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A B S T R A C T

Traditionally, origami has been categorized into two groups according to their kinematics design: rigid and non-
rigid origami. However, such categorization can be superficial, and rigid origami can obtain new mechanical
properties by intentionally relaxing the rigid-folding kinematics. Based on numerical simulations using the bar-
hinge approach and experiments, this study examines the multi-stability of a stacked Miura-origami cellular
structure with different levels of facet compliance. The simulation and experiment results show that a unit
cell in such cellular solid exhibits only two stable states if it follows the rigid origami kinematics; however,
two more stable states are reachable if the origami facets become sufficiently compliant. Moreover, the switch
between two certain stable states shows an asymmetric energy barrier, meaning that the unit cell follows
fundamentally different deformation paths when it extends from one state to another compared to the opposite
compression switch. As a result, the reaction force required for extending this unit cell between these two states
can be higher than the compression switch. Such asymmetric multi-stability can be fine-tuned by tailoring the
underlying origami design, and it can be extended into cellular solids with carefully placed voids. By showing
the benefits of exploiting facet compliance, this study could foster multi-functional structures and material
systems that traditional rigid origami cannot create.

1. Introduction

Over the past decade, we have witnessed the rapid emergence
of multi-stable structures and material systems in many engineering
disciplines. These structures and materials possess more than one stable
equilibrium (or stable state), and they can settle in any state without ex-
ternal aids. Moreover, internal or external actuation can rapidly ‘‘snap’’
these structures and materials between different states through elastic
instability [1]. These unique nonlinear behaviors can be exploited to
achieve a wide variety of adaptive functions like wave propagation con-
trol [2,3], energy harvesting [4–6], shape morphing [7–9], mechanical
property adaptation [10–14], impact energy absorption [15–17], robust
sensing [18,19], and robotic tasks [20–23].

The mechanisms for achieving multi-stability are pretty diverse,
including linkage-based structures, buckled beams, and pre-stressed
shells [24,25]. Among them, origami — the ancient craftsman art of
paper folding — has received much attention recently due to its concep-
tual simplicity, fabrication scalability, and design versatility [26–32].
Traditionally, origami has been divided into two categories according
to the folding kinematics (aka. rigid and non-rigid origami), and both
categories can show multi-stability based on different principles. Fold-
ing of the rigid origami, by kinematics design, only requires bending
along its creases without incurring any facet deformations. Therefore,
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this kind of origami is essentially a three-dimensional linkage mecha-
nism consisting of rigid facets connected via hinge-like creases (hence
the name rigid or rigid-foldable origami). As a result, multi-stability
can arise via the combination of nonlinear folding kinematics and
purposefully assigned spring hinge stiffness on the creases. Examples of
multi-stable rigid origami includes Miura-ori [33,34], TMP bellow [35],
leaf-out [36], and water-bomb base [37]. On the other hand, folding of
the non-rigid origami requires facet deformation, which can be used to
achieve multi-stability. The facets of non-rigid and multi-stable origami
are relatively stress-free at a stable state but undergo significant defor-
mation when folding between different states. Examples of multi-stable
non-rigid origami include Kresling [38], square twist [39], and the star
pattern [40,26].

However, the distinctions between rigid and non-rigid origami can
be superficial. Non-rigid origami can be approximated by an equiv-
alent rigid-foldable pattern using ‘‘virtual’’ crease lines [41,42], and
rigid origami can exhibit non-rigid folding behaviors (aka. facet de-
formations) due to the inevitable material compliance and fabrication
imperfections in practical applications [43]. This study focuses on the
latter case. Facet compliance in rigid origami can be undesirable be-
cause it complicates the overall deformation characteristics and reduces
origami’s load-bearing capacity. However, facet compliance allows the
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Fig. 1. Design and rigid-folding kinematics of the stacked Miura-ori unit cell. (a) The design of the stacked Miura-ori unit cell consisting of two different Miura-ori sheets and
accordion-shaped connecting sheets. The dihedral folding angles ✓I and ✓II are defined between Miura-ori sheets’ facets and x * y reference plane. (b) The correlations between ✓I
and ✓II according to Eq. (1), showing two disconnected kinematic paths. The subplots i-x illustrate the unit cell’s shapes according to such rigid folding kinematics. (c) The same
kinematic paths showed by folding angles with respect to normalized unit cell length.

rigid origami to access otherwise unachievable folding configurations.
As a result, new mechanical properties can arise.

Therefore, we aim to examine how rigid origami can receive new
multi-stability characteristics and functionality via intentionally relax-
ing the rigid-folding condition and exploiting facet compliance. To this
end, we use a variation of stacked Miura-ori cellular structure as the
testbed. Stacked Miura-ori, as its name implies, is a space-filling cellular
structure consisting of different Miura-ori sheets connected along their
crease lines, and it can maintain rigid foldability by following a set
of simple geometrical compatibility rules [44]. It has been shown that
the rigid-foldable stacked Miura-ori can exhibit unique mechanical
properties like negative Poisson’s ratio [45], shape morphing [46,47],
stiffness tuning by self-locking [48], and multi-stability (based on the
spring hinge and rigid facet principle) [49,24].

This study uses a nonlinear bar-hinge numerical model (initially
developed by Dr. Glaucio Paulino’s group) and experimental testing to
investigate the stacked Miura-ori’s stability characteristics as its facet
varies from near rigid to soft. We introduce two non-dimensional facet
stiffness parameters and show that, when these parameters are in a
certain range, the stacked Miura-ori unit cell can reach four stable
states, two of which are unachievable if this cell’s facet are rigid. More-
over, the energy barrier between two of these four states is asymmetric,
which means the stacked Miura-ori cell follows fundamentally different
deformation paths and potential energy barriers as it switches between
these two stable states. Due to the asymmetric energy barrier, the
origami cell requires a large force to be stretched from one stable state
to the other but only requires a small compression force for the opposite
switch. Careful examination of the unit cell’s 3D deformation and its
potential energy composition reveals that this asymmetric energy bar-
rier originates from the difference in facet stretching energy between
extension and compression switch, and this is another evidence of the
benefit from relaxing the rigid-folding conditions. Moreover, one can
assemble the unit cells into an architected structure while retaining the
asymmetric multi-stability. This study’s results can provide new insights
for exploiting the mechanics of non-rigid origami and foster new struc-
tural and material functionalities that traditional rigid origami cannot
achieve.

In what follows, Section 2 details the stacked Miura-ori unit cell’s
design and kinematics under rigid folding condition. Section 3 ex-
plains the asymmetric multi-stability of the non-rigid unit cell, using
numerical simulation and experimental testing. Section 4 lays down
the strategy of assembling the unit cells into a large-scale structure.
Section 5 briefly describes the potential applications of the asymmetric
multi-stability observed in this paper. Section 6 concludes this paper

with a summary and discussion. It is worth noting that while another
asymmetric multi-stability in stacked origami has been explored by
the authors [50], this paper presents a significant step forward with a
detailed investigation on how facet compliance can introduce unique
multi-stability behaviors, an advanced bar-hinge model, and a new
strategy to assemble cellular solids.

2. Unit cell’s design and rigid folding kinematics

Fig. 1(a) illustrates the design of a stacked Miura-ori unit cell con-
sisting of two different Miura-ori sheets and two accordion connecting
sheets. If the origami unit cell is rigid (aka. rigid facets and hinge-like
creases), its deformation can be defined by two types of parameters [44,
46]. One is the geometric design parameters of the constituent origami
sheets, including the connecting sheet’s length lc , Miura-ori’s crease
lengths ak and bk, and sector angles �k (here k = I or II denotes Miura-
ori sheet I and II, respectively). To ensure geometric compatibility
according to rigid-folding conditions, these design parameters should
satisfy the constraints that bI = bII, aI cos �I = aII cos �II. Here, we
assume Miura-ori sheet II is bigger than sheet I in that aII > aI. The
other type of parameter is the kinematic folding angles ✓k, defined
as the dihedral angles between Miura-ori sheet I and II’s facets and
the x–y reference plane, respectively. ✓k is denoted as positive if the
corresponding Miura-ori sheet is ‘‘above’’ the x–y plane and negative
otherwise. If this unit cell follows the rigid folding kinematics, there is
no stretching, bending, or twisting deformation in the facets of Miura-
ori and connecting sheets. In this case, the two folding angles are not
independent but rather follows the kinematic relationship in that [50]:

cos ✓I tan �I = cos ✓II tan �II. (1)

Therefore, its rigid folding motion has only one degree of freedom.
The total length L of the unit cell along the z-axis (the distance between
the center vertices of the two Miura-ori sheets) is

L = aI sin ✓I sin �I * aII sin ✓II sin �II + lc . (2)

Fig. 1(b, c) elucidates the kinematics of a stacked Miura-ori unit
cell under the rigid folding condition, and the corresponding design
parameters are in Table 1. Since the Miura-ori sheets’ folding angles
✓I and ✓II depend on each other (Eq. (1)), the unit cell exhibits two
disconnected kinematic ‘‘paths’’ for rigid folding, which we label as Path
A and B hereafter. On Path A, the larger Miura-ori sheet II is always in
a ‘‘nested-in’’ configuration (✓II > 0), while on Path B, the sheet II is
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Fig. 2. Bar-hinge model and the multi-stability behavior of the non-rigid unit cell. (a): The N5B8 scheme in the unit cell based on the bar-hinge approach. The detailed model
formulation could be found in Appendix A. The load and boundary conditions of the numerical simulations are highlighted: the red triangle denotes a fully constrained node,
and red arrows indicates support in x and y-direction. We apply controlled z-directional displacement dZ at node 4® as shown in the blue arrow. (b): The potential energy
landscape (top) and corresponding force displacement curve (bottom) of a near rigid unit cell. Here, ↵ = 105 , � = 105, ✓0I = *60˝ and kfC_kfM = 60. (c): The energy landscape and
force–displacement curve of a non-rigid unit cell, showing the two additional stable states (2) and (3). Here, ↵ = 100, � = 100, ✓0I = 60˝ and kfC_kfM = 60. The subplots in (b)
and (c) are bar-hinge model’s prediction of the folding configurations at different stable states. (d–f): The correlation between non-rigid unit cell’s multi-stability and its design
parameters, including (d) crease stiffness ratio kfC_kfM, (e) facet stiffness ↵, �, and (f) stress-free folding angle ✓0I . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

always ‘‘bulged-out’’ (✓II < 0). According to Eq. (1), a rigid-foldable
unit cell cannot deform away from these kinematic paths and move
from one path to the other. This is because folding the larger Miura-
ori sheets II between the nested-in and bulged-out configuration would
incur facet deformations, which is not allowed under the rigid-folding
conditions.

On the other hand, if we relax the rigid-folding constraints and
allow compliance in both Miura-ori sheets and connecting sheets, the
origami facets behave like shell elements with complex deformation.
Therefore, the non-rigid stacked origami cell can show richer deforma-
tion characteristics by deforming away from the two kinematic paths.
The following section demonstrates such non-rigid origami unit cells
can obtain multi-stability properties that are unachievable for rigid
origami cells.

3. Asymmetric multi-stability in a non-rigid unit cell

To accommodate and analyze facet deformations in a stacked
origami unit cell, we adopt the nonlinear bar-hinge modeling approach
that discretizes the continuous origami structure into a pin-jointed
truss-frame mechanism [44,46,51,43,52]. This model uses stretch-
able bar elements to represent the origami crease and diagonalize
the facets, and it also adds rotational stiffness between the trian-
gles defined by these trusses to estimate crease folding and facet
bending stiffness (Fig. 2(a)). This reduced-order model can analyze
different origamis’ primary deformations without incurring expensive
computational costs like finite element simulations. This study uses

Table 1
Baseline design and constitutive material parameters of the stacked origami unit cell.
The material parameters are selected based on previous experiments [38]. Notice that
the crease folding stiffness in the connecting sheet kfC is significantly higher than other
creases to ensure multi-stability [46].
Geometry Value Material Value

aI 20 mm kfM 0.05 N/rad
aII 25 mm kfCM 0.05 N/rad
bI(= bII) 20 mm kfC 2 Ì 3 N/rad
lc 35 mm ks 104 N
�I 45˝ ↵ 10 Ì 105
✓0I *60˝ � 10 Ì 105

the open-source MERLIN2 software to simulate the unit cell’s multi-
stability under displacement control [43]. In particular, we apply the
‘‘5-Nodes-8-Bars’’ (N5B8) triangulation scheme that adds a Steiner
point at the intersection of the two diagonals of a quadrilateral facet
(e.g., point p in the 1 * 2 * 2® * 1® facet in (Fig. 2(a)). The N5B8
scheme allows the discrete truss-frame system to capture the more
realistic doubly-curved out-of-plane deformations and isotropic in-
plane deformations in the thin facets, potentially yielding a higher
accuracy [53].

We assume the bar-hinge system’s potential energy is conservative
and only a function of the current deformation configuration. The total
potential energy U of the unit cell is a summation of bar stretching en-
ergy (US ), crease folding energy (UF ), as well as facet bending/twisting
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energy (UB) so that

U = US + UF + UB . (3)

Here, the bar stretching energy represents the in-plane stretching
and shearing of the origami facets. The principle of stationary potential
energy, which accounts for both constitutive material properties and
nonlinear finite deformation, can be used to solve the unit cell’s me-
chanical response. A summary of the fundamental formulation of this
nonlinear bar-hinge model is available in Appendix A, and interested
readers can refer to the relevant literature for further details [43,52,
53].

In the bar-hinge framework, the non-rigid origami’s deformation is
approximated based on the bar stretching rigidity ks that contributes
to US in Eq. (3), torsional crease folding stiffness kf that contributes to
UF , and facet bending stiffness kb that contributes to UB . For clarity,
we further categorize the crease folding stiffness into three different
groups: kfM is the torsional stiffness per unit length of the creases in
Miura-ori sheets I and II (e.g., along creases 3*4 or 3® *4® in Fig. 2(a)).
kfCM is the torsional stiffness of the creases between the connecting
sheets and the Miura-ori sheets (e.g., along creases 1 * 2 or 1® * 2®).
kfC is the torsional stiffness along the creases in the connecting sheets
(e.g., along crease 2 * 2®). The facet bending stiffness kb can also be
divided into two groups: kbM for the Miura-ori’s facets (e.g., along
1® * q) and kbC for the connecting sheet’s facets (e.g., along 1® * p).
Moreover, we assume all these stiffness coefficients are constant so
that the non-linearity originates from the finite-amplitude deformation
during folding.

In this study, the ratio between the facet bending stiffness and
crease folding stiffness (kb_kf ) is crucial because it determines whether
the origami follows the rigid folding conditions [54]. A large kb_kf
ratio (e.g., 105) indicates that facets are near rigid with minimal defor-
mation so that the rigid-folding kinematics discussed in the previous
section would dominate. In contrast, a small kb_kf ratio (e.g., 10) indi-
cates a non-rigid origami where the facet deformations are significant.
Therefore, we introduce two dimensionless parameters to describe the
relative facet rigidity of the Miura-ori sheets and connecting sheets in
that

↵ =
kbM
kfM

(4)

� =
kbC
kfC

(5)

Based on ↵ and �, we can quantitatively analyze the multi-stability
of the unit cell either with or without the rigid folding assumption.
Unless noted otherwise, the unit cells in the subsequent studies have an
initial folding angle ✓0I = *60˝, ✓0II = 70˝, where all creases and facets
are stress-free without any deformations. This initial configuration is
on kinematic Path A as highlighted in Fig. 1, and we denote it as the
stable state (0) hereafter. The baseline values of the bar-hinge stiffness
coefficients are also summarized in Table 1. The bar-hinge model for a
unit cell has 30 nodes in total, giving 84 kinematic degrees of freedom
considering boundary conditions to approximate the crease and facet
deformations. The different stiffness parameters mentioned above can
all be determined by the constitutive material parameters, such as the
origami facet’s Young’s modulus, as we detail in Appendix A of the
Appendix.

3.1. Bi-stability in a rigid unit cell

We first consider the case of rigid-foldable origami by setting ↵
and � to a high value 105 in the bar-hinge model. As a result, as we
stretch the unit cell along the z-axis under displacement control, it will
switch from the initial stable state (0) to a new stable state (1) near
the same kinematic path A (Fig. 2(b)). During this switch, the crease
folding energy UF is dominant compared to bar stretching US and facet
bending energy UB . However, as we continue to stretch the unit cell

beyond state (1), its reaction force will increase significantly as the
bar-stretching energy becomes dominant (here, the reaction force is
the first variation of strain energy with respect to the unit cell length,
i.e., F = )U_)L). As a result, no other stable states are achievable. Such
bi-stability is fundamentally the same as the multi-stability studied
in other rigid origamis in that it originates from the combination of
torsional stiffness from the hinge-like creases and nonlinear kinematics
of rigid folding [50,55].

3.2. Multi-stability in a non-rigid unit cell

If we relax the rigid-folding constraints and allow compliance in the
origami facets, the unit cell can reach more stable stables. Fig. 2(c)
illustrates the potential energy landscape of the non-rigid unit cell when
↵ = � = 100 and kfC_kfM = 60. One can see that the compliance
in origami facets allows the unit cell to deform away from kinematic
Path A and reach Path B, exhibiting two new stable states (2) and (3).
As the unit cell switches between state (0) and (1), or between state
(2) and (3), the crease folding energy UF constitutes the majority of
total strain energy. So the unit cell roughly follows the rigid-folding
kinematics between these two pairs of stable states because each pair
is roughly on the corresponding kinematic path. However, when the
unit cell switch between state (1) and (2), the bar stretching energy and
facet bending energy play the dominant role, indicating that the unit
cell has to violate the rigid-folding kinematics to deform between these
two states. Since the facet stretching and bending give more resistance
than crease folding, the magnitude of the energy barrier is the highest
between stable states (1) and (2). A similar trend is evident in the
corresponding reaction force plot as shown in Fig. 2(c). The magnitude
of the reaction forces between stable states (1) and (2) are significantly
higher than other switches.

The occurrence of these four different stable states are directly
related to the geometry and material properties of stacked origami. One
can use the nonlinear bar-hinge models to examine such relationships:

• Crease folding stiffness ratio kfC_kfM: Generally speaking, mul-
tiple potential energy wells, which are the defining characteristics
of a multi-stable system, start to show up as the connecting sheets’
crease folding stiffness (kfC) is sufficiently larger than that of
the Miura-ori sheets (kfM). Interestingly, if the connecting sheets’
crease folding stiffness is only moderately higher than the Miura-
ori sheets (e.g., kfC_kfM = 20 in Fig. 2(d), the unit cell is
only bi-stable at state (0) and state (2). This means that there
is only one stable state on each kinematic path, and the energy
barrier from the non-rigid folding separates these two states. As
the kfC_kfM ratio increases, the stable state (1) emerges near the
kinematic path A so that the switching sequence (0) õ (1) õ (2)
is possible under cyclic loads. Finally, the stable state (3) appears
as the kfC_kfM increases further.

• Facet stiffness ↵, �: Fig. 2(e) illustrates the effect of the facet
stiffness on unit cell’s multi-stability properties. As the relative
rigidity of facets ↵, � increases, the required kfC_kfM ratio for
achieving the similar multi-stability is reduced. However, if the
facets are rigid enough, switching between state (1) and (2) is no
longer possible. The criterion for obtaining the multi-stability on
both kinematic paths is ↵, � < 750 if other design and material
parameters follows Table 1.

• Stress-free folding angle ✓0I : The effect of ✓
0
I is shown in Fig. 2(f).

As ✓0I deviates further away from 0˝, the required kfC_kfM for
achieving the same multi-stability is reduced, meaning that it is
easier to achieve multi-stability.

In summary, only bi-stability exists if the stacked Miura-ori cellular
structure strictly follows the rigid folding kinematics without any facet
deformation. On the other hand, more than two stable states are
reachable if the origami facets become sufficiently compliant. Generally
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Fig. 3. Origin of the asymmetric energy barrier. In this case, ↵ = 500 and kfC_kfM = 40. The energy landscapes (first row), and the corresponding reaction forces (second row)
change fundamentally as the connecting sheets’ facet stiffness � increases: (a) � = 10, (b) � = 150, and (c) � = 3100. If � > 3100, the origami unit cell is effectively rigid and cannot
deform from state (1) to (2). Energy contributions from three deformation modes are highlighted. The subplot on the right details the unit cell’s deformation between states (1)
and (2).

speaking, larger crease folding stiffness ratio kfC_kfM leads to more
stable states. Increasing either the facet stiffness ↵, �, or the stress-
free folding angle ✓0I is also beneficial to achieve multi-stability in the
non-rigid origami.

3.3. Asymmetric energy barrier

The parametric studies of the non-rigid unit cell’s multi-stability also
revealed an interesting phenomenon: Under certain combinations of
design and material parameters, the unit cell follows different potential
energy landscapes as it is stretched or compressed between the stable
states (1) and (2) (highlighted in Fig. 2(f)). To examine the origin
of such asymmetric energy barrier in detail, we conducted additional
simulations with ↵ = 500 and kfC_kfM = 40 (other parameters follow
Table 1). According to the previous subsection’s results, the origami
unit cell with such designs should possess three stable states (0), (1),
and (2).

We first consider a case that the facet stiffness of the connecting
sheet is relatively small, i.e., � = 10. This assumption corresponds to
a ‘‘soft’’ connecting sheet in the unit cell. Fig. 3(a) shows the corre-
sponding energy landscape and force–displacement curves calculated
by the nonlinear bar-hinge model. One can see that the unit cell follows
roughly the same energy and force–displacement curves between stable
states (1) and (2), so asymmetry in the energy barrier does not exist.

As the facet stiffness of the connecting sheet increases, the unit
cell’s behaviors change significantly. In particular, if � is large enough
(e.g., � = 150 in Fig. 3(b)), the potential energy landscape and force–
displacement curves start to ‘‘split’’ between states (1) and (2), creating
an asymmetric energy barrier. Such asymmetry becomes more promi-
nent as � continues to increase (e.g., � = 3100 in Fig. 3(c)). That is, if
the unit cell is monotonically extended from the stable state (1) under
displacement control, it will deform by following an energy path until
reaching a point ‘a’ shown in Fig. 3(c), then it will rapidly ‘‘jump’’ to the
other energy path at position ‘b’ before reaching stable state (2). During
this jump, the internal folding configuration of the unit cell and the
reaction force will change significantly even though the total unit cell
length changes little. On the other hand, if the unit cell is compressed
monotonically from the stable state (2), it will follow another energy
path to the state (1) without any obvious jump.

A careful examination of the unit cell’s 3D deformation and its
potential energy composition can reveal the physics underpinning such
differences between extension and compression. At state (1), the larger
Miura-ori sheet II is in the ‘‘nested-in’’ configuration. As one extends
the unit cell from this state, the rigid folding kinematic constraints are

violated, and Miura-ori sheet II would significantly stretch the connect-
ing sheet as it tries to deform to the ‘‘bulged-out’’ configuration at the
stable state (2). As a result, the bar stretching energy US dominates
right before the unit cell reaches point ‘a’. However, such connecting
facets’ stretching does not occur when the unit cell is compressed from
the stable state (2) back to (1).

As a result, when the facet stiffness of the connecting sheet in-
creases, the maximum energy barrier for deforming from the stable
state (1) to (2) increases significantly (�Ee in the first row of Fig. 3),
while the energy barrier of the opposite switch does not increase as
much (�Ec). Similarly, the external force required to extend the unit
cell from the stable state (1) to (2) (Fe in the second row of Fig. 3) also
increases significantly. However, the required compression force for the
opposite switch Fc does not increase as much (i.e., Fe ∏ Fc). However,
it is worth noting that if the connecting facet stiffness is too high, the
unit cell becomes effectively rigid, so it can no longer switch between
states (1) and (2). In the combination of the designed parameters in
Table 1, the criterion for the switches is � < 3100 when ↵ = 500.

Therefore, to obtain asymmetrical energy barrier, the connecting
sheet’s facets need to be reasonably stiff (e.g., 150 < � < 3100 in the case
shown in Fig. 3). The asymmetry of multi-stability are the strongest at
the ‘‘threshold’’ between non-rigid and rigid origami conditions.

Moreover, the asymmetry of multi-stability is also related to the
origami unit cells’ geometry and material design parameters. To this
end, we conduct further case studies:

• Crease folding stiffness ratio kfC_kfM: Fig. 4 summarizes the
energy landscape and force–displacement curves when the crease
stiffness ratio kfC_kfM is higher at 60 (this ratio is 40 in the pre-
vious case study in Fig. 3). Surprisingly, although there are four
stable states exist in this case rather than three, the asymmetry of
multi-stability becomes weaker with a lower ratio of �Ee_�Ec .

• Stress-free folding angle ✓0I : Compared to the crease stiffness
ratio, the initial stress-free configuration of the unit cell seems
to exert a more significant impact on the asymmetry of multi-
stability (Fig. 5). Comparing to ✓0I = *60˝ in Fig. 3, one can
conclude that as the ✓0I deviates further away from 0˝ in which
the unit cell is more ‘‘compact’’ initially, the asymmetry in the
energy barrier becomes more prominent.

• Origami Facet stiffness ↵: Interestingly, we find that there is
no asymmetry in multi-stability if the Miura-ori’s facets are too
‘‘soft’’ (aka. ↵ = 100 in Fig. 6). The subplots in this figure show
that the Miura-ori’s facets bend and stretch significantly in both
extension and compression between states (1) and (2). As a result,
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Fig. 4. Effect of kfC_kfM on the asymmetric energy barrier. In this case, ↵ = 500 and kfC_kfM = 60. When � = 500, the potential energy landscape and force–displacement curves
start to ‘‘split’’ between states (1) and (2), creating an asymmetric energy barrier. When � > 3200, the unit cell becomes too rigid to deform from state (1) to (2).

Fig. 5. Effect of ✓˝I . In this case, ↵ = 500, ✓˝I = *80˝. When � = 150, the asymmetry in the energy barrier has been pretty prominent. When � >= 1200, the unit cell becomes too
rigid to deform from state (1) to (2).

Fig. 6. Effect of unit cell’s rigidity on the asymmetry of multi-stability in unit cell. In this case, ↵ = 100, kfC_kfM = 40 and ✓˝I = *60˝. Interestingly, there is no asymmetric energy
barrier because the highly soft Miura-ori’s facets bend and stretch significantly in both extension and compression between states (1) and (2) so that no significant facets’ stretching
exists in the connecting sheet even though � is high at 104. The subplots show the unit cell’s deformation between states (1) and (2).
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Fig. 7. Fabrication and testing of a half-unit cell prototype. (a) Layered construction method showing the PEET backbone, adhesive film, and steel panels for reinforcing the
facets. Additional connecting sheets accommodate 3D printed fixtures that can attach the cell to the universal tester machine. The tabs are used to connect Miura-ori sheets and
connecting sheets. (b) Finished Miura-ori sheets and connecting sheet. (c) The assembly of half unit cell. The insert drawing explains the corresponding unit cell prototype at
stable state (0). (d) Experimentally measured force–displacement curves, showing the switching between four stable states and asymmetric energy barrier between states (1) and
(2). Results from two loading cycles are plotted with excellent repeatability. (e, f) Additional experiment showing the correlation between facet stiffness, crease stiffness ratio,
multi-stability, and asymmetry properties. These results are the average of two loading cycles.

it could not induce significant facet stretch in the connecting sheet
and create asymmetry, even if the facet rigidity of the connecting
sheet is very high (� = 104).

In summary, the asymmetry is the strongest at the ‘‘threshold’’ be-
tween non-rigid and rigid origami conditions. To achieve the asymmet-
ric multi-stability, one can increase the facet stiffness in the connecting
sheet (aka. �) to make it sufficiently stiff but not too stiff to impose
rigid-folding kinematics. Several other methods can be also used to
increase the asymmetry, such as increasing facet stiffness in the Miura-
ori sheets (aka. ↵) and stress-free folding angle ✓0I , or decreasing the
crease folding stiffness ratio kfC_kfM. Careful designs are necessary
according to potential application requirements.

3.4. Experiment assessments

To experimentally assess the asymmetric multi-stability in the pro-
posed designs, we fabricated and tested half-unit cell prototypes as
shown in Fig. 7(a–c). Only half of the unit cell is fabricated to avoid un-
necessary fabrication complexities. Nonetheless, additional simulation
using the bar-hinge model shows that such a half unit cell still possesses
asymmetric multi-stability (Appendix B of Appendix). First, we cut
and fold thin plastic sheets (PEET, 0.1 mm thickness) into an origami
‘‘backbone’’ and paste waterjet-cut shim stock to stiffen the facets
(316 stainless steel, 0.25 mm thickness). The plastic origami backbone
and steel panels are bonded by double-sided adhesive films. The gap
between the reinforcing steel facet (or the width of plastic crease lines)
is roughly 1 mm. To increase the kfC_kfM ratio and achieve multi-
stability, we attach pre-bent, V-shaped spring steel sheets along the
connecting sheet’s crease lines. Finally, the assembled prototypes are
annealed at 60 ˝C for 90 min to relieve the residual stress in the plastic
origami backbone due to folding.

Fig. 7(d) shows the measured force–displacement curves of the half-
unit cell prototype under cyclic loading (ADMET eXpert 5061 with 25
lbs load cell). In each cyclic loading cycle, the prototype is stretched
from the stress-free stable state (0) to beyond state (3) and then
compressed back to below state (0). The prototype exhibits noticeable
plastic deformation in the first loading cycle but then shows excellent
repeatability in subsequent cycles. The experiment results in this figure
confirm the existence of four stable states and the predicted switching
sequence among them under displacement control. Moreover, they
directly indicate the occurrence of asymmetric energy barriers. That is,
the unit cell follows similar force–displacement curves while switch-
ing between states (0) and (1) or between states (2) and (3) (albeit
some hysteresis behaviors). However, it follows fundamentally different
force–displacement curves between the stretch from states (1) to (2)
and compression from (2) to (1).

To qualitatively test the correlation between the asymmetry of
multi-stability and unit cell design, we conducted further experiments.
Fig. 7(e) shows the results from two half-unit cell prototypes with 1
and 2 reinforcing steel panels on their connecting sheet’s facets. Both
cells have 3 V-shaped spring steels on the connecting sheet’s creases,
so they show the same kfC_kfM ratio but different � values. While
the unit cell with 1 reinforcing panel (low �) does not show a strong
asymmetric energy barrier with Fe_Fc ˘ 1, the other cell with two
reinforcing panels (higher �) shows a stronger asymmetry with Fe_Fc ˘
1.4. This trend is consistent with the numerical simulations. We also
tested another prototype with an even higher � with 3 reinforcing
panels on the connecting sheet’s facets. However, this unit cell can no
longer be switched from states (1) to (2), indicating that this unit cell
is too ‘‘rigid’’ and loses the multi-stability all together. Again, this trend
is consistent with numerical simulations in the previous subsection.
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Fig. 8. Construction of cellular solids. (a) The strategy to construct a cellular structure. The 3 ù 3 cellular grid with one center void is highlighted. (b) Potential energy landscape
of the 3 ù 3 cellular grid based on different design parameters. The multi-stability exists when the solid has a high ratio of kfC_kfM = 40 or the initial folding angle deviates
away from 0˝. This is similar to the previous results from a single unit cell. (c) Response of a 3 ù 3 grid with � = 300, ✓oI = *60˝, and kfC_kfM = 40. The asymmetrical energy
barrier exists when the connecting sheet’s facets are reasonably stiff (e.g., 10 < � < 300). The plot on the right details the element’s deformation between states (1) and (2) from
the non-linear bar-hinge model.

Fig. 7(f) summarizes the force–displacement curves of three proto-
types with 1, 2, and 3 V-shaped spring steel sheets in their connecting
sheets. All these cells have 2 reinforcing steel panels in their connecting
sheet’s facets. Notice that additional V-shaped spring steel sheets in-
creases both kfC_kfM ratio and �. The prototype with only 1 V-shaped
spring steel cannot reliably reach one stable states (1) or (2). On the
other hand, more spring steel sheets give more prominent existence of
state (1) and (2). This trend is also consistent with earlier numerical
simulations.

It is worth noting that this paper aims to reveal the mechanics
principles underpinning the asymmetry in origami multi-stability with
a relaxed rigid-folding constraint. The bar-hinge model accomplishes
this aim well. Although this model did not offer quantitatively accurate
predictions compared to the experiment results, it does explain why
facet bending and stretching can induce asymmetry.

4. Assembling into a cellular solid

While the previous sections focus on a single unit cell, this sec-
tion discusses the multi-stability of an origami cellular consisting of
multiple unit cells. A unique challenge here is that when unit cells
are assembled along the x and y-direction, they will reinforce the
rigid-folding kinematics to each other because of their periodic nature.
As a result, a ‘‘closely packed’’ unit cell assembly could not exhibit
multi-stability and asymmetric energy barrier even if their facets are
compliant. Therefore, we introduce a cellular assembly scheme with
‘‘voids’’ as shown in Fig. 8(a). These voids introduce additional kine-
matic freedoms to accommodate the non-rigid origami deformation
of the unit cells, thus retaining the asymmetric multi-stability. A bar-
hinge model is constructed on the fundamental element of these cellular
structure — a 3 ù 3 cellular grid with a void in the center — and the
corresponding simulation results are provided. As shown in Fig. 8(b),
one can find that the multi-stability exists when kfC_kfM = 40 with
✓oI = *60˝, or when kfC_kfM = 20 with ✓oI = *80˝. In the case
of ↵ = 500, kfC_kfM = 40 and ✓˝I = *60˝, the energy barriers for
switching between two stable states in the proposed 3 ù 3 cellular
grid, especially between states (1) and (2), are nearly 10 times larger
than that of a single unit cell discussed in Fig. 3(a). Fig. 8(c) elucidates
that the required facet stiffness of the connecting sheet for achieving
asymmetric energy barrier is also much smaller than that of a single

unit cell in Fig. 3(c). This is because the assembly of unit cells along
the x and y-direction induces a strengthened rigid-folding constraints.
Moreover, the asymmetry of multi-stability in the proposed 3 ù 3
cellular grid becomes weak with a lower ratio of �Ee_�Ec .

In summary, this paper proposes a new cellular assembly strategy
based on the Miura-ori unit cell’s design. With the ‘‘voids’’, the multi-
cellular solid shows similar asymmetric multi-stability behaviors as the
single unit cell. That is, multi-stability exists in the non-rigid cellular
solid when the folding stiffness ratio kfC_kfM or the stress-free folding
angle ✓oI is high. Moreover, by moderately increasing the facet stiffness
in the connecting sheet (aka. moderate �), we can observe a similar
asymmetrical energy barrier in the proposed cellular solid.

5. Potential application of asymmetric multi-stability

While this study focuses on the origin of asymmetric multi-stability
from intentionally relaxing the rigid folding conditions, the results
also suggest many potential applications. For example, with optimal
designs, the origami cells are difficult to extend from stable states
(1) to (2) but easy to be compressed in the opposite switch (aka.
Fe > Fc). This phenomenon could provide new avenues for uni-
directional deformation insulation or impact absorption. Moreover,
stacked origami cellular structures have shown unique mechanical
properties like nonlinear stiffness, self-locking, auxetic, and lattice-like
transformation. One can easily control these properties by folding on-
demand. Since a multi-stable origami structure can settle in different
stable states with different folding configurations, switching between
these states is an effective method to program the overall mechanical
response. Therefore, the richer multi-stability characteristics uncovered
by relaxing the rigid folding conditions can significantly expand the
property tuning performance in origami structures.

6. Summary and conclusion

Via numerical simulations and experimental testing, this study ex-
amines the multi-stability and asymmetric energy barrier between sta-
ble states that emerge from intentionally relaxing the rigid folding con-
ditions in a stacked origami cellular structure. The unit cells in such a
structure combine two different Miura-ori sheets and accordion-shaped
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connecting sheets. By introducing two non-dimensional parameters ↵,
� to describe the origami facets’ relative rigidity, we conduct a quanti-
tative analysis of the unit cell’s multi-stability based on the nonlinear
bar-hinge approach. That is, high ↵ and � values indicate stiff origami
facets that reinforce the rigid-folding kinematics. In contrast, low ↵
and � represent more compliant origami facets that can accommodate
additional deformation patterns. The simulation results show that only
two stable states exist in the unit cell if it follows the rigid origami kine-
matics; however, two more stable states are reachable if the origami
facets become sufficiently compliant. Moreover, the switches between
the stable states (1) and (2) — which are on two different kinematic
paths — shows an asymmetric energy barrier, meaning that the unit
cell follows fundamentally different deformation paths when it extends
from the state (1) to (2) compared to the opposite compression from
(2) to (1). As a result, the reaction force required for extension between
these two states is also significantly higher than compression. A close
examination of the unit cell’s overall potential energy reveals that the
facet stretching plays a significant role in such asymmetry, and the
overall design of such origami unit cells can be exploited to fine-tune
the multi-stability behaviors. Finally, the asymmetric multi-stability are
validated in experiments, and a strategy to assemble such unit cells into
a cellular structure is put forward. By showing the benefits of exploiting
facet compliance, this study could foster multi-functional structures and
material systems that traditional rigid origami cannot create.
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Appendix A. Bar-hinge model formulation fundamentals

The bar-hinge approach discretizes the continuous origami structure
into a pin-jointed truss-frame mechanism [51,46,44]. It uses stretchable
bar elements to represent the origami crease and diagonalize the facets.
To estimate crease folding and facet bending, this model adds rotational
stiffness between the triangles defined by these trusses. As illustrated
in Fig. 2(a)), we use the N5B8 triangulation scheme so that the discrete
model can potentially yield higher resolution than the previous N4B5
scheme [53].

In the bar-hinge system, the total potential energy is the summation
of bar stretching energy (US ), crease folding energy (UF ), as well as

facet bending/twisting energy (UB), as shown in Eq. (3). The critical
step in formulating the unit cell’s mechanics model is to obtain the
tangent stiffness matrix (aka. a second-order approximation of the
potential energy U) as [53,54]

K = KS +KF +KB , (A.1)

where the three terms on the right-hand side are stiffness from bar
stretching, crease folding, and facet bending, respectively. For example,
KS represents the in-plane stretching and shearing stiffness of the bar
elements. Taking the bar element connecting pin-joints 2 and 2® as an
example (Fig. 2(a)), one can define the bar stretching energy as

U22®
S =  

L22®

0
WAdX, (A.2)

where A is the bar element’s cross-section area, L22® is the current
bar length, and W is the energy density, which is a function of the
one dimensional Green–Lagrange strain Exx = B1u22

® +0.5u(22®)TB2u22
® .

Here, the displacement vector of the bar element u22® =
⌧
dT2 dT2®

�T
, B1 =⌅

*e1 e1
⇧
_L22® , B2 =

⌅
I3ù3 * I3ù3;*I3ù3 I3ù3

⇧
_(L22® )2. e1 = [1, 0, 0], and

I3ù3 is the identity matrix of size 3 by 3. The tangent stiffness matrix
components corresponding to this bar element is

K22®
S =

)2U22®
S

)u2

= k22®s L22®
⇠
BT1 + B2u22

®
⇡⇠

BT1 + B2u22
®
⇡T

+ f 22®L22®B2,
(A.3)

where k22®S is the axial rigidity of the bar element, which is defined as
ks = EAe_Le [53]. Here, E is constitutive materials’s Young’s modulus,
Ae is the bar cross-sectional area, Le is the bar element’s length. f 22®

is the resultant longitudinal force. It is worth noting that this stiffness
matrix involves both the linear term and nonlinear terms related to
geometry and initial displacement [54]. One can then apply similar
formulations to all bar elements and assemble the global bar stiffness
matrix.

The rotational hinges with prescribed torsional spring stiffness co-
efficients are applied to the bar elements corresponding to the folding
creases and bending facets to approximate their deformation [54]. As
shown in Fig. 2(a), these torsional spring elements involve four vertices
(nodes), five bars elements, and one dihedral angle between the two
triangles defined by these bar elements.

Taking the rotational spring element corresponding to crease 1® *2®
as an example (Fig. 2(a)). The crease folding energy is a function of the
dihedral angle '

U1®2®
F =  1®2®

F ('), (A.4)

where  1®2®
F is the energy function. The dihedral angle between the two

adjacent triangles (1® * 2® * p and 1® * 2® * q) can be calculated as
' = ⌘ cos*1

⇠
m�n

ÒmÒÒnÒ
⇡
, where the surface normal vectors m = rq1® ù rq2® ,

n = rp1® ù rp2® . The repeated indices do not imply summation in this
paper. ⌘ is a sign indicator in that

⌘ =
<

sgn(m � rp2® ) m � rp2® ë 0
1 m � rp2® = 0 . (A.5)

Because of the nonlinear geometric correlations among the dihedral
angle (') and the nodal displacement vector (u), the effective tangent
stiffness is highly nonlinear even though its constituent creases are
assumed to be linearly elastic in torsion [50]. The tangent stiffness
matrix component corresponding to the crease folding is

K1®2®
F =

)2U1®2®
F

)u2
= kfL1®2® d'

du ‰ d'
du +Mf

d2'
du2

, (A.6)

where ‰ denotes the tensor product, L1®2® is the length of the crease
1® * 2®, kf is the torsional spring stiffness per unit length of the folding
hinge, which can be obtained as kf = LF

L<
Et3

12(1*⌫2) [53]. Here E and
⌫ are constitutive materials’s Young’s modulus and Poisson’s ratio,
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Fig. B.1. Mechanical diode in half unit-cell design. In this case, ↵ = 500, ✓0I = *80˝. Similar to the results in full unit cell design (Fig. 5), there exists an asymmetric energy barrier,
meaning that the half cell follows different deformation paths when it extends from the state (1) to (2) compared to the opposite compression switch.

respectively; t is the origami sheet’s thickness. The length scale factor
L< (in units of length) defines the relative stiffness of the folding hinge
based on the material, fabrication, and geometric properties.Mf is the
rotational resistance moment, and u is the nodal displacement vector
of the related pin-joints at the current configuration.

The same formulation applies to the torsional spring elements corre-
sponding to facet bending hinges because they have the same kinematic
structure as a folded crease. For example, in Fig. 2(a), the bending hinge
with prescribed torsional spring stiffness kb is assigned along the semi-
diagonal of the quadrilateral facet (i.e., the bending line 1® * q), which
can be obtained as kb =

Et3
12(1*⌫2) (

Ds
t )

1_3 [53]. Ds is the short diagonal of
the bending facet. The corresponding facet bending energy and tangent
stiffness matrix are

U1®q
B =  1®q

B (') (A.7)

K1®q
B = kbL1®q d'

du ‰ d'
du +Mb

d2'
du2

(A.8)

Appendix B. Validation of asymmetric multi-stability in half unit-
cell

One can also use the bar-hinge model to analyze the multi-stability
behavior in a half unit cell. Such a half unit cell has the same geometry
and constitutive material parameters as the full unit cell defined in
Fig. 5. We conduct the simulation under displacement control. Same
as in the case of a full unit cell, we found that the half unit cell also
possesses four stable states (0), (1), (2), and (3) (Fig. B.1). Moreover,
the potential energy landscape and force–displacement curves start to
‘‘split’’ between states (1) and (2) at � = 10, creating an asymmetric
energy barrier. As � continues to increase (e.g., � = 1200), such
asymmetry still exists, and the energy barrier for extending the half cell
between these two states is higher than the compression switch (aka.,
�Ee > �Ec). Comparing to the case of full unit cell under displacement
control (Fig. 5), the asymmetry of multi-stability is weaker with a lower
ratio of �Ee_�Ec .
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