Hot-Trim: Thermal and Reliability Management for
Commercial Multi-core Processors Considering
Workload Dependent Hot Spots

Jinwei Zhang Student Member, IEEE, Sheriff Sadigbatcha Student Member, IEEE, Sheldon X.-D. Tan Senior
Member, IEEE

Abstract—This work proposes a new dynamic thermal and
reliability management framework via task mapping and mi-
gration to improve thermal performance and reliability of com-
mercial multi-core processors considering workload-dependent
thermal hot spot stress. The new method is motivated by the
observation that different workloads activate different spatial
power and thermal hot spots within each core of processors.
Existing run-time thermal management, which is based on on-
chip location-fixed thermal sensor information, can lead to
suboptimal management solutions as the temperatures provided
by those sensors may not be the true hot spots. The new method,
called Hot-Trim, utilizes a machine learning-based approach to
characterize the power density hot spots across each core, then
a new task mapping/migration scheme is developed based on
the hot spot stresses. Compared to existing works, the new
approach is the first to optimize VLSI reliabilities by exploring
workload-dependent power hot spots. The advantages of the
proposed method over the Linux baseline task mapping and
the temperature-based mapping method are demonstrated and
validated on real commercial chips. Experiments on a real
Intel Core i7 quad-core processor executing PARSEC-3.0 and
SPLASH-2 benchmarks show that, compared to the existing
Linux scheduler, core and hot spot temperature can be lowered
by 1.15~1.31°C. In addition, Hot-Trim can improve the chip’s
EM, NBTI and HCI related reliability by 30.2%, 7.0% and
31.1% respectively compared to Linux baseline without any
performance degradation. Furthermore, it improves EM and
HCI related reliability by 29.6% and 19.6% respectively, and
at the same time even further reduces the temperature by half a
degree compared to the conventional temperature-based mapping
technique.

I. INTRODUCTION

Power density increases with technology scaling, which
can cause severe thermal and reliability problems in high
performance multi-core systems [1]. Temperature and power
has significant impacts on all major long-term reliability
effects such as electro-migration (EM) for interconnects, bias-
temperature-instability (BTI) and hot-carrier-injection (HCI)
for CMOS devices [2]. As a result, many research works have
been investigated to find efficient methods to improve both sys-
tem performance and reliability via dynamic thermal/reliability
management (DTM/DRM) methods, which control the thermal
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and reliability behavior of multi-core systems by online control
such as task migration strategies [3]-[7].

However, existing DTM techniques either using DVFS or
task migration are highly dependent on the on-chip location-
fixed temperature sensors. Due to high design overheads,
currently only a limited number of on-chip digital temper-
ature sensors (DTS) can be allocated on a silicon chip. A
recent study shows that the number of hot spots on a typical
commercial processor far exceeds the amount of embedded
sensors [8]. Consequently, thermal and reliability management
algorithms that solely depend on the sensors become insuffi-
cient for modern multi-core systems, as power and thermal
hot spots distinguish within cores under different workloads
while having the same sensing temperature.

Fig. 1 shows a signif-
icant temperature differ-
ence' between a hot spot
and the nearest sensor lo-
cation on an Intel Core i7
quad-core processor under
the SPLASH-2 workload
radiosity (only displaying
the quad-core area). There-
fore, as the reliability of a
core is mainly determined
by the thermal hot spots, temperature per-core information
alone is insufficient for DTM/DRM techniques. On the other
hand, recent studies [9], [10] show that one can identify
the power density distribution of a multi-core processor with
advanced thermal characterization.

Based on this observation, in this article, we introduce a
new efficient and scalable task mapping algorithm for the
thermal and reliability management for commercial multi-
core processors via machine learning based modeling for
power density at the true hot spots?. Our work is facilitated by
an advanced thermal imaging system for measuring the spatial
temperature across the full processor. Once temperature maps
are measured, one can obtain the power density maps (the

Fig. 1: Measured temperature of a
hot spot versus the nearest sensor
reading

I Temperatures are measured with a calibrated thermal imaging system (see
Section 1V-A).

2In the paper, hot spot is designated for power density hot spot instead
of the traditional thermal hot spot. Power density hot spots are a superset of
thermal hot spots and can be viewed as the potential thermal hot spots in
general.



corresponding heat sources or hot spots) through the thermal-
to-power technique using thermal measurements [10]. After
that, we build a learning-based model for power density at
the major hot spots in cores. We remark that the power or hot
spot identification for commercial multi-core processors under
different workloads can also be carried out on chips with heat
sink cooling in practical work settings [11].

The following summarizes key contributions of this work.

e First, we show that the existing task mapping techniques,
which solely depend on per-core sensor temperature, may
lead to subpar quality solution for chip reliability as the true
hot spots of cores can be stressed unevenly.

e Second, based on this observation, we employ a fast,
run-time accurate machine learning model to estimate the
exact spatial hot spots from the given workloads. With this,
we propose a scalable and efficient task mapping approach
to optimize the reliability of the multi-core system.

e Third, compared to existing works, the new task map-
ping approach is the first one to explore the workload-
dependent power hot spots and its advantages over the
existing Linux task scheduling method and temperature-
based method, and has been demonstrated, validated on
real commercial multi-core processors. Experiments on a
real Intel Core i7 quad-core processor executing PARSEC-
3.0 and SPLASH-2 benchmarks show that, compared to
the Linux baseline, the core and hot spot temperature can
be reduced by 1.15~1.31°C. In addition, Hot-Trim can
improve the chip’s EM, NBTI and HCI related reliability
by 30.2%, 7.0% and 31.1% respectively compared to Linux
baseline without any performance degradation. Furthermore,
it improves EM and HCI related reliability by 29.6%
and 19.6% while further reduces the temperature by half
a degree compared to the conventional temperature-based
mapping technique.

This paper is organized as follows: Section II reviews some
related works. Section III discusses three major reliability
effects and their models used in this work. Section IV presents
the thermal imaging system setup and a motivation example
for this work. Section V introduces the proposed hot-spot-
aware task migration method. Section VI presents the results
and comparisons on a real Intel i7 quad-core processor. Finally,
Section VII concludes this paper.

II. RELATED WORK

Khdr et al. [12] introduces a multi-objective DTM method
that aims to efficiently avoid thermal threshold violation and at
the same time keeps the temperature balanced between cores
based on the core temperature. It Derives a regression-based
distributed temperature prediction model and a centralized
task allocation model, it stops tasks that potentially cause
overheating or imbalance of the cores, and resumes the tasks
once there are available cores. Das et al. [13] develops a
DTM technique that takes advantage of both the thermal
profile within (intra) and across (inter) applications based on
Q-learning, which learns the relationship between the task
allocation, dynamic voltage/frequency scaling (DVFS) and
device aging / mean-time-to-failure (MTTF). Lu et al. [14]

presents a task allocation method based on the core and router
temperatures and predicts near-future temperature that assists
the DTM. Their algorithm updates the prediction models
after each allocation based on Q-learning. Q-learning-based
control techniques are often subject to fast rising learning
spaces as the states and actions of systems expand. Iran-
far et al. [15] proposed a machine learning or ML-based
power/thermal management approach that uses a heuristic to
limit the learning space by assigning a specific set of available
actions to each existing state. A recent state-of-the-art DVFS
technique enables scaling down of the management cycle to
microsecond time scale and achieves fast per-core DVFS [16],
which significantly reduces the power consumption across
cores. Recently [17] proposes a deep reinforcement learning
based method to allocate the tasks based on the hot spot
power rather than temperature information, which infers the
power information has great potential to be used to improve
the system and thermal performance of the chip.

III. RELIABILITY MODELS

In this section, we briefly review the three major VLSI
reliability effects: the electro-migration (EM) for intercon-
nects, the negative biased temperature instability (NBTI) and
hot carrier injection (HCI) for MOSFET devices and their
calculation models. We note that the proposed method can
consider other failure effects as well. The three failure effects
are the dominant aging effects in the VLSI systems as EM
will cause the power grid network to be time-varying and
changes the voltage drop over time. NBTI and HCI can lead
to the threshold voltage shift such may cause failure to signal
transition and timing. In addition, calculations for the aging
and lifetime due to EM and NBTI are implemented through
an open source tool — LifeSim [18], which we will explain in
detail in Section VL.

A. EM model

The currently employed method of predicting the time to
failure regarding the EM effect is based on a physics-based EM
analysis method [19], [20]. It comprehensively models the EM
effect considering the void nucleation phase and growth phase
during which the wire resistance starts to change. Specifically,
the void nucleation time can be expressed as:
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energy of vacancy formation and diffusion, f, is the ratio
of volumes occupied by vacancy and lattice atom, o,.s and
o.rit are the residual stress and critical stress. €2 is the atomic
volume, [ is the wire segment length, eZ is effective charge
of the migrating atoms, j is current density, 7" is temperature,
and p is the wire electrical resistivity.

At the system level, to model the current density, we follow
the similar formula used in the RAMP [21] and the work
in [22], which can be related to the switching probability of
the line, «, as
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where C, W and H are the capacitance, width, and thickness,
respectively of the line and f is the clock frequency.

Once the void is formed in the wire it starts to grow and
the wire resistance increases over the time. The drift velocity
of the void edge is expressed as:

D
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Further, kinetics of the wire resistance change with respect to
the growth time is approximated as [19]:
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where pr, and pc, are the resistivity of the barrier material
and copper, W is the line width, H is the copper thickness
and hrp, is the barrier layer thickness. The growth time is
calculated for a given resistance percentage change threshold
(such as 10%). The final time-to-failure due to EM effects is
determined by adding the nucleation time and the void growth
time together.

B. NBTI model

Negative biased temperature instability (NBTI) occurs when
negative biased voltage is applied to the gate of a PMOS
transistor, the presence of holes in the channel causes Si-H
bonds to break at the interface between the gate oxide and the
channel, causing positive traps in the interface, which increase
Vin [23]. The reaction rate mainly depends on the temperature
T and the supply voltage V4. The model of lifetime reliability
due to NBTI we use is based on the work by Srinivasan et
al. [24]. MTTF due to NBTI at a temperature T, is given by:
A (2 oyx L
1+ 2ew: 1+ 2e%t ekt

&)
where A, B, C, D, and f are fitting parameters using the
published NBTI failure data [25], and k is the Boltzmann
constant. Based on the model in [24], the values we use are
A =1.6328, B = 0.07377, C = 0.01, D = —0.06852, and
8 =0.3.
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C. HCI model

Hot carrier injection (HCI) refer to the high energetic
carriers, which is the result of high electric fields in the
drain region of a transistor, are injected into the gate oxide.
These carriers form interface states and eventually result in
performance degradation (increase of V;;) in the transistor
under stress [26]. The equation below evaluates the HCI-
induced threshold voltage increase [27].

AVip (o, T, Vaa, t) = Apei - w(Vaa) - v(T) - Va- f-t (6)
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where ¢ stands for operation time, « is activity factor and
f is core frequency. In addition, t,, is the oxide thickness,
and F; depends on the device specifications, temperature, and
Viq. Further, Aj.; is a technology-dependent constant and
activation energy F, is considered a positive constant.
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Fig. 2: Infrared thermography system

D. Summary of reliability models

In summary, EM causes the power grid network to be time-
varying and changes the voltage drop over time. NBTI and
HCT lead to the threshold voltage shift such that may cause
failure to signal transition and timing. In this work, we set the
failure criterion to be 10%, i.e. 10% wire resistance change
due to EM and 10% change of threshold voltage due to NBTI
and HCI are considered end of lifetime.

IV. OBSERVATION AND MOTIVATION

The analysis, measurements and implementations of this
work are all based on real systems. The reason is measuring
from a real processor when it is executing workloads is more
precise and has more realistic meaning than from computer
simulators. Secondly, open-source computer simulators hardly
include the ready-to-use architecture resources for the latest
off-the-shelf processors.

A. Thermography system setup

In order to acquire precise thermal and power information
within the core, a proper measurement system for spatial
temperature is critical. To this end, we have adopted the
thermography measuring system proposed in [28]. This setup
features a thermoelectric device mounted on the other side
of the motherboard right beneath the processor allowing it to
be cooled from underneath, as opposed to heat sinks drawing
heat upwards. This setup leaves the front side of the processor
fully exposed to the infrared camera without any interference
layer in-between, as shown in Fig. 2. An adjustable DC
power supply is used to control the heat flow through the
thermoelectric device so that the operating conditions can be
matched to the baseline cooling unit (stock heat-sink) using
the calibration method discussed in [28]. Unlike the traditional
flowing-oil-based front-cooling methods [29], no decoupling
procedures are required in this setup. The thermal image
capturing rate can reach as high as 60 frames per second.

B. A glance of hot spots

We first illustrate how the cores can be stressed in various
ways that the sensors cannot tell. Then the idea of optimization
over the existing techniques will be described at a high level
in this section.
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Fig. 3: (a) On-chip sensor readings (one sensor per core). (b)
Measured temperature at the sensor locations (blue dots).
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Fig. 4: Power patterns of PARSEC-3.0 and Splash-2 benchmark
workloads on a real Intel Core-i7 processor at the core scale (within
the core).

Fig. 1 shows the measured spatial temperature (Intel Core-i7
quad-core) when it is under a workload (Splash-2 benchmark
radiosity). It reveals that the temperature between a true hot
spot and the nearest sensor can be quite different. When
there are many cores under workloads, temperature sensors
are likely to measure the same or similar temperature even
though cores are under different workloads being stressed in
different patterns. We measured the temperatures in the time
axis by the embedded sensors, shown as Fig. 3(a). It is obvious
that temperatures across all sensors, at least two or three, are
often very close during the runtime. Note that the precision
of sensors is only integer. Moreover, as shown in Fig. 3(b),
when four workloads (lu_cb, vips, blackscholes and fregmine)
are running on the four cores respectively, the temperatures
at sensor locations measured by the imaging system are 93.5,
93.6, 94.0 and 93.5°C, where the difference is quite small.

We remark that the thermal hot spots are always the power
density hot spots or the heat-source hot spots. But this is not
true the other way around as shown in a recent study [8]. Heat-
source hot spots can be viewed as potential thermal hot spots

TABLE I: Average Power Density (W/mm?) at Hot Spots for
Various Workloads

Workload | HSI Power | HS2 Power | HS3 Power
blackscholes 1.04 1.56 1.82
bodytrack 0.92 1.40 1.82
fluidanimate 0.75 1.3 1.8
streamcluster 0.52 1.06 1.57
dedup 0.75 1.0 1.56
facesim 0.75 1.0 1.56
swaptions 0.52 1.0 1.53
Iu_cb 0.52 1.0 1.52
freqmine 0.52 091 1.38
radiosity 0.72 1.1 1.37
vips 0.26 1.0 1.3
radix 0.52 1.0 1.2
ferret 0.52 0.65 0.9
canneal 0.39 0.63 0.6
raytrace 0.56 1.08 1.15
X264 0.82 0.26 0.75
fft 0.5 0.9 1.3
ocean_cp 0.26 1.0 1.43
volrend 0.78 1.0 1.3

or their spatial distributions, which can be activated by specific
workload. The hot spots from heat sources or power sources
can provide more useful, especially critical information about
the true thermal hot spot distributions for real commercial
multi-core processors, which is the motivation in this work
to use power density hot spots. In the sequel, for the sake of
simplicity, hot spot simply means power density hot spot and
power or power pattern means the power density or power
density pattern.

We calculate the core’s power patterns of various PARSEC-
3.0 and Splash-2 workloads and some typical patterns are
shown in Fig. 4 as examples, respectively. There are three pri-
mary hot spot locations observed in the core. Some workloads
have higher and sharper power peaks than others, while other
workloads show more even power distribution. Consequently,
utilization of the hardware resources, reflected by the power
density at hot spots, indicates the different stresses of the
silicon chip. Hence, there is a considerable potential for task
migration operations to optimize the thermal and reliability
performance by utilizing the hot spot power information.

For illustration, the typical power density measured at the
hot spots with respect to workloads are listed in Table I, where
the three primary hot spots are named as HSI, HS2 and HS3
are listed. It should be noted that the applications may contain
both serial and parallel threads, and the power density values
listed in Table I are averaged values through the thermal-to-
power calculation when the applications run into a thermal
steady state, hence the parallel phase (also dominant phase)
of the application is considered in this table. The measuring
workflow can be implemented on other chips as well.

V. PROPOSED HOTSPOT-AWARE TASK ALLOCATION
FRAMEWORK

In this section, we will describe the overall workflow for the
proposed task allocation algorithm. The framework consists of



Input layer Hidden Dropout
IPCM vector layer layer Output layer
Hotspot power
Monitor 1

Monitor 2

Monitor 3

Monitor n

Fig. 5: Power detector network architecture

two major components — (1) a detector model detecting the
power density of the primary hot spots and (2) a management
controller that collects the power information of those hot
spots of all the cores and controls the allocation of threads. For
the sake of comparison, we will not interfere with the DVFS
policy of the system.

A. Learning-based hot spot modeling and detection

One important aspect of the proposed method is to know
which hot spot locations are active or invoked by the workload
in a core in real-time. This can be achieved by using deep neu-
ral networks. We estimate the power density at the hot spots of
the off-the-shelf multi-core processors during real-time from
the online utilization metrics. Specifically, we implement a
deep neural network (DNN) as a supervised learning model
which can estimate the power densities at hot spots in cores
from the underlying real-time resource utilization information.

In our implementation, we take advantage of a multi-layer
perception (MLP) network with two fully connected layers and
a dropout layer for hot spot power density detection (Fig. 5).
The input data for the network’s training and inference is ob-
tained from Intel’s Performance Counter Monitor (IPCM) [30],
IPCM provides the system-level utilization metrics that we will
be utilizing in this work. For non-Intel chips, the equivalent
performance monitors can be used (i.e. AMD uProf [31]).
IPCM provides the real-time processor package and core-wise
performance metrics such as frequency, energy, instruction per
cycle, cache hit, read/write rate, etc., as well as the sensed
temperature from the embedded sensors. The Intel chip used
in this study, i.e. Core 17-8650U, has 4 cores and each core
supports 2 threads with Intel’s hyperthreading technology.
Table II shows the complete list of [IPCM performance metrics
from both the package and core-wise (or thread-wise) domains
that are used in this work. We note that the IPCM-based
full-chip thermal map modeling method has been proposed
recently [32]. There are 30 metrics corresponding to the
whole package domain, and 16 metrics for each core thread.
Considering that hyperthreads may happen on this chip, when
measuring the training data we disabled the hyperthreading
option, having one core only execute one thread at a time
instead of two. In this way, we make sure the externally
captured thermal images are matched for the thread executed

TABLE II: High-level Performance Metrics (Intel PCM)

Package Core
Exec Read Clres% Exec cOres%
IPC Write C2res% IPC clres%
Freq INST C3res% Freq C3res%
AFreq ACYC Cores% Afreq Coéres%
L3Miss Time CTres% L3Miss | CTres%
L2Miss PhysIPC C8res% L2Miss Tsens
L3Hit PhysIPC% COres% L3Hit
L2Hit INSTnom C10res% L2Hit
L3MPI | INSTnom% | Energy(J) L3MPI
L2MPI COres% Tsens L2MPI

in the core. Otherwise, the thermal images and the following
calculated power densities would be a contribution of two
separate threads running concurrently on the same core due
to the hyperthreading function. Once the NN model is trained
it can be used in a thread-wise manner as one core’s power
is a combination by two threads. In total, the input vector
contains 46 IPCM metrics for the core-wise (or thread-wise)
hot spot power density detection neural network. In our later
experiments, we limit one core to execute only one thread in
order to reach easier software implementation of the algorithm
in the user space, which will not lose the validity of the
algorithm.

Output data of the network are the power densities at the
identified primary hot spots of the core in real-time. In our
case, the output dimension is three due to three identified hot
spots. Note that the name of the workload is not a factor in
the power detector network. We obtain the core’s hot spot
power densities by deploying a recently proposed thermal-to-
power transformation approach [8]. The corresponding thermal
imaging measurements are collected at the same time when the
processor is under workload. IPCM tool is launched also at
the same time when the processor is under workloads, data
of the performance counter metrics is sampled at the same
frequency and synchronized to the thermal image capturing.
Then, spatial power patterns are calculated through thermal
measurements and power densities at the primary hot spots
are extracted [10]. Finally, IPCM metric vectors serve as
inputs and power densities of hot spots per core serve as
targets for the learning-based network. We measured 7200
thermal images with the highest camera frequency (60 Hz) and
the synchronized IPCM metric vectors corresponding to each
workload application, where 20 applications from PARSEC-
3.0 and SPLASH-2 are measured for the network training
and test procedure. In our study, we observed that the power
patterns of all the workloads are steady during almost their
entire execution time except for a slight instant fluctuation at
the beginning. Moreover, the same workload demonstrates the
same power pattern across different cores when executing on
multiple cores parallelly. This convention actually shrinks the
complexity of model learning and makes the network easy
to train and use. We will present the inference (detection)
accuracy of the online power density detector in the results
section (Section VI).
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B. Task management controller

The task management controller collects power information
of hot spots, maintains the core and task status, and allocate
incoming or ongoing tasks. We define the following concepts
for a clear description.

Task queue: Incoming tasks/applications are put in a queue
following the first-in-first-out (FIFO) order. It is assumed there
is no priority order among them since the priority is not related
to this study.

Parallelism count: The number of parallelisms is usually
determined by the user space. To generalize the new algorithm
for tasks running with multiple parallel threads, each element
in the task queue contains the name of task and the number
of parallel threads it asks for. In our implementation, the task
will be assigned with as many available cores as the user-
determined parallelism count by setting the task’s CPU affinity,
where CPU affinity means a list of cores the task can run on.
Note that we only set/update the task’s CPU affinity in every
management cycle instead of assigning the underlying specific
threads to the specific cores. The order of threads is maintained
by the task itself and the functionality is guaranteed.

Core status: Cores have two status, either available or busy.

Waiting parallelism queue: For an incoming multi-threaded
task that requests multiple cores for parallel execution, the
number of available cores may be less than the number it
requests for. Then all the available cores are assigned to the
task and the excessive number of parallelisms requested is
put in the waiting parallelism queue till other cores become
available.

Management cycle: Threads of tasks are migrated among
cores every management cycle, dt, e.g. 1~5 seconds.

Sampling interval: Every sampling interval, e.g. 100~1000
milliseconds, the management controller updates the core,
task, and hot spot status that it maintains, and allocates the
queued task to cores immediately once there are available
cores detected.

Fig. 6 illustrates an example of the task queue, waiting
thread queue, instant mapping and the corresponding power
pattern on a quad-core processor. In this example, task 1 first
occupies two cores, then task 2 occupies one core. Task 3
requesting for two cores is only mapped to one core given
only one core left available. Task 3’s another thread request is
held in the waiting thread queue for the next available core. In
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Fig. 7: Task management workflow.

our example, the processor layout follows a central symmetric
pattern.

It should be noted that to reduce the complexity of inter-
fering with the OS scheduler in this work, the management
controller checks the status at each sampling interval from the
user space rather than the kernel space of the OS. In the future,
once the technique has been built into the OS kernel, the model
does not need to check the status using the interval manner
anymore, it should know those events immediately instead. We
also comment that the power detector model does not need to
calculate the hot spot power density all the time. As discussed,
power pattern of the same task is quite steady on the time axis.
Hence, the hot spot power information can be sampled, stored
and reused. If an unknown task comes, the detector model will
wake up for a short period of time intermittently and obtain
an averaged hot spot power data for that task. In this way, the
computation cost by the power detector model is much shrunk.

Fig. 7 presents the workflow of the management controller.
At the top, the model accesses the multi-core system infor-
mation it needs, including the core status, queue status and
hot spot powers. In each information sampling cycle, it first
checks if there are available cores. When yes, it then checks
the waiting thread queue to see if the ongoing task needs more
cores. It always allocates the waiting thread before the next
task unless the waiting threads queue is empty (i.e. FIFO).
When available cores are not enough for an incoming task
from the task queue, the task will be mapped to all the
available cores and registered to the waiting thread queue for
future available cores.

In every management cycle, the controller migrates the
ongoing tasks from cores to cores according to the proposed
mapping algorithm, which will be discussed in the next
subsection. Afterward, the controller updates the system status
it maintains.



Algorithm 1 Task Migration in A Management Cycle

Input: M cores, N ongoing tasks, H hot spots per core,
current task map and performance counter metrics (IPCM)
Output: New task map newMap
1. curMap < [tskia,.., tSkim,.., tSkn p]

2: for i =1to N do

3: Ptsk,i < [plv vy Djy ooy pH]z = N@t(IPCM(tSkl’m))
4; P{:‘,;Zf — max(Pisk,;) t

5: hi s < argmaz (P i), 1 < hite: <H

6: end for

7. maxPwrs + | g,g“i,, P{;ﬁf,.., g;‘]g”jv]

8 wstHSs < [h{3 15 Pk PSR W]

9: sortedT'sk < argsort,, (maxPwrs,reverse = true)

10: Sort wstHSs by the same order to match the tasks in
sortedT sk

11: Initialize Cores < set{1,2,.., M}

12: Initialize newMap < [Noney,.., None,,,.., Noney]*
13: for i =1 to N do

14: tsk; < sortedT skli]

15: h < wstHSs]i

16: P(:’h, — [p(cjl)[h], s Ple,m) [h], o p(c7M)[h”

17: prefCoreLst < argsort,(Pep)

18: Initialize mappedCores;sy ; < set{ }

19: for core in prefCoreLst do

20: if core in Cores then

21: add core to mappedCores;sy ; for tsk;
22: remove core from Cores

23: end if

24: end for

25: Update newM ap <— mappedCoressy, ;

26: end for

27: Use newMap for task migration operation

TABLE III: Exemplary Ordering of Tasks and Cores and Migration

Task Order Worst Hot Spot Preferred Cores | Mapped Cores
1) Tsk 1 | HS3: 1.8 W/mm? 1,3,0,2 1,3
2) Tsk 3 | HS2: 1.4 W/mm? 1,0,2,3 0
3) Tsk 2 | HS3: 1.2 W/mm? 1,3,0,2 2

C. Proposed mapping control algorithm

As we already observe that the power (density) at the
hot spots can vary considerably depending on the specific
workloads. The higher power peaking at the hot spot, the
more severe threat to the core’s reliability. And the longer
time the hot spot has been stressed, the lower reliability, too.
Therefore, we develop a heuristic mapping algorithm that
allocates tasks such that the average power peaking at the
hot spots is mitigated. The mapping algorithm deals with two
scenarios, one is migrating the ongoing tasks among cores,
and the other is mapping the waiting threads or an incoming
task to the available cores.

1) Migrate the tasks: Suppose the processor has M cores
where each core has [ primary hot spots. And the current task
map corresponding to the ongoing N (N < M) tasks is noted

tsk 1 tsk 1

|tsk3| tsk2|

HS3 18 18 HS3 1.1 1.2
HS2 1.0 1.0 HS2 1.4 0.6
HS1 0.5 05 St HS1 1.0 1.0
core 0 core 2 core 0 core 2
core 1 core 3 core 1 core 3
1.0 HS1 1.0 0.5 HS1 0.5
0.6 HS2 1.4 1.0 HS2 1.0
1.2 HS3 11 18 HS3 1.8

(a)

Waiting Parallelism Queue

v[eska] sk ] hok &

1
Hs3 18 18 —
HS2 1.0 1.0
HS1 0.5 0.5
core 0 core 2 core 0 core 2
core 1 core 3 core 1 core 3
1.0 HS1 1.0 1.0 1.0
0.6 HS2 1.4 1.4 14
12 HS3 il 1.1 1.1

fo2] 2] &=

(b)

Fig. 8: (a) Task migration in a management cycle. (b) Example of
mapping a waiting thread to the available cores.

as [tsk11,.., tSkim,.., tskn a], where tsk; ,, means the ith
task running on the mth core and can be None if no task runs
on that core. One task may run on multiple cores. Power at
all H hot spots of a core activated by the task tsk; is noted as
P = [p1,..,0j, .-, prli, where p; means the power at the
Jth hot spot activated by tsk;. The proposed task migration
algorithm is elaborated in Algorithm 1. We firstly estimate the
power at hot spots activated by every running task (line 2-3)
through the machine learning-based power detector. And find
the maximum power /("7 of hot spots (line 4) and the worst
hot spot Ay, (line 5) activated by that task. Then we sort
the tasks by how stressful they are by the maximum power
of hot spots they activate (line 7-9). The task having a higher
maximum power of hot spots is considered more stressful. If
two tasks stimulate the same maximum power (not necessarily
on the same hot spot), then compare their second highest hot
spot power, and so on so force. For example, according to the
data shown in Table I, blackscholes should be ordered ahead
of bodytrack, then fluidanimate. Then, similarly, for each task
the cores are ordered from the most preferred to least preferred
(prefCoreLst) with respect to that task (line 13-17). Here, h
indicates the worst hot spot that will be stressed by this task
most and p(. ) [h] denotes the accumulated power (energy) at
the hot spot & of the core m. Line 19-24 map the task based



on the order of its preferred cores. The task which is more
stressful is taken care of earlier as having higher priority to
pick the preferred cores than the less stressful tasks. If some
preferred cores are already scheduled for other tasks in this
management cycle, then these cores will be skipped for this
task.

Once the new task map has been obtained, the task man-
agement controller migrates the tasks for this cycle. Following
the example in Fig. 6, Table III shows the order of the tasks,
the order of their preferred cores and the newly mapped cores,
respectively. Fig. 8(a) further illustrates the resulted mapping
diagram for the management cycle.

2) Map the waiting threads: This is similar to migrating
the tasks. Locate the hot spot the targeted task will stress
most and order the cores by accumulated hot spot power at
that location. For example, if we are to allocate threads of
canneal, then the cores should be ordered by their HS2 power
in the management cycle because HS2 is the worst hot spot
stimulated by canneal. Following the example shown in Fig. 6,
Fig. 8(b) shows mapping a waiting thread of task 3 to the best
available core, core 1, when core 0,1 and 2 become available
simultaneously.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present the results for the proposed
hotspot-aware task control method, Hot-Trim, for thermal and
reliability management of multi-core processors. We imple-
ment and validate our method on a commercial Intel 17-8650U
processor that features 4 CPU cores with PARSEC-3.0 and
SPLASH-2 benchmark workloads [33], [34] (we write the
benchmark workloads as tasks to be brief in this paper).

First, we present the performance of the power density
detector neural network. We measured 7200 thermal images
with the highest camera frequency (60 Hz) and the synchro-
nized IPCM metric vectors corresponding to each workload
application, where 20 applications from PARSEC-3.0 and
SPLASH-2 are measured for the network training (80% data)
and test procedure (20% data). 20% of training data is used
for validation during the training procedure. Fig. 9 shows the
training loss and validation loss during the training procedure
of 150 epochs. We mark that the specific configuration of
the MLP network (# of nodes, # of layers, etc.) is not an
exact science. In this work, we used one hidden layer with 75
nodes and a dropout layer with a 0.5 ratio between the input
and output layers, and the learning rate is 0.0005. We did
not observe overfitting on the trained network model. Fig. 10
illustrates the comparison between the estimated power density
and the measured power density traces at the identified hot
spots, where the estimated power density is obtained from the
learning-based power density detector neural network and the
measured power density is obtained through the thermal-to-
power method [8], [10]. As we can see, the estimated power
traces align quite well with the real measured power traces. It
should be noted that in the training procedure, thermal and
IPCM data is obtained with the highest camera frequency.
Whereas in the following management experiments, the cycle
period is chosen as 2 seconds and IPCM sampling interval
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Fig. 9: Power density detector neural network learning curves.
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Fig. 10: Power density (W/mm?) V.S. time steps (60 Hz) for
workloads. Estimated power density compared to the measured power
density at the identified hot spots.

is 200 milliseconds. In our experiments, we observe that the
power pattern of the running task usually takes only 200~300
milliseconds to become steady after launching, as examples
shown in Fig. 10. The migration and sampling frequencies are
relatively low but sufficient. In this work, we obtain the power
density estimation from the IPCM once at the end of every
management cycle, i.e. before the next migration, and average
the power density estimations after every management cycle
of the task and average between cores if running on multiple
cores. The computation overhead is reasonably low such that
the online inference time is less than 100 ps and the overall
computational time regarding the whole Algorithm 1 in one
management cycle is between 300~400 us. We will present
more details in the next subsection.

Second, we compare the performance of the proposed Hot-
Trim with existing mapping methods. In this work, we com-
pare three methods, i.e. Linux baseline mapping, temperature-
based mapping and the proposed Hot-Trim mapping in terms
of runtime performance, thermal behavior and the three critical
reliabilities as mentioned earlier. Specifically, the Linux base-
line mapping means when allocating the tasks, tasks will be
launched without assigning the CPU core affinities. We let the
OS scheduler choose the CPU cores automatically to execute
the tasks. For temperature-based mapping, we implement the
most popular greed-based mapping policy such that the task



TABLE IV: Test Cases of Task Series

Test Cases Task Series Input Size
[(ferret, 4), (streamcluster, 2), (canneal, 2),
(raytrace, 2), (bodytrack, 1), (lu_cb, 2),

Case 1 (radix,2), (dedup, 2), (fft, 2), (vips, 1), Large
(facesim, 2), (freqmine,1), (fluidanimate, 2),
(bodytrack, 2), (ferret, 4)]
[(freqmine, 2), (blackscholes, 1), (dedup, 1), .

se 2 N

Case (canneal, 2), (radix, 2)] ative

Case 3 [(V1Ps, 2), (blackscholes, 1), (dedup, 1), Native
(radix, 1)]

is always mapped or migrated to the coolest core based on the
thermal measurements of on-chip sensors. If there are multiple
tasks executing on multiple cores, the tasks executing on the
hot cores will be migrated to the cooler cores. Each mapping
method will be deployed to execute the same series of tasks.
In the meantime, performance counter metrics and thermal
images of the full chip will be captured to investigate the
runtime performance, thermal behavior and reliabilities. To
make sure the comparison is comprehensive, we have gone
through a few different experiment scenarios.

A. Comparison in system performance

First, we start by investigating whether the proposed method
degrades the runtime performance and how it compares to the
Linux baseline, in other words, whether the total execution
time is prolonged. If it degrades the original performance
seriously then there would be no sense to propose more.
The Linux kernel version on the test processor is 5.0.9-
301.fc30.x86, and the OS distribution is Fedora 30. Note that
in this work we only deploy the task mapping policy but
not the DVFS scheduling, instead, we let the OS handle the
DVES as it normally does. Firstly, we compose diverse task
series that contain various numbers and types of tasks. Each
element in the task series is presented as (task name, # of
threads needed). We also deploy two different input dataset
size, Large and Native for the tasks in the PARSEC-3.0 and
SPLASH-2 benchmarks. The user time of tasks with Large
input size usually lasts for about a few seconds to half a
minute, and with Native input size lasts for a few minutes.
In our implementation, we deploy python scripts for the high-
level control algorithm and machine learning-based power
detector and use batch scripts (bash shell) for direct task
mapping and migration operations. The tasks and number of
parallel threads are randomly chosen and the series of tasks
in our test cases are listed in Table IV. The management
cycle period is chosen as 2 seconds while the processor status
and IPCM sampling interval are 200 milliseconds. Since we
inspect the total execution time of a series of tasks, there
will be no idle time for any core. This means once a task
is complete on a core(s), this core(s) will be assigned with
the next task immediately unless all the tasks in the queue are
finished.

In order to make a fair comparison, each run must be
launched under the same initial thermal condition. The chip is
totally cooled to the initial temperature (about 30°C) before the

next run. And test cases are run many times to minimize the
effects of random factors, such as ambient airflow or on-chip
data caching. Please note that the cooling efficiency is forced
constant all the time during the experiment. Back-side liquid
circulation is at a constant flow rate, besides, the thermal-
electric device which transfers heat from the motherboard
downwards to the liquid circulation is kept at constant power
at 62 Watts.

As shown in Table V, the proposed technique will not
degrade the system performance. Actually, the average exe-
cution time of the whole series of tasks is slightly decreased
by 1.4~4.1%. 1t is interesting that one or two of the slow
runs under Linux are considerably longer than the average
time, which we are not sure about the reason. However, the
execution time by Hot-Trim is quite stable. As mentioned
in Section V-B, incoming tasks are launched following a
first-in-first-out (FIFO) order assumed by the series (task
queue). When conducting the experiment under Linux default
mapping, the task execution order is still determined by the
FIFO. Essentially, we use a python script to launch the task
one after one once there are available cores or previous tasks
are done. Task is launched without setting its CPU affinity,
hence the core assignment is decided by Linux. In this way,
we could maximize the identity of other factors but only leave
the mapping decisions to be different when comparing with
temperature-based and the proposed algorithm. It is also more
realistic that different tasks randomly come in the time axis
than launching them all together. Hence, the task order or
thread order is not within the scale of this study. The execution
time (min, max, and average) listed in Table V pertains to the
variation of a single run of the series of tasks.

On the other hand, the Hot-Trim task mapping algorithm
reduces the average core temperature by about 1.21 ~ 1.31°C
degrees and the temperature is constantly lower for all test
cases compared to Linux baseline as shown in Table V.
It should be noted that the temperature reductions are all
measured from the thermography system. Temperature at the
truly identified hot spots reflects the same trend between
the two mapping ways. We measured that the maximum
temperature at the identified hot spots for different mapping
methods is very similar (at around 95°C). However, the high-
temperature duration and temperature spatial distribution vary.
The average temperature at the worst hot spot HS3 of each
individual core is around 1.5~2 degrees higher than its average
core temperature.

We note that the new task mapping method has no obvious
effect on suppressing peak temperature in this study. The main
reason is that the maximum temperature at the identified hot
spots is determined by some heavy tasks such as blackscholes,
bodytrack and fluidanimate regardless of which core they are
assigned to as all the cores are homogeneous. As a result, as
long as they are executed in the experiments, we will observe
the similar maximum temperature regardless of the mapping
method used.

B. Thermal and reliability improvement

This subsection compares the thermal behavior and VLSI
reliabilities regarding EM, NBTI, and HCI among the three



TABLE V: Linux V.S. Hot-Trim: Performance and Temperature

Test Cases Total Execution Time (seconds) Avg. Core Temperature (°C)
Lin Hot-Trim
. X : Avg dt (%) | Linux | Hot-Trim | Reduction (dT)
Min ‘ Max ‘ Avg Min ‘ Max ‘ Avg
Case 1 58.16 62.18 61.03 | 56.15 61.17 59.84 -2.0% 85.98 84.67 -1.31
Case 2 321.6  358.7 341.1 | 318.6 3337 3272 -4.1% 92.10 90.89 -1.21
Case 3 163.3 1653 164.0 | 1583 1634 161.7 -1.4% 86.39 85.13 -1.26
Core 0153 TABLE VI: Mean of Temperature over Time at the Worst Stressed
100 Hot Spot Location HS3 of Each Core
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Fig. 11: Temperature at the identified true hot spot location HS3 for
each core under three mapping techniques (Case 4).

mapping methods. In this experiment, under each mapping
method, a series of randomly chosen tasks are released one
after one with random intervals between releasing two tasks
in the timeline to mimic task allocations in real processors. To
make a fair comparison and minimize the effects of random
factors, the tasks are chosen in a pseudo-random way as
well as the release intervals. In this way, all three mapping
techniques will deal with identical workloads and identical
arrival times of the workloads. To be simple and without
losing the generality, we release 30 randomly chosen tasks
one after one intermittently. The time interval (At) between
releasing two consecutive tasks satisfy a uniform distribution
At ~ U(4,12) seconds. The minimum and maximum interval
are 4 and 12 seconds, respectively. This testing scenario is
called Case 4. To further minimize the effects of random
factors, the same series of tasks are executed under every
mapping technique many times and each run starts under the
same initial thermal condition.

Fig. 11 compares the temperature at the identified hot spot
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location HS3 with respect to each core under the three map-
ping techniques when releasing tasks with interval distribution
At ~ U(4,12). In our case, HS3 is the most stressed one of
the three identified primary hot spots. LB, TB, and HT are
briefed for Linux baseline, temperature-based and Hot-Trim
mapping, respectively. It can be observed from the plots that
most of the time the temperature trend under HT is more
similar to TB compared with LB. Mean of the temperature
curves shown in Fig. 11 at the HS3 for each core are
compared in Table VI. Thermal performance under Hot-Trim
is obviously better than Linux baseline across all cores and is
1.15°C lower on average in this test case. Under temperature-
based mapping, temperature is quite balanced across all cores,
which is expected. Though, its average temperature is still
higher than Hot-Trim.

Core frequencies under the three mapping policies are
shown in Fig. 12. In the experiment case, core frequencies
show similar amplitude where the cores operate at around
1~1.2 GHz while under load and gate to near-zero frequency
while they are idle. Frequency throttling seems not to show
observable differences among the three mapping methods
while the cores are under load. We remark that the system
DVFS governor remains untouched during the experiments,
hence changes in the frequency pattern for all cores are nat-
urally governed by the system DVFS governor, and different
mapping methods are treated constantly. It can be observed
that the similar core utilization does not necessarily give
similar lifetime reliability. A good example is that the averaged
frequency of core 1, 2, and 3 under Linux baseline mapping
are very close (about 0.62 GHz, Fig. 12(a)), however, their
lifetime reliabilities vary much more, which we will describe
in detail later. This is reasonable because cores can have hot
spots stressed differently by executing different tasks.

Although temperature does not distinguish much between
temperature-based and Hot-Trim mapping, VLSI reliability
performances distinguish quite significantly. When implement-
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Fig. 12: Core frequencies (GHz) V.S. time steps when processor
under different mapping policies: (a) Linux baseline (b) Temperature-
based (c) Hot-Trim. Red lines are the mean lines of each frequency
series (Case 4).

ing analytical models to calculate reliability effects and MTTF,
we take advantage of an existing tool called LifeSim [18].
LifeSim is a lifetime reliability simulator that offers a module
named Reliability Management Unit (RMU). It calculates
MTTF by EM and NBTI effects for many-core systems. For
the sake of convenience, we take advantage of the RMU
module by feeding our real experiment data, such as core fre-
quency and hot spot temperature to characterize the reliability
performance. In the meantime we create another script based
on equation (6,7) when calculating MTTF due to HCI, where
we treat Apei, w(Vaq), @ and E, as simple constants.

As a result, EM-related MTTF is illustrated as Fig. 13(a).
Blue, red and yellow bars stand for Linux baseline (LB),
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temperature-based (7B ) and the proposed Hot-Trim mapping
(HT), respectively. The y-axis is normalized such that the
shortest MTTF among all cores under Linux baseline mapping
is 10 years. It can be seen that the EM-related MTTF under
temperature-based mapping is significantly shorter than Hot-
Trim in terms of both average and processor overall. The right-
most bar labeled as Processor indicates that the MTTF of the
entire processor is determined by the minimum MTTF among
all the cores. Core 0O is the most stressed under temperature-
based mapping whereas core 2 is the most stressed under
Linux baseline and Hot-trim. Hot-Trim stresses the cores
much more evenly and leads to the longest average and
overall MTTEF. In detail, Hot-Trim is 30.2% longer than Linux
baseline and 29.6% longer than temperature-based mapping in
terms of processor overall lifetime, which are very significant.

MTTF due to NBTI is shown in Fig. 13(b). NBTI behavior
is quite close between temperature-based and Hot-Trim since
the temperature is close between the two mappings, as we
know that NBTI is primarily dependent on temperature. The
overall MTTF under Hot-Trim is only less than 1% shorter
than temperature-based mapping, and 7.0% longer than the
Linux baseline. HCI-related MTTF has a similar pattern to
the EM-related MTTEF, as shown in Fig. 13(c). Specifically,
Hot-Trim is 31.1% longer than the Linux baseline and 19.6%
longer than the temperature-based technique in terms of overall
lifetime.

As for the migration energy overhead, thanks to Intel’s
Performance Monitor, we measured the entire real processor
energy consumption executing the series of tasks as 2106.8,
2129.9 and 2118.5 Joules under Linux baseline, Temperature-
based and Hot-Trim mapping, respectively. Therefore, the
energy variation caused by the algorithm and task migration
operations is merely marginal. In our method, the manage-
ment cycle in the experiment is chosen as 2 seconds and
CPU performance sampling interval is 200 milliseconds. We
also implemented 1 second per management cycle and 100
milliseconds per sampling interval and found no measurable
difference in the results. The resulting algorithm works quite
well for running all the benchmarks. In general, one should
reasonably choose the length of management cycle and sam-
pling interval depending on the user cases when applying the
proposed algorithm. Moreover, due to the estimation error of
hot spot power densities and the granularity of management,
the lifetimes (Fig. 13 and 14) indeed show some imbalances
between different cores. Ideally, the VLSI lifetime reliabilities
should be perfectly balanced if the hot spot power densities
were perfectly estimated.

We present more results through test case 5 to deliver an
insight on the change of task release interval (At). The only
difference in the settings of test case 5 compared to test case 4
is that the distribution of pseudo-random task release intervals
is changed to At ~ U(10,20) seconds. This means fewer
cores will be busy at the same time as the arrival of tasks
are slower. The mean of temperature traces of the dominant
hot spot HS3 for the cores are shown in Table VI. Further,
the reliability performances are presented in Fig. 14(a), 14(b)
and 14(c).

Moreover, proactive dynamic thermal management (PDTM)
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can be our future research work. The temperature at the
identified hot spots can be proactively predicted because the
real-time power information at those hot spots can be accu-
rately estimated from Intel’s Performance Counter Monitors
(Section V-A). With the predicted temperature in advance,
we can apply a more comprehensive thermal and reliability
management model [35], [36].

VII. CONCLUSION

In this work, we have proposed a new hot-spot-aware task
mapping scheme named Hot-Trim to improve the reliability
and thermal performance of commercial multi-core processors
without degrading the system execution performance. Our
method is motivated by the observation that the power density
hot spots in cores and their reliability in a multi-core processor
are workload dependent and thus can be exploited to improve
the reliability of the system. Experiments on a real Intel Core
i7 quad-core processor executing PARSEC-3.0 and SPLASH-
2 benchmarks show that the core and hot spot temperature can
be even reduced by 1.15~1.31°C. Hot-Trim can improve the
chip’s EM, NBTI and HCI related reliability by 30.2%, 7.0%
and 31.1% respectively compared to Linux baseline without
any performance degradation. Furthermore, it improves EM
and HCI related reliability by 29.6% and 19.6% while further
reduces the temperature by half a degree compared to the
conventional temperature-based mapping technique, proving
that temperature per-core sensing may not lead to the optimal
reliability management solution.
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