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ABSTRACT

We synthesize mesoporous WO;/carbon composites with PS-PVP-PEO poly-
meric template. The molecularly dissolved polymer in THF self-assembles in
positively charged spherical micelles upon the addition of HCl. The negatively
charged tungsten source (WO,”) binds strongly with positively charged
polymeric micelles. Glucose, WO,?>, and micelles are assembled as a
mesostructure during solvent evaporation. The carbonization of composites
leads to mesoporous WQOj3/carbon nanocomposites. A polymeric micelle having
unique blocks for porogen (polystyrene), reaction site (polyvinyl pyridine), and
stabilizer (ethylene oxide) makes the system exceptional to synthesize meso-
porous nanocomposites in a one-pot method. The nanocomposites were char-
acterized by dynamic light scattering, scanning electron microscopy,
transmission electron microscopy, Fourier transforms infrared spectroscopy,
X-ray photoelectron spectroscopy, and Raman spectroscopy. The electrochemi-
cal studies reveal that the composites deliver 381 F.g~' capacitance with 96%
retention in 1 M H,SO,.
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sources interact with the hydrophilic portion,
whereas the hydrophobic part of amphiphilic diblock
copolymer templates for getting a porous structure
[3]. Polystyrene-polyethylene oxide diblock copoly-

Introduction

Template-assisted synthesis is a method where low
molecular surfactants or amphiphilic block copoly-

mers are used as templates and structure-directing
agents [1]. It allows for more control over the syn-
thesis route giving the ability to interchange different
polymer blocks for desired functions or size. This
synthetic approach’s simplicity, flexibility, and
reproducibility allow the fabrication of several
mesoporous inorganic materials [2]. The inorganic
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mer was used to synthesize mesoporous carbon-WOQOj;
and carbon via evaporation induced self-assembly
(EISA) method [4]. The addition of PS homopolymers
in the solubilizing process led to larger mesopores
[5]. The PEO-based block copolymers with
hydrophobic blocks such as polypropylene oxide,
polystyrene, polymethyl acrylate, polybutylene have
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been frequently studied to get a broader range of
porous inorganic materials [6-9]. In the EISA process,
block copolymers and inorganic sources undergo
closely-packed structures with appropriate packing
parameters. The packing parameter depends on the
hydrophobic-hydrophilic ratio of the block copoly-
mer, polymer-inorganic source ratio, and solution
properties such as solvent compositions [10]. Meso-
porous structures with spherical or cylindrical,
bicontinuous, or gyroid pores are obtained after
removing the template by solvent extraction or cal-
cination [6].

The addition of the third reactive block on the
diblock copolymer adds up the simplicity and gen-
erality of the method [11]. A laboratory synthesized
triblock copolymer (PS-AAA-PEO) with core-shell-
corona micelles was used to fabricate mesoporous
nickel ferrite [12]. The strong interaction of acrylic
acid and metal ions and the high thermal stability of
polymer is another advantage towards obtaining
crystalline mesoporous materials having lower crys-
tallization temperature through calcination at higher
temperatures [13]. The hydrophobic PS with higher
glass transition temperature forms a rigid core in an
aqueous based solution which stabilizes the micelles
and controls the pore size of mesoporous materials.
The switching of the reactive blocks widens its
interaction with inorganic sources. Nakashima et al.
synthesized several porous hollow structures using
PS-PVP-PEO block copolymer [14]. The use of poly-
vinyl pyridine shells as reaction sites makes the
synthetic method easy with strong interaction of
negatively charged inorganic sources such as PtCl,*",
WO,>~, MO,>~, and SnO;>". The reactive block of
copolymer strongly interacts with inorganic sources
enabling the fabrication of a highly robust frame-
work. The hydrophilic PEO helps orderly packing of
the micelles during solvent evaporation. The pore
sizes and wall thicknesses can be easily tuned to
several nanometers by varying the block lengths of
hydrophobic and metal source concentrations,
respectively [14]. Mesoporous TiO,, Nb,Os, WOs;,
5n0O,, Si0,, AlLO3;, and ZnO are synthesized using
different triblock copolymers [6, 14, 15].

Tungsten oxide has excellent properties to be
applied as pseudocapacitive electrode material being
an n-type semiconducting transition metal oxide with
multiple crystal phases, and high conductivity [16]. It
contains electron holes that act as charge traps which
we believe will help with storage capacity. It has a
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wide and stable band gap, and when tuned, it affects
optical properties providing the potential to develop
a transparent supercapacitor with high theoretical
capacitance [17]. The reversible redox reaction
between W°' and W°" ions makes the WO; note-
worthy metal oxides in battery and supercapacitor
applications. The intrinsic void on the crystal struc-
ture eases the diffusion of the ions from the elec-
trolytes [18]. Previous studies have shown that the
nanostructured WOj3-based materials with controlled
crystallinity, morphology, pore size, and specific
surface area are beneficial for improving the specific
capacitance, energy and power density [19, 20].
However, WO; is challenged with overcoming the
drawbacks of poor electrical conductivity and lower
cycling ability. Combining other materials, predomi-
nantly electrostatic double-layer capacitors type
materials such as carbon, graphene, and carbon
nanotubes with WOj; is an effective way to enhance
the supercapacitance.

Biomass  activated  carbon-decorated @ WO;
nanocomposites were synthesized through a sono-
chemical method. The bulk WO; was broken into
flakes and mixed with activated carbon. The com-
posites showed promising electrocatalytic activities
for oxygen and hydrogen evolution reaction with
relatively lower overpotential in alkaline solution
[21]. The porous MnO,-carbon composite retained its
high specific surface area, which was higher than
either bare mesoporous carbon or MnO, electrode
materials. The performance was better than that of
MnO, prepared with a carbon nanotube template
under the same conditions [22]. Tungsten oxide
containing nitrogen-doped-graphene quantum dots
possessed excellent cyclic stability with a high
specific capacitance of 178.82 Fg™' [23]. Ln,Os
nanoparticles were successfully incorporated into the
mesoporous carbon framework by an impregnated
method. The mesoporous framework was synthe-
sized using the complicated templating process. The
multiple steps take more human effort and loss the
intermediate products during synthesis [24]. The one-
pot synthesis method overcomes the shortcomings of
multistep synthesis.

Here, we have synthesized mesoporous tungsten
oxide—carbon composites via micelles assembly using
a PS-PVP-PEO template in a single pot method. WO;
nanoparticles are firmly anchored on the mesoporous
carbon framework (Scheme 1). The composites are
well characterized using several tools and techniques
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such as scanning electron microscope (SEM), Trans-
mission electron microscope (TEM), Fourier trans-
form infrared (FTIR) spectroscopy, Raman
spectroscopy, and X-ray photoelectron spectroscopy
(XPS). The electrochemical properties are studied
using cyclic voltammetry measurements from a
three-electrode system. The uniformly distributed
WO; nanoparticles through the carbon mesostruc-
tured are effectively utilized to enhance capacitive
performances. Through a combination of both far-
adaic and non-faradaic processes, WO;-mesoporous
carbon exhibited a high specific supercapacitance of
381 F.g~'in 1 M H,SO,.

Experimental

Materials

Poly(styrene-b-2-vinyl pyridine-b-ethylene oxide)
PS(14,500)-b-P2VP(20,000)-b-PEO(33,000) ~ (Polymer

Source. Inc.), Tungstic (VI) acid (H,WO,; Alfa Aesar),
D-( +)-Glucose (Sigma-Aldrich), tetrahydrofuran
(THF; Fisher Chemical), hydrochloric acid (HCL
Fisher Chemical), Sulfuric acid (H,SO,, Fisher
Chemical), and Naflon D-521 (Alfa Aesar) were used
without further purification.

Methods

Porous nanocomposites consisting of WO; and car-
bon support were synthesized via micelles assembly

Scheme 1 Synthesis of
mesoporous WO3/C
composites via micelles

assembly.

Add H,WO4 & Glucose, Stir for 3 hrs

PS-PVP-PEO
89000 b
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approach by dissolving 50 mg of PS-PVP-PEO block
copolymer in 10 mL of tetrahydrofuran via sonica-
tion for 30 min. 80pL hydrochloric acid was added to
the clear solution and was stirred for two hours. Then
40 mg of glucose dissolved in 200uL of DI water, and
40 mg of H,WO, dissolved in 200pL ethanol was
added into polymer solutions. The size and zeta
potential of dissolved micelles were collected before
and after adding tungstic acid by dynamic light
scattering using a Malvern Zetasizer. After stirring
for three hours, solutions were transferred to a petri
dish to dry at room temperature. The dried sample
was kept at 100 °C for 2 h and calcined at 600 °C for
three hours with a ramping rate of 1 °C per minute in
a nitrogen environment. Infrared spectroscopy of
each sample before and after calcination was col-
lected using the attenuated total reflection method.
Horiba Raman spectroscopy and Thermo Scientific
Escalab X-ray photoelectron spectrometer were used
to analyze the chemical compositions of the sample.
The morphology was observed by scanning electron
microscope (ZEISS EVO-LS10) and transmission
electron microscope (TEM; JEOL JEM-1210). The CH
Instruments electrochemical workstation was used to
study the electrochemical properties using a three-
electrode system. The working electrode was pre-
pared by casting WO;/carbon nanocomposites dis-
persed in water on a glassy carbon electrode. The
casting solution was prepared by dispersing 5 mg of
WO;/carbon nanocomposites in 1 mL of deionized
water, dropping 10 pm onto the glassy area of the
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electrode. Once dried, then 5ul. of Nafion solution
was added over the sample, allowing it to dry. A
platinum wire was used as the counter electrode and
a saturated Ag/AgCl electrode as the reference
electrode in 1 M H,SO, solution.

Results and discussion

We synthesized mesoporous WO3/carbon compos-
ites using a micelle assembly templating method. The
uniqueness of our synthesis is the micelles we use
and the matter of which they introduce the metal
source into the self-assembly. The polymer, poly
(styrene-b-2-vinyl pyridine-ethylene oxide) forms
spherical micelles with PS core, PVP shell, and PEO
corona in THF adjusted with HCI [25]. The molecu-
larly dissolved polymer in THF appears turbid upon
the addition of HCl (Figure S1). This can be attributed
to protonation caused by the addition of HCl which
formed radicals and started the self-assembly of the
micelles. This also turns PS to hydrophobic state and
allows it to form hollow opening in the composite
after calcination. At the same time, the PVP block
(shell) is being prepared to create charge attraction
with the metal source, which in return is responsible
for the placement of WO,*~ ions on the pores’ sur-
face. The HCl protonates the nitrogen on the PVP’s
pyridine ring. In the stirring phase of the synthesis,
these positively charged nitrogen draws attraction to
the negatively charged WO,>~ ions and attach to the
micelle. The PEO block of the micelle serves as a
structure directing agent that aids in the self-assem-
bly of the composite.

The first vital step to deem our synthesis successful
is the attachment of the WO,*~ ions on the template.
To ensure the WO,>~ is attached to the template, we
study the hydrodynamic diameter (DLS) and zeta
potential of polymeric before and after adding
WO,*~ ions. When WO,>~ is added, average size
increases from 108 to 994 nm diameter. Multiple
bands on the DLS profile show the formation of
multiaggregates of WO,>~ /micelles composites (Fig-
ure S2). The increase in diameter is due to the inter-
micelles aggregations. We observed an increase in
size and a decrease in the zeta potential; the posi-
tively charged (4 28 mV) micelles show — 3.20 mV
zeta potential after loading WO,>". The zeta potential
is the potential difference between the dispersion
medium and the surface of nanoaggregates, and it is
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caused by the net electrical charge contained within
the region bounded by the slipping plane. The mag-
nitude of the zeta potential indicates total surface
charge and degree of electrostatic repulsion among
the nanoaggregates. As the solution dries, the
micelles form an affinity, resulting in a single
framework (Scheme 1). The sample is annealed at
600 °C for 3 h with a 1°C/min ramping rate in
nitrogen crystalized the WO; and carbonized glucose
to form mesoporous WOj3/carbon nanocomposites.
FTIR spectra of pure polymer, polymer/WO,*”/
glucose nanocomposites, and WO;/carbon were
taken (Fig. 1). The slight shift on the stretching peak
of pyridine at 1590 cm ™' indicates the strong inter-
action of WO,>~ ions with polymer. FTIR of com-
posites before and after calcination indicated
complete removal/carbonization of the organic moi-
eties. All peaks that had reference to the template
present in the as-prepared sample were no longer
present in the calcined samples. By carbonizing in
nitrogen, our sample was able to maintain the carbon
content as the template is broken down. As expected,
when investigating the Raman data (Fig. 2), the
composites containing tungsten showed peaks. There
were two peaks at 272 and 324 cm ™' for WO; com-
posite with carbon and 256 and 372 cm™" for the WO3
alone, and these peaks represent the W' -O-W°"
bending vibration mode of bridging oxygen in the
WO; crystal lattice. The peaks observed at 715 and
806 cm™!, and 694 and 805 cm™! indicate the pres-
ence of the long and short W°'-O-W°®" bond
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Figure 1 FTIR spectra of polymer, polymer/glucose/WO,>~ and
WOs/carbon.
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Figure 2 Raman spectra of WO3; and WOj3/carbon.

stretching mode [26]. These shifts are caused by the
presence of carbon. Using x-ray photoelectron spec-
troscopy, we were able to detect the binding energy
of C1,01s, and W 4f for WO3/carbon composites.
Figure S3 shows the high-resolution XPS spectra of
WO;/carbon composites. The two peaks at 34.9 and
37 eV represents the spin—orbit splitting of the W 4fs,
> and W 4f;,,. 284 eV peak is due to the presence of
elemental carbon. The CHN analysis reveals that 31%
of carbon was present in the composites. The peaks of
O 1 s are located at 529.8 and 531.0 eV, correspond-
ing to C-O/W-0, and C-O, respectively [27].

The surface structure of polymer micelles and
porous nanocomposites were observed under SEM
(Fig. 3). The porous framework of carbon is observed.
Very few WO; nanoparticles were seen on the outer
surface. The TEM observation clearly showed that the
WO; nanoparticles are firmly anchored on the
framework. The TEM images show the distribution of
WO3 nanoparticles over the framework (Fig. 3c-d and
Figure 54). The nanocomposites have a mesoporous
structure with a pore size 30—40 nm. It is also con-
firmed by N, adsorption-desorption measurement.
BET plot in the Fig. 4 shows that the composites have
a high surface area of 78 m®g ™' with a pore diameter
around 40 nm.

A three-electrode system studied the electrochem-
ical properties of WO3/carbon by cyclic voltammetry
(CV). The CV is a reliable technique for the deter-
mination of redox potentials and electron-transfer
redox reactions involved. The well-dispersed solu-
tion was put on the glassy carbon electrode and
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Nafion solution (0.5%) was used as a binder. The
reversible redox reaction on the WOj electrode takes
place between W ions and W*® ions. The following
mechanism is an example of the cycle of exchanging
the H" ion between the surface of the WO3/carbon
nanocomposite and the electrolyte (HxWO; <
WO; + xH* + xe™) [28]. Typical CV curves at differ-
ent scan rates obtained at room temperature are
shown in Fig. 5. The nanocomposites are able to
deliver a specific capacity of 381 F.g~" at scan rates of
5 mVs™ in 1 M H,SO, solution. This is comparable
with other published reports [29-31]. WO; and car-
bon synthesized using the same method are tested as
electrode materials for comparison. Their perfor-
mance is (WO3; 76 F.g~' and carbon; 22 F.g™" at the
scan rate of 5 mV/s) lower than the WQO;/carbon
nanocomposites. The combination of faradaic and
non-faradaic processes makes the composites better
electrode materials than the individual components.
As shown in Figure S5, there is a decrease in specific
supercapacitance as the scan rate increases. It hap-
pens because at faster scan rates electrolytes (ions)
are only exchanged on the outer surface of the com-
posite, whereas with slower scan rates the ions are
exchanged on the surface of the pore walls deeper
within the composite, which results in a higher
supercapacitance value. The stability of samples was
also tested over 1000 cycles at a scan rate of 50 mV/s.
All samples showed to maintain above 96% retention
of supercapacitance over the 1000 cycles indicating
highly durable electrode materials for supercapaci-
tors (Figure S6).

Conclusions

Mesoporous tungsten oxide carbon composites were
developed using a PS-PVP-PEO template through
micelle assembly. The protonation of the PVP block
(shell) is used to create charge attraction with the
metal source, which in return is responsible for the
placement of WO,*"on the pores’ surface. In the
stirring phase of the synthesis, the positively charged
nitrogen on the PVP’s pyridine ring draws attraction
to the negatively charged WO,>~ and attaches to the
micelle. We were able to identify attraction between
the template and tungsten precursor by studying the
zeta potential and noticing change before and after
the addition of tungsten. Calcination of the materials
resulted in voids being left in place of the carbonized
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Figure 3 SEM image of
a polymeric micelles. SEM (a)
b and TEM c—d images of

WOs/carbon nanocomposites.
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Figure 4 BET plot of WOs/carbon nanocomposites. The inset Figure 5 CV curves of WOs/carbon at different scan rates.

shows the pore size distribution. ) . .
data, there was a noticeable shift between composites

template. The addition of glucose acted as an addi- prgpared Z"ith glucose and those that were not, the
tional carbon source. When reviewing the Raman W *-O-W®" bending vibration mode of bridging
oxygen in the WOj crystal lattice, the presence of the
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long and short W°"-O-W®* bond stretching mode
was caused by the presence of the additional carbon.
When testing the nanocomposites’ electrochemical
properties, the cyclic voltammetry curves were
stable, indicating reversible and fast redox surfaces at
a constant rate. We were able to get a specific
supercapacitance value of 381 F.g='. We tested
capacitance over 1000 cycles with a retention of 96%
capacitance. Given our composites’ capacitance abil-
ity and cycle stability, it makes a great candidate for a
supercapacitor electrode and helps combat the
demand for the world’s energy need.
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