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ABSTRACT: Artificial leaves that produce fuels using sunlight hold
promise for sustainably powering the planet, but they require advance-
ments in energetic efficiency, cost effectiveness, and operational
durability. Herein, we showcase the application of combined surface-
sensitive spectroscopic techniques to durability studies that characterize
structural changes accompanying functional degradation and go beyond
just observing changes in function over time. The photoelectrodes used in
this work feature a polymeric surface coating functionalized with
molecular complexes that catalyze the hydrogen evolution reaction.
Using a polymeric layer to interface the light-harvesting component with
catalytic sites enables reassembly of catalysts that detach during operation,

establishing a degrade-repair cycle.
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Artiﬁcial leaves that use sunlight for efficiently powering
energetically uphill chemical transformations offer path-
ways to sustainably manufacturing fuels and other industrially
relevant chemical products.'~* Efficiency, however, is not
enough for large-scale, global deployment. Scalability requires
the component materials are also relatively low-cost to
manufacture and durable. Nature offers some design
aspirations in the process of biological photosynthesis,
especially as they relate to using earth-abundant, low-cost
elements and achieving durability via repair rather than
inherent material stability.

In this Letter, we investigate the degradation in performance
and structure of a photoelectrode featuring a polymeric coating
applied to a visible-light-absorbing semiconductor. The surface
coating provides a molecular interface, where catalysts are
assembled at specific functional-group sites along the surface-
grafted coating. This model system (ColPPylGaP) (Figure 1a)
is composed of a gallium phosphide (GaP) photocathode and
a polypyridyl (PPy) surface coating that is used to assemble
cobaloximes (Co), a relatively well-studied class of molecular
catalysts for the hydrogen evolution reaction.’™” Surface-
sensitive structural characterization performed prior to and
following degradation in rates of fuel formation indicates that
detachment of catalysts, resulting from breaking of the pyridyl
nitrogen—cobalt coordination during redox cycling, is respon-
sible for the changes in function over time. We further show
the polymeric architecture can be used to reassemble catalytic
components that degrade during photo-electrosynthetic fuel
production. These studies demonstrate that, although coor-
dinate bonds between a metal center and a polymeric
functional group can be labile, they offer opportunities to
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explore the chemistry and engineering of achieving durability
via repair rather than inherent material stability. In the context
of producing solar fuels, this could involve operation by day
and repair by night.

Previous work from our group describes synthetic method-
ologies for chemically grafting thin-film polymeric coatings
onto conducting as well as semiconducting surfaces.'’ "
Overarching goals of these efforts include building protein-like,
soft-material environments on solid-state electrode surfaces.
This approach enables coordination of earth-abundant metal
centers within the three-dimensional molecular coatings with
the purpose of modulating, and ultimately controlling, the
electronic and catalytic properties of the overall assembly. The
grafting procedures leverage the UV-induced surface-attach-
ment and polymerization chemistry of alkenes®'™** and
provide model assemblies for studying the effects of polymeric
encapsulation on electrocatalytic''®"? as well as photo-
electrosynthetic'®'*~'"* performance. Our previous work
demonstrates (1) the grafting method can be utilized on a
range of oxide-terminated surfaces,'”>° (2) the polymer
grafting is not limited to a specific crystal-face orientation,'”"!
(3) the film thickness of the grafts—ranging from a few

nanometers to submicrons—is sensitive to the reaction solvent
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Figure 1. (a) Schematic representation of the ColPPylGaP degrade-repair cycle. (b) Schematic illustration of the three-electrode assembly featuring
a molecular-modified p-type semiconductor working electrode under steady-state illumination at open-circuit conditions. Ecy is the conduction
band-edge potential, Eyg is the valence band-edge potential, Eg, is the electron quasi-Fermi level, Ep;, is the hole quasi-Fermi level, E,, is the
catalyst potential, Ey'/y, is the thermodynamic hydrogen potential, and V,,, is the photovoltage. (c) Voltammograms recorded using ColPPylGaP

electrodes prior to (red) and following (red dash) degradation via controlled-potential electrolysis at 0 V vs RHE (see Figure 1d and related
caption) as well as subsequent repair via wet-chemical processing (green). Voltammograms recorded using PPylGaP electrodes prior to (blue) and
following (blue dash) the same controlled-potential electrolysis experiments are included for comparison. All voltammograms were recorded in 0.1
M phosphate buffer (pH 7) solution, at a scan rate of 100 mV s, and under 100 mW cm™ illumination. (d) Current density vs time plots
obtained via 15 min of controlled-potential electrolysis at 0 V vs RHE using either ColPPylGaP (red) or PPylGaP (blue) electrodes in 0.1 M

phosphate buffer (pH 7) and under 100 mW cm™? illumination.

conditions, illumination conditions, and the chemical nature of
the underpinning support (including doping levels in the case
of semiconductors), *~*° (4) the polymeric functional groups
can be modified to control the (photo)electrosynthetic activity
of the overall assembly,'” (5) synthetic manipulation of the
attached catalysts’ ligand environment at the molecular level
affects the photo-electrochemical response observed at the
construct level,"> and (6) the polymeric immobilization
strategy is not limited to a single class of molecular catalysts
and, thus, provides a modular-assembly approach.'*"®

To facilitate comparisons between results obtained via
grazing angle attenuated total reflection Fourier transform
infrared (GATR-FTIR) spectroscopy—which probes up to
micrometers in depth—and X-ray photoelectron (XP) spec-
troscopy—which probes only a few nanometers in depth—the
polypyridyl-modified samples (PPylGaP) described in this
Letter were intentionally prepared with a relatively thin PPy
coating (~2.31 + 0.01 nm, as determined by spectroscopic
ellipsometry). Following postsynthetic modification of the PPyl
GaP samples, via wet chemical processing with a 1.0 mM
methanolic solution of the cobalt-containing precursor Co-
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(dmgH,)(dmgH)Cl, (dmgH = dimethylglyoximate mono-
anion and dmgH, = dimethylglyoxime, see experimental
methods and Scheme S1 of the Supporting Information for
further details), 31 + 1% of the pyridyl groups on the surface
graft are coordinated to a cobaloxime cobalt center (as
determined via XP spectroscopy analysis, see Table S3). This
yields a per-geometric-area cobaloxime loading of 1.75 + 0.06
nmol ¢cm™® with a film thickness (as determined by
spectroscopic ellipsometry) that increases to 5.16 + 0.01 nm
(Figure S6). These film thickness and loading conditions were
also selected to facilitate structural characterization, performed
prior to and following photo-electrosynthetic operation with
minimized experimental times and, thus, reduced risks of
contaminating the samples. In addition, a customized photo-
electrochemical cell that makes electrical contact with the
unfunctionalized face of the semiconductors and facilitates
relatively rapid loading and unloading of electrode samples to
and from the cell was used in these experiments (Figure S1).

The photo-electrosynthetic performance of the GaP, PPyl
GaP, and ColPPylGaP electrode assemblies was assessed via a
combination of three-electrode voltammetry (Figure 1c and
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Figure S30) and controlled-potential electrolysis (Figure 1d
and Figure S31) using aqueous solutions buffered at pH 7 (0.1
M phosphate buffer) and 100 mW cm™ simulated-solar-
illumination (Figure S34). Results from these experiments,
including the short-circuit current densities (Jsc), open-circuit
voltages (Voc), and fill factors (ff), measured prior to and
following 15 min of controlled-potential electrolysis at 0 V
versus the reversible hydrogen electrode (RHE) potential, are
summarized in Table S4. Following the initial voltammetry and
controlled-potential electrolysis experiments recorded using
the ColPPylGaP working electrodes, the Jsc decreased from
0.98 + 0.01 to 0.84 + 0.04 mA cm > (corresponding to a 14 +
3% decrease in activity). Likewise, the Vo decreased from
0.718 + 0.005 to 0.65 + 0.03 V vs RHE (corresponding toal0
+ 4% decrease), and the ff decreased from 0.17 + 0.01 to 0.14
+ 0.02 (corresponding to a 20 + 4% decrease). These
electrodes also showed a decline in the steady-state photo-
current recorded during the 15 min of controlled-potential
electrolysis, from an initial value of 1.05 + 0.03 mA cm™ to a
final value of 0.63 + 0.07 mA cm™ (an overall 39 + 6%
decrease). Results from control experiments, performed using
GaP and PPylGaP as the working electrodes, are included as
Supporting Information (Table S4).

Spectroscopic measurements, including GATR-FTIR spec-
troscopy and XP spectroscopy, were performed prior to and
following the series of voltammetry and controlled-potential
electrolysis experiments. GATR-FTIR spectroscopy was used
to monitor the relative intensity of absorption bands on the
surfaces that are associated with vibrational modes of free-base
pyridyl groups versus pyridyl groups coordinated to cobalox-
ime units (Figure 2 and Figure S13). In particular, the relative
intensity ratios of peaks assigned to the NO™ stretching mode
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Figure 2. (a) FTIR transmission spectrum of the model cobaloxime
complex, Co(dmgH),PyCl, in KBr (red solid). (b) GATR-FTIR
spectrum of PPylGaP recorded using initial sample (blue solid). (c)
GATR-FTIR spectra of ColPPylGaP samples recorded using initial
(red solid), postdegrade (see Figure 1d and related caption) (red
dash), and postrepair (green solid) samples. All spectra are normalized
to the absorbance peak at 1600 cm™".

of intact cobaloximes (1240 cm™')* and those assigned to
either the C=N (1600 cm™) or C—N (1417 cm™") vibrations
of the polypyridyl layer were compared before and after photo-
electrosynthetic operation.”® Comparing relative intensity
ratios, rather than absolute intensities, avoids sample-to-sample
discrepancies in signal intensities arising from varying contact
between the GaP semiconductor samples and the attenuated
total reflectance crystal of the GATR-FTIR unit. These results
are summarized in Table S1 and indicate a 74 + 2% reduction
of the cobaloxime loadings following the series of voltammetry
and controlled-potential experiments (Table S1).

XP spectroscopy yields additional insights on the structural
differences of the electrode coatings prior to and following
photo-electrosynthetic operation. As compared with the N 1s
core-level XP spectra of PPylGaP surfaces, which display a
single N 1s feature assigned to pyridyl nitrogens of the surface
graft,'” the N 1s core-level XP spectra of ColPPylGaP surfaces
are more complex, with overlapping spectral features that are
fit using three components (Figure 3). These include a
component centered at 398.0 eV assigned to free-base pyridyl
nitrogens (abbreviated as PyN), a component centered at
399.5 eV assigned to glyoximate nitrogens of the cobaloxime
ligands (abbreviated as GlyN), and a component centered at
400.5 eV assigned to pyridyl nitrogens coordinated to cobalt
centers of cobaloximes (abbreviated as PyN-Co).

Comparisons of the PyN-Co/PyN signal intensity ratios,
determined prior to and following photo-electrosynthetic
operation, indicate a 79 + 1% reduction of the cobaloxime
surface loadings following the series of voltammetry and
controlled-potential experiments (Table S2). Further structural
information is provided by comparing the total Co 2p/N 1s
spectral intensity ratios, which indicate an 84 + 2% reduction
of the cobaloxime surface loadings following the series of
photo-electrochemical experiments (Table S3). Although there
is a significant decrease in the Co 2p core-level signal intensity
following photo-electrosynthetic operation, the Co 2p features
maintain a 2:1 branching ratio with a 15.0 eV peak separation.
There are also no detectable peaks corresponding to the
presence of cobalt oxide or metallic cobalt (Figure S29),
indicating the remnant cobalt signals are associated with intact
cobaloxime complexes.*”’

Given our spectroscopic measurements indicating (1) the
degradation of fuel-production rates during photo-electro-
chemical operation is accompanied by a loss of chemically
grafted cobaloxime units and (2) there is a persistence of
spectroscopic markers associated with the PPy graft following
this loss of cobaloximes, we explored the possibility of
restoring the fuel-production activity by chemically repairing/
restoring cobaloximes onto the surface-grafted polymer.
Following chemical reprocessing of the cobaloxime-depleted
electrodes via treatment with a 1.0 mM methanolic solution of
Co(dmgH,)(dmgH)Cl, (see experimental methods and
Scheme S1 of the Supporting Information for further details),
the photo-electrosynthetic performance metrics of the electro-
des are restored to their original values, within the error of the
measurements (see Figure 1c and Table S4).

Structural characterization of these chemically repaired
electrodes is also consistent with successful restoration of the
cobaloxime loadings. In particular, signal-intensity analyses
using GATR-FTIR data, deconvolution of N 1s core level XP
spectra, and comparison of Co 2p/N 1s spectral intensity
ratios all indicate nearly quantitative restoration of the initial
cobaloxime loadings recorded prior to any degradation
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Figure 3. (a) Structure of the pyridyl and cobaloxime units of ColPPylGaP indicating the PyN, GlyN, and PyN-Co nitrogen sites. (b—d) N 1s core-
level XP spectra of ColPPylGaP recorded using (b) initial, (c) postdegrade (see Figure 1d and related caption), and (d) postrepair samples. Solid
lines represent the background (gray) and indicated components (cyan for remnant pyridyl nitrogens (PyN), yellow for glyoximate nitrogens
bound to cobalt centers (GlyN), and purple for pyridyl nitrogens bound to cobaloximes (PyN-Co)).

(yielding values of 96 + 3%, 95 + 3%, and 95 + 4% restoration
of the initial cobalt loadings for the three types of
measurements, respectively) (Tables 1 and S1—S3). Product

Table 1. Per-Geometric-Area Cobaloxime Loadings”

sample cobaloxime loading (nmol Co cm™2)“
ColPPylGaP (initial) 0.82 + 0.01
ColPPylGaP (postdegrade) 0.172 + 0.009
ColPPylGaP (postrepair) 0.78 + 0.02

“As determined via a combination of ellipsometry and XP
spectroscopy (see experimental in Supporting Information for further
details).

detection via gas chromatography experiments performed
using initial, postdegrade, and postrepair electrodes confirms
hydrogen production in the case of all samples (Figures S2—
SS). Further, as demonstrated by performing three successive
degrade-repair cycles (Figure S33), the restoration of photo-
electrochemical activity following chemical repair is not limited
to a single cycle.

Considering the results described in this Letter (obtained
using a model polypyridyl-cobaloxime-modified semiconductor
assembly) and those of previous reports on the electrocatalytic
performance and operational mechanisms of homogeneous
cobaloxime catalysts,”~”***’ we postulate the loss of
cobaloximes during photo-electrosynthetic operation is, in
part, triggered by redox cycling and an associated breaking of
pyridyl nitrogen—cobalt bonds during reduction of the cobalt
centers from their Co" to Co' oxidation states. Although a
redundancy of ligand sites and confinement effects associated
with polymeric coatings appear to impart increased chemical
stability of the cobaloxime units as compared to their
homogeneous counterparts,"' fragments of the cobaloximes
leach from the surface-immobilized polymer during photo-
electrosynthetic operation. By comparison, related studies
using porphyrins grafted to GaP surfaces via an intervening
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PPy coating,'®™"® or via more covalent-based attachment

strategies,' ”'>'® show enhanced durability as measured by the
decreases in their fuel-production activities over time. These
results indicate the selection of catalyst type, the chemical
nature of their attachment, their degree of solubility in the
electrolyte solution, and the thickness of any immobilizing
polymer coatings all influence the robustness of the attachment
chemistry.

It has not escaped our attention that the loss of photo-
electrosynthetic activities described in this Letter, as observed
during the 15 min of controlled-potential electrolysis experi-
ments using ColPPylGaP working electrodes intentionally
prepared with a relatively thin (~2.31 # 0.01 nm) PPy coating,
is not linear (see Figure 1d). In these experiments, there is an
initial, more rapid loss of activity that occurs during the first
~150 s (with a 39 + 6% decrease of current density from 1.05
+ 0.03 to 0.64 + 0.06 mA cm2). This is followed by a
relatively more stable phase (with a 2 + 14% change in the
current density to a value of 0.63 + 0.07 mA cm™ at the end of
the overall 15 min experiment). We speculate the upfront loss
in activity is a consequence of catalyst detachment at points
loosely associated with the polymeric coating and/or at sites
more directly exposed to the bulk electrolyte.

The relatively larger percent loss of cobaloximes following
operational degradation as compared to the percent loss in
fuel-production metrics implies not all of the lost Co
complexes contributed, or contributed equally, to the initial
photo-electrosynthetic performance.'”'” In addition to degra-
dation of cobaloxime catalysts, we cannot rule out that some
fraction of the performance loss is due to damage induced at
the underlying semiconductor (e.g., formation of surface
oxides, see Figure S12) or intervening polymeric scaffold.
Nonetheless, the nearly complete restoration of activity
following repair of the electrodes by restoring the loading of
cobaloximes indicates the overall performance loss is largely
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(ie., within the error of the measurements reported in this
Letter) associated with degradation of cobaloxime sites.

In summary, the polypyridyl-cobaloxime-modified semi-
conductors used in these experiments are purposefully
designed for fundamental studies aimed at better under-
standing the structure—function relationships of hybrid
interfaces involving hard- and soft-material components.
These assemblies afford opportunities to study their photo-
electrosynthetic performance, degradation, and accompanying
structural changes. Consistent with the proposed mechanism
of the activity loss being linked to structural degradation at
cobaloxime catalyst sites, we show the activity can be restored
by chemically repairing the cobaloximes. Although demon-
stration of a degrade-repair cycle is a promising feature in the
context of developing schemes to generate solar fuels by day
coupled with repair at night, further advancements are required
for commercial-based applications. In general, designing,
interfacing, and characterizing combinations of (semi)-
conducting and catalytic materials to effectively power
chemical transformations remain outstanding challenges.
Addressing this will likely require development of new
materials and material interfaces, improved models for better
understanding how charge carriers move across these hybrid
assemblies, and standardized techniques for benchmarking
their overall performance.*
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