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Abstract

We show that Woodin’s AD+ Conjecture follows from various hypothe-
ses extending the Continuum Hypothesis (CH). These results complement
Woodin’s original result that the AD+ Conjecture follows from MM(c).

1 Intro duction
This paper concerns Woodin’s AD+ Conjecture, [Woo10, Denition 10.7.6]. In
[Woo10], Woodin isolates the AD+ Conjecture and shows that it is a consequence of
MM(c), the Martin’s Maximum for partial orders of size at most the continuum. The
conjecture’s original motivation was based on speculations from the Inner Model
Program and has many important consequences, e.g. the denability of
-logic. See [Woo10] for a more detailed discussion. The main results of the paper,
Theorems 1.2 and 1.3, complement Woodin’s result and show that the AD+

Conjecture is a consequence of theories extending the Continuum Hypothesis (CH).1

We identify elements of the Baire space ! !  with reals. Throughout the paper, by
a \set of reals A", we mean A   ! ! .  Given a cardinal , we say T ! n   n  is
a tree on !    (or just on ) if T is closed under initial segments. Given a tree T on
!   , we let [T ] be the set of its branches, i.e., b 2  [T ] if b 2  ! !   !  and
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1It is well-known that MM(c) implies the failure of CH.
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letting b =  (b0; b1), for each n 2  ! ,  (b0  n; b1  n) 2  T . We then let p[T ] =  f x  2  ! !  :
9f ((x; f )  2  [T ])g. A  set A  is -Suslin if A  =  p[T ] for some tree on !   . A  set A  is
Suslin if it is -Suslin for some ; A  is co-Suslin if its complement Rn A is Suslin. A  set
A  is Suslin, co-Suslin if both A  and its complement are Suslin. A  cardinal  is a Suslin
cardinal if there is a set of reals A  such that A  is -Suslin but A  is not -Suslin for any
<  . Suslin cardinals play an important role in the study of models of determinacy (see
for example, various articles from the Cabal Volumes: [KMM83], [KMS88], [KLS08],
[KLS12], [KLS16], [KMM81], [KM78]).

A  set of reals A  is  -universally Baire if there are trees T; U on !   for some  such
that A  =  p[T ] =  Rnp[U ] and whenever g is  -generic (i.e. g is V -generic for some
forcing P 2  V such that jPj  ), in V [g], p[T ] =  Rnp[U ]. We write Ag  for p[T ]V [g]; this
is the canonical interpretation of A  in V [g].2 We dene <  -universally Baire in an
obvious way.

Denition 1.1 (AD+  Conjecture, [Woo21]) Suppose A0 ; A1 2  } ( R )  are such that
L (A i ; R )   AD for i  2  f0; 1g. Let i  be the Suslin co-Suslin sets of L (A i ; R) .  Sup-
pose that for each B  2  0 [  1, B  is  !1-universally Baire. Then

L(0 ; 1 ; R)  AD+.

It is consistent (relative to large cardinals) that there are divergent models of
AD+, i.e. there are A0 ; A1 2  } ( R )  such that L ( A i ; R )   AD+ for i  2  f0; 1g but A0 2=
L(A 1 ; R)  and A1  2= L(A0 ; R).  This is a theorem of Woodin (cf. [Far]). That the
hypothesis of the AD Conjecture is necessary follows from very deep analysis
of divergent models of AD+ and Pmax-extensions of models of strong AD+-theories
(like \ADR + is regular").3 It is beyond the scope of this paper to discuss this any
further, but see [Woo21] for related results and discussions.

Woodin, in [Woo21], has shown that MM(c), the Martin’s Maximum for partial
orders of size at most the continuum, implies the AD+ Conjecture. This is the
strongest known result regarding the conjecture in the context where the Continuum
Hypothesis (CH) fails.4 The following two theorems show that the AD+ Conjecture
can also hold with CH.

Recall, for an innite cardinal , the principle  asserts the existence of a
sequence hC j  <  + i  such that for each  <  + ,

2One can show Ag does not depend on the choice of T; U.
3 is the supremum of ordinals  such that there is a surjection from R  onto . \ADR + is regular" is

consistent relative to large cardinals. This is an important result of G. Sargsyan, cf. [Sar14].
4MM(c) implies c =  !2 .
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 C  is club in ;

 for each limit point  of C, C  =  C  \  ;

 the order type of C  is at most .

The principle () asserts the existence of a sequence hC j  <  i  such that 1. for

each  <  ,

 each C  is club in ;
 for each limit point  of C, C  =  C  \  ; and

2. there is no thread through the sequence, i.e., there is no club E    such that C
=  E  \   for each limit point  of E .

We remark that the hypothesis of Theorem 1.2 is consistent relative to large
cardinals.

Theorem 1.2 Suppose CH holds and : ( ! 2 )  +  : ( ! 3 )  holds. Then the AD+ Con-
jecture holds.

We say that an ideal I  on ! 1  is !1-dense if the associated poset P I  =  } ( ! 1 ) = I  has
a dense set of size !1 .5 The hypothesis of Theorem 1.3 is consistent relative to
\ADR + is regular" (see [STW21] for a proof).

Theorem 1.3 Suppose CH holds and there is an !1-dense ideal on !1 .  Then the
AD Conjecture holds.

As mentioned, the AD+ Conjecture was motivated by inner model theoretic con-
siderations. One may attempt to prove the full conjecture (i.e. without any extra
hypothesis) by extending the HOD analysis for all AD+ models. This is an active
area of research in descriptive inner model theory and has many other applications
(cf. [Sar14, ST] for a treatment of the HOD analysis for all AD+ models below the
minimal model of ADR +\ is regular", The Largest Suslin Axiom, [Ste22] for a dif-
ferent, more general treatment of the HOD analysis, and [Tra16, ST19, ST] for recent
applications of the HOD analysis in computing consistency strength.)

Acknowledgment. The author is grateful for H.W. Woodin for his many in-
sightful conversations concerning the topic and for his inspiring work in this direction.
The author would also like to thank the NSF for its generous support through the
C A R E E R  grant DMS-1945592.

5The ideals considered in this paper are proper, normal, ne, and countably complete. Being
!1-dense is a very strong property; it implies for example that I  is saturated.
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2 Preliminaries

2.1      AD and AD+ Facts

We review basic facts about the Axiom of Determinacy (AD). Suppose A   ! ! .  Let
G A  be the following game. Players I  and I I  alternatively play natural numbers; player
I  starts round 0 by playing x0, player I I  responds by playing x1 and so on for innitely
many rounds. Let xk  be the natural number played at the kth move.

Round 0 1 : : : n : : :
Player I x0                           x2                                    x2n

Player I I x1 x3 x2 n + 1

Let

x  =  ( x k ) k < !

Then I  wins i x  2  A.

G A  is determined if one of the players has a winning strategy. Often times, we will
say A  is determined instead.

Denition 2.1 Ax iom of Determinacy,  AD: For every A   ! ! ,  G A  is deter-
mined.

One particular game that is relevant to this paper is the Wadge game. We review
it here. Let A ; B   R,  the Wadge game G A ; B  for A ; B  is dened as follows. Players I
and I I  take turns to play integers (ni : i  <  ! )  and (mi : i  <  ! )  respectively.
After !  many rounds (i.e. when the play is nished), letting x  =  (ni : i  <  ! )  and y
=  (mi : i  <  ! ) ,  player I I  wins the play if and only if

x  2  A  ,  y 2  B .

AD implies that G A ; B  is determined and therefore A ; B  are Wadge comparable. More
precisely, if player I I  has a winning strategy , then  induces a continuous (in fact,
Lipschitz) function f  : R  !  R  such that f  1 [B] =  A; otherwise, there is a continuous
function g : R  !  R  such that g 1 [R   A] =  B .  In the rst case, we say that A  is
Wadge reducible to B  and we denote this by A  w B ;  in the second case, we say B  is
Wadge reducible to R  A.

We continue with the denition of Woodin’s theory of AD+. As mentioned above,
we use  to denote the sup of ordinals  such that there is a surjection  : R  !  .
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Under AC,  is just the successor cardinal of the continuum. In the context of AD,  is
shown to be the supremum of w(A)6 for A   R  (cf. [Sol78]). The denition of
relativizes to any determined pointclass   (with sucient closure properties). We
denote   for the supremum of ordinals  such that there is a surjection from R  onto
coded by a set of reals in  .

Denition 2.2 AD+ is the theory ZF  +  AD+DCR and

1. for every set of reals A,  there are a set of ordinals S  and a formula ’  such that
x  2  A  ,  L[S; x]   ’ [S ; x].  ( S ; ’ )  is called an 1-Borel  code for A;

2. for every  <  , for every continuous  : !  !  ! ! ,  for every A   R ,  the set  1[A] is
determined.

AD+ is equivalent to \AD +  the set of Suslin cardinals is closed". Another, perhaps
more useful, characterization of AD+ is \AD+1 statements reect into the Suslin co-
Suslin sets" (see [ST10] for the precise statement).

2.2 Te r m  captur ing under AD+

The denition of mice and iteration strategies used in this paper are standard, see
[Ste10]. In the following, suppose M is a premouse7 and  is an iteration strategy for
M, then we say that (M; ) is a mouse pair. A  more general denition of mouse pairs can
be found in [Ste22].

Denition 2.3 Let A   R ,  (M; ) is a (countable) mouse pair, and  a cardinal in M.

1. (M; ) term captures A  at  if there is a term  2  M C ol ( ! ; )  such that whenever
i  : M !  N  is according to , and g  C ol (! ; i ( ) )  is N -generic, then A  \  N [g] =
i()g .

2. (M; ) Susl in  captures A  at  if there is a pair of trees (T ; U ) 2  M such that
whenever i  : M !  N  is according to , and g  C ol (! ; i ( ) )  is N -generic, then A  \
N [g] =  p[i(T )]N [g] =  RN [g]np[i(U )].

In the above,  is a ! 1  +  1-iteration strategy of M.8 M need not be ne structural.
6 w(A) is the Wadge rank of A. Under AD the Wadge reducibility relation is a prewellorder on

} ( R ) .
7 A premouse can be either ne-structural or coarse.
8Iteration trees according to  are normal trees in the sense of [Ste10].
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Clearly, Suslin capturing implies term capturing. The relationship between de-
terminacy and term capturing is best expressed by the following theorem.

Lemma 2.4 (Neeman, [Nee95, Nee10]) Suppose  is a Woodin cardinal in a
countable mouse M and A   R  is term captured by (M; ) at . Then A  is de-termined.

We will call the triple (M; ; ) in Lemma 2.4 a Woodin mouse pair or coarse
Woodin mouse pair if M is not ne structural. Under AD+, the following theorem, due
to Woodin, gives the existence of coarse Woodin mouse pairs capturing Suslin co-
Suslin sets of reals. See [Ste08, Section 10] for a more detailed version and its proof.
In the following, we say that  has condensation if whenever T is an iteration tree
according to  and U is a hull of T then U is according to . As usual, T is equipped
with a tree order < T  .  < T   implies  <   and the interval [; ]T is the set of  such that  T   T  .
See [SS, Ste08] for more details. What we mean by an iteration strategy  being Suslin
co-Suslin is: the set of reals Code[] is Suslin co-Suslin, where C ode is a xed, simple
coding function of elements of H C  by reals.

Theorem 2.5 (Woodin, [Ste08]) Suppose AD+ holds and A  is a Suslin co-Suslin
set. Then there is a (coarse) Woodin mouse pair (M; ; ) that Suslin captures A,   has
condensation (and hence has the Dodd-Jensen property), and  is Suslin co-Suslin.

2.3 A x i o m  of St rong  Condensation

In this section, we briey discuss the Axiom of Strong Condensation, isolated by
Woodin. This axiom roughly abstracts essential condensation properties typically
seen in canonical inner models (like L ) .  For more details, see [Woo10].

Denition 2.6 (Ax iom of Strong Condensation) For each cardinal  >  ! ,  there is
a bijection F  :  !  H  such that for all countable X   (H; F ) ,  letting F X  be the image of
F  \  X  under the transitive collapse map,

F X   F .

We say that F  witnesses Strong Condensation at .

Remark 2.7 By absoluteness, the X  above can be taken to be in any outer model of V .
Furthermore, [Woo21, Theorem 4.3] shows that the Axiom of Strong Condensa-tion
implies many consequences that typically hold in L ,  like GCH and there are no
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measurable cardinals. [Woo21, Theorem 4.3] also shows that there is a \global" F
witnessing Strong Condensation, i.e. there is an F  : ON !  V that is 2-denable
from F j ! 1  and for every cardinal  >  ! ,  F j  :  !  H  witnesses Strong Condensa-tion
at .

2.4 !1 -dense ideals on ! 1

Suppose I  is an !1-dense ideal on !1 .  The following are standard facts; see [Woo10,
Denition 6.19] and the discussion after it.

Fact 2.8 1. P I  is a homogeneous forcing.9

2. There is a boolean isomorphism  : P I  !  RO(Col l(! ; !1 ))10 . In particular, P I  is
forcing equivalent to Col l(! ; !1 ).

3. For any V -generic lter G   Col l(! ; !1 ),   induces a V -generic lter H   PI ,  and letting
j  : V !  M = d e f      U lt(V; H )  V [H ] be the associated generic ultrapower map,
we have:

(a) j ( f ) ( ! 1  )  =  G  for some f  : ! 1  !  H ! 1 ;  in particular, V [H ] =  V [G].

(b) j ( ! 1  )  =  ! 2  .

(c) M is well-founded and M !   M in V [H ].

3 Proof of Theorem 1.2

We rst start with a denition.

Denition 3.1 Given a set of reals A,  ! ( A )  is the collection of B   R  that is den-able in
the structure (V! + 1 ; A)  without parameters; this is the collection of (lightfaced)
projective sets in A. We say that A   R  is projective-like if every B  2  1 (A)  has a scale
which is ! (A) .  We can relativize the above denitions to 1 (A; x)  for any real x  in an
obvious way.

It is a basic AD fact, essentially following from the Moschovakis Periodicity The-
orem, that every Suslin co-Suslin set is Wadge reducible to a set which is projective-
like. Every projective-like set is clearly Suslin co-Suslin.

9 A forcing P is homogeneous if whenever p; q 2  P, there is an automorphism  : P !  P such
that (p) is compatible with q.

10 RO(Col l(! ; !1 ))  is the regular open algebra of Col l ( ! ; !1 ) .
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Now we start the proof of Theorem 1.2. Suppose A0; A1; 0; 1 are as in the
hypothesis of the AD Conjecture. Let B i  2  i  be projective-like. It is enough to
show that the Wadge game G B 0 ; B 1  is determined for all projective-like B 0  2  0 and B 1

2  1. Since projective-like sets are Wadge-conal in 0; 1, we easily get that either 0  1 or 1
0 and the conclusion L(0 ; 1 ; R)  AD easily follows.

By Theorem 2.5, there are coarse Woodin pairs (Mi; i ; i ) that Suslin capture B i  for
each i  2  f0; 1g. Let (Ti ; Ui) witness i  is  !1-universally Baire. In the following,
M( 0 ; 1 ) ; ]  is the minimal active mouse with a Woodin cardinal that is closed under 0
and 1. This is a kind of strategy mice and its general theory has been fully
developed in for example [ST16]. Recall we x a canonical coding C ode : H ! 1  !  R.
This coding is simply denable and generically absolute (for example, take the one
dened in [Woo10, Chapter 2]).

Lemma 3.2 M( 0 ; 1 ) ; ]  exists.

Proof. For each i, since i  is  !1-universally Baire, i  can be uniquely extended to a
strategy (which we will also call i )  on H ! 2 .  For a tree T 2  H ! 2

,  according to i ,

i (T ) =  b i ;  C o l l ( ! ; ! 1 )  (C ode(T ); C ode(b)) 2  p[Ti].

Fix i  and let  =  i . We let g =  p[Ti] \  V [g] for any generic g  C ol l (! ; !1 ) .  It is easy to see
that the denition of g(T ) =  b is independent of generics and therefore b 2  V . To  see
this, suppose there is an ordinal  and conditions p; q such that p C o l l ( ! ; ! 1 )   2  g(T ) i q
C o l l ( ! ; ! 1 )   2= g(T ). But then, by the homogeneity of C ol l (! ; !1 ) ,  we can nd generics
g0; g1 such that

 V [g0] =  V [g1].

 p 2  g0 and q 2  g1.

Since p[Ti ] \ V [g0] =  p[Ti ] \ V [g1], g0 (T ) =  g1 (T ). This contradicts what p; q force. We
have shown that  can be extended to a (necessarily) unique strategy, also called ,

acting on trees in H ! 2 .  Now we extend  to H ! 3 .  Suppose T is a normal tree of
length  ! 2  in H !  . If cof(lh(T )) =  !2 ,  using : ( ! 2 ) ,  we can easily nd a conal

branch b through T .11     This branch is necessarily unique and well founded; this is
simply because cof(lh(T )) >  !  and the branch b is a conal, closed subset

11This is a standard argument. The set C  =  f[0; ]T :  <  lh(T )g is a coherent sequence on lh(T ).
F ix  a continuous, increasing function f  : ! 2  !  lh(T ), we can use f  to pull back C  into a coherent
sequence D  in ! 2 .  Now apply : ( ! 2 )  to get a thread E  for D .  Then f [ E ]  is a thread through C
and gives a conal branch through lh(T ).

8



T

Y

 1

of lh(T ), so it must be unique. Well-foundedness follows from the fact that any
countable sequence (x i  : i  <  ! )  of elements in the last model of T have preimages in
some model M  for  <  lh(T ). We dene (T ) =  b.

Suppose cof(lh(T ))  !1 .  We dene X  to be good if

X   (H ! 3 ; 2) ; jX j  =  !1 ,  and X !   X .

Note that such good hulls exist by CH. For a good X  such that T 2  X ,  we let
X  : M X  !  X  be the uncollapse map, T X  =  X

1 (T ) and bX =  (TX ). We claim.

Claim 3.3 There is a good X  such that for any good X   Y , letting X ; Y  =   1
X ,  cX ; Y  =

X ; Y  [bX ], then cX ; Y   bY .

Proof. Since cof(lh(T ))  !1 ,  for any good X ,  X  \  T is conal in T . Suppose cof(lh(T
)) =  !1 ,  then it is easy to see that the claim holds for any good X  such that T 2  X .
To  see this, x any good X  such that T 2  X  and let Y be good such that X   Y . Note
that X  \  T ; Y \  T are conal in lh(T ). Therefore, cX ; Y  is a conal branch of TY . Both
cX ; Y  ; bY are club subsets of lh(TY ) and since cof(lh(TY )) =  !1 ,  bY =  cX ; Y  as desired.

Now suppose cof(lh(T )) =  ! ,  then note that for any good X ,  since X !   X ,
bX 2  MX . The argument is as in [Ste05]. Suppose there is no such X  as in the claim,
we can form an elementary chain ( X  :  2  ! 2 )  such that:

1. If  is a limit ordinal then X  =  
S

<  X .

2. If  is a successor ordinal, then X  is good.

3. For each successor  or for each limit  such that cof() >  ! ,  c;+1 = d e f

c X ; X + 1  =  b+1 = d e f  bX + 1 .

We also write ; for X ; X etc. An easy argument (using that for each  <  ! 2

with cof() >  ! ,  b 2  M X  ) gives a stationary S   ! 2  such that

  2  S  )  cof() >  ! ,  and

 ;  2  S  )  ;(b) =  b.12

12Suppose the set S  as dened is not stationary. So there is a club C  such that C \ S  =  ; .  For any
<   2  C  with uncountable conality, ;(b) =  b. Let  2  l im(C ) be of uncountable conality and is a
limit of points in C  of uncountable conality. Since C  is club below  and cof(lh(T)) =  ! ,  we can
easily nd  2  C  \   such that rng(;) \  b is conal in b and b 2  rng(;), but then ;[b] =  b by
condensation of , i.e. ;(b) =  b. Contradiction.
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For  <   2  S , +1;  witnesses (T+1 )a
;+1 (b) is a hull of T ab, and so ;+1(b) is according to

, i.e. c;+1 =  b+1. Contradiction.

Using the claim, we can dene (T ) to be the downward closure of X [bX ], where
X  is as in the claim.

Now we show M( 0 ; 1 ) ; ]  exists and is !3-iterable. The rst step is to show H V  is
closed under (0; 1)]. More precisely, for any A  2  H !  , A(0 ;1 );]  exists.13 If not, then by
covering, letting M =  L(0 ;1 ) [A],14 where A  is some subset of !2 ,  letting  =  ( ! V

)+;M ,

cof()  !2 .
The inequality above follows from weak covering of M; this is a straightforward
generalization of the Jensen’s weak covering theorem for L .  The proof of the weak
covering theorem for L  generalizes straightforwardly to M, using the fact that 0; 1 have
sucient condensation and therefore M has the ne structure needed to run the
covering lemma proof.

But : ( ! 3 )  )   <  ! 3  . This is because if  =  ! 3  , letting C  be the canonical ! V  -
sequence dened over M, then : ( ! 3 )  implies there is a thread D .  The thread D ,  as
usual, gives a collapsing structure for , i.e. some sound model N  such that  2  N  and
! ( N )  =  ! 2      (this means N  projects to !2 ) .  This is a contradiction as  was assumed to
be a cardinal in V . So  <  ! 3  . Then : ( ! 2 )  )  cof() <  ! 2  by a
similar argument. Contradiction.

Similarly, we can then show M( 0 ; 1 ) ; ]  exists. Otherwise, the core model K  =
K ( 0 ; 1 )  exists.15     Let  =  ( ! V  ) + ; K .  By covering, cf. [JS13], cof()  !2 ,  but as before
: ( ! 3 )  +  : ( ! 2 )  )  cof() <  !2 .  Contradiction.

Let H  =  M( 0 ; 1 ) ; ] ,  H  be the Woodin cardinal of H ,   be H ’s canonical strategy, and let i

2  H  be C oll(! ; H )-terms for B i .  In particular, for any g  C ol l ( ! ; H )  in

13This is the theory of the indiscernibles for the model L
( 0 ; 1 ) [A].  Here the language is the language

of set theory augmented by the following predicate symbols: a unary predicate symbol A  and two
binary predicate symbols 0; 1.

14Again, L ( 0 ; 1 ) [A]  is the minimal model over A  of height ! 3  and is closed under strategies 0 and
1. [ST16] gives a detailed treatment of how to feed strategy information of 0 and 1 into the model.
This model is L-like in that it satises all condensation properties L  satises. The key here, of course, is
because 0 and 1 have condensation properties.

15Here we construct the Jensen-Steel core model as in [JS13] up to ! V  . Again, the core model
and the corresponding Kc-construction are hybrid, relativized to (0; 1). Kc-constructions rela-
tivized to (0; 1) will construct (0; 1)-mice because (0; 1) relativize well and condense well.
Comparisons of (0; 1)-mice is not an issue; these are simply extender comparisons because all
iterates are (0; 1)-mice, so no strategy disagreements will occur. The theory of strategy mice is
developed more fully in [ST16, SS].
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V , (i )h =  B i  \  H[g].16. First, we note that the Wadge game G B 0 ; B 1  is determined in
H [g] for any H-generic g  C ol l (! ;  ) in V (via a strategy in H ).  This follows from the
fact that the corresponding Neeman’s game G B 0 ; B 1      is determined in H [g] (see
[Nee95]).

Now we let (Mi ; i ) i < !  enumerate the coarse Woodin pairs that Suslin capture
all sets in 1 (B0 )  [  1 (B1 ). By a similar proof, H  =  M ( i : i < ! ) ; ]  exists and G B  ; B  is
determined in H C o l l ( ! ; )  via a strategy in H ,  where  is the Woodin cardinal of H .  We
note that H  has C oll(! ; )-terms that capture B0 ; B1  as well as scales on B0 , B1 .
Therefore,

(H [g] \  V! +1 ; H [g ] \  B )   (V! + 1 ; B ); (1)

for any H-generic g  C ol l (! ; )  such that g 2  V , where B  =  B 0  or B  =  B1 . By AD
and the fact that B  is projective-like, each 1 (B)-relation can be uniformized by a

function whose graph is in 1 (B ).  Therefore, each non-empty 1 (B; x)-set, for each
real x  2  H [g], has a member u such that fug is 1 (B ; x). (1) follows from this fact.

Finally, (1) implies that G B 0 ; B 1      is determined in V . Suppose  2  H  witnesses
G B 0 ; B 1      is determined in H [g] for any H-generic g  C ol l (! ; ).  Without loss of

generality, we assume      [B1] =  B 0  in H [g]; we show that this holds in V . Suppose
not and let x  2  R  be such that

x  2  B 0  ,  (x)  2= B1 :

Let T be an x-genericity iteration tree of H  using ; in particular, we have:

 T is countable, according to  with last model K .

 The iteration embedding i  : H  !  K  exists.

 There is a K-generic g  C ol l ( ! ; i ( H ) )  such that x  2  K [g].

We note that (1) holds for K  in place of H .  By elementarity,  1[B1] =  B 0  in K [g ]
and since x  2  K [g], in V and in K [g],

x  2  B 0  ,  (x)  2  B1 :

This is clearly a contradiction and completes the proof of the theorem.
16In fact, we can take i  to be some tree Ti 2  !    for some  2  H .
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4 Proof of Theorem 1.3
Let I  be an !1-dense ideal on !1 .  Let A0; A1; 0; 1 be as in the hypothesis of the AD

Conjecture. As before, let B i  2  i  for i  2  f0; 1g be projective-like. We note that
by our hypothesis, for any C  2  ! (B 0 )  [  ! (B 1 ) ,  C  is  !1 -UB, and hence for any generic g
for a poset P 2  H ! 2 ,

(V! + 1 ; C )   (V [g]! +1 ; Cg ); (2)

where Cg  is the canonical interpretation of C  in V [g].
Let P  be the term relation for ! (B 0 )  [  ! (B 1 ) .  More precisely, P  consists of

tuples (i; ’; P; ; q ) such that

 i  2  f0; 1g.

 P 2  H ! 2  is a poset.

  2  V P \  H ! 2  is a term for a real.

 For a closed unbounded set of countable X   H ! 2 ,  for a comeager set of X-
generic lter g  X  \ P:  if i  =  0 and q 2  g then (V! + 1 ; B0 )   ’[g ];  and if i  =  1 and q 2  g
then (V! + 1 ; B1 )   ’[g ].17

Furthermore, by the proof of [Woo21, Theorem 5.13] and (2), for all generic g for
a poset in H ! 2 ,  for all bounded Z   ! 2      in V [g],

L ! 2  
[Z; P ]C ol l ( ! ;sup(Z ))   Z FC+  Axiom of Strong Condensation.

Let G   C o l l ( ! ; ! 1 )  be V -generic. Note that C ol l ( ! ; ! 1 )  2  H !       and G  induces a
generic g  } ( ! 1 ) = I  and a generic elementary embedding j  : V !  M  V [g].
Similarly, over M, we let k : M !  N  be the generic embedding induced by an
M-generic h  C ol l (! ; ! M ).  We note that by Section 2.4, M !   M in V [G]; in
particular, RM  =  RV  [G].

We then have by strong condensation of P  and the fact that M !   M in V [G]:

j (P )  =  P G  \  M:18 (3)
17The existence of a club of such X  for each P 2  H !       follows from the fact that B0 ; B1  are

!1 -UB and [Ste09, Lemma 4.1].
18Here P G  is P  as interpreted in V [G]. Note here that j ( A i )  =  (A i ) G ,  the canonical interpretation

of A i  in V [G].
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Claim 4.1 For all bounded Z   ! 2  , there is a closed and unbounded set C   ! 2  of
indiscernibles for the structure ( N Z  = d e f  L ! 2  

[Z; P ]; P \  NZ ).

Proof. First let Z  be a bounded subset of !1 .  We note the following:

1. N Z  =  L ! 2  
[Z; j (P )].

2. ! 1 and ! 2  =  j ( ! 1 )  =  ! 1 are strongly inaccessible in N Z .

Item (1) is proved in [Woo21] using the fact that N Z  satises the Axiom of Strong
Condensation. We give a quick proof. Let F  : O N N Z  !  N Z  be a function witnessing
Strong Condensation of N Z .  For all uncountable cardinals  <  ! 2      of N Z ,  j (F ) j
witnesses Strong Condensation at . By Remark 2.7, j (F ) j  =  F j  because

( j [ H  
Z  ]; j [F j])  ( j ( H  

Z  ) ; j (F j))  (H j ( )
Z ) ; j (F ) j j ( ) ) .

Since the transitive collapse of j [F j] is precisely F j  and by Strong Condensation of
j (F ) ,  F j   j (F ) ,  so j (F ) j  =  F j. Using this and the fact that j ( Z )  =  Z ,  we get (1).

For item (2), rst note that j ( N Z )  has the form L j ( ! V  ) [Z ; j (P )] =  L j ( ! V  ) [Z; PG ]. We
note that ! V  is a cardinal in both N Z  and j (N Z ) .  The rst part holds because ! V  is
a cardinal in V and N Z   V . The second part follows from the following facts:

 N Z  =  j (N Z ) j ! 2   \ ! 1      is a cardinal",

 ! 2  =  j ( ! 1  ) is a cardinal of j (N Z ) ,

 the Axiom of Strong Condensation holds in N Z  and hence in j (N Z ) ,  in partic-
ular, } ( ! 1  ) \  j ( N Z )   j (N Z ) j ! 2  . 19

Suppose there is a  <  ! V  such that in N Z ,  } ( )   ! V  , we may assume +  =  ! V  in
N Z .  But this means in j (N Z ) ,

+  =  j ( ! V  )  =  ! V  .

This contradicts the agreement of N Z  and j ( N Z )  in item (1) and the fact that ! 1  ; ! 2
are cardinals of N Z ; j (N Z ) .  Now use the fact that ! 2  =  j ( ! 1  )  and apply the above
argument to j ( N Z )  and k, we conclude that ! 2  is strongly inaccessible in j (N Z ) .  By
item (1), ! 2      is also strongly inaccessible in N Z .

19This fact is proved by the same proof of the condensation property of L ,  using the Axiom of
Strong Condensation here.
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We then get the conclusion of the claim for this particular choice of Z .  In fact,
one gets that (NZ ; P ) ]  exists. This is simply an adaptation of Kunen’s construction of
0] from the existence of a nontrivial embedding j  : L  !  L .  Roughly, we can show
that letting  be the measure over N Z  derived from j ,  MZ  =  U lt(NZ ; ), and i  : N Z

!  MZ  be the ultrapower map, then there is a canonical factor map  : MZ  !  j ( N Z )
such that j   N Z  =  i. We also have crt() =  i ( ! V  ). In fact by condensation of N Z ; j (N Z ) ,
MZ  =  N Z .  We can then derive a measure over MZ  from . We continue this process,
showing that (NZ ; )  is iterable. A  similar argument has been given in similar
contexts, see for example [Tra16, Lemma 3.64] or [SZ14, Theorem 28].

Now assume Z   ! V  is bounded. Note then that in M, Z  is a bounded subset of !1 .
We apply the above proof to L ! M  [Z ; j (P )] = d e f  N  and use k. We conclude that in
k(N ), ! M  is a limit of a club of indiscernibles. By elementarity and the fact that k (! M )
=  ! M ,  in N , ! M  is a limit of a club of indiscernibles. But again by strong
condensation, N   ! M  =  N Z .  This completes the proof of the claim.

Now let R  =  L ! V  (R)[P ]. Let (M0; 0; 0), (M1; 1; 1) 2  R  be coarse Woodin
pairs that capture B  ; B  respectively. As in the proof of Theorem 1.2, it suces
to show M( 0 ; 1 ) ; ]  exists. Suppose not. Then for any H   C ol l (!1 ; R) in V , K  =
K ( 0 ; 1 )  exists in R[H ].20 We note that:

 R [H ]  has the form L[Z; P ], where Z  is a bounded subset of ! V  coding (RV  ; H ).

 K  2  R  by homogeneity of C ol l (!1 ; R).

 j ( K )  2  V by homogeneity of C o l l ( ! ; ! 1 )  and j ( R )  being denable in V [g] from
parameters in V .21

From the above, the proof of [SS, Section 2.11] goes through and shows that
! 1      must be Shelah in j ( K ) .  Contradiction. Hence M( 0 ; 1 ) ; ]  exists. As before, we
let (Mi ; i ) i < !  enumerate the coarse Woodin pairs that Suslin capture all sets in 1

( B 0 ) [ 1  (B1 ). By a similar proof, H  =  M ( i : i < ! ) ; ]  exists and G B  ; B      is determined in
H C o l l ( ! ; )  via a strategy in H ,  where  is the Woodin cardinal of H .  This implies
G B 0 ; B 1  is determined in V and completes the proof of the theorem.

20That we can nd such a H  in V follows from CH. K  is the Jensen-Steel core model (constructed
relative to (0; 1)), cf [JS13]. Since R [H ]  contains all reals in V and is closed under (0; 1), whether
M ( 0 ; 1 ) ; ]  exists is absolute between V and R[H ].

21The parameters are the collection of trees f (T C ; S C )  : C  2  1 (A0 ) [  1 (A1 )g witnessing each C
2  1 (A0 ) [  1 (A1 ) is  !1-universally Baire. Here, we also use equation (3) to get that j ( R )  has the
form L [ j ( Z ) ; P G ]  to be able to use homogeneity of C ol l ( ! ; !1 ) .
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