient element. Eq. (3) shows that a thin plate element
has four nodes, each with nine coordinates, resulting in 36 degrees of
freedom.

According to the general continuum mechanics theory, three con-
figurations are necessary to describe the deformation kinematics of the
ANCF element: straight configuration x, stress-free (undeformed) refer-
ence configuration X, and deformed current configuration r (Fig. 1b).
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Fig. 1. Fundamentals of ANCF thin plate elements and TSDA connector. (a) Defor-
mation kinematics of a three-dimensional, gradient-deficient ANCF thin plate element,
showing its global position coordinate rj and its position gradients rjx, rjy . (b) The three
configurations for describing the continuum kinematics of ANCF elements based on the
general continuum mechanics theory. (c) The basic setup for a TSDA connector.

Integration and differentiation are carried out in the straight configu-
ration using the matrix of position vector gradient Jo = )X_)x, where
X = Seo and eo is the vector of element nodal coordinates in the initial
reference configuration. Another matrix of position vector gradient
Je = )r_)x is used to define the relationship between the current and
straight configuration, which leads to J = )r_)X = JeJ*1o [81].

Since the ANCF thin plate element does not consider the z*direction
position gradient, its matrices of position vector gradient Jo and Je
are not square. Therefore, one needs to add a unit vector normal to
the mid-surface. For example, one can add the unit normal vector
km = (rx ù ry)_rx ù ry to Je (the subscript m denotes the mid-surface)
so that Je =

⌅

rx ry km
⇧

. Note that this normal vector is not a posi-
tion vector gradient; it is introduced only to generate square matrices
for subsequent numerical calculations. The nonlinear Green–Lagrange
strain tensor ✏m, which ensures zero strain in the initial reference
configuration, can be written in terms of the matrix of position vector
gradient J in the following form:

✏m = 1
2
�

J⇧J * I
�

= 1
2
�

J*⇧o J⇧eJeJ*1o * I
�

. (4)

The strain components associated with the unit vectors can be easily
found as 0, that is, ✏m13 = ✏m23 = ✏m33 = 0. It also implies that
the plate has a constant thickness. This Green–Lagrange strain tensor
based on the continuum mechanics approach accounts for all geometric
non-linearity [61,63,64,71].

The equation of motion of the ANCF elements is:

Máe = Qs +Qe. (5)

The constant mass matrix M can be written as M = îVo ⇢S⇧SdVo,
where ⇢ and Vo are the element mass density and volume in the initial
reference configuration, respectively. Since the integration should be
calculated in the straight configuration, one can substitute the relation-
ship between initial reference configuration and straight configuration
using Jo and rewrite the infinitesimal volume as dVo = JodV , where
V is the element volume in the straight configuration.

The generalized elastic forces vector Qs in Eq. (5) is evaluated
in the current configuration with respect to the stress-free reference
configuration, which can be a complex curved geometry as shown in
Fig. 1(b). Therefore, the strain energy of ANCF thin plate elements can
be written as [76,81]:

U = 1
2  V ✏⇧E✏✏JodV + 1

2  V ⇧EJodV , (6)

where the matrices of elastic coefficients in Eq. (6) are:

E✏ =
E

1 * ⌫2

b

f

f

d

1 ⌫ 0
⌫ 1 0
0 0 1*⌫

2

c

g

g

e

, E = t2
12E✏ . (7)

E is the constitutive material’s elastic modulus, ⌫ is the Poisson’s
ratio, and t is the plate thickness. ✏ is the strain vector at the plate
mid-surface. Based on the Green–Lagrange strain tensor ✏m in Eq. (4),
one can have ✏ =

⌅

✏m11 ✏m22 2✏m12
⇧⇧ =

⌅

✏xx ✏yy 2✏xy
⇧⇧. Here

✏xx, ✏yy and ✏xy are the normal axial, normal transverse, and shear
strains, respectively. The curvature vector  can be obtained as  =
⌅

xx yy 2xy
⇧⇧, where the curvature components are calculated in

terms of the position vector gradients:

xx =
r⇧xxn
ÒnÒ3

, yy =
r⇧yyn
ÒnÒ3

, xy =
r⇧xyn
ÒnÒ3

. (8)

Here, n = rx ù ry is the normal vector to plate mid-surface.
Finally, the vector of generalized elastic forces Qs can be calculated by
differentiating the strain energy U with respect to the vector of element
nodal coordinates e so that:
Qs = * )U

)e = * V
⇠ )✏
)e

⇡⇧
E✏✏JodV *  V

⇠ )
)e

⇡⇧
EJodV . (9)

Qe in Eq. (5) represents the vector of generalized external forces. In
this study, it originates from the compliant crease as we detail in the
following sub-section.

2.2. Torsional spring damper actuator

In the new origami model, we assign torsional springs to the over-
lapping nodes along the origami creases. Equivalently, one can apply
external Cartesian moments to these crease nodes. These external mo-
ments are formulated in the ANCF framework using the torsional spring
damper actuators (TSDA). Considering a TSDA connector that connects
two facets at two nodes i and j as shown in Fig. 1(c). This connector
has a torsional spring coefficient kt, a torsional damping coefficient ct,
and an actuator moment Mt. The total exerted moment becomes:

M = kt
�

✓ij * ✓ijo
�

+ ct Ü✓ij +Mt, (10)

where ✓ij , ✓ijo , and Ü✓ij are the relative angular displacement, the cor-
responding undeformed angular displacement, and relative angular
velocity between nodes i and j, respectively. The virtual work of the
external moment M is �W = M⇧�⇡, where M = Mhij is the external
Cartesian moment vector, and hij is a unit vector along the axis of
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rotation (Fig. 1c). The virtual angular rotation vector �⇡ can be related
to the virtual change of the element nodal coordinates �e so that
�⇡ = G�e. Here, the matrix G is used to obtain the generalized forces,
associated with the element nodal coordinates, due to applied Cartesian
moment:

G = 1
2

H 3
…

m=1
J*1m ù

)rm
)e

I

, (11)

where J*1m is the mth row of the inverse of position vector gradient
matrix, and rm is the position vector gradient, where r1 = rx, r2 = ry
and r3 = rz [82]. Therefore, the virtual work due to the TSDA connector
can be written in terms of the virtual change of the vector of the
element nodal coordinates in that:

�W = QiT
e �ei +QjT

e �ej . (12)

Qi
e = *GiTM and Qj

e = GjTM are the vector of generalized external
moments associated with the element nodal coordinates at nodes i and
j, respectively. To simulate the motion of a multi-body system with
torsional spring constraints, one can apply the TSDA connectors in the
ANCF framework and introduce the assembled vector of generalized
external moments into Eq. (5).

Another important parameter to calculate is the relative angular
displacement ✓ij . It is determined based on the relative transformation
matrix between the two nodes i and j. At node i, we assume the
Xi axis of its orthogonal element coordinates system is Çrix so that
vi1 = Çrix = rix_rix. Since the position gradients rx and ry are linearly
independent, the Zi axis can be obtained from a cross-product vi3 =
(Çrix ù Çriy)_Çrix ù Çriy. The Y i axis is determined by the cross product of the
unit vectors vi3 and vi1 so that v

i
2 = vi3ùv

i
1. Therefore, the transformation

matrix at the first node i is written as Ai =
⌅

vi1 vi2 vi3
⇧

. Using the
same procedure, the transformation matrix of the second node j is
determined as Aj =

⌧

vj1 vj2 vj3
�

. The relative transformation matrix
Aij between the two nodes is evaluated using Aij = AjTAi. Knowing the
relative transformation matrix Aij , one can obtain the relative angular
displacement ✓ij and the axis of rotation using the Rodriguez formula
such that [83]

✓ij = cos*1(
a11 + a22 + a33 * 1

2 ), hij = 1
2 sin ✓ij

b

f

f

d

a32 * a23
a13 * a31
a21 * a12

c

g

g

e

, (13)

where alk (l, k = 1, 2, 3) are the components of the transformation
matrix Aij . It should be mentioned that the axis of rotation is defined
in the body in which relative orientation is defined: ✓ij represents the
rotation angle with respect to node j, so the unit vector of the axis of
rotation hij should be defined at j (Fig. 1c).

It is worth noting that the angular displacement formulation here
is generic and applies to many different structures. In the following
Section 3, we will re-iterate the formulation specifically for origami.

2.3. Validating the TSDA formulation

Before implementing the ANCF to analyze origami dynamics, we
first validate the TSDA formulation by comparing its results to tradi-
tional finite element simulations. To this end, we use two examples:
one is a simple rigid pendulum, and the other is a soft plate pen-
dulum. In these two examples, we obtain ANCF results by using the
general-purpose MBS software SIGMA/SAMS (Systematic Integration
of Geometric Modeling and Analysis for the Simulation of Articulated
Mechanical Systems), while the finite element package is Abaqus.

Simple Rigid Pendulum: In the first validation example, a simple
rigid pendulum is connected to the ground via a TSDA element with
kt = 1000 N m/rad. It rotates around the global Z-axis under its
gravity. Fig. 2(a) summarizes the vertical displacement predictions
of the pendulum tip (point P) from Sigma/Sams, Abaqus, and the
analytical solution, respectively. The ANCF model with TSDA agrees

Fig. 2. Validation of TSDA formulation. (a) The kinematic setup and simulation results
of a simple, rigid pendulum based on different methods. The results show precise
agreement. The figures on the right illustrated the ANCF-simulated deformation of the
pendulum at different time instants. (b) The simulated results of a soft plate pendulum.

precisely with the conventional finite element simulation and analytical
prediction.

Soft Plate Pendulum: While the first validation example only uses
a TSDA connector, the second example involves integrating TSDA with
the thin plate elements in the ANCF framework. In this example, a
square-shaped soft plate is connected to the ground by two torsional
spring damper actuators at its corners (Fig. 2b). The localized torsional
spring coefficient, defined in Eq. (10), is kt = 0.1 N mm/rad and
the localized damping coefficient is ct = 0.001 N mm s/rad. The soft
plate pendulum made of silicone rubber material has Young’s modulus
E = 1 MPa, Poisson’s ratio ⌫ = 0.47, thickness 1 mm. The soft pendulum
is initially undeformed and held flat in the horizontal X * Y reference
plane, then falls freely under its gravity. Fig. 2(b) summarizes the sim-
ulation results from Sigma/Sams using 16 ANCF thin-plate elements,
as well as two simulations from Abaqus using 16 or 256 conventional
shell elements (S4R). We use the S4R element as the benchmark here
because it is a robust, general-purpose element suitable for various
shell structure modeling tasks. Indeed, many published finite element
studies on origami (reviewed in the introduction section) used S4R.
Here, ANCF converges with Abaqus precisely again, validating the
correctness of the TSDA formulation. Moreover, this example elucidates
an important advantage of ANCF: It requires fewer elements to simulate
complex dynamics than conventional finite elements. In this example,
ANCF converges with 16 (= 4ù4) elements with 576 degrees of freedom
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Fig. 3. Applying ANCF framework and TSDA connector to origami. (a) This illustration
focuses on two adjacent facets from the classical Miura-ori. Since we assume the Miura-
ori is soft, its facets and creases can show bending or twisting in addition to folding,
leading to a curve-shaped crease at the current configuration. (b) The four consecutive
steps for modeling the origami crease: (1) applying revolute joints; (2) calculating
normal vectors; (3) obtaining folding angle; and (4) adding TSDA connectors.

(nodal coordinates) in total, while Abaqus requires 256 elements with
6144 degrees of freedom (Fig. 2(b)).

3. Implementing TSDA to origami

In principle, origami deformation involves thin and soft surfaces
(facets) rotating about compliant creases. Accordingly, one can mesh
the origami facets using the ANCF thin-plate elements and model the
crease lines by applying TSDA connectors at the overlapping nodes
between adjacent facets. This approach applies to either straight or
curved creases at different deformation configurations.

To elucidate the modeling approach, we use two adjacent facets in a
soft Miura-ori sheet as an example (Fig. 3a). For simplicity, we assume
each facet is meshed by only one thin-plate element: Element (I) with
nodes 1-2-4-3 and element (II) with nodes 5-6-2-1. These two elements
connect at the two nodes 1 and 2 at the two ends of the crease line.
Certainly, one can apply a more refined mesh with more nodes along
the crease for higher accuracy, but the underlying modeling approach
stays the same.

Fig. 3(b) details the four consecutive steps for modeling origami
crease under the ANCF framework. In step 1, one connects the two thin
plates by revolute joints at the crease node 1 and 2, respectively. These
revolute joints require that the two plates share the same position at the
two crease nodes and that the two position gradients along the crease
line are equal:

rIj = rIIj and rIjx = rIIjx , j = 1, 2. (14)

Here, the superscript Ij and IIj (j = 1, 2) represent the crease nodes
on the two thin-plate facet elements (I) and (II), respectively. In this
way, the revolute joint’s rotational axis lies along the position gradient
vector in the localized x-axis (rIjx or rIIjx , j = 1, 2). In other words,
the rotational axis remains tangent to the crease line at the current
configuration.

In step 2, one can calculate the folding angle (or angular dis-
placement) between the two facets at the revolute joints. Since the
nodal coordinates in ANCF are the position gradients, defining these
rotational angles is not trivial. To this end, we introduce local vectors
mj for facet I at nodes j:

mj =
⇠

rIjx ù rIjy
⇡

ù rIjx , j = 1, 2. (15)

These vectors are always perpendicular to the rotational axis (mjÚrIjx ).
Similarly, we introduce local vectors nj for another facet II at the same
nodes, which satisfies njÚrIIjx :

nj =
⇠

rIIjx ù rIIjy
⇡

ù rIIjx , j = 1, 2. (16)

Here, the operator ‘‘ù’’ denotes cross-product. In step 3, one can
calculate the rotational angle between the two facets at node j based
on these normal vectors so that:

✓Ij IIj = cos*1
0

mj � nj
Òmj

ÒÒnjÒ

1

mod 2⇡, j=1,2, (17)

where the symbol ‘‘mod’’ means modulo operation. Note that this
equation is equivalent to the angular displacement Eq. (13), but written
specifically for origami. Finally in step 4, one can add the torsional
spring damper actuator TSDA element at crease nodes to simulate
origami folding based on Eq. (10).

4. Case studies

In this section, we assess the accuracy of the proposed ANCF model
by comparing its predictions to experiments with transient dynamic re-
sponses of origami. Two case studies are conducted: One uses a simple
accordion fold, and the other uses the classical Miura-ori pattern.

4.1. Measuring the constitutive material properties

We fold the origami test samples using 0.127 mm thin Polyethylene
terephthalate (PET) sheets. It has a material density of 1384 kg/m3. To
conduct the ANCF simulation, one needs to provide the elastic modulus
E, Poisson’s ratio ⌫, and the equivalent torsional stiffness of the origami
crease kt. To measure E, we cut dogbone samples according to the
ASTM-D638 standard and then measure their stress–strain relationship
on a universal tester machine (ADMET eXpert 5600 with 3D-printed
gripper, Fig. 4a). To estimate the Poisson’s ratio, we further attach
two pairs of green markers within the gage length of the dogbone
specimens (Fig. 4a): one pair (H1, H2) is used to measure the horizontal
deformation, while the other pair (V1, V2) is for vertical deformation.
We capture high-resolution videos of the specimen during tensile tests
and use MATLAB’s video processing tools to extract the marker center’s
displacements.

Fig. 4(b) summarizes the stress–strain curves obtained from 7 test
specimens, exhibiting a consistent elastic behavior before yielding. The
Young’s modulus E of the PET sheet, calculated from the initial linear
portion of the stress–strain curves, is 7.09 ± 0.02 GPa.

Poisson’s ratio ⌫ can be obtained from the marker’s displacements.
Fig. 4(c) shows an example of the horizontal and vertical displacements
of the two marker pairs. From these displacements, one can calculate
the vertical strain ✏L = (L * Lo)_Lo and transverse strain ✏T = (W *
Wo)_Wo. The averaged Poisson’s ratio of PET sheet, obtained from the
ratio of these two strains ⌫ = *✏T _✏L, is 0.187. Many factors, such
as fabrication method, testing temperature, and material composition,
can influence Poisson’s ratio and Young’s modulus. So we ensure the
material selection and experiment condition of the PET property tests
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Fig. 4. Measuring the constitutive material properties of PET sheets and PET-based origami folds. (a) Tensile test setup of PET dogbone samples with attached markers. (b)
Measured stress–strain relationships of 7 dogbone samples, showing consistent results before yielding. (c) Relative horizontal and vertical displacement measurements between the
two pairs of markers on the dogbone. We use these displacements to calculate Poisson’s ratio. For clarity, only one sample data is shown here. (d) A V-shaped origami sample
from 3D printed mode. Then another set of 3D-printed sleeves are added to reinforce the facets so the sample would deform only by crease folding in the subsequent tests. (e)
Experiment set up for measuring the reaction moment from folding (bending) the origami crease. Here, the sample’s deformations before and during the test are shown. (f) The
calculated responses from crease folding.

match the subsequent origami case study experiment as closely as
possible.

To measure the crease’s torsional stiffness kt, we fold a small PET
sheet into a V-shaped sample with one crease line, constrain it in a 3D-
printed mold, then anneal it at 150 ˝F for 30 min (Fig. 4d). The purpose
of such annealing is to relieve the residual stress from the plastic
material deformation due to folding and maintain a consistent initial
folding angle (✓o = 60˝ in our tests). Then we design and 3D print stiff
‘‘sleeves’’ to cover the two facets of the V-shaped sample and then place
the assembly on the universal tester machine to measure the reaction
force from bending (or folding) the crease (Fig. 4e). These stiff sleeves
ensure the sample deforms only by crease folding without any facet
deformations. The displacement rate in these tests is Vd = *0.1 mm/s,
and six samples are tested.

Since we assume origami creases behave like hinges with linear
torsional springs [34,41,84], its resistant moment against quasi-static
folding, according to Eq. (10), can be simplified to:

M = kt
�

✓ * ✓o
�

= kw
�

✓ * ✓o
�

(18)

where k is the torsional stiffness coefficient per unit length along the
crease, and w is the crease’s width at undeformed configuration. ✓o
is the stress-free folding angle. In these tests, the V-shaped sample is
placed horizontally, so its crease deforms due to its upper facet’s weight
before the tester machine applies any external force. A simple mo-
ment balance analysis at the crease’s rotation axis gives the following
relationship (Fig. 4e):

kw(✓1 * ✓o) + GL
2 cos ✓1 = 0 (19)

where G is the weight of the upper facet (I) and its sleeve, L is the
facet’s length, and ✓1 is the folding angle at the beginning of the test,
which can be obtained by ✓1 = tan*1(Ho_LF ) according to Fig. 4e.

After the external force is applied to the V-shaped sample, the
moment balance equation becomes

kw
�

✓(t) * ✓o
�

+ GL
2 cos ✓(t) * F (t)LF = 0 (20)

Here, ✓(t) is the crease’s folding angle at the current configuration.
✓(t) = tan*1((Ho + D(t))_LF ), where D(t) is the tester overhead’s

displacement, F (t) is the applied force, and LF is the corresponding
bending moment’s arm length. Note that we neglect the inertial effects
in this case due to the low displacement rate.

Substituting Eq. (19) into Eq. (20), and introducing Taylor Expan-
sion in that cos ✓(t) = 1 * ✓2(t)_2! + ✓4(t)_4! + O(✓6(t)), on can obtain

F (t)LF b
w

˘ k
⌧

* 1
24a✓

4(t) + 1
2a✓

2(t) + b✓(t) *
�

b✓o + a
�

�

(21)

Here, the constants a = ✓1 * ✓o, and b = cos ✓1. One can re-write
this equation as a linear function B = kA, where B = F (t)LF b_w and
A = *a✓4(t)_24+a✓2(t)_2+b✓(t)*(b✓o+a). Finally, the averaged torsional
spring stiffness per unit length, obtained by linear regression of measured
B * A curves, is k = 0.188 ± 0.037 N/rad (Fig. 4f).

4.2. Case study 1: Simple fold origami

The first case study examines the transient dynamic response of a
PET-based, simple fold origami sample consisting of two rectangular
facets connected by a straight crease line. This study involves all the
critical components of a complex folding motion, including facet and
crease deformations, inertia effects, and damping, but the origami ge-
ometry is relatively straightforward. Therefore, it is ideal for validating
the accuracy of the proposed ANCF origami model.

The fabrication process of the origami sample is the same as the V-
shaped sample discussed in the previous section. The initial stress-free
folding angle ✓o = 60˝ and other design parameters are summarized in
Table 1. Fig. 5(a) shows the experimental set-up at the beginning of the
experiment (t = 0). The simple fold origami sample is fixed at its top
end, and a 5.43-gram payload mass is attached to the free end. We use
a fishing line to hold the origami at its initial stress-free configuration.
Immediately after the fishing line is cut, the origami would stretch and
rebound due to the payload weight, exhibiting an oscillatory motion.
Essentially, the simple fold origami behaves like a damped spring. We
use a high-speed camera (Kron Technology Chronos 2.1) and MATLAB’s
video processing tools to extract origami’s end displacement (labeled by
a green marker).
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Fig. 5. Case study on the transient dynamic motion of a simple-folded origami due to payload weight. (a) The experimental set-up before the fishing line is cut. (b) The
corresponding ANCF model using five TSDA connectors at the crease. Note that the ANCF thin plate elements are fully fixed at the top. (c) Comparison between the ANCF model’s
prediction and experimental result regarding the marker’s vertical displacement along the Z-axis. (d) Comparison of predicted simple fold deformation and experimental images
at different time instances.

Fig. 5(b) shows a corresponding ANCF model setup: In this case,
each facet is meshed by 16(=4 ù 4) thin-plate elements, and TSDA
connectors are assigned at every crease node. According to the previous
section’s results, the origami crease’s total torsional spring coefficient
is k ù w = 3.76 N mm/rad, where k is the measured torsional spring
coefficient per unit length. Therefore, one can evenly distribute the
total spring coefficient to the five crease nodes so that kt =

1
5kw = 0.752

N mm/rad for every TSDA connector. In addition, we estimate the
damping coefficient is 2 ù 10*5 N mm s/rad at each node. If a finer
or coarser mesh is used, each TSDA connector will receive a different
share of spring and damping coefficients accordingly.

Fig. 5(c) shows the ANCF model’s simulation results based on differ-
ent mesh densities and the experiment data. More detailed comparisons
regarding the origami’s external shape at different time instants are
available in Fig. 5(d) and supplementary video. The advantage of the
ANCF model is evident in this case study, where only 32 elements
are required to achieve convergence (that is, further increasing the
ANCF element number to 64 does not change the simulation output).
Moreover, the converged ANCF model predictions agree quantitatively
with the experiment data. The ANCF’s simulation shows a slightly
bigger damping. One could address this discrepancy with a more com-
prehensive study on the structural damping of origamis. However, it is
beyond the scope of this paper.

4.3. Case study 2: Miura-ori

The second case study examines the dynamic deployment (or un-
folding) of a PET-based Miura-ori sample under a payload weight. The
Miura-ori sample used in this study consists of 4 (= 2 ù 2) unit cells,
and its geometric designs are summarized in Table 1. The fabrication
process is similar to the simple-fold sample, and its initial stress-free
folding angle is set to ✓o = 80˝ after annealing. Fig. 6(a) shows
the experimental setup at the beginning. A 40.56-gram payload mass
is attached at the lower left corner. We again use a fishing line to
hold the Miura-ori sample at its initial stress-free configuration, and
it deploys immediately after cutting the fishing line, showing a dy-
namic deployment motion. It is worth noting that because the payload

Table 1
System parameters for the simple fold origami and
Miura-ori case studies.
Constitutive material properties

E 7.09 GPa ⌫ 0.187
k 0.188 N/rad t 0.127 mm

Simple fold design parameters

l 40 mm w 20 mm
✓o 60˝

Miura-ori design parameters

a 20 mm b 20 mm
� 60˝ ✓0 80˝

weight is at the side and the plastic-based origami is soft, the Miura-
ori sample’s dynamic deformation becomes far more complex than
its rigid-folding kinematics, showing non-uniform facet bending and
twisting in addition to crease folding.

Fig. 6(b) shows the corresponding ANCF model setup. The facets
in each unit cell are meshed by ANCF thin-plate elements with TSDA
connectors assigned at every crease node. At the vertices where four
crease lines meet (highlighted in Fig. 6b), we assign four TSDA connec-
tors between every two interconnected facets. The Miura-ori connects
to the ground via two pin joints at point A and B, respectively, and
only rotation around the pin axis is allowed. The torsional spring
and damping coefficients distribution follows the same rule as in the
previous case studies.

Fig. 6(c) compares the experimental measured vertical displacement
of the marker to the ANCF model’s simulation based on different mesh
densities. It shows that 144 elements are required to achieve con-
vergence because further increasing the element number to 256 does
not change the simulation output. Detailed comparisons of the Miura-
ori dynamic deformation are shown in Fig. 5(d) and supplementary
video. One can see that ANCF successfully captures the transient and
non-uniform dynamic deformation with reasonable accuracy. To the
authors’ best knowledge, this is the first reported numerical simulation
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Fig. 6. Case study on the transient and non-uniform dynamic deformation of a Miura-ori sample due to payload weight. (a) The experimental set-up before the fishing line is cut.
(b) The corresponding ANCF model. Note that 4 TSDAs are used at every vertex to represent the four crease lines that join at this location. (c) Comparison between the ANCF
model’s prediction and experimental result regarding the marker’s vertical displacement along the Z-axis. (d) Comparison of predicted Miura-ori deformation and experimental
images at different time instances.

result that quantitatively agrees with the experiment involving complex
and transient dynamic responses in origami.

There are also notable discrepancies between the ANCF predictions
and experiment results, especially regarding damping. The Miura-ori
sample shows more damping than the ANCF simulations, and the
difference is more significant compared to the simple fold case. This dis-
crepancy might result from concentrated plastic material deformation
near the vertices. Because the vertices have a very complex shape, with
three mountain creases and one valley crease joining, they can exhibit
enough stress concentration that can influence the overall response of
the Miura-ori [85]. Another source of discrepancy is the rigid body
rotation of the payload mass, which is evident in the experiment results
but not considered in the simulation. Regardless, the two case studies
validate the proposed ANCF origami model for its capability to simulate
soft origami’s transient and complex dynamic responses.

5. Conclusions and discussions

This study formulates and validates a new numerical modeling ap-
proach – based on the Absolute Nodal Coordinate Formulation (ANCF)
– that can predict origami’s complex dynamic deformations with quan-
titative accuracy. This model describes origami facets as ANCF thin
plate elements rotating around compliant creases. To accurately esti-
mate the crease folding, we create a Torsional Spring Damper Actuator
(TSDA) to connect the overlapping crease nodes between adjacent
facets. We detail the formulation of the TSDA connector and validate it
by comparing its prediction to commercial finite element simulation. Fi-
nally, we experimentally assess the new model’s accuracy based on two
case studies involving transient and non-uniform dynamic deployment
(or folding) of simple fold origami and Miura-ori structures.

The simulation results from the new ANCF model can predict dy-
namic responses of origamis with quantitative accuracy. To the author’s
best knowledge, this is the first reported analysis of origami – involv-
ing transient dynamics and complex facet deformations – that shows
quantitative agreement between numerical simulation and experiment.
Based on the new model, one can simulate origami’s dynamics with
complex patterns and curved facet deformations using fewer elements
than traditional finite element methods. Besides, the ANCF origami
model can capture large rotations of origami facets because it applies
no assumptions on the rotation and deformation magnitude within the

elements. Meanwhile, it can account for all geometric non-linearity of
origami due to its foundation in the general continuum mechanics the-
ory. Therefore, this study’s results elucidate a significant advancement
in the theoretical modeling for the mechanics and dynamics of origami.
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Appendix A. Supplementary data

1. ANCF element’s shape function
The shape functions of the thin plate element in Eq. (2) are given

by [81]
s1 = *(⇠ * 1)(⌘ * 1)(2⌘2 * ⌘ + 2⇠2 * ⇠ * 1),
s2 = *a⇠(⇠ * 1)2(⌘ * 1), s3 = *b⌘(⌘ * 1)2(⇠ * 1),
s4 = ⇠(2⌘2 * ⌘ * 3⇠ + 2⇠2)(⌘ * 1), s5 = *a⇠2(⇠ * 1)(⌘ * 1),
s6 = b⇠⌘(⌘ * 1)2,s7 = *⇠⌘(1 * 3⇠ * 3⌘ + 2⌘2 + 2⇠2), s8 = a⇠2⌘(⇠ * 1),
s9 = b⇠⌘2(⌘ * 1), s10 = ⌘(⇠ * 1)(2⇠2 * ⇠ * 3⌘ + 2⌘2),
s11 = a⇠⌘(⇠*1)2, s12 = *b⌘2(⇠*1)(⌘*1), where ⇠ = x_a and ⌘ = y_b.

a and b are the plate’s length in x and y directions respectively.

2. Video of the dynamic deformation of simple fold and Miura-ori
Supplementary material related to this article can be found online

at https://doi.org/10.1016/j.mechrescom.2023.104089.

https://doi.org/10.1016/j.mechrescom.2023.104089
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