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ABSTRACT

Origami — the ancient art of paper folding — has been

widely adopted as a design and fabrication framework for many

engineering applications, including multi-functional structures,

deployable spacecraft, and architected materials. These appli-

cations typically involve complex and dynamic deformations in

the origami facets, necessitating high-fidelity models to better

simulate folding-induced mechanics and dynamics. This paper

presents the formulation and validation of such a new model

based on the Absolute Nodal Coordinate Formulation (ANCF),

which exploits the tessellated nature of origami and describes

it as an assembly of flexible panels rotating around springy

creases. To estimate the crease folding, we mathematically

formulate a “torsional spring connector” in the framework of

ANCF and apply it to the crease nodes, where the facets meshed

by ANCF plate elements are interconnected. We simulate the dy-

namic folding of a Miura-ori unit cell and compare the results

with commercial finite element software (ABAQUS) to validate

the modeling accuracy. The ANCF model can converge using

significantly fewer elements than ABAQUS without sacrificing

accuracy. Therefore, this high-fidelity model can help deepen our

knowledge of folding-induced mechanics and dynamics, broad-

ening the appeals of origami in science and engineering.

Keywords: Origami Dynamics, Torsional Spring Connector,
Absolute Nodal Coordinate Formulation (ANCF)
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1 INTRODUCTION
Origami is an ancient recreational art of paper folding. Over
the past decades, it has evolved into a framework for design-
ing and fabricating various engineering systems, such as multi-
stable structures [1, 2], deployable spacecraft [3–5], self-folding
robots [6–10], and DNA machines [11]. In these applications,
origami is a shape transformation mechanism for developing pro-
grammed 3D shapes from flat sheets, and its folding and defor-
mation play a crucial role in the targeted functions. The increas-
ingly diverse applications of origami require us to better under-
stand the mechanics and dynamics induced by folding, especially
in the case of large facet deformation and rotation. To this end,
many analytical and numerical models are available for this pur-
pose with different degrees of capabilities.

According to their folding kinematics and deformation char-
acteristics, there are two categories of origami: one is rigid-
foldable, and the other is non-rigid foldable. Rigid-foldable
origami can fold even if its facets are rigid, so its deformation can
be characterized as facets revolving around hinge-like creases
just like a linkage mechanism [3]. Correspondingly, the rigid

facet approach can model these rigid-foldable origamis with-
out unnecessary complexities. In this approach, facet deforma-
tions are neglected, and the creases are modeled as hinges with
assigned torsional stiffness. In this way, one can quickly an-
alyze the kinematics and mechanics of rigid-foldable origami,
like the classical Miura-ori [12, 13]. Moreover, this approach
can directly demonstrate the correlations between folding kine-
matics and some mechanical properties (e.g., negative Poisson’s
ratio [14, 15]). However, this approach is no longer applicable
when the facet deformation is not negligible.
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Non-rigid foldable origami exhibits facet deformation dur-
ing folding, including stretching, shearing, bending, twisting,
and even localized buckling [16]. The deformation patterns
of non-rigid foldable origamis can be pretty complex, but they
can also lead to unique mechanical properties that rigid-foldable
origami can not provide. For example, Kresling origami can
provide multi-stability due to facet bending [17]. The out-of-
plane bending of Miura-ori, which also induces facet deforma-
tions, leads to an unorthodox combination of positive and nega-
tive Poisson’s ratio [14]. Currently, two modeling approaches are
available for the non-rigid foldable origami. The first one is the
widely used bar-hinge approach [18, 19], which discretizes the
continuous origami sheets into pin-jointed truss-frame systems.
It represents creases with stretchable bar elements and assigns ro-
tational spring coefficients to creases folding and facet bending.
By using this approach, one can simulate simple facet bending
and stretching. The bar-hinge approach is more advantageous
when the macroscopic response is of interest because it can pro-
vide qualitatively accurate predictions on folding kinematics and
mechanical properties on a global scale [20, 21]. However, the
disadvantage of this approach is that it can not guarantee accu-
racy when complex and localized facet and crease deformation
exists. Moreover, due to its underpinning simplification, the bar-
hinge approach can not provide detailed results such as stress
distribution along the creases or across facets [16].

The third finite element approach does not impose any ex-
plicit simplifications on the facet and crease deformation [3, 13,
20, 22–24], so it can perform eigenanalysis to analyze the defor-
mation modes of origami accurately. It is often used to validate
the results from the other approaches. Moreover, localized facet
and crease deformations, such as the buckling and crushing due
to impacts, can be examined in detail [25, 26]. However, local
instabilities may negatively influence the global convergence of
finite element simulations, even leading to element failure, espe-
cially when significant rotation exists.

Therefore, there is still a critical demand for a high-fidelity
mechanics and dynamics model for non-rigid foldable origami.
On the one hand, origami folding in practical application always
involves complicated behaviors beyond simple rigid folding due
to the inevitable facet compliance and fabrication imperfection.
This is more evident when facet deformation is even desired, like
in the Sunshield [27] and flasher origami deployment [4]. On the
other hand, non-rigid origami can provide more structural and
material functionalities by relaxing the facet compliance due to
their richer deformation modes.

This study aims to develop and validate a new origami model
based on the Absolute Nodal Coordinate Formulation (ANCF).
With this model, dynamics of non-rigid origami can be simu-
lated with quantitative accuracy, even when significant facet and
crease deformation exist during folding. Another advantage of
the ANCF model is that it can provide an excellent approxima-
tion of flexible structures’ behavior while requiring fewer ele-

ments than the commercial finite element software (e.g., AN-
SYS) for convergence [28, 29]. A previous study by the authors
developed a preliminary formulation for the ANCF model for
origami [30], so this study aims to complete and validate this new
model. In what follows, Section 2 briefly reviews the fundamen-
tals of ANCF. Section 3 details how the ANCF can be adapted
to origami, emphasizing crease modeling. Section 4 presents the
model validation based on a simple Miura-ori unit cell. Section
5 concludes this paper with a summary and discussion.

2 ABSOLUTE NODAL COORDINATE FORMULATION
In this section, we briefly review the fundamental kinematics and
dynamics modeling principles underpinning the Absolute Nodal
Coordinate Formulation.

2.1 Kinematics of ANCF Plate Elements
The ANCF uses position and position gradients as the ele-

ment nodal coordinates, rather than displacement and infinitesi-
mal rotations in the traditional finite element setup. In this study,
we apply fully parameterized ANCF thick plate elements for
Miura-ori (Figure 1). The global position vector r of an arbitrary
point P located on the plate element is:

r(x, t) = S(x)e(t), (1)

where S is the element shape function detailed in the Appendix.
x =

⇥
x y z

⇤| is the spatial coordinates of the point defined in the
element coordinate system, and e is the vector of the element
nodal coordinates. Because r are directly defined in the global
coordinate system X =

⇥
X Y Z

⇤|, there is no need to transform
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FIGURE 1: A fully parameterized ANCF plate element. It has four

nodes, and each node has one position vector and three position

gradient vectors.
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the coordinate system when assembling plate elements. The vec-
tor of element nodal coordinates at node k of the element # j is
defined in the following form:

e jk =
h�

r jk
�| �

r jk

x

�| �
r jk

y

�| �
r jk

z

�|i| . (2)

Here r jk represents the vector of absolute position vector
of node k (k = 1,2,3,4) on element j, while the position vector
gradients are defined by r jk

x = ∂r jk/∂x , r jk

y = ∂r jk/∂y and r jk

z =
∂r jk/∂ z. These position vector gradient vectors can be used to
describe the shape of the element during deformation [31]. Each
node consists of twelve nodal coordinates, resulting in 48 degrees
of freedom for each element, as shown in Figure 1.

2.2 Element Equation of Motion
The ANCF element equations of motion can be written in a

matrix form as [32]

Më+Qs = Qe. (3)

In this equation, M is the element mass matrix that can be
obtained from the kinetic energy

T =
1
2

Z

V

r ṙ|ṙdV, (4)

where r is the element mass density, V is the element volume,
and ṙ is the absolute velocity vector. Differentiating Equation (1)
with respect to time, one can obtain ṙ = Sė, which is substituted
into Equation (4) yielding T = 1

2 ė|Mė. The element mass matrix
M is

M =
Z

V

rS|SdV. (5)

The traditional plate and shell elements in large deformation
and rotation analysis have nonlinear mass matrices because they
include information about the nodal rotations. However, the mass
matrix in the ANCF element is constant since it only depends on
the inertia properties and element dimensions.

The generalized elastic force vector Qs can be formulated
using the continuum mechanics approach, which has the advan-
tage of being general without any approximations [33]. The
Green Lagrange strain tensor can be written in terms of the ma-
trix of position vector gradient J in the following form

eee =
1
2
(J|J� I). (6)

where I is 3⇥3 identity matrix, and J is obtained as

J =
∂r
∂X

=

2

64

∂S1
∂X

e ∂S1
∂Y

e ∂S1
∂Z

e
∂S2
∂X

e ∂S2
∂Y

e ∂S2
∂Z

e
∂S3
∂X

e ∂S3
∂Y

e ∂S3
∂Z

e

3

75 . (7)

Here Si is the ith row of the shape function matrix as pro-
vided in Appendix, and X ,Y,Z are the global coordinates. There-
fore, the strain energy using the general continuum mechanics
approach is formulated in terms of the Green-Lagrange strain
tensor eee and the elastic coefficients matrix E so that

U =
Z

V

eee|EeeedV. (8)

By differentiating the strain energy once with respect to the
nodal coordinates, we can obtain the generalized elastic force
vector Qs as

Qs =
Z

V

✓
∂ev

∂e

◆|
EevdV, (9)

where ev is the vector form of the Green-Lagrange strain tensor.
The resulting vector of generalized elastic forces is highly non-
linear due to the general continuum mechanics approach without
linearization.

The vector Qe is generalized external force vector due to
inter-element constraints, detailed in the following Section 3.

3 ORIGAMI DYNAMIC MODEL BASED ON ANCF
As mentioned earlier, origami folding involves facets revolving
around the creases [3]. The bar-hinge model treats the creases
as hinges with prescribed rotational springs between two neigh-
boring facets. This method proved successful for qualitatively
predicting the global folding behaviors and mechanical proper-
ties [2, 3]. Inspired by this, we propose to exploit the tessellated
nature of origami and model it by ANCF plate elements rotating
around the creases. For example, the Miura-ori can be meshed
by ANCF plate elements, and they are linked by the “torsional
spring connectors” at their overlapping nodes along the creases
(Figure. 2). For simplicity, each Miura-ori facet in this figure
is meshed by one ANCF plate element (i.e., the facet (I) is one
plate element with nodes 1-2-4-3, and facet (II) has nodes 1-2-
6-5), and they are interconnected by the folding crease 1-2. One
can use a finer mesh for better accuracy, but the basic principle
is the same. We further assume the facet deforms from an ini-
tially flat parallelogram shape to a curved surface at the current
configuration (Figure 2).
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FIGURE 2: Kinematic modeling of origami crease in the ANCF

framework. For simplicity, we assume each facet is an ANCF

plate element, whereas the crease is modeled by rotational

springs at nodes 1 and 2. The magnitude of crease folding (or rel-

ative facet rotation) is measured by folding angle q defined based

on the position gradients at the crease nodes, respectively.

To model the crease folding, we assign revolute joints at the
interconnected crease nodes 1 and 2, which means that the two
plates share the same position at these nodes, and the position
gradient along the common crease is the same. Such revolute
joint kinematics can be expressed as the continuity conditions at
nodes 1 and 2:

rI1 = rI1, rI1
x
= rII1

x
, at node 1,

rI2 = rII2, rI2
x
= rII2

x
, at node 2.

(10)

With the revolute joint constraints, there is only one relative
rotational degree of freedom at nodes 1 and 2. Moreover, one can
see that the corresponding rotational axis is tangent to the crease
line at the nodes, which is the common position gradient vector
along the local x-axis. Then we can apply the torsional spring
connectors developed in the ANCF framework at these crease

nodes to simulate folding (the red spirals at nodes 1 and 2 in
Figure 2). To this end, we first need to develop the mathematical
formulation of the connector’s constraint equations in the ANCF
framework.

An important variable to be determined is the folding angle
between adjacent facets at the crease nodes. Calculating this an-
gle is not trivial because the nodal coordinates in ANCF are the
position gradients rather than rotation angle. To this end, we first
introduce the local normal vectors m and n at node k in facets I
and II, respectively (k = 1,2 in the example in Figure 2):

m = (rIk
x
⇥ rIk

y
)⇥ rIk

x
,

n = (rIIk
x

⇥ rIIk
y
)⇥ rIk

x
.

(11)

Here, the operator ’⇥’ between two vectors represents the
cross product. This formulation guarantees that the directional
vector m and n are always perpendicular to the crease revolute
joint’s rotational axis at node k. Therefore, one can calculate the
folding angle, at the current configuration, between two facets at
node k based on trigonometry functions in that:

qk = arccos
✓

m ·n
kmk ·knk

◆
mod 2p, (12)

where the symbol ‘mod’ means modulo operation. Once the
folding angle is determined, one can then calculate the resistant
moment by the added torsional spring connector as

Mk = k f (qk �qk,0)+ c f q̇k +Ma, (13)

where k f is the localized torsional spring coefficient at node k, c f

is the damping coefficient, and Ma is the external moment applied
to the torsional spring (if it exists). qk,0 is the stress-free folding
angle corresponding to the origami’s resting configuration.

In the simplified example in Figure 2, the origami crease be-
tween facets (I) and (II) is represented by two rotational springs
at nodes 1 and 2. Therefore, one can evenly distribute the to-
tal crease folding stiffness kl to each rotational spring so that
k f = 0.5kl , where kl can be experimentally measured.

The virtual work by the added torsional spring connector is

dWk =�Mkdqk. (14)

Based on the continuum mechanics approach [34], one
can derive the virtual angular displacement dqk = h|(GIdeI �
GIIdeII), where h represents the vector of revolute joint’s ro-
tational axis, G is linear operator to obtain ANCF generalized
moment associated with the nodal coordinates in facets I and II.
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TABLE 1: Design parameters of the Miura-ori unit cell

Geometry Value Material Value

a 20 mm r 1384 kg/m3

b 20 mm E 57.9 MPa

t 1.24 mm n 0.3894

g 40� kl 2 N.mm/rad

Based on these formulations, the virtual work can be re-written
as

dWk =�Mkh| �GIdeI �GIIdeII�= QI|
k

deI +QII|
k

deII. (15)

Therefore, the torsional spring connector is equivalent to
two equal but opposite generalized external moment acting on
the nodes along the crease, that is, QI|

k
= �Mkh|GI and QII|

k
=

Mkh|GII in Equation (15). QI|
k

and QII|
k

can be inserted into
Equation (3) by standard finite element procedures.

It is worth highlighting that based on the proposed ANCF
approach, the definition of folding angle q in Equation (12)
also applies to origami with a curved crease pattern and initially
curved facets. Such versatility presents a clear advantage com-
pared to the currently popular bar-hinge model, which assumes
that the facet defined by three bar elements must remain planar.
Furthermore, the model allows us to simulate complex origami
dynamics using a relatively small number of elements, as we ex-
plain in detail in the following section on modal validation.

4 VALIDATION OF ANCF ORIGAMI MODEL
In this section, we aim to verify the accuracy of the proposed
ANCF model in origami application by simulating the dynamic
folding of a single Miura-ori unit cell. The Miura-ori’s geometry
and material parameters are summarized in Figure 3 and Table 1.
a, b are the crease lengths, g is the sector angle between the two
creases, and t is the material thickness. The constitutive material
properties (density r , Young’s modulus E, Poisson’s ratio µ , and
crease folding stiffness kl) are measured from samples made by
Nylon material. The Miura-ori cell is initially flat, so the resting
folding angle qk,0 = 0 for all creases.

Figure 3 details the Miura-ori simulation setup. In this case,
the unit cell is subjected to an impact force along the global z-
axis at the center node A with magnitude Fz = 0.1N, generating
a transient dynamic response. The cell is meshed by the ANCF
plate element, and the torsional spring connectors are applied to
all nodes along the four creases. As mentioned in Section 3, we
evenly distribute the total torsional stiffness of a crease to the
corresponding nodes. Therefore, each torsional spring connector

A

a

b

γ

X

Y

Z

A

γ

FIGURE 3: Dynamic simulation setup of the Miura-ori unit cell’s

folding under z-axial concentrated force at the center node A. The

blue arrows represent the displacement constraints in either the x

or y axis, whereas the blue hollow circle represents the z-axis con-

straint. We add the proposed torsional spring connectors (the red

spirals) at N folding crease nodes (the black solid circle). Here,

there are 4⇥4 ANCF plate elements in each Miura-ori facet, giv-

ing five nodes on each crease (N = 5).

has k f =
1
N

kl , where kl is the total torsional stiffness of a crease,
N is the number of nodes along this crease.

We use the Sigma/Sams software package to perform the dy-
namic solution (developed by Dr. Ahmed A. Shabana’s research
group, Dynamic Simulation Laboratory, at the University of Illi-
nois, Chicago). Explicit Adams Method (EAM) is used to solve
the dynamic equations of motion in Equation (3) [35]. Figure
4(a) summarizes the time response of the center node A’s vertical
displacement based on the ANCF model (solid lines), and Figure
4(b) highlights some simulated Miura-ori deformation. We also
conducted finite element simulations using the commercial soft-
ware package ABAQUS for validation. In ABAQUS, the unit cell
is meshed by the 3D continuum shell elements (SC8R, 8-node
quadrilateral elements with reduced integration). Hinge connec-
tors are assigned along the crease with prescribed torsional stiff-
ness kl . The solver is dynamic explicit, which considers the geo-
metrical nonlinearity effects.

The results show that 144 ANCF plate elements are suffi-
cient to achieve convergence, whereas 2312 FEA elements are
required in ABAQUS. The relative error of z�axis displacement
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FIGURE 4: Summary of the simulation results. a) Time re-

sponse of the center node A’s out-of-plane displacement, based

on ANCF and commercial finite element approach with different

mesh sizes. b) The simulated dynamic Miura-ori deformations

at three different time instants (aka., A, B, C on the response

curves). Colors in the commercial FEA results represent the mag-

nitude of global displacement in the z-axis.

at center node between ANCF model and FEA model is 3.92%
at point B and 8.33% at point C, respectively. The discrepancy
might be due to the different numerical solvers used by the two
methods, which requires further studies in the future. But more
importantly, by using the position gradient vectors instead of ro-
tations, the ANCF model has no assumptions about the magni-
tude of rotations within the elements. This allows the Miura-ori
to be represented by fewer elements. The results in Figure 4 val-
idate that the ANCF model requires significantly fewer elements
to obtain convergence by comparing to the traditional finite ele-
ment methods.

5 CONCLUSION
Traditionally, origami folding has been investigated as a geomet-
rical and kinematic problem. However, the nonlinear mechanics

and dynamics of origami have received more interest recently
because, in practical implementation, complex facet deforma-
tions beyond simple folding along the creases are inevitable or
even desired. To facilitate the in-depth investigation of the dy-
namics induced by folding, we formulate and validate a new
origami model based on the Absolute Nodal Coordinate Formu-
lation (ANCF). This ANCF model exploits the tessellated na-
ture of origami and meshes it with ANCF plate elements linked
by torsional spring connectors along creases. The mathemati-
cal formulation of the torsional spring connectors is constructed
and implemented into the ANCF framework. Finally, the gov-
erning dynamic equations of motion for origami folding are ob-
tained. To validate the accuracy of the proposed ANCF model,
we use it to simulate the dynamic folding of a Miura-ori unit cell
under point force and compare the results to the commercial fi-
nite element software package (ABAQUS). The results show that
the ANCF model can converge with much fewer elements than
ABAQUS without sacrificing accuracy.

The proposed ANCF model provides a robust and high-
fidelity simulation tool for the kinematics analysis of origami
folding globally. It can also reveal the constituent panels and
creases’ underlying mechanics and dynamics responses. More-
over, it has the potential to accurately simulate origami’s de-
formation even when large facet deformation and rotation exist.
This is because the ANCF element can analyze large deforma-
tion without causing excessive rotation problems as it has in the
traditional finite element approach.
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Appendix A: Shape Functions of ANCF Plate Element
The shape functions are obtained using fourth-order polynomi-
als, and they are

S(x) = [s1I, s2I, s3I, s4I, s5I, s6I, s7I, s8I, s9I, s10I, . . .
s11I, s12I, s13I, s14I, s15I, s16I]

(16)

where I is 3⇥3 identity matrix. The elements of the shape func-
tion matrix of the full parameterized plate element are given by

s1 = (2x +1)(x �1)2(2h +1)(h �1)2,

s2 = ax (x �1)2(2h +1)(h �1)2,

s3 = bh(x �1)2(2x +1)(h �1)2,

s4 = tx (x �1)(h �1),

s5 =�x 2(2x �3)(2h +1)(h �1)2,

s6 = ax 2(x �1)(2h +1)(h �1)2,

s7 =�bhx 2(2x �3)(h �1)2,

s8 = tz x (h �1),

s9 = h2x 2(2x �3)(2h �3),

s10 = ah2x 2(xi�1)(2h �3),

s11 =�bh2x 2(h �1)(2x �3),
s12 = tx z h ,

s13 =�h2(2x +1)(x �1)2(2h �3),

s14 =�ax h2(x �1)2(2h �3),

s15 =�bh2(x �1)2(2x +1)(h �1),
s16 =�thz (x �1).

(17)

Here x = x/a, h = y/b and z = z/t while a, b and t are the plate
length in x, y and z directions respectively (Figure 1).
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