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Abstract—This work proposes a new dynamic thermal and
reliability management framework via task mapping and mi-
gration to improve thermal performance and reliability of com-
mercial multi-core processors considering workload-dependent
thermal hot spot stress. The new method is motivated by the
observation that different workloads activate different spatial
power and thermal hot spots within each core of processors.
Existing run-time thermal management, which is based on on-
chip location-fixed thermal sensor information, can lead to
suboptimal management solutions as the temperatures provided
by those sensors may not be the true hot spots. The new method,
called Hot-Trim, utilizes a machine learning-based approach to
characterize the power density hot spots across each core, then
a new task mapping/migration scheme is developed based on
the hot spot stresses. Compared to existing works, the new
approach is the first to optimize VLSI reliabilities by exploring
workload-dependent power hot spots. The advantages of the
proposed method over the Linux baseline task mapping and
the temperature-based mapping method are demonstrated and
validated on real commercial chips. Experiments on a real
Intel Core i7 quad-core processor executing PARSEC-3.0 and
SPLASH-2 benchmarks show that, compared to the existing
Linux scheduler, core and hot spot temperature can be lowered
by 1.15∼1.31◦C. In addition, Hot-Trim can improve the chip’s
EM, NBTI and HCI related reliability by 30.2%, 7.0% and
31.1% respectively compared to Linux baseline without any
performance degradation. Furthermore, it improves EM and
HCI related reliability by 29.6% and 19.6% respectively, and
at the same time even further reduces the temperature by half a
degree compared to the conventional temperature-based mapping
technique.

I. INTRODUCTION

Power density increases with technology scaling, which

can cause severe thermal and reliability problems in high

performance multi-core systems [1]. Temperature and power

has significant impacts on all major long-term reliability

effects such as electro-migration (EM) for interconnects, bias-

temperature-instability (BTI) and hot-carrier-injection (HCI)

for CMOS devices [2]. As a result, many research works have

been investigated to find efficient methods to improve both sys-

tem performance and reliability via dynamic thermal/reliability

management (DTM/DRM) methods, which control the thermal
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and reliability behavior of multi-core systems by online control

such as task migration strategies [3]–[7].

However, existing DTM techniques either using DVFS or

task migration are highly dependent on the on-chip location-

fixed temperature sensors. Due to high design overheads,

currently only a limited number of on-chip digital temper-

ature sensors (DTS) can be allocated on a silicon chip. A

recent study shows that the number of hot spots on a typical

commercial processor far exceeds the amount of embedded

sensors [8]. Consequently, thermal and reliability management

algorithms that solely depend on the sensors become insuffi-

cient for modern multi-core systems, as power and thermal

hot spots distinguish within cores under different workloads

while having the same sensing temperature.

Fig. 1: Measured temperature of a
hot spot versus the nearest sensor
reading

Fig. 1 shows a signif-

icant temperature differ-

ence1 between a hot spot

and the nearest sensor lo-

cation on an Intel Core i7

quad-core processor under

the SPLASH-2 workload

radiosity (only displaying

the quad-core area). There-

fore, as the reliability of a

core is mainly determined

by the thermal hot spots, temperature per-core information

alone is insufficient for DTM/DRM techniques. On the other

hand, recent studies [9], [10] show that one can identify

the power density distribution of a multi-core processor with

advanced thermal characterization.

Based on this observation, in this article, we introduce a

new efficient and scalable task mapping algorithm for the

thermal and reliability management for commercial multi-

core processors via machine learning based modeling for

power density at the true hot spots2. Our work is facilitated by

an advanced thermal imaging system for measuring the spatial

temperature across the full processor. Once temperature maps

are measured, one can obtain the power density maps (the

1Temperatures are measured with a calibrated thermal imaging system (see
Section IV-A).

2In the paper, hot spot is designated for power density hot spot instead
of the traditional thermal hot spot. Power density hot spots are a superset of
thermal hot spots and can be viewed as the potential thermal hot spots in
general.



corresponding heat sources or hot spots) through the thermal-

to-power technique using thermal measurements [10]. After

that, we build a learning-based model for power density at

the major hot spots in cores. We remark that the power or hot

spot identification for commercial multi-core processors under

different workloads can also be carried out on chips with heat

sink cooling in practical work settings [11].

The following summarizes key contributions of this work.

• First, we show that the existing task mapping techniques,

which solely depend on per-core sensor temperature, may

lead to subpar quality solution for chip reliability as the true

hot spots of cores can be stressed unevenly.

• Second, based on this observation, we employ a fast,

run-time accurate machine learning model to estimate the

exact spatial hot spots from the given workloads. With this,

we propose a scalable and efficient task mapping approach

to optimize the reliability of the multi-core system.

• Third, compared to existing works, the new task map-

ping approach is the first one to explore the workload-

dependent power hot spots and its advantages over the

existing Linux task scheduling method and temperature-

based method, and has been demonstrated, validated on

real commercial multi-core processors. Experiments on a

real Intel Core i7 quad-core processor executing PARSEC-

3.0 and SPLASH-2 benchmarks show that, compared to

the Linux baseline, the core and hot spot temperature can

be reduced by 1.15∼1.31◦C. In addition, Hot-Trim can

improve the chip’s EM, NBTI and HCI related reliability

by 30.2%, 7.0% and 31.1% respectively compared to Linux

baseline without any performance degradation. Furthermore,

it improves EM and HCI related reliability by 29.6%

and 19.6% while further reduces the temperature by half

a degree compared to the conventional temperature-based

mapping technique.

This paper is organized as follows: Section II reviews some

related works. Section III discusses three major reliability

effects and their models used in this work. Section IV presents

the thermal imaging system setup and a motivation example

for this work. Section V introduces the proposed hot-spot-

aware task migration method. Section VI presents the results

and comparisons on a real Intel i7 quad-core processor. Finally,

Section VII concludes this paper.

II. RELATED WORK

Khdr et al. [12] introduces a multi-objective DTM method

that aims to efficiently avoid thermal threshold violation and at

the same time keeps the temperature balanced between cores

based on the core temperature. It Derives a regression-based

distributed temperature prediction model and a centralized

task allocation model, it stops tasks that potentially cause

overheating or imbalance of the cores, and resumes the tasks

once there are available cores. Das et al. [13] develops a

DTM technique that takes advantage of both the thermal

profile within (intra) and across (inter) applications based on

Q-learning, which learns the relationship between the task

allocation, dynamic voltage/frequency scaling (DVFS) and

device aging / mean-time-to-failure (MTTF). Lu et al. [14]

presents a task allocation method based on the core and router

temperatures and predicts near-future temperature that assists

the DTM. Their algorithm updates the prediction models

after each allocation based on Q-learning. Q-learning-based

control techniques are often subject to fast rising learning

spaces as the states and actions of systems expand. Iran-

far et al. [15] proposed a machine learning or ML-based

power/thermal management approach that uses a heuristic to

limit the learning space by assigning a specific set of available

actions to each existing state. A recent state-of-the-art DVFS

technique enables scaling down of the management cycle to

microsecond time scale and achieves fast per-core DVFS [16],

which significantly reduces the power consumption across

cores. Recently [17] proposes a deep reinforcement learning

based method to allocate the tasks based on the hot spot

power rather than temperature information, which infers the

power information has great potential to be used to improve

the system and thermal performance of the chip.

III. RELIABILITY MODELS

In this section, we briefly review the three major VLSI

reliability effects: the electro-migration (EM) for intercon-

nects, the negative biased temperature instability (NBTI) and

hot carrier injection (HCI) for MOSFET devices and their

calculation models. We note that the proposed method can

consider other failure effects as well. The three failure effects

are the dominant aging effects in the VLSI systems as EM

will cause the power grid network to be time-varying and

changes the voltage drop over time. NBTI and HCI can lead

to the threshold voltage shift such may cause failure to signal

transition and timing. In addition, calculations for the aging

and lifetime due to EM and NBTI are implemented through

an open source tool – LifeSim [18], which we will explain in

detail in Section VI.

A. EM model

The currently employed method of predicting the time to

failure regarding the EM effect is based on a physics-based EM

analysis method [19], [20]. It comprehensively models the EM

effect considering the void nucleation phase and growth phase

during which the wire resistance starts to change. Specifically,

the void nucleation time can be expressed as:

tnuc ≈ τ∗e
EV
kT e

fvΩ

kT (σres+
eZρl

4Ω
j)In{

eZρl
4Ω j

σres +
eZρl
4Ω j − σcrit

}

(1)

with τ∗ = l2

D0
e

ED
kT

kT
ΩB

. Here, EV and ED are the activation

energy of vacancy formation and diffusion, fv is the ratio

of volumes occupied by vacancy and lattice atom, σres and

σcrit are the residual stress and critical stress. Ω is the atomic

volume, l is the wire segment length, eZ is effective charge

of the migrating atoms, j is current density, T is temperature,

and ρ is the wire electrical resistivity.

At the system level, to model the current density, we follow

the similar formula used in the RAMP [21] and the work

in [22], which can be related to the switching probability of

the line, α, as

j =
CVdd

WH
× f × α (2)
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where C, W and H are the capacitance, width, and thickness,

respectively of the line and f is the clock frequency.

Once the void is formed in the wire it starts to grow and

the wire resistance increases over the time. The drift velocity

of the void edge is expressed as:

θ =
D

kT
eZρj (3)

Further, kinetics of the wire resistance change with respect to

the growth time is approximated as [19]:

∆r(tgrow) = θtgrow



ρTa

hTa(2H +W )
−

ρCu

HW



(4)

where ρTa and ρCu are the resistivity of the barrier material

and copper, W is the line width, H is the copper thickness

and hTa is the barrier layer thickness. The growth time is

calculated for a given resistance percentage change threshold

(such as 10%). The final time-to-failure due to EM effects is

determined by adding the nucleation time and the void growth

time together.

B. NBTI model

Negative biased temperature instability (NBTI) occurs when

negative biased voltage is applied to the gate of a PMOS

transistor, the presence of holes in the channel causes Si-H

bonds to break at the interface between the gate oxide and the

channel, causing positive traps in the interface, which increase

Vth [23]. The reaction rate mainly depends on the temperature

T and the supply voltage Vdd. The model of lifetime reliability

due to NBTI we use is based on the work by Srinivasan et

al. [24]. MTTF due to NBTI at a temperature T, is given by:

MTTF ∝ [(ln(
A

1 + 2e
B
kt

)− ln(
A

1 + 2e
B
kt

− C))×
T

e
−D
kt

]
1

β

(5)

where A, B, C, D, and β are fitting parameters using the

published NBTI failure data [25], and k is the Boltzmann

constant. Based on the model in [24], the values we use are

A = 1.6328, B = 0.07377, C = 0.01, D = −0.06852, and

β = 0.3.

C. HCI model

Hot carrier injection (HCI) refer to the high energetic

carriers, which is the result of high electric fields in the

drain region of a transistor, are injected into the gate oxide.

These carriers form interface states and eventually result in

performance degradation (increase of Vth) in the transistor

under stress [26]. The equation below evaluates the HCI-

induced threshold voltage increase [27].

∆Vth(α, T, Vdd, t) = Ahci · u(Vdd) · v(T ) ·


α · f · t (6)

with

u(Vdd) = e
(
Vdd−Vth

E1
)
, v(T ) = e(−

Ea
kT

) (7)

where t stands for operation time, α is activity factor and

f is core frequency. In addition, tox is the oxide thickness,

and E1 depends on the device specifications, temperature, and

Vdd. Further, Ahci is a technology-dependent constant and

activation energy Ea is considered a positive constant.

Fig. 2: Infrared thermography system

D. Summary of reliability models

In summary, EM causes the power grid network to be time-

varying and changes the voltage drop over time. NBTI and

HCI lead to the threshold voltage shift such that may cause

failure to signal transition and timing. In this work, we set the

failure criterion to be 10%, i.e. 10% wire resistance change

due to EM and 10% change of threshold voltage due to NBTI

and HCI are considered end of lifetime.

IV. OBSERVATION AND MOTIVATION

The analysis, measurements and implementations of this

work are all based on real systems. The reason is measuring

from a real processor when it is executing workloads is more

precise and has more realistic meaning than from computer

simulators. Secondly, open-source computer simulators hardly

include the ready-to-use architecture resources for the latest

off-the-shelf processors.

A. Thermography system setup

In order to acquire precise thermal and power information

within the core, a proper measurement system for spatial

temperature is critical. To this end, we have adopted the

thermography measuring system proposed in [28]. This setup

features a thermoelectric device mounted on the other side

of the motherboard right beneath the processor allowing it to

be cooled from underneath, as opposed to heat sinks drawing

heat upwards. This setup leaves the front side of the processor

fully exposed to the infrared camera without any interference

layer in-between, as shown in Fig. 2. An adjustable DC

power supply is used to control the heat flow through the

thermoelectric device so that the operating conditions can be

matched to the baseline cooling unit (stock heat-sink) using

the calibration method discussed in [28]. Unlike the traditional

flowing-oil-based front-cooling methods [29], no decoupling

procedures are required in this setup. The thermal image

capturing rate can reach as high as 60 frames per second.

B. A glance of hot spots

We first illustrate how the cores can be stressed in various

ways that the sensors cannot tell. Then the idea of optimization

over the existing techniques will be described at a high level

in this section.
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Fig. 3: (a) On-chip sensor readings (one sensor per core). (b)
Measured temperature at the sensor locations (blue dots).

(a) radiosity (b) streamcluster (c) x264

(d) ferret (e) raytrace (f) canneal

Fig. 4: Power patterns of PARSEC-3.0 and Splash-2 benchmark
workloads on a real Intel Core-i7 processor at the core scale (within
the core).

Fig. 1 shows the measured spatial temperature (Intel Core-i7

quad-core) when it is under a workload (Splash-2 benchmark

radiosity). It reveals that the temperature between a true hot

spot and the nearest sensor can be quite different. When

there are many cores under workloads, temperature sensors

are likely to measure the same or similar temperature even

though cores are under different workloads being stressed in

different patterns. We measured the temperatures in the time

axis by the embedded sensors, shown as Fig. 3(a). It is obvious

that temperatures across all sensors, at least two or three, are

often very close during the runtime. Note that the precision

of sensors is only integer. Moreover, as shown in Fig. 3(b),

when four workloads (lu cb, vips, blackscholes and freqmine)

are running on the four cores respectively, the temperatures

at sensor locations measured by the imaging system are 93.5,

93.6, 94.0 and 93.5◦C, where the difference is quite small.

We remark that the thermal hot spots are always the power

density hot spots or the heat-source hot spots. But this is not

true the other way around as shown in a recent study [8]. Heat-

source hot spots can be viewed as potential thermal hot spots

TABLE I: Average Power Density (W/mm2) at Hot Spots for
Various Workloads

Workload HS1 Power HS2 Power HS3 Power

blackscholes 1.04 1.56 1.82

bodytrack 0.92 1.40 1.82

fluidanimate 0.75 1.3 1.8

streamcluster 0.52 1.06 1.57

dedup 0.75 1.0 1.56

facesim 0.75 1.0 1.56

swaptions 0.52 1.0 1.53

lu cb 0.52 1.0 1.52

freqmine 0.52 0.91 1.38

radiosity 0.72 1.1 1.37

vips 0.26 1.0 1.3

radix 0.52 1.0 1.2

ferret 0.52 0.65 0.9

canneal 0.39 0.63 0.6

raytrace 0.56 1.08 1.15

x264 0.82 0.26 0.75

fft 0.5 0.9 1.3

ocean cp 0.26 1.0 1.43

volrend 0.78 1.0 1.3

or their spatial distributions, which can be activated by specific

workload. The hot spots from heat sources or power sources

can provide more useful, especially critical information about

the true thermal hot spot distributions for real commercial

multi-core processors, which is the motivation in this work

to use power density hot spots. In the sequel, for the sake of

simplicity, hot spot simply means power density hot spot and

power or power pattern means the power density or power

density pattern.

We calculate the core’s power patterns of various PARSEC-

3.0 and Splash-2 workloads and some typical patterns are

shown in Fig. 4 as examples, respectively. There are three pri-

mary hot spot locations observed in the core. Some workloads

have higher and sharper power peaks than others, while other

workloads show more even power distribution. Consequently,

utilization of the hardware resources, reflected by the power

density at hot spots, indicates the different stresses of the

silicon chip. Hence, there is a considerable potential for task

migration operations to optimize the thermal and reliability

performance by utilizing the hot spot power information.

For illustration, the typical power density measured at the

hot spots with respect to workloads are listed in Table I, where

the three primary hot spots are named as HS1, HS2 and HS3

are listed. It should be noted that the applications may contain

both serial and parallel threads, and the power density values

listed in Table I are averaged values through the thermal-to-

power calculation when the applications run into a thermal

steady state, hence the parallel phase (also dominant phase)

of the application is considered in this table. The measuring

workflow can be implemented on other chips as well.

V. PROPOSED HOTSPOT-AWARE TASK ALLOCATION

FRAMEWORK

In this section, we will describe the overall workflow for the

proposed task allocation algorithm. The framework consists of
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Fig. 5: Power detector network architecture

two major components – (1) a detector model detecting the

power density of the primary hot spots and (2) a management

controller that collects the power information of those hot

spots of all the cores and controls the allocation of threads. For

the sake of comparison, we will not interfere with the DVFS

policy of the system.

A. Learning-based hot spot modeling and detection

One important aspect of the proposed method is to know

which hot spot locations are active or invoked by the workload

in a core in real-time. This can be achieved by using deep neu-

ral networks. We estimate the power density at the hot spots of

the off-the-shelf multi-core processors during real-time from

the online utilization metrics. Specifically, we implement a

deep neural network (DNN) as a supervised learning model

which can estimate the power densities at hot spots in cores

from the underlying real-time resource utilization information.

In our implementation, we take advantage of a multi-layer

perception (MLP) network with two fully connected layers and

a dropout layer for hot spot power density detection (Fig. 5).

The input data for the network’s training and inference is ob-

tained from Intel’s Performance Counter Monitor (IPCM) [30],

IPCM provides the system-level utilization metrics that we will

be utilizing in this work. For non-Intel chips, the equivalent

performance monitors can be used (i.e. AMD uProf [31]).

IPCM provides the real-time processor package and core-wise

performance metrics such as frequency, energy, instruction per

cycle, cache hit, read/write rate, etc., as well as the sensed

temperature from the embedded sensors. The Intel chip used

in this study, i.e. Core i7-8650U, has 4 cores and each core

supports 2 threads with Intel’s hyperthreading technology.

Table II shows the complete list of IPCM performance metrics

from both the package and core-wise (or thread-wise) domains

that are used in this work. We note that the IPCM-based

full-chip thermal map modeling method has been proposed

recently [32]. There are 30 metrics corresponding to the

whole package domain, and 16 metrics for each core thread.

Considering that hyperthreads may happen on this chip, when

measuring the training data we disabled the hyperthreading

option, having one core only execute one thread at a time

instead of two. In this way, we make sure the externally

captured thermal images are matched for the thread executed

TABLE II: High-level Performance Metrics (Intel PCM)

Package Core

Exec Read C1res% Exec c0res%

IPC Write C2res% IPC c1res%

Freq INST C3res% Freq C3res%

AFreq ACYC C6res% Afreq C6res%

L3Miss Time C7res% L3Miss C7res%

L2Miss PhysIPC C8res% L2Miss Tsens

L3Hit PhysIPC% C9res% L3Hit

L2Hit INSTnom C10res% L2Hit

L3MPI INSTnom% Energy(J) L3MPI

L2MPI C0res% Tsens L2MPI

in the core. Otherwise, the thermal images and the following

calculated power densities would be a contribution of two

separate threads running concurrently on the same core due

to the hyperthreading function. Once the NN model is trained

it can be used in a thread-wise manner as one core’s power

is a combination by two threads. In total, the input vector

contains 46 IPCM metrics for the core-wise (or thread-wise)

hot spot power density detection neural network. In our later

experiments, we limit one core to execute only one thread in

order to reach easier software implementation of the algorithm

in the user space, which will not lose the validity of the

algorithm.

Output data of the network are the power densities at the

identified primary hot spots of the core in real-time. In our

case, the output dimension is three due to three identified hot

spots. Note that the name of the workload is not a factor in

the power detector network. We obtain the core’s hot spot

power densities by deploying a recently proposed thermal-to-

power transformation approach [8]. The corresponding thermal

imaging measurements are collected at the same time when the

processor is under workload. IPCM tool is launched also at

the same time when the processor is under workloads, data

of the performance counter metrics is sampled at the same

frequency and synchronized to the thermal image capturing.

Then, spatial power patterns are calculated through thermal

measurements and power densities at the primary hot spots

are extracted [10]. Finally, IPCM metric vectors serve as

inputs and power densities of hot spots per core serve as

targets for the learning-based network. We measured 7200

thermal images with the highest camera frequency (60 Hz) and

the synchronized IPCM metric vectors corresponding to each

workload application, where 20 applications from PARSEC-

3.0 and SPLASH-2 are measured for the network training

and test procedure. In our study, we observed that the power

patterns of all the workloads are steady during almost their

entire execution time except for a slight instant fluctuation at

the beginning. Moreover, the same workload demonstrates the

same power pattern across different cores when executing on

multiple cores parallelly. This convention actually shrinks the

complexity of model learning and makes the network easy

to train and use. We will present the inference (detection)

accuracy of the online power density detector in the results

section (Section VI).
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Fig. 6: Example of task queue, waiting thread queue and the initial
instant mapping.

B. Task management controller

The task management controller collects power information

of hot spots, maintains the core and task status, and allocate

incoming or ongoing tasks. We define the following concepts

for a clear description.

Task queue: Incoming tasks/applications are put in a queue

following the first-in-first-out (FIFO) order. It is assumed there

is no priority order among them since the priority is not related

to this study.

Parallelism count: The number of parallelisms is usually

determined by the user space. To generalize the new algorithm

for tasks running with multiple parallel threads, each element

in the task queue contains the name of task and the number

of parallel threads it asks for. In our implementation, the task

will be assigned with as many available cores as the user-

determined parallelism count by setting the task’s CPU affinity,

where CPU affinity means a list of cores the task can run on.

Note that we only set/update the task’s CPU affinity in every

management cycle instead of assigning the underlying specific

threads to the specific cores. The order of threads is maintained

by the task itself and the functionality is guaranteed.

Core status: Cores have two status, either available or busy.

Waiting parallelism queue: For an incoming multi-threaded

task that requests multiple cores for parallel execution, the

number of available cores may be less than the number it

requests for. Then all the available cores are assigned to the

task and the excessive number of parallelisms requested is

put in the waiting parallelism queue till other cores become

available.

Management cycle: Threads of tasks are migrated among

cores every management cycle, δt, e.g. 1∼5 seconds.

Sampling interval: Every sampling interval, e.g. 100∼1000

milliseconds, the management controller updates the core,

task, and hot spot status that it maintains, and allocates the

queued task to cores immediately once there are available

cores detected.

Fig. 6 illustrates an example of the task queue, waiting

thread queue, instant mapping and the corresponding power

pattern on a quad-core processor. In this example, task 1 first

occupies two cores, then task 2 occupies one core. Task 3

requesting for two cores is only mapped to one core given

only one core left available. Task 3’s another thread request is

held in the waiting thread queue for the next available core. In

Fig. 7: Task management workflow.

our example, the processor layout follows a central symmetric

pattern.

It should be noted that to reduce the complexity of inter-

fering with the OS scheduler in this work, the management

controller checks the status at each sampling interval from the

user space rather than the kernel space of the OS. In the future,

once the technique has been built into the OS kernel, the model

does not need to check the status using the interval manner

anymore, it should know those events immediately instead. We

also comment that the power detector model does not need to

calculate the hot spot power density all the time. As discussed,

power pattern of the same task is quite steady on the time axis.

Hence, the hot spot power information can be sampled, stored

and reused. If an unknown task comes, the detector model will

wake up for a short period of time intermittently and obtain

an averaged hot spot power data for that task. In this way, the

computation cost by the power detector model is much shrunk.

Fig. 7 presents the workflow of the management controller.

At the top, the model accesses the multi-core system infor-

mation it needs, including the core status, queue status and

hot spot powers. In each information sampling cycle, it first

checks if there are available cores. When yes, it then checks

the waiting thread queue to see if the ongoing task needs more

cores. It always allocates the waiting thread before the next

task unless the waiting threads queue is empty (i.e. FIFO).

When available cores are not enough for an incoming task

from the task queue, the task will be mapped to all the

available cores and registered to the waiting thread queue for

future available cores.

In every management cycle, the controller migrates the

ongoing tasks from cores to cores according to the proposed

mapping algorithm, which will be discussed in the next

subsection. Afterward, the controller updates the system status

it maintains.
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Algorithm 1 Task Migration in A Management Cycle

Input: M cores, N ongoing tasks, H hot spots per core,

current task map and performance counter metrics (IPCM)

Output: New task map newMap

1: curMap← [tsk1,1, .., tski,m, .., tskN,M ]

2: for i = 1 to N do

3: Ptsk,i ← [p1, .., pj , .., pH ]i = Net(IPCM(tski,m))
4: Pmax

tsk,i ← max(Ptsk,i)
5: hwst

tsk,i ← argmax(Ptsk,i), 1 ≤ hwst
tsk,i ≤ H

6: end for

7: maxPwrs← [Pmax
tsk,1, .., Pmax

tsk,i , .., Pmax
tsk,N ]

8: wstHSs← [hwst
tsk,1, .., hwst

tsk,i, .., hwst
tsk,N ]

9: sortedTsk ← argsorttsk(maxPwrs, reverse = true)
10: Sort wstHSs by the same order to match the tasks in

sortedTsk

11: Initialize Cores← set{1, 2, ..,M}
12: Initialize newMap← [None1, .., Nonem, .., NoneM ]∗

13: for i = 1 to N do

14: tski ← sortedTsk[i]
15: h← wstHSs[i]
16: Pc,h ← [p(c,1)[h], .., p(c,m)[h], .., p(c,M)[h]]
17: prefCoreLst← argsortc(Pc,h)
18: Initialize mappedCorestsk,i ← set{ }
19: for core in prefCoreLst do

20: if core in Cores then

21: add core to mappedCorestsk,i for tski
22: remove core from Cores

23: end if

24: end for

25: Update newMap← mappedCorestsk,i
26: end for

27: Use newMap for task migration operation

TABLE III: Exemplary Ordering of Tasks and Cores and Migration

Task Order Worst Hot Spot Preferred Cores Mapped Cores

1) Tsk 1 HS3: 1.8 W/mm
2 1, 3, 0, 2 1, 3

2) Tsk 3 HS2: 1.4 W/mm
2 1, 0, 2, 3 0

3) Tsk 2 HS3: 1.2 W/mm
2 1, 3, 0, 2 2

C. Proposed mapping control algorithm

As we already observe that the power (density) at the

hot spots can vary considerably depending on the specific

workloads. The higher power peaking at the hot spot, the

more severe threat to the core’s reliability. And the longer

time the hot spot has been stressed, the lower reliability, too.

Therefore, we develop a heuristic mapping algorithm that

allocates tasks such that the average power peaking at the

hot spots is mitigated. The mapping algorithm deals with two

scenarios, one is migrating the ongoing tasks among cores,

and the other is mapping the waiting threads or an incoming

task to the available cores.

1) Migrate the tasks: Suppose the processor has M cores

where each core has H primary hot spots. And the current task

map corresponding to the ongoing N (N ≤M ) tasks is noted

(a)

(b)

Fig. 8: (a) Task migration in a management cycle. (b) Example of
mapping a waiting thread to the available cores.

as [tsk1,1, .., tski,m, .., tskN,M ], where tski,m means the ith

task running on the mth core and can be None if no task runs

on that core. One task may run on multiple cores. Power at

all H hot spots of a core activated by the task tski is noted as

Ptsk,i = [p1, .., pj , .., pH ]i, where pj means the power at the

jth hot spot activated by tski. The proposed task migration

algorithm is elaborated in Algorithm 1. We firstly estimate the

power at hot spots activated by every running task (line 2-3)

through the machine learning-based power detector. And find

the maximum power Pmax
tsk,i of hot spots (line 4) and the worst

hot spot hwst
tsk,i (line 5) activated by that task. Then we sort

the tasks by how stressful they are by the maximum power

of hot spots they activate (line 7-9). The task having a higher

maximum power of hot spots is considered more stressful. If

two tasks stimulate the same maximum power (not necessarily

on the same hot spot), then compare their second highest hot

spot power, and so on so force. For example, according to the

data shown in Table I, blackscholes should be ordered ahead

of bodytrack, then fluidanimate. Then, similarly, for each task

the cores are ordered from the most preferred to least preferred

(prefCoreLst) with respect to that task (line 13-17). Here, h

indicates the worst hot spot that will be stressed by this task

most and p(c,m)[h] denotes the accumulated power (energy) at

the hot spot h of the core m. Line 19-24 map the task based
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on the order of its preferred cores. The task which is more

stressful is taken care of earlier as having higher priority to

pick the preferred cores than the less stressful tasks. If some

preferred cores are already scheduled for other tasks in this

management cycle, then these cores will be skipped for this

task.

Once the new task map has been obtained, the task man-

agement controller migrates the tasks for this cycle. Following

the example in Fig. 6, Table III shows the order of the tasks,

the order of their preferred cores and the newly mapped cores,

respectively. Fig. 8(a) further illustrates the resulted mapping

diagram for the management cycle.

2) Map the waiting threads: This is similar to migrating

the tasks. Locate the hot spot the targeted task will stress

most and order the cores by accumulated hot spot power at

that location. For example, if we are to allocate threads of

canneal, then the cores should be ordered by their HS2 power

in the management cycle because HS2 is the worst hot spot

stimulated by canneal. Following the example shown in Fig. 6,

Fig. 8(b) shows mapping a waiting thread of task 3 to the best

available core, core 1, when core 0,1 and 2 become available

simultaneously.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present the results for the proposed

hotspot-aware task control method, Hot-Trim, for thermal and

reliability management of multi-core processors. We imple-

ment and validate our method on a commercial Intel i7-8650U

processor that features 4 CPU cores with PARSEC-3.0 and

SPLASH-2 benchmark workloads [33], [34] (we write the

benchmark workloads as tasks to be brief in this paper).

First, we present the performance of the power density

detector neural network. We measured 7200 thermal images

with the highest camera frequency (60 Hz) and the synchro-

nized IPCM metric vectors corresponding to each workload

application, where 20 applications from PARSEC-3.0 and

SPLASH-2 are measured for the network training (80% data)

and test procedure (20% data). 20% of training data is used

for validation during the training procedure. Fig. 9 shows the

training loss and validation loss during the training procedure

of 150 epochs. We mark that the specific configuration of

the MLP network (# of nodes, # of layers, etc.) is not an

exact science. In this work, we used one hidden layer with 75

nodes and a dropout layer with a 0.5 ratio between the input

and output layers, and the learning rate is 0.0005. We did

not observe overfitting on the trained network model. Fig. 10

illustrates the comparison between the estimated power density

and the measured power density traces at the identified hot

spots, where the estimated power density is obtained from the

learning-based power density detector neural network and the

measured power density is obtained through the thermal-to-

power method [8], [10]. As we can see, the estimated power

traces align quite well with the real measured power traces. It

should be noted that in the training procedure, thermal and

IPCM data is obtained with the highest camera frequency.

Whereas in the following management experiments, the cycle

period is chosen as 2 seconds and IPCM sampling interval
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Fig. 9: Power density detector neural network learning curves.
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Fig. 10: Power density (W/mm2) V.S. time steps (60 Hz) for
workloads. Estimated power density compared to the measured power
density at the identified hot spots.

is 200 milliseconds. In our experiments, we observe that the

power pattern of the running task usually takes only 200∼300

milliseconds to become steady after launching, as examples

shown in Fig. 10. The migration and sampling frequencies are

relatively low but sufficient. In this work, we obtain the power

density estimation from the IPCM once at the end of every

management cycle, i.e. before the next migration, and average

the power density estimations after every management cycle

of the task and average between cores if running on multiple

cores. The computation overhead is reasonably low such that

the online inference time is less than 100 µs and the overall

computational time regarding the whole Algorithm 1 in one

management cycle is between 300∼400 µs. We will present

more details in the next subsection.

Second, we compare the performance of the proposed Hot-

Trim with existing mapping methods. In this work, we com-

pare three methods, i.e. Linux baseline mapping, temperature-

based mapping and the proposed Hot-Trim mapping in terms

of runtime performance, thermal behavior and the three critical

reliabilities as mentioned earlier. Specifically, the Linux base-

line mapping means when allocating the tasks, tasks will be

launched without assigning the CPU core affinities. We let the

OS scheduler choose the CPU cores automatically to execute

the tasks. For temperature-based mapping, we implement the

most popular greed-based mapping policy such that the task
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TABLE IV: Test Cases of Task Series

Test Cases Task Series Input Size

Case 1

[(ferret, 4), (streamcluster, 2), (canneal, 2),

(raytrace, 2), (bodytrack, 1), (lu cb, 2),

(radix,2), (dedup, 2), (fft, 2), (vips, 1),

(facesim, 2), (freqmine,1), (fluidanimate, 2),

(bodytrack, 2), (ferret, 4)]

Large

Case 2
[(freqmine, 2), (blackscholes, 1), (dedup, 1),

(canneal, 2), (radix, 2)]
Native

Case 3
[(vips, 2), (blackscholes, 1), (dedup, 1),

(radix, 1)]
Native

is always mapped or migrated to the coolest core based on the

thermal measurements of on-chip sensors. If there are multiple

tasks executing on multiple cores, the tasks executing on the

hot cores will be migrated to the cooler cores. Each mapping

method will be deployed to execute the same series of tasks.

In the meantime, performance counter metrics and thermal

images of the full chip will be captured to investigate the

runtime performance, thermal behavior and reliabilities. To

make sure the comparison is comprehensive, we have gone

through a few different experiment scenarios.

A. Comparison in system performance

First, we start by investigating whether the proposed method

degrades the runtime performance and how it compares to the

Linux baseline, in other words, whether the total execution

time is prolonged. If it degrades the original performance

seriously then there would be no sense to propose more.

The Linux kernel version on the test processor is 5.0.9-

301.fc30.x86, and the OS distribution is Fedora 30. Note that

in this work we only deploy the task mapping policy but

not the DVFS scheduling, instead, we let the OS handle the

DVFS as it normally does. Firstly, we compose diverse task

series that contain various numbers and types of tasks. Each

element in the task series is presented as (task name, # of

threads needed). We also deploy two different input dataset

size, Large and Native for the tasks in the PARSEC-3.0 and

SPLASH-2 benchmarks. The user time of tasks with Large

input size usually lasts for about a few seconds to half a

minute, and with Native input size lasts for a few minutes.

In our implementation, we deploy python scripts for the high-

level control algorithm and machine learning-based power

detector and use batch scripts (bash shell) for direct task

mapping and migration operations. The tasks and number of

parallel threads are randomly chosen and the series of tasks

in our test cases are listed in Table IV. The management

cycle period is chosen as 2 seconds while the processor status

and IPCM sampling interval are 200 milliseconds. Since we

inspect the total execution time of a series of tasks, there

will be no idle time for any core. This means once a task

is complete on a core(s), this core(s) will be assigned with

the next task immediately unless all the tasks in the queue are

finished.

In order to make a fair comparison, each run must be

launched under the same initial thermal condition. The chip is

totally cooled to the initial temperature (about 30◦C) before the

next run. And test cases are run many times to minimize the

effects of random factors, such as ambient airflow or on-chip

data caching. Please note that the cooling efficiency is forced

constant all the time during the experiment. Back-side liquid

circulation is at a constant flow rate, besides, the thermal-

electric device which transfers heat from the motherboard

downwards to the liquid circulation is kept at constant power

at 62 Watts.

As shown in Table V, the proposed technique will not

degrade the system performance. Actually, the average exe-

cution time of the whole series of tasks is slightly decreased

by 1.4∼4.1%. It is interesting that one or two of the slow

runs under Linux are considerably longer than the average

time, which we are not sure about the reason. However, the

execution time by Hot-Trim is quite stable. As mentioned

in Section V-B, incoming tasks are launched following a

first-in-first-out (FIFO) order assumed by the series (task

queue). When conducting the experiment under Linux default

mapping, the task execution order is still determined by the

FIFO. Essentially, we use a python script to launch the task

one after one once there are available cores or previous tasks

are done. Task is launched without setting its CPU affinity,

hence the core assignment is decided by Linux. In this way,

we could maximize the identity of other factors but only leave

the mapping decisions to be different when comparing with

temperature-based and the proposed algorithm. It is also more

realistic that different tasks randomly come in the time axis

than launching them all together. Hence, the task order or

thread order is not within the scale of this study. The execution

time (min, max, and average) listed in Table V pertains to the

variation of a single run of the series of tasks.

On the other hand, the Hot-Trim task mapping algorithm

reduces the average core temperature by about 1.21 ∼ 1.31◦C

degrees and the temperature is constantly lower for all test

cases compared to Linux baseline as shown in Table V.

It should be noted that the temperature reductions are all

measured from the thermography system. Temperature at the

truly identified hot spots reflects the same trend between

the two mapping ways. We measured that the maximum

temperature at the identified hot spots for different mapping

methods is very similar (at around 95◦C). However, the high-

temperature duration and temperature spatial distribution vary.

The average temperature at the worst hot spot HS3 of each

individual core is around 1.5∼2 degrees higher than its average

core temperature.

We note that the new task mapping method has no obvious

effect on suppressing peak temperature in this study. The main

reason is that the maximum temperature at the identified hot

spots is determined by some heavy tasks such as blackscholes,

bodytrack and fluidanimate regardless of which core they are

assigned to as all the cores are homogeneous. As a result, as

long as they are executed in the experiments, we will observe

the similar maximum temperature regardless of the mapping

method used.

B. Thermal and reliability improvement

This subsection compares the thermal behavior and VLSI

reliabilities regarding EM, NBTI, and HCI among the three
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TABLE V: Linux V.S. Hot-Trim: Performance and Temperature

Test Cases Total Execution Time (seconds) Avg. Core Temperature (◦C)

Linux Hot-Trim
Avg dt (%) Linux Hot-Trim Reduction (dT)

Min Max Avg Min Max Avg

Case 1 58.16 62.18 61.03 56.15 61.17 59.84 -2.0% 85.98 84.67 -1.31

Case 2 321.6 358.7 341.1 318.6 333.7 327.2 -4.1% 92.10 90.89 -1.21

Case 3 163.3 165.3 164.0 158.3 163.4 161.7 -1.4% 86.39 85.13 -1.26
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Fig. 11: Temperature at the identified true hot spot location HS3 for
each core under three mapping techniques (Case 4).

mapping methods. In this experiment, under each mapping

method, a series of randomly chosen tasks are released one

after one with random intervals between releasing two tasks

in the timeline to mimic task allocations in real processors. To

make a fair comparison and minimize the effects of random

factors, the tasks are chosen in a pseudo-random way as

well as the release intervals. In this way, all three mapping

techniques will deal with identical workloads and identical

arrival times of the workloads. To be simple and without

losing the generality, we release 30 randomly chosen tasks

one after one intermittently. The time interval (∆t) between

releasing two consecutive tasks satisfy a uniform distribution

∆t ∼ U(4, 12) seconds. The minimum and maximum interval

are 4 and 12 seconds, respectively. This testing scenario is

called Case 4. To further minimize the effects of random

factors, the same series of tasks are executed under every

mapping technique many times and each run starts under the

same initial thermal condition.

Fig. 11 compares the temperature at the identified hot spot

TABLE VI: Mean of Temperature over Time at the Worst Stressed
Hot Spot Location HS3 of Each Core

Alg. Core 0 Core 1 Core 2 Core 3 Max Avg

Case 4

LB 80.81 80.79 77.43 79.18 80.81 79.55

TB 78.77 79.32 79.11 78.58 79.32 78.94

HT 79.18 79.43 76.37 78.62 79.43 78.40

Case 5

LB 70.18 65.08 69.64 65.96 70.18 67.72

TB 66.98 67.52 66.92 67.24 67.52 67.16

HT 66.76 67.93 64.81 66.71 67.93 66.55

location HS3 with respect to each core under the three map-

ping techniques when releasing tasks with interval distribution

∆t ∼ U(4, 12). In our case, HS3 is the most stressed one of

the three identified primary hot spots. LB, TB, and HT are

briefed for Linux baseline, temperature-based and Hot-Trim

mapping, respectively. It can be observed from the plots that

most of the time the temperature trend under HT is more

similar to TB compared with LB. Mean of the temperature

curves shown in Fig. 11 at the HS3 for each core are

compared in Table VI. Thermal performance under Hot-Trim

is obviously better than Linux baseline across all cores and is

1.15◦C lower on average in this test case. Under temperature-

based mapping, temperature is quite balanced across all cores,

which is expected. Though, its average temperature is still

higher than Hot-Trim.

Core frequencies under the three mapping policies are

shown in Fig. 12. In the experiment case, core frequencies

show similar amplitude where the cores operate at around

1∼1.2 GHz while under load and gate to near-zero frequency

while they are idle. Frequency throttling seems not to show

observable differences among the three mapping methods

while the cores are under load. We remark that the system

DVFS governor remains untouched during the experiments,

hence changes in the frequency pattern for all cores are nat-

urally governed by the system DVFS governor, and different

mapping methods are treated constantly. It can be observed

that the similar core utilization does not necessarily give

similar lifetime reliability. A good example is that the averaged

frequency of core 1, 2, and 3 under Linux baseline mapping

are very close (about 0.62 GHz, Fig. 12(a)), however, their

lifetime reliabilities vary much more, which we will describe

in detail later. This is reasonable because cores can have hot

spots stressed differently by executing different tasks.

Although temperature does not distinguish much between

temperature-based and Hot-Trim mapping, VLSI reliability

performances distinguish quite significantly. When implement-
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Fig. 12: Core frequencies (GHz) V.S. time steps when processor
under different mapping policies: (a) Linux baseline (b) Temperature-
based (c) Hot-Trim. Red lines are the mean lines of each frequency
series (Case 4).

ing analytical models to calculate reliability effects and MTTF,

we take advantage of an existing tool called LifeSim [18].

LifeSim is a lifetime reliability simulator that offers a module

named Reliability Management Unit (RMU). It calculates

MTTF by EM and NBTI effects for many-core systems. For

the sake of convenience, we take advantage of the RMU

module by feeding our real experiment data, such as core fre-

quency and hot spot temperature to characterize the reliability

performance. In the meantime we create another script based

on equation (6,7) when calculating MTTF due to HCI, where

we treat Ahci, u(Vdd), α and Ea as simple constants.

As a result, EM-related MTTF is illustrated as Fig. 13(a).

Blue, red and yellow bars stand for Linux baseline (LB),

temperature-based (TB ) and the proposed Hot-Trim mapping

(HT), respectively. The y-axis is normalized such that the

shortest MTTF among all cores under Linux baseline mapping

is 10 years. It can be seen that the EM-related MTTF under

temperature-based mapping is significantly shorter than Hot-

Trim in terms of both average and processor overall. The right-

most bar labeled as Processor indicates that the MTTF of the

entire processor is determined by the minimum MTTF among

all the cores. Core 0 is the most stressed under temperature-

based mapping whereas core 2 is the most stressed under

Linux baseline and Hot-trim. Hot-Trim stresses the cores

much more evenly and leads to the longest average and

overall MTTF. In detail, Hot-Trim is 30.2% longer than Linux

baseline and 29.6% longer than temperature-based mapping in

terms of processor overall lifetime, which are very significant.

MTTF due to NBTI is shown in Fig. 13(b). NBTI behavior

is quite close between temperature-based and Hot-Trim since

the temperature is close between the two mappings, as we

know that NBTI is primarily dependent on temperature. The

overall MTTF under Hot-Trim is only less than 1% shorter

than temperature-based mapping, and 7.0% longer than the

Linux baseline. HCI-related MTTF has a similar pattern to

the EM-related MTTF, as shown in Fig. 13(c). Specifically,

Hot-Trim is 31.1% longer than the Linux baseline and 19.6%

longer than the temperature-based technique in terms of overall

lifetime.

As for the migration energy overhead, thanks to Intel’s

Performance Monitor, we measured the entire real processor

energy consumption executing the series of tasks as 2106.8,

2129.9 and 2118.5 Joules under Linux baseline, Temperature-

based and Hot-Trim mapping, respectively. Therefore, the

energy variation caused by the algorithm and task migration

operations is merely marginal. In our method, the manage-

ment cycle in the experiment is chosen as 2 seconds and

CPU performance sampling interval is 200 milliseconds. We

also implemented 1 second per management cycle and 100

milliseconds per sampling interval and found no measurable

difference in the results. The resulting algorithm works quite

well for running all the benchmarks. In general, one should

reasonably choose the length of management cycle and sam-

pling interval depending on the user cases when applying the

proposed algorithm. Moreover, due to the estimation error of

hot spot power densities and the granularity of management,

the lifetimes (Fig. 13 and 14) indeed show some imbalances

between different cores. Ideally, the VLSI lifetime reliabilities

should be perfectly balanced if the hot spot power densities

were perfectly estimated.

We present more results through test case 5 to deliver an

insight on the change of task release interval (∆t). The only

difference in the settings of test case 5 compared to test case 4

is that the distribution of pseudo-random task release intervals

is changed to ∆t ∼ U(10, 20) seconds. This means fewer

cores will be busy at the same time as the arrival of tasks

are slower. The mean of temperature traces of the dominant

hot spot HS3 for the cores are shown in Table VI. Further,

the reliability performances are presented in Fig. 14(a), 14(b)

and 14(c).

Moreover, proactive dynamic thermal management (PDTM)
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Fig. 13: Normalized MTTF considering (a) EM, (b) NBTI and (c) HCI reliability effects regarding test case 4 where task release intervals
satisfy ∆t ∼ U(4, 12).
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Fig. 14: Normalized MTTF considering (a) EM, (b) NBTI and (c) HCI reliability effects regarding test case 5 where task release intervals
satisfy ∆t ∼ U(10, 20).

can be our future research work. The temperature at the

identified hot spots can be proactively predicted because the

real-time power information at those hot spots can be accu-

rately estimated from Intel’s Performance Counter Monitors

(Section V-A). With the predicted temperature in advance,

we can apply a more comprehensive thermal and reliability

management model [35], [36].

VII. CONCLUSION

In this work, we have proposed a new hot-spot-aware task

mapping scheme named Hot-Trim to improve the reliability

and thermal performance of commercial multi-core processors

without degrading the system execution performance. Our

method is motivated by the observation that the power density

hot spots in cores and their reliability in a multi-core processor

are workload dependent and thus can be exploited to improve

the reliability of the system. Experiments on a real Intel Core

i7 quad-core processor executing PARSEC-3.0 and SPLASH-

2 benchmarks show that the core and hot spot temperature can

be even reduced by 1.15∼1.31◦C. Hot-Trim can improve the

chip’s EM, NBTI and HCI related reliability by 30.2%, 7.0%

and 31.1% respectively compared to Linux baseline without

any performance degradation. Furthermore, it improves EM

and HCI related reliability by 29.6% and 19.6% while further

reduces the temperature by half a degree compared to the

conventional temperature-based mapping technique, proving

that temperature per-core sensing may not lead to the optimal

reliability management solution.
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